DYNAMICS OF THE POLAR MESOPAUSE AND LOWER THERMOSPHERE REGION AS OBSERVED IN THE NIGHT AIRGLOW EMISSIONS

BY

HANS KRISTIAN MYRÅSØ

NORE PUBL-88/1001
ISSN 0030-4012

FORSVARETS FORSKNINGSINSTITUTT
NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT
P O Box 25 – N-2007 Kjeller, Norway

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
DYNAMICS OF THE POLAR MESOPAUSE AND LOWER THERMOSPHERE REGION AS OBSERVED IN THE NIGHT AIRGLOW EMISSIONS

by

HANS KRISTIAN MYRABØ

NDRE PUBL-88/1001
ISSN 0800-4412

FORSVARETS FORSKNINGSINSTITUTT
NORWEGIAN DEFENCE RESEARCH ESTABLISHMENT
P. 0. Box 25 – N-2077 Kjeller, Norway
February 1988
To

OH, O₂ and Na
without whom
this work would
not have been
possible
Title: Dynamics of the Polar Mesopause and Lower Thermosphere Region as Observed in the Night Airglow Emissions (Dynamikk og Transportfenomener i den Polare Mesopause)

Authors: Myraë Hans Kristian

Abstract: This work utilizes night airglow emissions to deduce temperatures, dynamics, energetics, transport and photochemistry of the polar 80-110 km atmospheric region. The morphological behaviour of the polar 80-110 km region as seen in the night airglow emissions is best described by quasi regular to regular variations in the temperature and in the intensities of the emissions with periods ranging from minutes to a few days. Temperature amplitudes are seen from a few degrees up to ±50 K. Intensity changes up to several hundred percent may occur. Gravity waves from below are generally found to be present in the region, being responsible for much of the short period variations. The long period variations are seen to be related to circulation changes in the lower atmosphere. Stratospheric warmings are generally associated by a cooling of the 80-110 km region by a ratio approximately twice as large in...
amplitude as the heating at the 10 mbar level. The semidiurnal tide is found to be dominant with a peak to peak amplitude of about 5 K, in contrast to model calculations. Effects from geomagnetic phenomena on the energetics and dynamics of the region are not seen, and if present, have to be small or rare as compared to the influence from below. There is a mesopause temperature maximum at winter solstice. Pronounced differences in the day to day and seasonal behaviour of the odd oxygen associated nightglows at the North and South Pole are found. This may indicate fundamental differences at the two poles in the winter mesopause region circulation and energetics.
PREFACE WITH ACKNOWLEDGEMENTS

The work reported here were initiated by the author during 1982 while at the Norwegian Defence Research Establishment (NDRE), Division for Physics. Most of the work, however, was carried out and completed during two periods of sabbatical leave in 1982/83 and in 1985 at the Geophysical Institute of the University of Alaska. The author wishes to express his gratitude to colleagues at the Geophysical Institute for support and encouragement. Particularly appreciated is the close professional contact with Professor C S Deehr, whose advice have been of great help throughout the preparation of this work. The author is also indebted to Professor G G Sivjee for the use of spectrophotometric data from Longyearbyen and Poker Flats. Special thanks go to Mrs Sheila Finch for her expert typing of various publication manuscripts. The engineers J Baldridridge and D Osborne are acknowledged for the great effort put down to keep instruments and computers working around the clock.

The sabbatical periods at the Geophysical Institute were supported by the NDRE, by the Royal Norwegian Council for Scientific and Industrial Research through fellowship programs, and by the Geophysical Institute through grants from the National Science Foundation. Thanks also to Mr T Hviidnein, formerly Head of the Division for Physics and to the Head of the Division for Weapons and Equipment, Dr philos B Haugstad and to his Chief Scientist Dr philos P Thoresen for practical support during this work.

Kjeller, February 1988

H K Myrabe
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION AND OUTLINE</td>
</tr>
<tr>
<td>2</td>
<td>SUMMARY OF SCIENTIFIC ACHIEVEMENTS</td>
</tr>
<tr>
<td></td>
<td>2.1 General morphology</td>
</tr>
<tr>
<td></td>
<td>2.2 Gravity waves</td>
</tr>
<tr>
<td></td>
<td>2.3 Stratospheric warming events</td>
</tr>
<tr>
<td></td>
<td>2.4 Tides</td>
</tr>
<tr>
<td></td>
<td>2.5 Geomagnetic/auroral effects</td>
</tr>
<tr>
<td></td>
<td>2.6 Seasonal variations</td>
</tr>
<tr>
<td></td>
<td>2.7 Differences in winter solstice conditions at the North/South Pole</td>
</tr>
<tr>
<td>3</td>
<td>FURTHER RESEARCH</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>4</td>
<td>PAPERS</td>
</tr>
<tr>
<td></td>
<td>4.1 Myrabo H K, C S Deehr and G G Sivjee, Large amplitude nightglow OH(8-3) band intensity and rotational temperatures during a 24-hour period at 78°N, J Geophys Res, 88, 9255 (1983)</td>
</tr>
<tr>
<td></td>
<td>4.2 Myrabo H K, Temperature variations at mesopause levels during winter solstice at 78°N, Planet Space Sci, 32, 249 (1984)</td>
</tr>
<tr>
<td></td>
<td>4.4 Myrabo H K, C S Deehr and B Lykkekk, Polar cap OH airglow rotational temperatures at the mesopause during a stratospheric warming event, Planet Space Sci, 32, 853 (1984)</td>
</tr>
<tr>
<td>Page</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>4.5</td>
<td>Myrabe H K, C S Deehr, R Viereck and K Henriksen, Polar mesopause gravity wave activity in the sodium and hydroxyl night airglow, J Geophys Res, 92, 2527 (1987)</td>
</tr>
<tr>
<td>4.6</td>
<td>Myrabe H K, Winter season mesopause and lower thermosphere temperatures in the northern polar region, Planet Space Sci, 34, 1023 (1986)</td>
</tr>
<tr>
<td>4.7</td>
<td>Myrabe H K and C S Deehr, Mid-winter hydroxyl night airglow emission intensities in the northern polar region, Planet Space Sci, 35, 263 (1984)</td>
</tr>
<tr>
<td>4.8</td>
<td>Myrabe H K, K Henriksen, C S Deehr and G J Romick, O$_2$(b$^1\Sigma^+_g$-X$^3\Sigma^-$) atmospheric band night airglow measurements in the northern polar cap region, J Geophys Res, 99, 9148 (1984)</td>
</tr>
<tr>
<td>4.9</td>
<td>Myrabe H K, C S Deehr, G J Romick and K Henriksen, Mid-winter intensities of the night airglow O$_2$(0-1) atmospheric band emission at high latitudes, J Geophys Res, 91, 1684 (1986)</td>
</tr>
<tr>
<td>4.10</td>
<td>Myrabe H K, Night airglow O$_2$(0-1) atmospheric band emission during the northern polar winter, Planet Space Sci, (in press) (1987)</td>
</tr>
</tbody>
</table>
DYNAMICS OF THE POLAR MESOPAUSE AND LOWER THERMOSPHERE REGION AS OBSERVED IN THE NIGHT AIRGLOW EMISSIONS

SUMMARY

This work utilizes night airglow emissions to deduce temperatures, dynamics, energetics, transport and photochemistry of the polar 80-110 km atmospheric region. The morphological behaviour of the polar 80-110 km region as seen in the night airglow emissions is best described by quasi regular to regular variations in the temperature and in the intensities of the emissions with periods ranging from minutes to a few days. Temperature amplitudes are seen from a few degrees up to ±50 K. Intensity changes up to several hundred percent may occur. Gravity waves from below are generally found to be present in the region, being responsible for much of the short period variations. The long period variations are seen to be related to circulation changes in the lower atmosphere. Stratospheric warmings are generally associated by a cooling of the 80-110 km region by a ratio approximately twice as large in amplitude as the heating at the 10 mbar level. The semidiurnal tide is found to be dominant with a peak to peak amplitude of about 5 K, in contrast to model calculations. Effects from geomagnetic phenomena on the energetics and dynamics of the region are not seen, and if present, have to be small or rare as compared to the influence from below. There is a mesopause temperature maximum at winter solstice. Pronounced differences in the day to day and seasonal behaviour of the odd oxygen associated nightglows at the North and South Pole are found. This may indicate fundamental differences at the two poles in the winter mesopause region circulation and energetics.

1 INTRODUCTION AND OUTLINE

The upper mesosphere, mesopause and lower thermosphere region (i.e. 80-110 km) hereafter abbreviated the mesopause region, has been and still is one of the least understood and investigated regions of our atmosphere. (Romick et al, 1986a; Romick et al, 1986b; Myrabo, 1987).

The main reason for this seems to have been the relative inaccessibility of this part of the atmosphere to most of the common atmospheric measuring techniques. Further, the existing observations have been almost entirely restricted to low and mid latitudes.
A basic parameter, such as the temperature, has only been crudely known in the polar 80-110 km region. As an example of this, prior to 1983, knowledge of temperatures at the polar mesopause height was mainly based on a few sporadic measurements of the OH night airglow rotational temperatures, showing temperatures in the range 150-300 K (Myrabo et al., 1983). Together with a small number of rocketsonde data from Heiss Island (CIRA 1972), these constituted our observational information of the atmospheric temperature profile for the 80-110 km region in the polar cap area. Seasonal variations, amplitudes and phases of tides, possible effects of gravity waves, connection to stratospheric warmings, auroral effects and the influence of these on the energetics, small and large scale dynamics and photochemistry had barely been investigated. Particularly information about the small scale dynamical phenomena, being dependent on continuous ground based monitoring, was lacking. This composed a serious limitation in our understanding of the polar 80-110 km region and therefore also in our understanding of the polar atmosphere as a whole (Romick et al., 1986b; Myrabo, 1986; Myrabo et al., 1987).

Consequently, the first goal of this work was to gain basic knowledge of the polar 80-110 km region, starting with a study of the short and long term (seasonal) morphological behaviour of the temperatures of the region, utilizing currently available instrumentation that actually operated at the latitudes in question.

To resolve the short term dynamical phenomena and to obtain the needed temporal coverage, ground based operating instrumentation was needed. The only available ground based instrumentation operating within the polar cap, potentially capable of obtaining temperatures of the 80-110 km region, were the optical spectrometers of the Geophysical Institute of the University of Alaska. These instruments had operated at Svalbard (78°N) for some years to study the high latitude and dayside aurora (Deehr et al., 1980). A spectrometric data base was present. Inspection of the data base looked promising. Using spectrometers to measure night airglow features in the polar cap, and to obtain the neutral temperature from the distribution of the rotational lines (Kvifte, 1959) of the OH and O_2 (0-1) Atm band emissions seemed thus
feasible. However, only the winter 80-110 km region could be studied by this approach, due to the limitation in the observing method, i.e. nightglow cannot be observed from the ground in the twilight and daylight atmosphere. In the polar region this excluded the summer period from equinox to equinox.

The problem with contamination by auroral emissions faced in earlier high latitude air-glow experiments (Meriwether, 1975; Kvifte, 1967) was partly solved by selecting the vibrational bands, by monitoring in the same spectra, one or more auroral atomic lines directly excited by precipitating particles and by using a relatively high spectral resolution. In addition, the observing site was situated in the polar cap region where contaminations from the aurora was mainly by atomic lines and less frequent than in the auroral zone (Sivjee and Deehr, 1980; Gault et al, 1981).

Also the ability to record short period intensity variations in the emissions became greatly improved in the 1980s due to new detector development (i.e. GaAs photomultipliers). Short time period dynamics could thus readily be studied and unwanted effects by auroral emission more easily restricted to fewer spectra and thus to much shorter time intervals than had been feasible earlier. The acquisition and reduction techniques were further refined to give reliable temperatures from nightglow spectra down to a few minutes (Myrabo et al, 1987), which is comparable with the Brunt Väisälä period of the atmosphere in the 80-110 km region.

The second objective of this work was to relate the experimental data to physical phenomena in and outside the 80-110 km region, and if possible to derive connections and parameters important for the dynamical and photochemical state of the region. The presence of tides, gravity wave activity, connections to stratwarms etc were thus searched for, and different experimental setups were designed particularly to be optimal for studies of each of these phenomena.

The detailed scientific results of the research are given in ten separate papers included in this report. The general morphological behaviour of the mesopause region as seen through the night airglow
emissions is particularly, but not exclusively, depicted in papers 4.2, 4.7, 4.8 and 4.9. Evidence and effects of gravity waves are mainly discussed in papers 4.1 and 4.5. The behaviour of the polar mesopause region temperature during stratospheric warmings is reported in paper 4.4. Additional results relevant to stratospheric warming events are found in papers 4.6 and 4.7. Tidal components in the temperatures and night airglow intensities are discussed in papers 4.2, 4.7 and 4.9. In paper 4.7 results from a search for possible geomagnetic/auroral interactions with the mesopause region are reported. This is also touched upon in papers 4.9 and 4.10. Seasonal variations are mainly dealt with in paper 4.6, 4.7 and 4.10. Paper 4.10 also treats differences in the morphological behaviour of the odd oxygen associated night airglow at the North and South Polar regions. References made in the first three sections to the papers in section 4 have been underlined.

2 SUMMARY OF SCIENTIFIC ACHIEVEMENTS

As a result of this work one may conclude that the dynamics of the polar mesopause region and its interaction with other regions of the atmosphere are found to be more complex than previously believed (Gärtner and Memmesheimer, 1984; Offermann, 1985; Forbes, 1982a; Evans and Nagy, 1981; Holton, 1979). Dynamics is here mainly manifested in terms of temperature, and may indirectly be related to density, pressure, wind-velocity etc.

2.1 General morphology

At Spitsbergen (-78°N, geographic latitude) intensities of the night airglow emissions from different OH bands and from the O_2 (0-1) atmospheric band together with deduced temperatures from the rotational distributions of the emissions at the respective emission heights, i.e. the mesopause region, were obtained. The measurements of the night sky covered 5 winter seasons, i.e. from autumn 1979 through spring 1984. Intensities and temperatures were collected on time sca-
les from a few minutes to hours throughout this period. For part of the winter season 1976 through 1978 mesopause region temperatures were also calculated from OH night airglow data at Poker Flats, Alaska (~ 65\textdegree N, geographic latitude).

Both from the Spitsbergen and Poker Flats data it is found that the morphological behaviour of the polar mesopause region, as manifested in the deduced temperatures and in the intensities of the different emissions, is best described in terms of quasi regular to irregular variations (Myrabo, 1984; Myrabo, 1986). Temperature variations ranging from a few percent to tens of percent (hundreds in the intensities) and periods lasting from minutes to several days are seen. Time intervals of several hours void of significant variations are rare (Myrabo, 1986). This is in contrast to the morphology of the temperature variations at mid and low latitudes (Takahashi and Batista, 1981; Wiens, 1974; Shefov 1969; Takeuchi et al, 1979; Tarrago and Chanin, 1982). Consequently, the local dynamics and the larger scale circulation patterns of the polar mesopause region have to be very different from those at lower latitudes (Myrabo, 1984; Myrabo et al, 1984a; Myrabo, 1986). Temperatures at the mesopause height have been measured from 298 K to 158 K during the winter season. This is up to ~90 K in deviation from the CIRA 1972 model atmospheric mean.

2.2 Gravity waves

Measurements of one or more night airglow emissions situated at different heights in the atmosphere were obtained during clear weather situations. Sampling time scales from 30 minutes down to 5 minutes (the latest being close to the Brunt-Väisälä frequency at the mesopause region) were employed. From the simultaneously obtained emission intensities and temperatures at the different heights evidence of gravity wave activity could be searched for (see Fritts et al, 1984; Fritts, 1984; Hatfield et al, 1981; Fredrick 1979; Noxon, 1978; Krassovsky, 1972).

It was found that in a large fraction of cases, short period variations in temperature and intensities displayed similar behaviour,
i.e. when strong variations in the temperature occurred, the same was seen in the intensity, and with approximately equal periods of variations (Myrabo et al., 1983; Myrabe, 1984). In cases where several emissions at slightly different heights were measured, similar variations, i.e. same periods, were often seen both in temperature and intensities at the different heights (Myrabe et al., 1987). Most frequently, in phase variations were observed between intensity and temperature. From analysis of the power spectra of the temperature variations, an approximately $k^{-5/3}$ dependence on the temperature variations with wave number was found in a large number of cases, implying the presence of a quasi saturated or saturated gravity wave field with breaking gravity waves (Myrabe et al., 1987).

The bulk of the temperature and intensity variations, with periods in the time domain ~ 5 minutes to 3-4 hours, may therefore be explained in terms of gravity waves penetrating or breaking in the 80-110 km region (Fritts et al., 1984). Both examples of simple cases with monochromatic waves and more complex cases, with combinations of several modes including breaking waves were found (Myrabe et al., 1983; Myrabo et al., 1987). Even a case of standing waves near the Brunt Väisälä frequency, probably excited by longer period gravity waves (Tuan et al., 1979), was observed (Myrabo et al., 1987).

Upper levels of gravity wave induced vertical eddy diffusion coefficient in the range ~ 10^6-10^7 cm2/s were deduced from the intensity variations of the emissions (Myrabe et al., 1987). This is a pronouncedly larger eddy diffusion coefficient than normally seen at lower latitudes (Thrane et al., 1985; US Standard Atmosphere, 1976) and is possibly in disagreement with the predictions by Lindzen (1981) quoting a minimum in the eddy diffusion coefficient near the mesopause at high latitudes. The large eddy diffusion coefficient may also be taken as an additional indication of very strong gravity wave activity in the polar winter atmosphere. Heights of the sodium emissions and the OH(6-2) emission were found to be separated by about 1 km, indicating the OH(6-2) emission to be situated approximately at 90 km in the polar winter atmosphere (Myrabe et al., 1987). This is ~ 5 km higher than average quotations for lower latitudes (Taylor et al,
1987). It also places the polar winter mesopause at ~ 90 km (Myrabo and Deehr, 1984).

Finally the occurrence of gravity waves, penetrating or breaking, is found to be an almost omni-present feature of the polar 80-110 km region (Myrabo et al, 1986), in contrast to mid and low latitudes (Tarrago and Chanin, 1962). The sources of the waves are in no cases found to be associated with geomagnetic or auroral phenomena, thus implying that the sources of the waves are generally the lower and middle atmosphere, i.e. the mesosphere, stratosphere or troposphere (Myrabo et al, 1987; Myrabo, 1984; Myrabo and Deehr, 1984).

2.3 Stratospheric warming events

In the northern hemisphere the stratosphere and lower mesopause is known to undergo a circulation reversal once or more during mid-winter before the final circulation reversal takes place in spring (Labitzke, 1977). In connection with the mid-winter reversal there is found to be a heating of the stratosphere (stratospheric warming) with a corresponding cooling of the mesosphere up to at least ~ 60 km height (Labitzke and Barnett, 1985).

To study possible effects of the stratospheric warmings on the polar mesopause region (i.e. 80-110 km), 12-24 hours averaged mesopause temperatures were compared to temperatures of the stratosphere and mesosphere (i.e. up to ~ 60 km height). The stratospheric/mesospheric temperatures were available from the Nimbus satellite radiometers and covered the polar cap area (Drummond et al, 1980).

It was found that the polar 80-110 km region cooled considerably (at least up to the 90-95 km region), during mid-winter stratospheric warming events (Myrabo et al, 1984a; Myrabo et al, 1986). The amplitude of the cooling at the mesopause was found to be approximately twice as large as the amplitude of the associated warming in the stratosphere at the 10 mbar level (Myrabo et al, 1984a). Daily mean temperature as low as 170 K were observed at the mesopause during a stratospheric warming at solstice. After the stratospheric warming vanished, the cooling of the mesopause was followed by a heating above
the "average" temperature by nearly the same amplitude as the cooling (Myrabo, 1986).

Outside periods of major and minor stratospheric warmings, the long period (day by day) variations of the temperature at the mesopause height were found to have similar or equivalent periods of variations as the day to day variations of the temperature in the mesosphere and in the stratosphere (Myrabo, 1984; Myrabo, 1986). This seems to imply a common origin and that the long term variations in the temperatures at the mesopause are somehow connected to the circulation and temperature changes in the underlying atmosphere.

2.4 Tides

Both emission intensities and temperatures deduced from the emissions at different heights have been analysed for tidal components (Myrabo, 1984; Myrabo and Deehr, 1984; Myrabo et al, 1986). Fourier analysis and superimposed epoch methods have been employed. The diurnal tide component at the mesopause, that according to the latest tidal models should dominate in polar region (Forbes, 1982b), is not found to be present above the noise level, i.e. 1 K. On time scales from a few days to about 20 days the semidiurnal tide component is seen to dominate with peak to peak temperature amplitudes in the range 4 to 8 K. The absence of the diurnal component may be explained by strong interactions of this mode with gravity waves (Beer, 1975). However, the observed amplitude of the semidiurnal mode is far larger than predicted by the current tidal models. Even higher semidiurnal amplitudes are currently reported to exist over short time intervals (Waterscheid et al, 1986). Tidal models should therefore be revised to match the observations better.

2.5 Geomagnetic/auroral effects

Including more than one month with almost continuous temperature data and a good coverage in the intensity data, correlation studies of OH temperatures and intensity variations with geomagnetic Kp, Ap index,
with sudden storm commencement and with the interplanetary magnetic field (Bz) showed no significant correlation (Myrabo and Deehr, 1984). However, for truncated data set taken from the same period (i.e., case studies) both positive, negative or insignificant correlation could be produced.

The long disputed geomagnetic/auroral influence on the temperature and dynamics in the 80-110 km region (Krassovsky, 1956; Saito, 1962; Shefov, 1969; Maeda and Alkin, 1968; Brekke, 1977; Takahashi and Batista, 1981; Baker et al., 1985) may thus be settled (Myrabo, 1984). In view of the results above and from corresponding analysis of the total amount of temperature and intensity data for the other seasons, it may be concluded that the atmospheric temperature and the dynamics of the polar mesopause region, at least up to the ~90 km level, are dominated from below (Myrabo, 1986; Myrabo et al., 1987). Influence from the aurora, if present, have to be rare or too small to be detected as compared to the competing interactions from the atmosphere below. This limits the amplitudes of the perturbations from auroral sources to be generally one order of magnitude or more smaller than the perturbations originating in the underlying atmosphere.

2.6 Seasonal variations

Daily averaged temperatures together with 5 or 10 days running averages were calculated from individual 30 minutes and 1 hour temperatures in order to study the seasonal variations of the mesopause region temperatures (Myrabo, 1984). Tidal components were removed. Forming 5 and 10 days running averages also removed the day to day variations mainly connected to the larger scale variations in the circulation (Myrabo, 1984; Myrabo et al., 1984a). In the polar cap area, (i.e., Spitsbergen, 78°N geographic) temperatures for 5 seasons were used, covering ~4 months around winter solstice. Also temperature data obtained from Poker Flats, 65°N geographic, for the seasons 1976 through 1978 have been analysed with respect to seasonal variations (Myrabo et al., 1984c). Mainly OH emissions have been used in obtaining the temperatures. At 78°N a relatively low temperature in late December followed by a very warm mesopause in January is found to be consistent.
for all four winter periods (Myrabo, 1986). A hypothesis is that this is associated with changes in the transmission of gravity waves to the upper mesosphere in connection with stratospheric and lower mesospheric circulation changes.

The average temperature maximum in January was found to be 223 K, data from five winter seasons being used. This is about 15 K higher than the CIRA 1972, 70°N, January model atmosphere at 90 km. The temperature variation from November through March is best described by a standing wave with a period of about 50 days, peaking in early December and in mid January (Myrabo, 1986). The peak to peak amplitude is about 20-30 K. The corresponding local minimum around solstice is found to be present both during winters with and without major stratospheric warmings. There is, however, both at the 78°N and at the 65°N site an average winter solstice maximum, pointing clearly to lower temperatures both in the autumn and in the spring (Myrabo et al., 1986; Myrabo et al., 1984c). At the 65°N site there is no clear local minimum around solstice (Myrabo et al., 1984c).

The intensities of the O₂(0-1) Atm band have been used to deduce oxygen concentration at the 95 km level (Myrabo et al., 1984b; Myrabo et al., 1986; Myrabo, 1987). No clear minimum in the deduced oxygen concentration is found at winter solstice. The 2-3 months of data around winter solstice for the two winters of the O₂(0-1) band observations is best described as consisting of strong enhancements in the intensity lasting for days and being superimposed on a constant background level. This is contrary to model calculations estimating that a very clear minimum in the oxygen concentration should occur around winter solstice (mainly due to the lack of production of odd oxygen through dissociation of O₂ by solar ultraviolet radiation in the polar night) (Elphinstone et al., 1984). The lack of a clear minimum indicates that the origin of the oxygen is outside the terminator. Consequently, a more effective transport from outside the solar terminator into the dark polar cap than previously thought has to be awoked. Calculations should therefore be reconsidered.
2.7 Differences in winter solstice conditions at the north/south pole

Differences in the variations of the emission intensities of the odd oxygen associated nightglows at the two poles might be used to indicate differences in the dynamics.

To study this, absolute intensities of the \(\text{O}_2(0-1) \) Atm band emission were obtained from measurements at Spitsbergen (78°N) (Myrabo, 1987). Two winters, i.e., 1982/83 and 1983/84, of measurements covering ~2½ months around winter solstice have been analysed. Contamination by aurora was removed, securing that the obtained \(\text{O}_2(0-1) \) band intensities only reflected the variations in the night airglow component of the \(\text{O}_2(0-1) \) band.

The \(\text{O}_2(0-1) \) band absolute intensities from 78°N were compared with night airglow absolute intensities of the \(\text{O15577} \) emissions over the South Pole, reported by Ismail and Cogger (1982), utilizing satellite data from the ISIS 2 limb scanner. As the \(\text{O}_2 \) Atm band emission and the \(\text{O15577} \) emission co-varies, a comparison reveals any differences in the odd oxygen variations at the two poles.

Comparing the two sets of data shows striking differences both in the seasonal and in the day to day variations (Myrabo, 1987).

While the intensities at the South Pole show a relatively smooth decline towards a minimum around winter solstice, the emission intensities in the northern polar region reveal variations with very strong emission enhancements lasting for days up to a week or more. The seasonal trend at the North Pole does not show any clear minimum in the emission intensities and thus no minimum in the odd oxygen concentration.

In the south polar region there are no major stratospheric warmings during the mid-winter and thus a more consistent circulation pattern in the stratosphere and in the mesosphere (Shobend, 1977; Labitzke, 1981). If it is assumed that the enhanced levels of emissions are connected to changes in the circulation and transport within and into the
upper mesosphere and lower thermosphere, the observed differences in the emission intensities reflect differences in the circulation and transport in the two hemispheres (Myrba, 1987). Whether this is further connected to differences in gravity wave activity caused by differences in the topography (i.e. land masses) in the two polar regions or of other origin is open to question.

3 FURTHER RESEARCH

This work has illuminated a polar mesopause region with a dynamical complexity; involving strong tidal forcing, almost ever present gravity wave activity, and longer period variations (i.e. a day or more) in temperature, density and circulation connected to variations in the atmospheric regions below. One of the surprises was to find the atmosphere at mesopause height not particularly affected by geomagnetic or aurorally related activity, but with the variations in temperature and density rather controlled by interactions with the atmospheric regions below, all the way down to the stratosphere.

In order to understand the circulation, transport, energetics and chemistry of the entire polar winter atmosphere, it is crucial to identify the transition region in the atmosphere where the atmosphere changes from mainly being governed by interactions from below, to regions where interactions caused by geomagnetic activities dominates. This region is certainly above ~90 km. Monitoring the penetration and breaking of gravity waves from below and through the 90 km region and upwards in addition to monitoring geomagnetic activity should therefore be given priority to identify this transition region. It is also urgent to get a better measure of the amount of energy deposited by the almost ever present gravity waves in the polar winter atmosphere.

Further, efforts should be made to identify if a coupling between gravity waves and tides exists in the polar mesopause region (Walterscheid et al, 1986), and eventually be able to estimate the
amount of energy transferred from the gravity waves to the tides.

Monitoring the presence of gravity waves over large spatial scales, before, during and after stratospheric warmings, to see if gravity waves might play a part in the stratospheric warming events is another important item that should be pointed out.

Monitoring of a restricted number of nightglow emissions using ground-based spectrometric equipment is scarcely likely to answer the questions outlined above. However, a combination of spectrometric observations from a number of ground stations with the additional use of Rayleigh lidars and monochromatic imagers reinforced possibly by in-situ measurements might provide the information needed. Programs aimed in this direction seem now to be in progress (Romick et al, 1986a).

References

Baker D F, A F Steed, G A Ware, D Offermann, G Lang and H Lauche, Ground-based atmospheric infrared and visible emission measurements, J Atm Terr Phys, 47, 133 (1985)

Brekke A, Auroral effects on neutral dynamics, in Dynamical and Chemical Coupling Between the Neutral and Ionized Atmosphere, edited by Grandal B and Holtet J A, p 313, Reidel, Dordrecht (1977)

Deehr C S, G G Sivjee, A Egeland, K Henriksen, P E Sandholt, R Smith, P Sweeney, C D Duncan and J Gilmer, Ground-based observations of F Region associated with the magnetospheric cusp, J Geophys Res, 85, 2185 (1980)

Forbes F M, Atmospheric tides; the solar and lunar semidiurnal components, J Geophys Res, 87, 5241 (1982a)

Forbes F M, Atmospheric Tides I., Model Description and results for solar diurnal component, J Geophys Res, 87, 5222 (1982b)

Frederick J E, Influence of gravity wave activity on lower thermospheric photochemistry and composition, Planet Space Sci, 27, 1469 (1979)

Krassovsky, V I, Infrasonic variations of the OH emissions in the upper atmosphere, Ann Geophys, 20, 739 (1972)

Kvifte G, Nightglow observations at Ås during the IGY, Geophys Publ, 20, 1 (1959)

Kvifte G J, Hydroxyl rotational temperatures and intensities in the nightglow, Planet Space Sci, 15, 1515 (1967)

Labitzke K and J J Barnett, Stratospheric and mesospheric large-scale height and temperature field during the November/December 1980 Energy Budget Campaign, J Atmos Terr Phys, 47, 173 (1985)

Lindzen, R S, Turbulence and stress due to gravity wave and tidal breakdown, J Geophys Res, 86, 9707 (1981)

Myrabo, H K, C S Deehr and G G Slivjee, Large-Amplitude Nightglow OH(8-3) band intensity and rotational temperature variations during a 24 hour period at 78°N, J Geophys Res, 88, 9255, (1983)

Myrabo H K, C S Deehr and B Lybekk, Polar cap OH airglow rotational temperatures at the mesopause during a stratospheric warming event, Planet Space Sci, 32, 853 (1984a)

Myrabo H K, K Henriksen, C S Deehr and G J Romick, O₂(b^1 Σ^+ g - Ξ^3 Σ^- g) atmospheric band night airglow measurements in the northern polar cap region, J Geophys Res, 89, 9148 (1984b)

Myrabo H K, Temperature variations at mesopause levels during winter solstice at 78°N, Planet Space Sci, 32, 249 (1984)

Myrabo H K, C S Deehr, G J Romick and K Henriksen, Mid-winter intensities of the night airglow O₂(0-1) atmospheric band emissions at high latitudes, J Geophys Res, 91, 1684 (1986)

Myrabo H K, C S Deehr, R Viereck and K Henriksen, Polar mesopause gravity wave activity in the sodium and hydroxyl night airglow, J Geophys Res, 92, 2527 (1987)
Myrabo H K, Night airglow O_2(0-1) atmospheric band emission during the northern polar winter, Planet Space Sci (in press) (1967)

Noxon, J F, Effects of internal gravity waves upon night airglow temperatures, Geophys Res Letters, 5, 25 (1978)

Romick G J, C S Deehr, M A Bondi, J C Foster, T L Killeen, R W Schunk, C F Sechrist Jr, B A Tinsley and D G Torr, Coupling, Energetics, and Dynamics of Atmospheric Regions "CEDAR", Vol I: Overview, Report to the Aeronomy Program of the National Science Foundation (1986a)

Romick G J, C S Deehr, M A Bondi, J C Foster, T L Killeen, R W Schunk, C F Sechrist Jr, B A Tinsley and D G Torr, Coupling, Energetics and Dynamics of Atmospheric Regions "CEDAR", Vol II, Report to the Aeronomy Program of the National Science Foundation, p 18 (1986b)

Saito B, Unusual enhancement of night airglow intensity at low latitudes on November 13, 1960, Antarctic Rec, 14, 8 (1962)

Schoebend M R, Stratospheric warmings, observations and theory, Rev Geophys, Space Phys, 16, 521 (1977)

Shefov N N, Hydroxyl emissions of the upper atmosphere - I. The behaviour during solar cycle, seasons and geomagnetic disturbances, Planet Space Sci, 17, 797 (1969)

Takahashi H and P P Batista, Simultaneous measurements of OH(9.4), (8.3), (7.2), (6.2) and (5.1) bands in the airglow, J Geophys Res, 86, 5632 (1981)

Takeuchi I, K Misawa, Y Kato and I Aoyama, Rotational temperatures and intensities of OH(6-2) and OH(8-3) bands in the nightglow, J Atm Terr Phys, 41, 387 (1979)

Tarrago A and M L Chanin, Interpretation in terms of gravity waves of structures observed at the mesopause level by photogrametry and lidar, Planet Space Sci, 30, 611 (1982)

Taylor M, M A Hapgood and P Rothwell, Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near infrared OH nightglow emissions, Planet Space Sci, 35, 413 (1987)

Tuan T F, R Hedinger, S Silverman and M Okuda, On gravity wave induced Brunt-Väisälä oscillations, J Geophys Res, 84, 393, (1979)

Wiens R H, Diurnal variations of the (8-3)/(5-0) intensity ratio of nightglow OH at Agi Udri, Planet Space Sc, 22, 1059 (1974)
Large-Amplitude Nightglow OH (8-3) Band Intensity and Rotational Temperature Variations During a 24-Hour Period at 78 N

H. K. MYRABO, C. S. DITHER, AND G. G. SYVRE

Geophysical Institute, University of Alaska

1. INTRODUCTION

Since Meinel [1950] identified the OH band system in the night airglow, a large number of investigators have tried to elucidate the physics and chemistry behind the different patterns of behavior of the OH nightglow. The study of OH emissions alone or together with other nightglow emissions provides important information on temperature, density, composition, and behavior of the upper mesosphere. OH emission measurements can also be used as an important tool for observing the effects of propagating gravity waves through the atmosphere [Krassovskv et al., 1976; Krassovskv and Shapiro, 1978; Nixon, 1978; Frederick, 1979; Hatchel et al., 1981].

Almost all of the observations of OH have previously been made at latitudes less than approximately 70°. Measurements above latitude 75° are sparse compared to lower latitudes. The only measurements at high latitudes were those of Chamberlain and Oliver [1953] in Thule, the flights by the U.S. Air Force KC-135 at aircraft in March 1963 and 1964 reported by Nixon [1964], and the 1968 NASA auroral airborne expedition [Syver et al., 1972].

Chamberlain and Oliver's data consisted only of a few spectra with relatively coarse spectral and temporal resolution. They found an OH rotational temperature ranging from 100 to 150 K, which is believed to be approximately 30-40 K too high due to erroneous molecular constants used in the reduction of the data [Xivere, 1959]. Nixon's results, which are biased mainly on two spectra averaged in time and space over latitudinal ranges 77-83 N and 69-85 N, gave temperatures 160 and 185 K, respectively. He also reported a significant decrease in intensity and temperature with increasing latitude.

The NASA auroral observations performed between January and March 1968 consisted of a larger number of flights and thus provided more data pertinent to the picture of the latitudinal dependence of the temperature. Latitudes 0°-78°N gave temperatures in the range 90-245 K with a mean close to 225 K [Syver et al., 1972].

These measurements, although providing valuable data on temperature and intensity with latitude only gave a snapshot and therefore a very limited understanding of OH morphological behavior at high latitudes. For this purpose continuous measurements from the ground and possibly linked with satellite measurements from above will provide the best data.

Satellite measurements alone have been utilized by Reed [1976] to report indications of strong polar enhanced OH emissions. Further, Walker and Reed [1976] found the effects from an early major stratospheric warming in December 1967 on the OH emission intensity to be largest between 0° and 80°N. Unfortunately, the measurements were broadband optical measurements, and contamination by aurora, as was pointed out in both these works, cannot be ruled out.

The lack of observations at high latitudes is due, in part, to the problem of contamination by auroral emissions. In the auroral zone this is caused by auroral molecular bands which cover almost the entire visible and near infrared [Voskod Jones, 1974; Meertens, 1975]. However, at higher latitudes, i.e., into the polar cap region, auroral molecular emissions diminish, and the aurora emits mainly atomic lines [Syver and Deeve, 1980]. Thus a normal, high-response auroral spectrophotometer operated at a resolution of 2000 Å (4 Å bandwidth) may be used to measure most of the OH bands and lines clearly resolved from the auroral emissions. Because of the high geographic latitude of the station, observations may be carried out continuously for 24 hours per day for 2 months around each winter solstice. The auroral observatory at Longyearbyen may therefore be regarded as a suitable site for high latitude OH observations from the ground.

2. INSTRUMENTATION, OBSERVATIONS, AND REDUCTION

The OH emission data employed in this work were part of the measurements undertaken during the multinational Svalbard auroral expedition beginning in 1978 at an observatory [Deehr et al., 1980] close to Longyearbyen on West Spitsbergen (geographic latitude 78°47'N). The 1-m- and 2-m-high-throughput Ebert-Fastie spectrophotometers are coupled to a minicomputer and record in the photon-counting mode. The 1-m instrument, used for these measurements reported here, is further described by Dick et al. [1977] and Syver et al. [1977].

From three sessions of data, i.e., 1979-1980, 1980-1981, and 1981-1982, we have been able to utilize limited periods during
clear weather where the instruments were run in a suitable manner for OH measurements. Of particular interest are observations from a single 24-hour period of continuous measurement of the OH (8-3) band where the OH intensity and temperature were observed to change considerably. Unfortunately, none of the other usable periods in the data collection contained a full 24-hour period with as high a time resolution. How often that behavior occurs is therefore not yet known.

The spectrophotometer was pointed toward zenith and the 7320-7330 Å region was scanned in 8 s by using the spectrophotometer in the second order with a 1-mm slit corresponding to a bandwidth of 1.5 Å and a resolution of 4900. Each scan was recorded on magnetic tape. In most cases, an adequate signal-to-noise ratio was acquired by integrating 75 individual scans over 10 min. An example of the quality of the data may be seen in Figure 1.

Rotational temperature was calculated by Krifhe's method, using the intensity ratio of the P1(2) and P2(1) lines [Krish, 1951]. The band intensity was then based on the measured intensity of the P1(2) line together with the calculated temperature. Absolute intensity calibration was performed in the field by using a standard lamp and a diffusing screen.

Probable error in the calculated temperature is estimated to be ±5 K caused by the uncertainty in defining the P1(2) and P2(1) backgrounds, while the possible error in the absolute intensity is approximately 20%, mainly caused by the calibration uncertainty. The aurora could easily be monitored through the 7320-7330 Å OH lines. Additional care was taken to assure that there was no contamination of the data from the N2 1P and other auroral molecular emissions.

3 RESULTS AND DISCUSSION

3.1 Intensities and Rotational Temperatures

Intensities and rotational temperatures as derived from the measured OH (8-3) band lines between January 6 and 7, 1981, are shown in Figure 2. They are given respectively as broken and solid lines. The mean 24-hour rotational temperature is 227 K and the mean intensity of the OH (8-3) band is 596 R. For comparison we may mention that the average temperature and band intensity found by Takahashi et al. [1977] at 23°5 for the period July 1972 to October 1974 was 179 K and 408 R, respectively.

No obvious diurnal or semidiurnal trend is visible in the 24-hour record presented here.

Previous temperature measurements at latitudes 70°-85°N cover the range (0 to approximately 300 K. However, such a large variation in temperature as seen here (±70 K) has not been reported from a single station and a limited time span.

Kravtovzor and Shaparenko [1977] report extremes of ±50 K during the propagation of internal gravity waves through the mesosphere.

There is no way of ascertaining that the variations seen here are due to the propagation of internal gravity waves. To do that would have required simultaneous determination of temperatures at least at two altitudes [Netol, 1978] or measurements taken simultaneously at three places in the sky [Kravtovzor, 1972; Kravtovzor and Shaparenko, 1974].

However, it is difficult to find another mechanism that could lead to such extreme variation in the temperature and intensity. An indication that at least part of the variations seen here may be due to the propagation of gravity waves is the correlation between temperature and intensity. A correlation between temperature and intensity was found by Shaparenko [1974] and Kravtovzor and Shaparenko [1977] during the propagation of gravity waves, while under conditions where gravity waves were not likely, poor or no correlation was found [Harrison et al., 1971; Takahashi et al., 1974; Takasahi et al., 1979].

Figure 3 shows the intensity-temperature plot. The correlation coefficient found is 0.56 using V = 286 points. The best fit curve with a slope ΔT/T = 153 K is indicated.

It has been shown theoretically by Wemelick [1978] that the relation between temperature and intensity during gravity wave passage is complex. It might show phase shifts and depend upon the scale height of the respective ozone component (e.g., H) relative to total scale height at the particular
oscillations are at a slightly higher altitude over Longyearbyen. This may be interpreted to mean that the emission region is situated at or slightly above the mesopause. Owing to the polar jet, the mesopause is believed to be at a higher altitude of midwinter above the polar regions than elsewhere [Rodgers, 1977]. In view of the above, a reasonable interpretation is that all or part of the larger amplitude found is due to the higher altitude of OH emitting layer. This contradicts the suggestion of Sijee et al. [1972], who suggested that the height of the OH-emitting layer is independent of latitude. The latter results are, however, based on a comparison of a very limited amount of temperature data with temperatures taken from a model.

Figure 3 shows a Fourier analysis of the temperature and intensity variations, which exhibit a decreasing energy in the higher frequencies. This is also in agreement with Krassovsky and Shaqur [1977], who find the same characteristic feature during gravity wave propagation conditions. Periods in the range 2-33 hours are clearly recognizable in the power spectra of both intensity and temperature shown in Figures 3 and 1. They are all within the domain of internal gravity wave [Frederick, 1960].

Fig. 1. Correlation between OH (Δ)-rotational temperature and altitude during the 14-hour period as obtained employing each point (5-min interval) in Figure 1 directly. The correlation analysis was performed by using $n = 286$ points, giving a correlation coefficient $r = 0.56$.

Fig. 2. Amplitude of the rotational temperature $ΔT$ in degrees Kelvin observed against period T in minutes for the most well-defined oscillations in Figure 1.

Fig. 3. Power spectra of the variations of OH (Δ)-rotational temperature and intensity. A Hanning window was employed.

Fig. 4. Distribution of the $Δ$ value $(Δ)/ΔT$ for the measurements on January 6-9. Cases with $Δ > 8$ not included here were in the range 0-2 for a single interval.

Fig. 5. Power spectra of the variations of OH (Δ)-rotational temperature and intensity. A Hanning window was employed.
All of these indications seem to support the hypothesis that a large part of the variations in OH temperature and intensity reported here have been due to the passage of internal gravity waves.

A closer inspection of Figure 2 reveals the tendency of a fine structure of the order of 10-15 min superimposed on the longer period waves. Fine structure might be seen both in the intensity and in the temperature. Similar fine structure in the 557.6 and 6300-A night airglow intensity is known to exist [Osada, 1962; Silverman, 1952] and in some cases believed to be associated with local instability in gravity waves having amplitudes greater than approximately 20% [Hofaker, 1967].

According to Tuan et al. [1979], the ripples frequency should be close to the buoyancy period, i.e. the Brunt-Vaisala period, which in our case is of the order of 5-7 min. Our integration time and sampling rate might, however, modify and obscure the real frequency pattern, i.e. the real oscillations might be considerably smaller than 10-15 min. Further investigations and discussion of this is therefore advisable to leave until data with a much higher sampling rate i.e. the order of 1 min is obtained.

Babakov [1972], Kammen [1975], and Shaquen [1974] report the occurrence of gravity waves to be correlated to geomagnetic activity as measured by the geomagnetic K index. Shaquen [1974] reports southward traveling waves, indicating an origin in polar regions. Yurkovsky and Shaquen [1974, 1977] report the sources to be connected with active meteorological phenomena at the troposphere in connection with jet streams, winter fronts, cyclones, anticyclones, etc. But they do not exclude a dependence on geomagnetic activity.

Validity is indeed clearly suffered by both geomagnetic and meteorological phenomena. Not even high data have yet been accumulated to establish how common this behavior of the emission is, and how it connects to the overall atmospheric temperature, density, composition, wind velocities, etc.

3.2. The Observed \(\psi \) Value and the OH Emission Mechanism

The \(\psi \) value was first introduced by Krassovsky [1972] and is defined as follows:

\[
\psi = \frac{\Delta I / I}{\Delta T / T} \times 2 \pi = \frac{1}{2} \times \alpha_i
\]

where \(\Delta I / I \) and \(\Delta T / T \) are relative increments in the intensity and temperature, \(\alpha_i \) is the ratio of the specific heats, and \(\alpha_i \) is the exponent in the temperature dependent rate coefficient, i.e. \(\alpha_i = k_0 T^{-1} = k_0 T^{-1} + k_0 T^{-1} - k_0 T^{-1} \). The theoretical justification of the \(\psi \) value and its relation to the emission process in the case of an adiabatic oscillation of the atmosphere is also dealt with by Krassovsky [1972]. It is an important parameter to evaluate and may be used as a means of identifying the emission process. Krassovsky [1971] introduced the perhydroxyl process and suggested that other processes may be important in addition to the ozone mechanism suggested by Bates and Nicoter [1950] and Hering [1951].

\[
O_3 + H \rightarrow OH + \text{H}_2 \text{O} \quad (1)
\]

Takahashi and Basu [1981] find evidence for this in the atmosphere. Bates and Nicoter [1950] proposed the process in addition to the ozone mechanism. Bates and Nicoter [1950] report strong evidence for the ozone mechanism to be the only emission mechanism operative, since they find \(\psi \) values confined to the range of -5 to +5. (The theoretical \(\psi \) value for the process is 1.5 while for the perhydroxyl mechanism and process \(\psi = 0 \).)

Krassovsky [1972] has reviewed Krassovsky's \(\psi \) value, introducing a more complex relation between temperature and intensity which is dependent upon the scale height of the minor component, i.e. \(H \) or \(\text{OH} \) with respect to the total scale height. Thus phase shifts and amplitude ratio variations may be introduced. However, the mean effects of phase shift and variation in the scale height of the minor component during the passage is most likely to broaden the \(\psi \) distribution (i.e., smear out the relation to \(\alpha_i \)). Thus the \(\psi \) values derived here by using Krassovsky's relation should be able to distinguish between processes with values as different as 1 and 3.

Figure 6 presents a histogram showing the occurrence frequency distribution for the value of \(\psi \) calculated from the 24 hours of observations recorded here. The mean \(\psi \) value is 1.06, which implies the ozone mechanism to be responsible for the OH emission. Other emission mechanisms with \(\psi \) close to 1 can, however, not be ruled out, but mechanisms with \(\psi \) greater than 1.5, such as, for example, the perhydroxyl mechanism, if operative at all, seem not to contribute significantly to the OH emission.

An upper level of 5% may be estimated to be the largest possible contribution.

4. Summary

From continuous 24-hour measurements of the OH (6-3) band nightglow emission at 8.4'N, a mean temperature of 237 K, and a mean band intensity of 560 K is found. Temperature variations are very large, showing oscillations with extrema up to \(\pm 100 \) K from the mean. The large variation between previous temperature measurements [Chamberlain and Oliver, 1953; Noxon, 1964; Snyder et al., 1972] at latitudes 78.4'-85N cover the range 250-350 K and was previously thought to be too large when compared to measurements at lower latitudes. The observation of this variation in a single 24-hour period from a single station lends credence to the validity of all the previous observations. In addition, there are indications that these large variations were due to the passage of internal gravity waves through the atmosphere. If so, the extreme amplitudes of the variations imply that the OH-emitting layer at high latitudes is slightly higher in the atmosphere than at middle and low latitudes in January [Fredrickson, 1979]. The deduced \(\psi \) values give \(\psi \) values as high as 5.7 T favor the ozone mechanism to be responsible for the OH emission with the possibility of an additional mechanism contributing up to 5% of the emission.

Acknowledgements. Financial support for this research was provided by National Science Foundation through grants ATM-77-20837, ATM-77-20838, ATM-77-20839, and ATM-77-20840 to the Geophysical Institute of the University of Alaska. One of us (H. K. M.) is supported by a fellowship grant from Royal Norwegian Council for Scientific and Industrial Research.

The Editor thanks T. F. Tuan and another referee for their assistance in evaluating this paper.

References

C. S. Dettor and H. K. Meyers, Geophysical Institute, University of Alaska, Fairbanks, AK 99775.

G. C. Swenn, National Science Foundation, 800 G St., N.W., Washington, D.C. 20550.

(Rceived February 16, 1983. Revised April 14, 1983. Accepted May 2, 1983.)
TEMPERATURE VARIATION AT MESOPAUSE LEVELS
DURING WINTER SOLSTICE AT 78°N

H. E. MYRADA
Geophysical Institute, University of Alaska, Fairbanks, AK 99775-1164

(Received in final form 27 June 1983)

Abstract—Atmospheric temperatures from the polar mesopause are deduced from spectrophotometric measurements of hydroxyl bands and lines in the night airglow made at 78°N during December and January 1980-81 and 1982-83. An overall mean temperature of 220 K is found with a range from 172 to 257 K, in the daily mean values. Several winter periods lasting 3-6 days may be due to heat dissipated by gravity waves, one week of consistently low temperatures was apparently connected to a stratospheric warming. Both datasets show a warmer mean temperature later in January than for early and mid-December. The polar OH airglow seems to peak at or just above the mesopause. The data also indicate that the mesopause is situated at approx. 90 km with an upper temperature gradient of 1 K km⁻¹, indicating a very shallow mesopause. A superposed epoch analysis of 19 consecutive 24-h periods reveals a semidiurnal variation in the temperature around winter solstice with an amplitude of 5 K. No diurnal variation of amplitude greater than 1 K is apparent. Average wind velocity deduced from the amplitude of the semidiurnal temperature variation is 9 m s⁻¹.

1. INTRODUCTION

Temperature is a basic physical parameter of the atmosphere. It is involved in most of our understanding of atmospheric processes and behavior.

Common temperature-measuring techniques above the troposphere involve radiosonde balloons, grenade probes, rockets, satellites and different methods of optical, i.r. and radar remote sensing. Temperatures in the polar mesosphere and lower thermosphere, i.e. 60-110 km, are only crudely known from sporadic measurements and only a single, all-seasons 80°N model for the altitude range 25-80 km is given in CIRA 1972. Variations assumed to be caused by phenomena such as tides, winds, gravity waves, etc. are not included.

Recently, satellite probes such as those on board the Nimbus and TIROS-N NOAA series (Sissala, 1975; Rodgers, 1977; Schwartz, 1971; Drummond et al., 1980) have provided temperature measurements of the stratosphere and mesosphere up to the 60-70 km region. Emissions from the 15 μm bands of atmospheric CO₂ are used to deduce these temperature profiles (Rodgers, 1976; Gille et al., 1980). Above 80 km CO₂ is not in local thermodynamic equilibrium and thus temperatures obtained by radiance inversion from channels including this height could be largely in error (Drummond et al., 1980). Above 60 km, vertical resolution is in the range 15-30 km (Rodgers, 1977; Barnett, 1980) leaving 60 km as the approximate upper height for usable temperature determination.

While rocket and gun-probe measurements give a single profile in time and space, satellites may cover the entire globe within a 24-h period (Sissala, 1975). Satellites are therefore superb for measuring the large scale spatial and temporal variations of temperature caused by the main global transport and heating processes. Nevertheless, for continuous measurements of the dynamical behavior of temperature in local time (caused by gravity waves, tides, winds, etc.) ground-based remote-sensing techniques are the only tool. In the mesopause region (i.e. 80-95 km altitudes) one ground-based technique is to extract temperatures from the measured intensity distribution among the rotational lines of particular vibration band of the hydroxyl nightglow emission (Kvifte, 1959). Mesopause region temperatures have been obtained this way since Meinel (1950) identified the OH band system in the night airglow. Numerous investigators have reported temperatures, their different variations and connection to other atmospheric parameters and processes (Kvifte, 1960; Wallace, 1961; Noxon, 1964; Shefov, 1969; Visconti et al., 1971; Sivjee et al., 1972; Wiens and Welli, 1973; Takahashi et al., 1974, 1977, 1981; Takeuchi et al., 1979).

Due to both environmental problems and problems with auroral contamination (Meriwether, 1975) a sparse amount of OH-derived temperatures exist for high latitudes and only a few occasional measurements
are reported for latitudes greater than 70° (Myrabo et al., 1983). This is also true of other ground based techniques. As a result, the effects of gravity waves, tides and winds in the polar mesosphere and mesopause region are not yet experimentally investigated. The purpose of this paper is to report and discuss results from recent measured OH rotational temperatures at 78°N.

2. OBSERVATIONS AND DATA REDUCTION

The OH emission data employed in this work were part of measurements undertaken during the 1980-81 and 1982-83 campaigns of the Multi-National Svalbard Auroral Expedition (Deehr et al., 1980) close to Longyearbyen on West Spitsbergen (78.4°N, Lat. 15°E, Long. geographic).

OH emissions are normally predominant in the near-IR part of the night sky spectra. Contamination by auroral molecular emission in the auroral zone (Vaillance-Jones, 1974; Menzner, 1975) is normally insignificant at Spitsbergen because auroras are generally at a high altitude and emit mainly atomic lines (Sivjee and Deehr, 1980). Thus, a normal, high-resolution auroral spectrophotometer operated at a resolution around 4 Å or less may be used to measure most of the OH bands and lines clearly resolved from auroral emissions.

At the Longyearbyen Observatory, a 1 m and a 1.2 m high-throughput Ebert-Fastie spectrophotometer are coupled to a min-computer recording in the photon-counting mode. The 1 m instrument, used for the measurements reported here, is further described by Dick et al. (1970) and Sivjee et al. (1972).

The spectrophotometer was normally operated for 24 h a day from December 1982 to January 1983. During 1980-81 other spectral regions were scanned and 24-h operation was not routinely performed. Spectra were rejected when Fraunhofer absorption lines appeared during the twilight period i.e. 3-6 h during mid-day in the last half of January 1983 and during full moon with overcast weather. Operation ceased only during snow or storm. The sensitivity of the instrument allowed temperatures on an hourly basis to be extracted even during overcast sky conditions. The spectrophotometer was pointed towards the zenith and the 7280-7410 Å region was scanned in 8 or 32 s using the spectrophotometer in the second order with a 1 mm slit corresponding to a bandwidth of 1.5 Å. Each scan was recorded on magnetic tape. Individual rotational temperatures were calculated from 1- and 3-h integrated scans, by employing KVIFTE's method using the intensity ratio of the \(P_{1,12}, P_{1,13}, P_{1,14} \) and \(P_{1,15} \) lines (KVIFTE, 1959).

The quality of the spectra used for temperature deduction may be seen in Fig. 1. Probable error in a single calculated temperature is estimated to be ±3 K caused by the uncertainty of defining the background levels.

Daily mean temperatures are based on 24-h averages of the 1- and 3-h temperatures. For diurnal variation only 1-h integration was used. The auroral activity was monitored by the intensity of the 7320-30 Å OH lines. Additional care was taken to assure that there was no contamination from \(N_2, F, P, S, M \) and other auroral molecular emissions.

3. RESULTS AND DISCUSSION

3.1. Day-to-day variability and December-January pattern

Temperatures for each day from 5 December to 30 January 1983 as derived from the hourly (1-h) means are plotted in Fig. 2. The daily means are indicated by filled circles and straight lines are drawn between each mean. Dashed lines indicate that the temperature for one or more days is missing. Heaver lines indicate the daily mean temperatures obtained from OH emissions during the 1980-81 campaign.

Some of the 1980-81 measurements did not cover a whole 24-h period. Missing temperatures were added where possible by interpolation before daily means were calculated. Due to a different observing program during 1980-81, a number of OH bands other than the 8-3 band were utilized to obtain the temperatures shown.

The most obvious feature in Fig. 2 is the large, week-long cold period around January 1. followed by a
warming to a peak in the daily mean temperature of 257 K in mid-January. The similarity between the 1980-81 and 1982-83 temperatures is also striking, i.e., a tendency to a higher mean temperature in mid-January compared to early and mid-December.

The 2-6 day warming periods previous to the cold period may be explained by heat deposition from gravity waves dissipating in the upper mesosphere, mesopause region (Hines, 1965). The energy available by dissipating gravity waves seems to be able to provide a heating rate of at least 10 K day⁻¹ at 90 km (Hines, 1963; Clark and Morone, 1981) which is sufficient to explain the warming periods in Fig. 2. Since gravity wave activity is believed to be associated with tropospheric weather systems such as fronts, cyclones, jet streams, etc. (Clark and Morone, 1981; Krassovsky and Shagaev, 1977) the duration of the heating is likely to be of the order of days. This fits the observed data. It may also be noted that from the spectrum of atmospheric winds velocity fluctuations at 86 km altitude, as measured from Poker Flat, Alaska (65° N lat., 147° W long., Balsley and Carter, 1982), a significant peak in the power density spectrum appears at a period around 3-4 days. Time-averaged OH rotational temperature and mesospheric temperatures generally, are closely associated with wind fluctuations (Krassovsky and Shchapov, 1980).

It seems less likely that gravity waves originating in connection with heating caused by ion drag or Joule heating during magnetospheric substorms contain enough energy to heat the mesopause region tens of degrees for a period of several days. For example, during the substorm of 15 February 1978 approx. 10^{21} erg was released into the ionosphere during 6-7 h (Shashun, Kina and Yudovich, 1980). According to Brekke (1977) even if a significant part (i.e., 20%) of this energy is deposited at 80-90 km level, it could not increase the temperature by more than some jemths of a degree. This does not rule out the possibility that gravity waves originating in the ionosphere in connection with geomagnetic storms could cause significant oscillations of the mean temperature in the mesopause region. We find, however, no clear connection between these 3-7 day warming periods and geomagnetic activity or substorms.

The 1 week cold period (≈ 200 K) observed at year's end and the continuous warming from 172 to 257 K (i.e., 85%) in the daily mean temperature seemed too large to be connected with gravity waves. Its long duration could suggest that it was connected to large scale transport of cold air from low or mid-latitudes. Another means of producing such a large change in temperature is in connection with a "stratospheric warming" or "stratwarm" (Labitzke, 1980). Initial
warming of the polar stratosphere is expected to produce a cooling effect at the mesopause (Labitzke, 1977; Schoeberl, 1978). A stratospheric warming is seen on the 10 mbar level charts around 31 December (Najjoukat et al., 1983). Thus, the direct connection between these two phenomena seen here (i.e. a drop in the observed temperature of the mesopause around the stratospheric warming) confirms the theory (Labitzke, 1977).

As one would expect, the large-scale temperature trend is clearly visible in the data from individual 24-h periods, i.e. there is normally a longer-term trend taking place with shorter fluctuations superimposed (less than 1 day). Figure 3 illustrates this by showing a slice of the downward trend in the cold period late in December 1982. Figure 3 contains a typical, moderate fluctuation pattern, but there are also observations of very large and violent fluctuations in temperature with amplitudes in excess of ± 70 K (Myrabo et al., 1983).

3.2. The height of the OH emissions layer: the mesopause level and the temperature gradient.

Laboratory measurements by Charters et al. (1971) showed that at pressures comparable to those at 80-100 km height, an increase in the pressure leads to an increase in the OH excitation rate in inverse proportion to the number of the vibrational state. A result of this would be that emissions from lower vibrational levels of the OH molecule would correspond to a slightly lower altitude range in the atmosphere. This interpretation was suggested by Gattinger (1971) and employed by Wiens (1974) to interpret regular changes of the OH (v=3)/(v=1) band intensity ratio during the night at Adi Ugi.

Figure 4 shows the temperatures from the different bands before averaging and interpolation. Some of the scatter may be explained by the different bands not covering the same time interval. This was the case for most of the January measurements. When different bands were acquired simultaneously, the differences in temperature between the bands were, in most cases, within the measuring uncertainty (i.e. 4 K). Taking all the 1980-81 measurements for December together, there is a small tendency for the temperatures obtained from OH (v=4) and OH (v=3) bands to be slightly higher than those from the OH (v=5) and OH (v=6) bands (see Fig. 4). The mean temperature difference between the v=4 and the v=5 band temperatures is found to be 3 K which is statistically significant.

Rodgers et al. (1973) reported from their rocket observation at Poker Flat (65°N 165°W) that the emission height profile of the lower vibrational bands of OH is displaced to lower altitudes. They suggested chemical quenching by atomic oxygen to be responsible for the observed effect together with an additional excitation process. Simultaneous observations of OH (v=9), (v=8), (v=7), (v=6) and (v=5) band intensities by Takahashi and Batista (1981) may also be interpreted as support for the hypothesis that quenching is responsible for the observed altitude distribution.

Rodgers' measurements were performed at high latitudes (65°N 165°W) during March while Frederick et al. (1978) used data from satellite measurements in May-June and for low latitudes. Use of these two independent measurements covering different latitudes and seasons to deduce height difference between the OH band emissions as done by Takahashi and Batista (1981) is open to question.

Taking the height of the peak v=9 level emission from Frederick et al. (1978) and the v=5 level from Rodgers et al. (1973) results in a height difference of approx. 1 km. This implies a temperature gradient of 3 K km^{-1}.

From winter observations at Zvenigorod (55°N) during gravity wave propagation in the mesosphere, Krassovsky and Shagayev (1977) report a significantly larger temperature disturbance in temperatures deduced from the v=9 level than from the v=4 level. Average temperature differences between the two levels were found to be 12 K ranging from 3 to 26 K. On another occasion, Krassovsky et al. (1977) report temperature differences between the v=9 and v=5 level temperatures of 3-14 K with a mean close to 6 K. If this is to be interpreted as corresponding to temperatures at the respective emission heights of the different bands, the peak altitude difference as deduced from Rodgers et al. (1973) and Frederick et al. (1978) (i.e. 1 km) seems too small.

Using the temperature slope deduced from U.S. Standard Atmosphere, Supplement 1966 for 60°N winter, for the 89-98 km level just above the mesopause (i.e. 1.8 K km^{-1}) the temperatures derived by Krassovsky et al., a mean height difference of at least...
3 km would be expected between the [9-3] and [5-1] bands. Observations during gravity wave propagation conditions reported by Krassovsky and Shagaev (1977) and Shagaev (1980) give an average height difference of 4 km. Applied to our results this establishes a positive temperature slope in the range 0.8–1 K km⁻¹.

From the results by Krassovsky and Shagaev (1977), Krassovsky et al. (1977) and our result presented here, it is seen that the OH emission is situated in an altitude range with a positive temperature slope. This may be interpreted to mean that the mesopause is at approx. 80 km with the OH emissions originating in the 80–85 km region. This interpretation is in agreement with the rocket observation of Rodgers et al. (1973) at 85° N in March.

However, the very large amplitude temperature and intensity disturbances at 78° N (probably due to the passage of gravity waves) reported here and by Myrabo et al. (1983) indicate a higher altitude layer. Results reported by Shagaev (1980) from Zvenigorod (55° N) also indicate a mesopause above 85 km in winter. A temperature slope of 1.8 K km⁻¹ was reported.

The polar winter vortex, which has a peak westerly flow at about 50–60 km altitude (Rodgers, 1977), forces the stratosphere and mesosphere at extreme high latitudes in winter to be situated at higher altitudes than elsewhere. A mesopause at about 80 km in early winter at 78° N is therefore unlikely, and a more reasonable interpretation is that the mesopause is situated approx. at 90 km and the OH emissions—at least for high and extremely high latitudes in winter—peak at or just above 90 km.

From the temperature slope deduced here (i.e. 0.8–1 K km⁻¹) it seems reasonable to point out that the extreme high latitude winter atmosphere does not seem to have a very pronounced mesopause.

3.3 Diurnal, semidiurnal and short time variations

Data from 19 days around winter solstice from 9 December to 27 December 1982 were selected to be examined for regular variations with periods less than or equal to 24 h, originating from the solar tide and semidiurnal period of the type 24 m, m being an integer 1, 2, 3.

The hourly mean temperatures for each of the days were superimposed resulting in hourly means for the period. The hourly means are plotted in Fig. 5 and a semidiurnal trend is clearly visible.

A semidiurnal tide curve has been fitted to the data following the method of Petitdidier and Testelbaum (1977):

\[\Delta T = \Delta T_0 \cos \left[2\pi \left(\frac{Z - Z_0}{P} \right) - \eta \right] \]

where \(\Delta T_0 \) is the amplitude of the relative variation in the temperature. The best fit gives an amplitude of 5 K and the time of maximum temperature at 01 UTC or local Longyearbyen time 02:00.

Semidiurnal variations in the OH intensity and deduced temperature are reported by a number of authors (Takeuchi et al., 1979, Takahashi et al., 1974, 1977; Petitdidier and Testelbaum, 1977) but there seem to be no reports based on OH measurements indicating a diurnal (i.e. 24-h) temperature trend.

Spizzichino (1969) and Testelbaum and Blamont (1975) argue that non-linear interaction with gravity waves is more important for the first diurnal mode than for the semidiurnal. Thus, the effect of averaging over several days to obtain an adequate signal-to-noise ratio is to cancel the diurnal mode since it would be far less stable than the semidiurnal mode.

Continuous observations at lower latitudes normally last less than 10 h, which emphasizes a semidiurnal tide over a diurnal one. This selective effect may therefore be present in previous data. The data here are not so limited. A Fourier analysis of periods failed to retrieve any diurnal tide component. If it does occur, the amplitude is less than 1 K.

According to Forbes (1982), model calculations show the diurnal tide to be dominant over the semidiurnal at high latitudes, while according to Beer (1975), the semidiurnal tide dominates over the diurnal at high latitudes. Zonal wind speed data reported by Spizzichino (1970) favor Beer (1975) and the results reported here. Possible dominance of the diurnal tide at high latitudes on a shorter time scale i.e. a few days is, however, not ruled out by this result.

Krassovsky and Shefov (1980) have shown that a linear relationship between measured OH temperatures and wind data in the radio meteor region exists. To a first approximation the relation

\[\Delta T = \Delta T_0 \cos \left[2\pi \left(\frac{Z - Z_0}{P} \right) - \eta \right] \]
is found to satisfy the temperature–wind velocity relationship, where \(T \) is the temperature, \(\Delta T \) the temperature increment, \(i \) the imaginary unit (i.e., \(i^2 = -1 \)), representing the phase shift, \(v \) the wind speed, and \(c \) is the speed of sound. This relation is also theoretically justified for long period waves (Hines, 1965). Applying this relation to our semidiurnal tide results, and taking the speed of sound, \(c \), to be 258 m s\(^{-1}\) (USSA, Supplement 1966), \(\gamma = 1.4 \), \(T = 218 \) K, and \(\Delta T = 5 \) K, results in a mean semidiurnal wind speed of 9 m s\(^{-1}\) which seems to be of the right order of magnitude (Groves, 1980).

4. SUMMARY

Ground-based observations of atmospheric OH emission temperature and intensity have been carried out at 78° N during December and January 1980 and 1982 (Fig. 1). 5-6 day warm periods were observed both years in December. In 1982 this warm period was followed by 1 week of consistently lower temperatures (down to 72 K). Common to both seasons is a higher mean temperature level reached later in January after the cold periods. This is consistent with Quirzo’s (1969) idea of a higher mesospheric temperature in January than in early winter. I.e., November and December.

We find evidence of a stratospheric warming (Najouk and et al., 1983) near the cold period which explains the cold mesosphere (Lobitzak, 1977).

We suggest that the warm periods of the order of days are due to heat dissipated from gravity waves originating in the troposphere.

The overall average temperature for the data from the 1980-81 and 1982-83 seasons is found to be 220 K. Assuming that the OH emission at high latitudes in winter peaks at or just above the 90 km level, this temperature is slightly higher than the 80° N model from CIRA 1972 at 80 km.

The difference in the mean temperature obtained from OH (9-3) and (5-1) bands, assuming a height difference of 3-4 km (Shagav, 1980) is used to deduce a mean temperature slope of 1 K km\(^{-1}\). The data further indicate that OH emissions originate at or just above the polar mesopause (i.e., 85-94 km). The size of the gradient (i.e., 1 K km\(^{-1}\)) compared to similar gradients obtained at lower latitudes (i.e., ~ 1.8 K km\(^{-1}\)) at 55° N, Shefov, 1980, 1.84 K km\(^{-1}\) at 60° N (winters, U.S. Standard Atmosphere, Supplement 1966) implies that the polar mesopause in winter is less pronounced.

Superimposed hourly means for a 19-day period around winter solstice reveal a clear semidiurnal trend with an amplitude of 5 K (Fig. 5). This is connected to the solar semidiurnal tide. No effect of solar diurnal tide is apparent. Wind speeds deduced from the observed OH tidal temperature component show a mean semidiurnal wind of approx. 9 m s\(^{-1}\).

Acknowledgements—Financial support for this research was provided by National Science Foundation through grants ATM80-12719, ATM82-00114 and ATM82-14642 to the Geophysical Institute of the University of Alaska and from the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant.

REFERENCES

Krasovskiy, V. I. and Shefov, N. N. (1980) Relation between
Temperature variation at mesopause levels

NIGHT AIRGLOW OH (8-3) BAND ROTATIONAL TEMPERATURES AT POKER PLT, ALASKA

H. K. Myrabo*, G. J. Romick, G. G. Sivjee² and C. S. Dehr

Geophysical Institute, University of Alaska, Fairbanks

Abstract. Temperatures of the mesopause region (55-90 km) have been deduced from OH (8-3) molecular band night airglow emission measurements made at Poker Flat (65°N), Alaska. The data cover the first 4 months of each of the years 1975, 1976, 1977, and 1978. Mean monthly temperatures of 229, 224, 221, and 193 K were obtained with no significant yearly differences. The mean temperature for each month is about 13 K higher than the respective monthly temperatures in the 85 and 90 km, 60° and 70°N, CIRA (1972) model, and it follows the general decreasing trend shown by the model.

Introduction

Temperatures of the upper atmosphere at the mesopause level (i.e., 80-90 km) are important for studying both the dynamics and the overall circulation pattern of the mesosphere and in conjunction with other data can be used to study the interaction between the mesosphere and the thermosphere and exosphere. Temperature also plays an important part in the local chemistry. The auroral region, aurorally enhanced atomic and molecular emissions can overlap the near-infrared spectral region (8-3) band. The scan time over the band was either 5, 10, or 30 s, using a slit width of 1 mm, corresponding to a spectral resolution around 2 Å. In the auroral region, aurorally enhanced atomic and molecular emissions can overlap the near-infrared spectral region (8-3) band.

The observations reported in this paper were obtained from Poker Flat, Alaska (66°N, 147.46°W, geographic coordinates) during the first 4 months in the years 1975, 1976, and 1978 using a high-throughput Ebert-Fastie spectrometer to resolve the rotational structure of the OH (8-3) vibrational band.

Observations and Data Reduction

A high-throughput Ebert-Fastie spectrometer coupled to a microcomputer was used to obtain the night sky spectra. The instrumentation has been described more fully in the papers by Sivjee et al. [1972] and Romick [1976]. For the measurements reported here, the instrument was normally pointed toward the zenith, operating over the spectral region 7220 to 7450 Å, which covers the OH (8-3) band. The scan time over the band was either 5, 10, or 30 s, using a slit width of 1 mm, corresponding to a spectral resolution around 2 Å.

In the auroral region, aurorally enhanced atomic and molecular emissions can overlap the near-infrared spectral region (8-3) band. The scan time over the band was either 5, 10, or 30 s, using a slit width of 1 mm, corresponding to a spectral resolution around 2 Å. In the auroral region, aurorally enhanced atomic and molecular emissions can overlap the near-infrared spectral region (8-3) band.

The observations reported in this paper were obtained from Poker Flat, Alaska (66°N, 147.46°W, geographic coordinates) during the first 4 months in the years 1975, 1976, and 1978 using a high-throughput Ebert-Fastie spectrometer to resolve the rotational structure of the OH (8-3) vibrational band.

References

2. To avoid contamination by auroral emissions, we have used relatively high spectral resolution and have selected magnetically quiet periods mostly during the evening, when the sun is well north of the observing station. Each of the OH spectra have in addition been carefully inspected for any possible auroral contribution. The presence of auroras could easily be detected, as this spectral region contains both the strong (3,3) and (4,4) bands as well as the OS (7-0-7) lines. Spectra showing any sign of these auroral emissions have been rejected from the analysis.

From the selected data set, 30-minute and 1-hour integration periods were used to obtain the individual OH rotational temperatures. The OH P(2), P(3), P(4), P(5), and P(6) lines and the method of Kylfte (1959) were used to calculate the temperature. The rotational terms used in the plot of ln[I(4,4')] against P(J) were calculated using the data taken from Dieke and Croswhite (1948), Kylfte (1959), Herman and Hornbeck (1955), Bass and Garvin (1962), Chamberlain and Rodgers (1955), and Rosen (1970). The term values for v = 0 are almost identical to those listed by Coxon and Pastor (1981).

It has been suggested that the temperatures quoted here should be recalculated using the transition probabilities by Miss [1974]. [c.f. Wernanther, (1975). Use of these values lowers the calculated values by approximately 4 K, bringing them closer to the CIRA (1972) model. There is disagreement, however, as to the fit of Miss’s calculations to the experimental data [cf.
Fig. 1. Example of a spectrum used to deduce the OH rotational temperatures. The spectrum is obtained by scanning 112 laser-induced Raman lines over 50 s. In addition to the OH (9-3) lines, the locations of the Mg II band and OH lines originating in the aura are indicated. The lack of any broadening at the base of the P(2) and P(3) lines indicates the absence of any auroral emission.

Verrier et al., 1983). It is questionable, however, if the corrections to the lambda-doubling parameters would have any effect on the derived temperatures, especially at the higher vibration-rotation quantum numbers used in this work. We therefore elected to retain the present, traditional method of temperature calculation even if we have investigated more thoroughly a comparison between the methods.

An example (Figure 1) of a spectrum obtained using a 60-minute integration time illustrates the lack of auroral features and the typical signal-to-noise ratio for the individual OH lines used to calculate the temperature. The similar shape at the base of the P(2) and P(3) lines compared to the P(2) and P(3) lines clearly shows the lack of any auroral contribution. In addition to the OH lines, the wavelengths of the main auroral features are indicated.

The typical uncertainty in each calculated temperature (as given by the standard deviation of the regression line; see Nettleton, 1959) is estimated to be 15 K. From the individual temperature daily means are calculated. Each daily mean covers a minimum observing period of 2 hours, with the average being 4.5/2 hours.

Results and Discussion

Daily mean temperatures deduced as previously described for the years 1976, 1977, and 1978 are plotted in Figure 2. The temperature values for each year are marked with different symbols. A best fit second degree polynomial curve (dashed curve) is drawn through the combined set of individual daily means. The CIRA (1972) temperatures for 50°N at both the 85- and 90-ka heights are also plotted in Figure 2 for the appropriate time of the year.

For the years in January, February, March, and April are 1976, 1977, and 1978. The temperature at 900 K is representative of the region.

The January through April mean is 219 K. In review, the data in Figure 2 show no clear tendency for a yearly trend, thus implying that if there is a solar cycle/geomagnetic activity influence the mesopause temperature it probably has to be of the order of 5 K or less for the particular period represented here (i.e., 1976 through 1978). It should, however, be stressed that the amount of data is too sparse to rule out the possibility of such an effect. It is obvious from Figure 2 that the measured OH rotational temperatures are higher than the appropriate CIRA (1972) model temperature. The average difference between the 60°N, 90-ka height model temperatures and the measured temperatures (dashed curve) is about 15 K during any part of the time period covered. The difference between the CIRA (1972) 50°N and 90°N temperatures for the particular height interval, i.e., 85-90 km, and time of the year is only 1-3 K, and therefore the latitudinal change would have little impact on these results. As the lifetime of excited OH molecules is long enough to permit thermalization with the ambient gas at 85-90 km, the OH rotational temperature should represent the neutral gas temperature of the emitting region within a degree or so (Krasovsky et al., 1977). From rocket observations, OH emission is found to peak between 85 and 90 km with a typical half width of 10 km (Evans et al., 1978; Witt et al., 1978; Nettleton et al., 1978). Emissions from the higher rotational levels peak slightly higher in the atmosphere than do the emissions from the lower rotational bands (Shagary, 1980). Thus there is no reason to believe that the rotational temperatures as deduced from the OH (9-3) band emissions do not represent the neutral gas temperature in the 85-90 km height region. We may therefore conclude that the observed neutral gas temperatures are in agreement with the trend but differ somewhat in magnitude when compared with the CIRA (1972) model temperatures for this particular latitude and time of the year.

A similar difference was reported by Sivjee et al., 1982 for the 60°N-70°N region, showing a mean temperature for the flight close to 225 K.
during January to March 1968, which is at least 10 K higher than the appropriate CIRA (1972)
model. Temperature. Further differences may also be found in a summary of OH rotational tempera-
tures with latitude by Krifta (1967). From these data a 65 K midwinter OH rotational temperature above 240 K may be deduced. The tendency of the CIRA (1972) mesopause midwinter temperature model at high latitudes to be somewhat low is further supported by our recent findings from Longyear-
tyen, Spitzbergen (18.4°) during the 1982/1983
season (Myrabo et al., 1984). Thus the available winter mesopause temperatures deduced from OH vibration-rotation spectra at high latitudes all show the same tendency, i.e.,
the measured values are higher than the CIRA
(1972) model, but the general decreasing trend is the same. Simultaneous ground-based OH rotational
temperature measurements from several high-
latitude stations are needed to clarify the
mesopause temperature behavior at high latitudes.

Acknowledgements. Financial support for this
research was provided by the National Science
Foundation through grants ATM21719, ATM22-1462, and ATM23-0164 to the Geophysical Institute of the University of Alaska. One of us (R.K.M.) is also supported by a fellowship grant from the Royal Norwegian Council for Scientific and Indus-
trial Research.

The Editor thanks K. J. Liewellyn and another for their assistance in evaluating this paper.

References

Aass, A. K., and D. Garbot, Analysis of the hy-
droxy radical vibration rotation spectrum between 39900 and 115000, J. Mol. Spectrosc.,
9, 114, 1962.

Chamberlain, J. W., and N. J. Oliver, OH in the

Chamberlain, J. W., and F. L. Skellett, The OH
bands in the infrared airglow, Astrophys. J.,
121, 561, 1955.

Chew, J. A., and D. C. Foote, Rotational analy-
sis of hydroxy vibration rotation emission bands: Molecular constants for OH bands 9 2 < $< 10,

Dise, G. N., and H. M. Greenspan, Cambridge
Series, Ray 87, Johns Hopkins Univ., Balti-
more, Md., 1948.

Evans, W. F. J., E. J. Liewellyn, and A. Vallance-
Jones, Altitude distribution of hydroxy bands of the 9v sequence in the nighttime, Can.

Herman, R. C., and G. A. Hurbeck, Vibration-

KasKylo, V. L., N. Y. Shefov, and V. I. Parta, Atlas of the airglow spectrum 3000-12400 A,

KasKylo, V. L., and V. N. Shefov, The equili-
rium nature of rotational temperature of hydroxy airglow, Planet. Space Sci.,

Krivtso, V. I., High night airglow observations at

Krivtso, V. I., Temperature measurements from OH

Krivtso, V. I., Hydroxyl rotational temperatures
and intensities in the nightglow, Planet.

Krivtso, V. I., Temperature measurements from OH

Krivtso, V. I., Hydroxyl rotational temperatures
and intensities in the nightglow, Planet.

Lanskaya, A. and C. Peterson, Laboratory der 2
maser-flame to ammonia millimeter for
the atmosphere October 1970 by December 1971.

McKeehan, D. W., and A. Vallance-Jones, A study
of the altitude dependence of OH rotational
temperatures for Canadian stations, Can. Atmo-

Merkel, J. W., High altitude airglow observations
of correlated short term fluctuations in hydronyl emission B-3 band intensity and rota-
tional temperature, Planet. Space Sci.,
22, 249, 1974.

Myrabo, E. V., and C. S. Deehr, Mid-winter hy-
droxy night airglow emission intensities in the
northern polar region, Planet. Space Sci.,

Myrabo, E. V., C. S. Deehr, and D. G. Optre, Large-amplitude nightglow OH (B-3) band intensi-
ity and rotational temperature variations
during a 24-hour period at 78°N, Geophys.

Myrabo, E. V., K. Persaud, K. Lubicz, and K.

Myrabo, E. V., The latitude dependence of OH
rotational temperature in the night airglow,

Myrabo, E. V., The detection and study of the
visible spectrum of the aurora and airglow,

Myrabo, E. V., and D. G. Optre, Large-amplitude nightglow OH (B-3) band intensity and rota-
tional temperature variations during a 24-hour period at 78°N, Geophys.

Neuhauser, T., E. K. Persaud, K. Lubicz, and K.

Neuhauser, T., The latitude dependence of OH
rotational temperature in the night airglow,

Neuhauser, T., The detection and study of the
visible spectrum of the aurora and airglow,

Neuhauser, T., and D. G. Optre, Large-amplitude nightglow OH (B-3) band intensi-
ity and rotational temperature variations
during a 24-hour period at 78°N, Geophys.

Neuhauser, T., The latitude dependence of OH
rotational temperature in the night airglow,

Neuhauser, T., The detection and study of the
visible spectrum of the aurora and airglow,

Neuhauser, T., and D. G. Optre, Large-amplitude nightglow OH (B-3) band intensity and rota-
tional temperature variations during a 24-hour period at 78°N, Geophys.

Witt, H., J. Stegman, R. H. Solheim, and E. J. Llewellyn, A measurement of the 02 (\(^{1}P_{1} \rightarrow ^{3}P_{0}\)) atmospheric band and the \(^{1}S_{0}\) green line in the nightglow, Planet, Space Sci., 27, 241, 1979.

S. B. Deehr, O. J. Komnick, and O. G. Sivjuk, Geophysical Institute, University of Alaska, Fairbanks, AK 99701.

(Received June 28, 1983; revised April 20, 1984; accepted May 22, 1984.)
POLAR CAP OH AIRGLOW ROTATIONAL TEMPERATURES AT THE MESOPAUSE DURING A STRATOSPHERIC WARMING EVENT

H. K. MYRABO* and C. S. DEEHR
Geophysical Institute, University of Alaska, Fairbanks, AK 99701, USA
and
B. LYBEEK
Institute of Physics, University of Oslo, Oslo, Norway

(Received in final form 15 November 1983)

Abstract—OH (8-3) band rotational temperature was observed at 78.4°N during a stratospheric warming event. A negative temperature wave of the order of 40 K observed near the mesopause seems to be associated with a corresponding stratospheric warming of the order of 20 K. A 1-2-day delay is observed between the maximum stratospheric warming and the maximum cooling near the mesopause seen in the OH rotational temperature change.

INTRODUCTION

The sudden mid-winter stratospheric warming in the Northern Hemisphere was first discovered by Scherlag (1932). During such a warming, the circulation pattern and temperature profile of the stratosphere and lower mesosphere are changed (Finger and Tews, 1964). Basically the cold polar vortex existing over the northern winter pole becomes broken and zonal windflow is weakened. Rocket temperature studies and satellite radiance observations show that the mesosphere cools under these conditions. Changes in OH and Na airglow emissions have also been correlated with the stratospheric warmings (Hunt et al., 1967; Rusle and Sullivan, 1972; Shefov, 1973; Reed, 1976). The cooling in the upper mesosphere (Labitzke, 1977) at least in the 70-80 km region, should result in decreased airglow emissions (Moreel et al., 1977) contrary to observed results (Reed, 1976; Walker and Reed, 1976). These observed enhanced emission rates are therefore probably mainly due to a mixing and redistribution of the atmospheric constituents associated with the breakdown and reversal of the polar circulation pattern.

The development of the rocketsonde led to in situ measurements of temperature with altitude through the mesosphere, and typically a few temperatures were obtained each week from regular observations. Hess Island (81°N, 58°E) has been the main site for observations in the polar regions. How representative

* On leave from Norwegian Defense Research Establishment, N-2007, Kjeller, Norway
The temperatures at all altitudes show irregular fluctuations from day to day. The amplitude of the fluctuations is typically twice as large as in the OH data at 70 km as it is in the satellite data from the 30-40 km region, and even smaller fluctuations are normally seen in the 20 km region i.e., 30 mbar. It is also seen that the different heights show significant deviations and a peak-to-peak correspondence cannot always be found, even from closely-related curves. The difference in amplitude between the lower levels relative to the higher levels would be expected if the energy in an upward propagating wave were to remain constant and proportional to \(z^2 \) as the density decreases with increasing altitude, the wave velocity has to increase proportionally.

In addition to differences in fluctuation amplitudes, the absolute value of the temperature deduced at Longyearbyen may not be representative of the value averaged over the polar cap which would correspond to the satellite data for the stratosphere.

The sequence of events reported here is in keeping with a currently accepted theory of stratospheric warming by Matsuno (1975) in which the beginning involves an increase in the amplitude of tropospheric planetary waves. This results in increased poleward heat transport at low levels leading to a rising motion at high latitudes and a sinking motion at low latitudes. The Coriolis force on this rising motion leads to
and the establishment of an additional observer in Nome. We would like to thank Dr. National, Pezon, Labitzke, and Lexcha at the Norwegian Institute of Geophysics for allowing us to use their data for this study. Financial support for this research was provided by the National Science Foundation through grants ATMS0-1799, ATMS2-14642, and ATMS2-14416 to the Geophysical Institute of the University of Alaska. Many of the observations were made by H.K.M., also supported by a fellowship grant from the Royal Norwegian Council for Scientific and Industrial Research.

REFERENCES

Mezger, A. (1983) Beijer zur Berliner Wetterkarte. 5. 3

The temperature is measured above the critical level nearly balancing the poleward heat transport with altitude, leading to a secondar.

In heat transport below that level. This sequence provides the National Science Foundation through grants ATMS0-1799, ATMS2-14642, and ATMS2-14416 to the Geophysical Institute of the University of Alaska. Many of the observations were made by H.K.M., also supported by a fellowship grant from the Royal Norwegian Council for Scientific and Industrial Research.

REFERENCES

Mezger, A. (1983) Beijer zur Berliner Wetterkarte. 5. 3

The temperature is measured above the critical level nearly balancing the poleward heat transport with altitude, leading to a secondar.
H. K. Manka et al.

Abstract. The D (4-2) band and the Na D lines in the night airglow have been observed over Spitsbergen (78°N latitude) during a 3-day period in the end of November 1981. Regular and quasi-regular variations in temperature and the OH and sodium intensity were observed and are here interpreted in terms of gravity wave theory. In particular, waves with periods in the range 40-120 min having overlying ripple structure, with periods of 5-15 min, were observed. From the phase difference between the waves in the OH and sodium layer a height difference between the centroids of the two emissions of less than 1 km could be deduced. A gravity wave induced vertical eddy diffusion coefficient in the range 10^6 to 4 x 10^7 cm^2/s was estimated from OH-enhanced intensities. No significant net heating or cooling was observed during gravity wave activity. The gravity wave activity was not associated with geomagnetic activity. Mean OH (4-3) band and sodium night airglow intensities were 1.4 x 10^6 and 7.3 x 10^4, respectively.

Introduction

The mesopause and lower thermosphere region (i.e., 90-100 km) reflects interactions between the upper, middle, and lower atmosphere and thus holds important keys to the understanding of local and global dynamics of the atmosphere (Holton, 1983; Yeh and Buse, 1985). Gravity waves play an important role in the polar mesosphere region (Bel, 1984; Holton, 1983; Lindzen, 1981; R. Solomon, private communications, 1984). Gravity wave activity in the polar winter atmosphere is reported to be more frequent and violent than at lower latitudes (Ebert and Chang, 1981; Jeffrey et al., 1984; Inokuma, 1984; Yeh and Buse, 1985). Jeremy et al. (1981) report a 1.0% occurrence frequency of gravity waves in sodium density profiles obtained with lidar from Katmai Island (81°N) compared to less than 0.1% (Ebert and Chang, 1981) occurrence at Haute Provence (44°N). Thus gravity waves may take a more active part in the circulation, dynamics, and energy balance of the polar atmosphere than is the case for lower latitudes. The night airglow emissions originating in the 80-100 km region such as the OH emissions, the D (0-1) atmospheric band, the D Na D lines, and the I^1S^1 line are useful for obtaining information on gravity waves. In addition, these emissions may give valuable information on the distribution of minor constituents, odd oxygen and transport processes, and chemistry of the mesosphere region.

The main purpose of this paper is to report and discuss recent observations during the polar night gravity wave activity as manifested by regular and quasi-regular variations in the neutral temperature and the OH (4-3) and Na D night airglow intensities.

Observations and Data Reduction

During a 3-day period with clear weather from November 27 to November 30, 1981, emission spectra of the earth's sky, containing the OH (4-3) 9 branches, were taken near Longyearbyen on West Spitsbergen (78°N latitude, 13°E longitude, 832 km). The night airglow sodium doublet was also recorded for part of this time (i.e., from 0000 UT November 27 to 1700 UT November 28). The measurements were part of the 1983/1984 Multinational Satellite Aurora Expedition (Deehr et al., 1985). Two spectrometers, a 1/2 m and a 1.8 m Chest-Fastie, were used to obtain the OH and sodium emissions, respectively. The spectrometers are described in detail in the papers by Sixta et al. (1981), Nomac (1985), and Yeh and Buse (1985).

The 1/2 m instrument recording the OH (4-3) 9 branches was set up to scan the spectral region from 6770 to 6870 Å with a bandwidth of 6 Å. A sum of 25 individual scans were used to obtain a spectrum, corresponding to one spectral scan, each 15 s. An example of a typical 5-min integrated spectrum is given in Figure 1. The 1/2 m instrument was set up to scan the spectral region 5650 to 5690 Å in 4 Å with a bandwidth corresponding to 6 Å. A sum of 25 individual spectra were used to obtain an integrated spectrum in 15 min. A typical 2 1/2 min spectrum of the Na D lines with the D_1 and D_2 lines well resolved is shown in Figure 2. One of the main problems with measuring night airglow features in auroral regions is the contamination by aurora. If the emissions are not excited or otherwise directly influenced by auroral particle bombardment, overlying auroral features may normally be filtered out or accounted for given high enough spectral resolution (Yeh and Buse, 1985). In the polar regions, auroral emissions are mainly those of atomic lines (Sivjee and Deehr, 1980; Gaunt et al., 1981) due to the dominating soft electron precipitation spectrum normally present in the cusp and polar cap area. This makes the night airglow components, such as OH emissions and Na D lines, easy to isolate. The spectral region shown in Figure...
emissions was therefore safely be taken to represent those of the night airglow. The spectra with no auroral background contamination have been used for calculating the rotational temperature and the absolute intensities of the Na (4-2) band and the Na D lines. The intensities of the lines have been calculated from the area under the lines rather than on the peak values. The rotational temperatures have been calculated from the intensity distribution of the P, (2-3), P, (2-1) and P, (1-0) lines as in figure 1, assuming a Boltzmann distribution of the rotational levels, i.e.,
\[\exp \left(\frac{-E_j}{kT} \right) \]
where \(I \) is the photon intensity in photons sec\(^{-1}\) cm\(^{-2}\), \(E_j \) is the electronic-rotational partition function for the \(J \) level, \(N_j \) is the total concentration of molecules in the \(J \) vibrational level, \(T_r \) is the derived rotational temperature, and \(E_j \) is the lower state term value for the vibrational band \(v = J \). The other variables have their usual meaning. The Einstein transition probabilities \(A \) given in table 1 have been used together with energy levels, \(E_J \) in figure 1.

Results and Discussion

Figure 3 gives an overview of the sodium D\(_2\) line intensity. The averaged background under the sodium doublet and the solar depression angle...
are also plotted for the time period when both OH and sodium emission measurements were obtained. As seen from the figure, measurements were taken on a 2-hour basis for a total of 36 hours. However, OH spectra with daytime Fraunhofer absorption features were not used for obtaining intensities and temperatures. Sodium resonant scattering is obviously present after about 0700 UT (corresponding to approximately 08h1 local time) and thus, the deviation from the mean values, for the pressure and the potential temperature, respectively, and \(P_0 \) is the unperturbed density. Assuming that the relative variations in emission intensities are proportional to the relative variations in density (i.e., \(\Delta I/I \propto \Delta N/N \), where \(\Delta \) and \(N \) are the emission and density, respectively), then temperature and intensity fluctuation should be 180° out of phase during the passage of gravity waves, however, the bulk of simultaneous temperature and OH and sodium intensity variations, which are possibly caused by gravity waves, show an in-phase relationship between intensity and temperature [Trendall et al., 1985; Shapley, 1974; Krassovsky, 1972; Takahashi and Hirasawa, 1981; Takashashi et al., 1983]. The example given in figure 4 seems to represent a very simple case of gravity wave propagation through the 90 to 91-km region as it mainly shows only single mode wave with an overlying ripple structure. The period deduced from the figure is in the range of 1-2 hours. Because the wave is continually present throughout this part of the observing period, it probably penetrates the 80 to 15-km region without breaking. The vertical wavelength of the 1/2-2-hour wave might be estimated to be in the range of 15 km [Philbrick et al., 1985; Takashashi et al., 1983]. From the negligibly small phase difference seen between the OH and sodium emission, a maximum

\[
\frac{\Delta T}{\Delta I} = -\frac{\Delta N}{\Delta I} \quad (1)
\]

where \(c_g \) is the speed of sound, \(\Delta N \) and \(\Delta I \) are the deviation from the mean values, for the pressure and the potential temperature, respectively, and \(N_0 \) is the unperturbed density. Assuming that the relative variations in emission intensities are proportional to the relative variations in density (i.e., \(\Delta I/I \propto \Delta N/N \), where \(\Delta \) and \(N \) are the emission and density, respectively), then temperature and intensity fluctuation should be 180° out of phase during the passage of gravity waves, however, the bulk of simultaneous temperature and OH and sodium intensity variations, which are possibly caused by gravity waves, show an in-phase relationship between intensity and temperature [Trendall et al., 1985; Shapley, 1974; Krassovsky, 1972; Takahashi and Hirasawa, 1981; Takashashi et al., 1983]. The example given in figure 4 seems to represent a very simple case of gravity wave propagation through the 90 to 91-km region as it mainly shows only single mode wave with an overlying ripple structure. The period deduced from the figure is in the range of 1/2-2 hours. Because the wave is continually present throughout this part of the observing period, it probably penetrates the 80 to 15-km region without breaking. The vertical wavelength of the 1/2-2-hour wave might be estimated to be in the range of 15 km [Philbrick et al., 1985; Takashashi et al., 1983]. From the negligibly small phase difference seen between the OH and sodium emission, a maximum

\[
\frac{\Delta T}{\Delta I} = -\frac{\Delta N}{\Delta I} \quad (1)
\]
The height difference between the low emissions of 3^2P_1 may be reduced. A maximum wind propagating group velocity of 10 km/h is assumed. The maximum probable height difference is somewhat less than that found by Takahashi et al. [1983] for low latitudes, where the phase difference between the OH and sodium intensity clearly could be seen. The bulk of sodium profile measurements, both from low and high latitudes [Chapin, 1984; Jurewicz et al., 1981] report the centroid of the sodium emission at about 90 km height. Assuming that this is the case for our sodium measurements places the OH-emitting layer at about 40 km, confirming previous findings of the OH emissions peaking at high altitudes in the polar winter mesopause region [Nakane, 1984].

3.2 Possible Gravity Wave Induced Ripples

Figure 6 shows an overlying ripple structure on the 1/1 to 1/2-hour waves, both on the sodium and OH intensity and on the temperature. The amplitude of the ripple structure in the intensities greatly exceeds the photon noise. Atmospheric transmission variations can also be ruled out as the source because the background emissions do not show structures of comparable relative amplitudes. Figure 5, comparing the intensity variations of the 3^2P_1 and 3^2D_1 lines, confirms that the ripple structures are real, i.e., originate from the emissions at the mesopause. Integration time was only 2-1/2 minutes. The background is also included for comparison. Typical periods are found in the range 5-12 min, with amplitudes 50-15% of the total intensity of the lines. Similar variations in the $N_2 5777$ night airglow have been reported earlier [Okuda, 1962; Silverman, 1962]. More recently, short-period oscillations, i.e., 1-3 min, have been reported to occur simultaneously in both OH intensity and temperature [Takahashi and Nakane, 1984]. However, the latter observation was not clearly superimposed on a longer-period wave, and thus might have a different origin. Tans et al. [1972] have made an effort to explain the ripple oscillation overeting the longer-period waves observed in the $N_2 5777$ data. They found from theoretical considerations that the short-period oscillations are associated with the buoyancy/frequency of the atmosphere and "excited" by the long period waves. The same theoretical considerations also apply to the sodium and OH emissions.

The periods of the waves are certainly in the 5-10 min range. Shorter-period (up to 5 min) have been reported to occur in the lower atmosphere [Jurewicz et al., 1981]. These structures are not clearly superimposed on the longer-period wave, and thus might have a different origin. Tans et al. [1972] have made an effort to explain the ripple oscillation overeting the longer-period waves observed in the $N_2 5777$ data. They found from theoretical considerations that the short-period oscillations are associated with the buoyancy/frequency of the atmosphere and "excited" by the long period waves. The same theoretical considerations also apply to the sodium and OH emissions.
Further evidence that the gravity wave field is saturated and that the waves really break during this part of the observing period is contained in the power spectrum of the temperature variations as indicated in Figure 4. On a log-log plot of power against frequency the falloff in the power follows an $n^{-1.3}$ law where n is the frequency. This is a strong indicator of saturated gravity wave fields and breaking waves (Smith et al., 1983; Deines, 1983; Gage, 1976). According to some theoretical calculations one should also expect a net heating rate from breaking gravity waves of the order of 5-20 K/hr at the mesopause region (Shee, 1964). However, depending upon approach and choice of dissipation parameter (Shee, 1964), one might also arrive at a net cooling (Weinstock, 1984). The rate of heating/cooling is therefore questionable, probably both situations can occur. In view of the above indication we find it reasonable to interpret the variation in intensity and temperature seen in Figure 5 as effects of breaking gravity waves. This places the region of breaking gravity waves in the winter polar middle atmosphere slightly higher (i.e., -10 km) than for the 30-55° latitudes (Garcia and Solomon, 1985).

The increase in intensity of the OH emission might then be used to estimate the upper limit of enhancement of the eddy diffusion coefficient in connection with the gravity waves (Weinstock, 1984). The simplified formula

$$ D_{\text{ED}} = (2 \pi H h)^2$$

will give a first approximation, D_{ED} is the average distance the N_2 or O molecules and atoms need to move in the time interval t, assuming H is the limiting factor (Moreno et al., 1984) and using average number densities of N_2 versus height from Moreno et al. (1984). h is approximately 10-15 km for a 0-100% increase in the N_2 density. The 70-100% enhancement in OH intensities takes place typically over 3-6 hours. Applying these numbers to (1) implies a gravity wave-induced vertical eddy diffusion coefficient, D_{ED}, in the range between 4×10^7 and 4×10^8 cm2/s.

This is a rather large eddy diffusion coefficient as compared to average values (Von Zahn and Wurig, 1977), mainly based around 10 cm2/s. It should be noted that part of the intensity variations could be produced by horizontal transport in connection with spatial variation in the breaking or other atmospheric irregularities. Thus our estimate only gives a possible upper limit of the eddy diffusion coefficient. However, it is reasonable to believe that eddy diffusion is highly variable (Weinstock, 1985) and that periods with gravity wave activity represent particularly high levels of D_{ED}. in the breaking region.

3.4 OH (4-2) Band and Sodium Night Airglow

Analysis Techniques

The average intensity of the OH (4-2) band for the 3-day observing period was found to be 1 μK. This value is higher by about 30-50 than values normally reported for low- and mid-latitude stations (Takahashi and Matoba, 1982; Irie et al., 1983; Takahashi and Matoba, 1984). A substantial part of this enhancement seems to be related to the enhanced eddy diffusion in connection with breaking gravity waves. Previous results on OH (4-3) band intensity from Longyearbyen have also shown average intensities and intensity variations which are considerably higher than at mid- and low-latitude stations (Takahashi and Matoba, 1984). Absolute intensities of the OH emission found here seem, therefore, to be in good agreement with previous findings and confirm earlier observations of a rather intense OH night airglow in the polar cap during winter solstice conditions.

The average sodium doublet intensity in the night airglow derived from the measurements was found to be 2.5 μK. Similar intensities have been reported from high-latitude stations (Baa et
Whether the sodium number density and sodium night airglow emission normally show larger relative variations than is the case for the 0H layer. It is difficult to say whether the 75 km sodium emission represents an enhanced level or not. Unfortunately, the sodium emission was not measured during the entire observing period reported here. Whether the sodium emission is enhanced by increased haze diffusion or not therefore remains to be proven by future measurements.

3.5 Possible Sources of Gravity Waves in the Polar Winter Thermosphere and Lower Thermosphere

Gravity waves are excited in the atmosphere by a variety of mechanisms. Penetrative convection, (i.e., when a rising current suddenly leaves the boundary as it enters a stable region [Tomsen, 1968]), frontal acceleration, and orographic forcing are often quoted as possible mechanisms. The most important single source might, however, be wind shears in the lower and middle atmosphere [Ebel, 1954; Einhardt, 1979]. In polar regions, specifications of auroral sources launching waves and causing temperature and intensity changes of the airglow in the 85 to 90 km region have also been put forward [Ebel, 1954; Baker et al., 1965; Takahashi et al., 1985]. The idea that OH emission intensity and temperatures of the 85 to 90 km region should be affected by geomagnetic disturbances was first put forward by Krasovsky [1956]. Calculations on Joule heating and long-period perturbation of the 90 km region density and temperature during geomagnetic substorms have, however, given negative results [Brekke, 1966; Aikin, 1984]. From earlier observations at Longyearbyen, Nyåsø and Dehr [1956] showed that negative, positive, and no correlations could be extracted from OH intensity, temperature, and geomagnetic indices using time-correlated data sets (i.e., case studies). A clear and simple correlation between mesopause region temperature/temperature variations, nightglow intensity/intensity variations, and geomagnetic activity seems therefore doubtful. In view of the different sources of perturbations (gravity waves from middle and lower atmosphere and possibly from auroral origin, horizontal and vertical transport, chemical reactions) that can act simultaneously, a clear correlation with only one of the possible sources over a longer time interval should perhaps not be expected. The period of observations covered by the measurements reported here are not a particularly disturbed geomagnetic period but rather quiet. Especially the hours before and during the morning of November 17 show no significant auroral perturbation capable of penetrating energy down into the 100-km region. We therefore conclude that the gravity wave activity reported in this paper has its origin in the lower middle atmosphere and not in the thermosphere in connection with geomagnetic disturbances.

Summary

The OH (6-2) band and the Na D lines in the night airglow have been observed from Longyearbyen, Svalbard, 76°N latitude, 12°E longitude, geographically from 0200 UT November 17 to 1000 UT November 18. Emission lines of the OH band and the Na D lines were observed with a 1.2-m and a 4-m Ebert spectrophotometer, respectively. Spectral resolution was 0.5 and 0.4 for the OH and Na D, respectively. Spectral variations were observed for the OH D and Na D, indicating that the OH emission passes through the time evolution of the 0H intensity and temperature. In the first part of the observing period, regular waves were recorded with periods in the range 1.4 to 2.5 min and with overlapping ripple structures, periods 2.5-3 min. The waves were present in both the 0H and sodium intensity and temperature, strongly indicating passing of gravity waves through the emission layers. The ripple structures coincided in both the 0H and Na D lines and appeared in the OH intensity and temperature. There is strong indication that the observed bursty frequency waves (2-4 min) are excited by the larger waves.

In the afternoon propagating phase difference between the intensity of waves in the 0H and sodium layer, a maximum height difference between the centroid of the two emission regions is found to be less than 1 km, assuming an average height of the Na layer of 90 km than places the 0H layer at approximately the same height, confirming previous findings of the OH emission peaking at about 90 km in the polar winter atmosphere [Brekke et al., 1985].

From the enhancement of the OH emission, using as only and Na profiles from Tomsen et al. [1985], a gravity wave induced eddy diffusion coefficient in the range 1 x 105 to 3 x 106 cm2/s was found. Mean nightairglow intensities of the OH (6-2) band and Na D lines over the observing period were 1.9 km and 1.5 km, respectively.

The gravity wave activity observed during this period could not be found to be associated with geomagnetic activity. Since Krasovsky [1956] indicated that at 60-65 km temperatures and night airglow intensities should be modulated by gravity waves launched from geomagnetic disturbances in auroral regions, theoretical and experimental evidence has appeared, both in support of the hypothesis and against it. Most calculations show negligible or unobservable effects [Brekke, 1977], except in very extreme cases. Recently Baker et al. [1985] reported a positive correlation between M O and some temperatures but simultaneously also a highly positive correlation between 0 (63) OH and temperature and the variation of the 0H intensity and temperature. The latter results indicate a connection between 0H and the 35-37 km temperature which is even more difficult to explain.

Acknowledgments. Financial support for this research was provided by National Science Foundation through Grant 8511371 to the Geophysical Institute of the University of Alaska and by the Royal Norwegian Council for Scientific and Industrial Research through a fellowship to one of us (HHR). The observations on Svalbard were made through a cooperation effort involving the universities in Fairbanks, Tromsø and Oslo, with the help and cooperation of the Green Norwegian Spitzbergen Coal Company and the Norwegian Polar Institute. The authors also want to thank Jan Dobene and Bob Erickson for technical assistance and programing assistance.
The Editor thanks F. V. J. H. Kirchhoff and G. C. Hald for their assistance in evaluating this paper.

References
Ram, N. R., C. J. Romick, and A. E. Belon. The

Takahashi, K., and P. T. Betts, Simultaneous measurements of OH (4-3), (3-2), (2-1), and (1-0) bands in the aurora, J. Geophys. Res., 86, 3617, 1981.

Takahashi, K., P. T. Betts, Y. Iehata, and S. R. Clemen, Atmospheric wave propagation in the mesopause region observed by the OH (4-3) band, Na D II (4640 A) and 5577 A signature emissions, Planet. Space Sci., 33, 171, 1985.

WINTER-SEASON MESOPAUSE AND LOWER THERMOSPHERE TEMPERATURES IN THE NORTHERN POLAR REGION

H. K. MYRABO*
Geophysical Institute, University of Alaska, Fairbanks, AK 99775-0800, U.S.A.

(Received in final form 12 May 1986)

Abstract—Mesopause lower thermosphere nocturnal temperatures have been deduced from spectrophotometric observations of the night airglow OH emissions at Longyearbyen, Svalbard (78° N), during four winter seasons (1980-1983). A monthly average temperature maximum of 223 K is found to occur in January with monthly averages of 206, 212, 212 and 198 K respectively for November, December, February and March. A relatively low temperature in late December followed by a very warm mesopause in early January seems to be consistent for all four seasons and might be associated with changes in transmission of gravity waves to the upper mesosphere in connection with stratospheric and lower mesospheric circulation changes.

1. INTRODUCTION

Temperature and temperature variations are basic parameters in the understanding of atmospheric dynamics, chemistry, circulation and energy flux, and in the overall interaction between the upper-middle and lower atmosphere. The 70-100 km region of the atmosphere has been found to hold important keys to the understanding of local and global dynamics of the middle atmosphere (Holton, 1983; Frits et al., 1984, Myrabo et al., 1985). In spite of this, measurements of the temperature in this part of the middle atmosphere have been sparse. This is mainly due to the relative inaccessibility of this region of the atmosphere to different temperature measuring methods (Myrabo, 1984, Barnett, 1980).

In the polar cap, measurements of the mesopause and lower thermosphere temperatures and their variations are even more sparse. Besides rocketsonde measurements from Heiss Island (81° N), mainly giving a few snapshots in time and space, the only measurements on a regular basis covering a longer time period are those reported by Myrabo (1984). Due to considerable short time-scale variations caused by gravity waves, local transport phenomena, and stratospheric and lower mesospheric circulation changes (i.e. stratoswarms) (Myrabo et al., 1983), Myrabo et al., 1984) temperatures must be measured frequently (covering at least 5-8 h) to give reliable daily means. Thus, ground-based methods are the only means of obtaining this temporal coverage, and resolving dynamical phenomena.

In the polar regions, the present ground-based method of obtaining temperatures of the 80-100 km altitude is to extract temperatures from the measured rotational intensity distribution of the different night airglow emissions, such as the OH bands and the O2 (0-1) Atmospheric bands (Myrabo, 1984). Temperatures obtained from these emissions yield neutral air temperatures at the emitting height because the emitting molecules are in thermodynamic equilibrium with the surrounding atmosphere (Krassovsky et al., 1977). There is no OH emission height profile published for latitudes 75-80° that could be truly representative of the measurements in this paper. The northernmost obtained profile (c = 68° N by Witt et al., 1979), however, shows an extremely large half width (115 km), believed not to be typical for the OH layer in polar regions (Myrabo et al., 1986). Therefore, to illustrate the position and shape of the OH layer in the atmosphere, the emission height profile by Rogers et al. (1973), has been plotted in Fig. 1 together with the CIRA 1972, 70 N, December, model atmospheric temperature profile. A half width in the range 5-10 km is typical for the emission, and the peak height normally ranges from 82 to 90 km, probably closer to 90 km for winter solstice polar conditions (Myrabo et al., 1983, Myrabo, 1984). Also included in Fig. 1 is the weighting function with height of the VO 4.4.7. Ch. 27 spacecraft radiometer and the CIRA 1972, 70 N, December, model atmospheric temperature profile. The Ch. 27 radiometer reading is proportional to temperature and was used to monitor the lower thermospheric temperatures and circulation changes over the northern polar cap (Labitzke et al., 1985). It has been shown to anticorrelate with larger temperature changes in the 80-100 km region (Myrabo et al., 1984).

*On leave from the Norwegian Defence Research Establishment, N-2007, Kjeller, Norway
The temperature range of 160 to approximately 300 K. The measurements by Myrabo (1984) yielded a mean winter solstice temperature of 220 K for the 1982-83 season. The purpose of this paper is to extend and generalize these results by including mesopause temperatures obtained from OH observations during the 1983-84 and 1984-85 winter season at Longyearbyen, 78° N.

2. OBSERVATIONS AND DATA REDUCTION

As part of the 1983-84 and 1984-85 Multinational Svalbard Auroral Expedition (Deehr et al., 1980), spectra of the zenith sky were taken close to Longyearbyen on West Spitsbergen (78° N. Lat., 15° E. Long., geographic). Both winters, measurements covered a 3-4 month period around solstice. Emission spectra were obtained using a 1.2 M Ebert Fastie spectrophotometer coupled to a minicomputer and recording in the photon counting mode. The instrument is further described by Sivjee et al. (1972) and Myrabo et al. (1985). The spectral region from 8240 to 8740 A was scanned in 12 s using the spectrometer in the first order with a 0.5 mm slit corresponding to a spectral resolution of 7 Å. Each scan was recorded on magnetic tape. Individual rotational temperatures were calculated from the 1 and 2-1 spectral region from 8240 to 8740 Å using the OH (6-2) band. An example of a typical 1-h integrated spectrum used to obtain the temperature is given in Fig. 2. The P1, P2, and P3 lines of the OH (6-2) band are indicated together with the R and Q branches.

In addition to the measurements reported by Myrabo (1984) from Longyearbyen (78° N), using night airglow OH emissions, earlier sporadic measurements have been reported by Chamberlain and Oliver (1953), Noxon (1964) and Sivjee et al. (1972) at latitudes 70-85° N and covering a temperature range of 160 to approximately 300 K. The measurements by Myrabo (1984) yielded a mean winter solstice temperature of 220 K for the 1982-83 season. The purpose of this paper is to extend and generalize these results by including mesopause temperatures obtained from OH observations during the 1983-84 and 1984-85 winter season at Longyearbyen, 78° N.

In addition to the measurements reported by Myrabo (1984) from Longyearbyen (78° N), using night airglow OH emissions, earlier sporadic measurements have been reported by Chamberlain and Oliver (1953), Noxon (1964) and Sivjee et al. (1972) at latitudes 70-85° N and covering a temperature range of 160 to approximately 300 K. The measurements by Myrabo (1984) yielded a mean winter solstice temperature of 220 K for the 1982-83 season. The purpose of this paper is to extend and generalize these results by including mesopause temperatures obtained from OH observations during the 1983-84 and 1984-85 winter season at Longyearbyen, 78° N.

In addition to the different lines and branches of the OH (6-2) band, the auroral emission from atomic oxygen at 8446 Å is also indicated.
Mesopause and lower thermosphere temperatures in polar region

Day

315
335
355
010
030
050
070
10

Temperature (K)

FIG. 3. DAILY MEAN TEMPERATURES FOR THE WINTER SEASON 1983-84 AS OBTAINED FROM OH 6-21 BAND NIGHT AIRGLOW EMISSIONS NEAR LONGYEARBYEN, 78°N.

Straight lines are drawn between the daily means. Temperatures are given in degrees Kelvin (K).

branches. Also shown is the auroral permitted emission at 8446 Å from atomic oxygen. The auroral emission is excited from particle bombardment (i.e., mainly electrons) (Valence-Jones, 1974) and may be used as an indicator of auroral activity. Using spectra with a relatively high resolution as shown in Fig. 2, and containing an auroral reference emission, makes it possible to eliminate spectra with auroral emission features which may contaminate the OH P(1) lines. Measurements in the polar cap, auroral emissions from molecular species are less frequent than in the auroral oval, due to a lower energy in the precipitating particles (Svends and Deehr, 1980). Thus, only spectra void of auroral contamination of the OH P(1) lines were used to obtain temperatures.

The temperatures have been calculated from the intensity distribution of the P(4), P(3), P(1) and P(5) lines assuming a Boltzmann distribution of the multiplet rotational levels, i.e.,

\[I(J') \propto \frac{(2J' + 1)}{Q_i(T_{rot})} \frac{E_i}{T_i} \frac{N_i}{T_{rot}} \frac{I_s}{I_0} = \frac{(2J' + 1)}{Q_i(T_{rot})} \frac{E_i}{T_i} \frac{N_i}{T_{rot}} \frac{I_s}{I_0} \]

where \(I \) is the photon intensity in photons s\(^{-1}\) cm\(^{-2}\), \(Q_i(T_{rot}) \) the electronic-rotational partition function for the \(i \) level, \(N_i \) the total concentration of molecules in the \(\nu \) vibrational level, \(T_{rot} \) the derived rotational temperature and \(E_u/\nu \) the upper state term value for the vibrational band \(\nu \rightarrow \nu' \). The other variables have their usual meaning. The Einstein transition probabilities, \(A_i \), given by Mies (1974), have been used together with energy levels, \(E_u/\nu \) by Kvifte (1959). Absolute calibration of the spectra were carried out in the field using a standard lamp. The average uncertainty in an individual temperature as derived from a 1- or 2-h integrated spectrum is \(< 1 \) K, mainly due to uncertainty in defining the background continuum.

3. RESULTS

Nocturnal mean temperatures were obtained by averaging five or more of the 1- or 2-h individual temperatures. The individual temperatures were normally scattered throughout a 20-24 h period, and on the average covered 14 h a night. Although the length of the night possible for OH temperature determination, i.e., \(\geq 100 \), lasts only for about 9 h in early March, the correction due to the semidiurnal tide on the nightly average during February-March as compared to winter solstice is found to be less than \(1 \) K (Myrabo, 1984). The nocturnal averages may thus safely be taken as the average for a 12 h period around local midnight over the entire period of observations (i.e., November-March). Because no diurnal variation of temperature amplitude obtained from OH larger than \(1 \) K is found at Svalbard (Myrabo, 1984), the nocturnal averages are equivalent to the daily averages. Thus, no corrections have been made for the semidiurnal or diurnal variation in the temperature (Myrabo, 1984). We therefore use the expression daily averages for the average temperature obtained within each 24-h interval. The resulting daily averages for the 1983-84 winter season are given in Fig. 3. A straight line is drawn between the averages, marked with open circles. In addition to the day and month, the day
The radiance level (in W/m²) from Ch. 27 on the NOAAC7 radiometer integrated over the northern polar region is also indicated (stippled line). The number is also marked along the top of the horizontal scale of the figure. The temperature is given in degrees Kelvin (K). In January and the last part of February, the 12 m spectrometer was used to obtain auroral spectra, resulting in the data gaps seen in the figure. The temperatures for the 1984-85 winter season are shown in Fig. 4. Figure 4 also includes the radiance level from Ch. 27 on the NOAAC7 radiometer (see Fig. 1), as integrated over the northern polar region during the first and mid-part of the winter. As seen from the deflection of the radiometer, a stratospheric warming occurred near the end of December.

Large variations in the temperature may occur within each daily average. An example of this is shown in Fig. 5, depicting the temperature from hour to hour during part of the very intense warming of the lower mesosphere and stratosphere in late December (see Fig. 4). An average trend drawn through the daily means (marked with filled triangles) is indicated.

Due to the large day-to-day and week-to-week variations, the data gaps seen in Fig. 4 are evident. The daily means are marked with open circles. An average trend, a second-degree curve (dotted line), is fitted to the daily means (stippled line).

Fig. 4. Daily mean temperatures from the winter season 1984-85 as obtained from OH (6-2) band night airglow emissions near Longyearbyen, 78° N.

Fig. 5. One-hour integrated temperatures from the OH (6-2) band night airglow emission during part of the intense stratospheric warming at the end of 1984.
variations in the temperature, data for both seasons have been added to investigate any seasonal trend and for comparison with model atmospheres. The daily temperatures for the 1980-81 and 1982-83 season as obtained by Myrabo (1984) have also been included.

The 1980-81 and 1982-83 temperatures were obtained using the OH (8-3) band and slightly different molecular constants (Myrabo, 1984). A temperature of 2 K was subtracted from the OH (8-3) band temperatures, because the OH (8-3) band emits mainly from a level 1-2 km higher in the atmosphere than the OH (6-2) band (Charters et al., 1971; Myrabo, 1984; Hamwey, 1985). The temperature gradients obtained by Myrabo (1984) were assumed. Following this adjustment of the 1980-81 and 1982-83 temperatures, the temperatures were corrected for the differences in molecular constant used. Corrections were normally in the range 3-6 K, to be subtracted from the 1980-81 and 1982-83 temperatures. Thus, on average, the 1980-81 and 1982-83 temperatures were lowered by 5-6 K to make the data sets compatible.

The maximum error introduced in the average daily warming is estimated to be less than 2 K.

Figure 6 shows the 10 day running average of the daily mean temperatures using the temperatures for all four seasons. The 10 day running averages are taken at 5 day intervals, i.e. 50° overlap. The monthly means are also plotted (crosses) together with the monthly means for the CIRA 1972, 70° N, 90 km model atmosphere (filled triangles). A second degree best fit curve is drawn through the means, both for the model atmosphere (solid line) and for the actual monthly mean temperatures from these measurements (stippled curve).

A DISCUSSION

From Figs 3 and 4 it is seen that the day-to-day temperatures show large peak-like variations lasting for a few days to a week or two. This was also seen in the 1980-81 and 1982-83 seasons (Myrabo, 1984). A similar pattern was also observed for the OI 5577 Å night airglow intensity variations from Thule (76° N) (Muller et al., 1977). As seen in Fig. 4, the relatively large and consistent cooling of the OH (6-2) temperature at the mesopause is accompanied by a warming and circulation change (Lambert et al., 1985) of the lower mesosphere and stratosphere. This was also the case during the stratospheric warming around new year in the 1983 season (Myrabo et al., 1984). Ismail and Cogger (1982) have also associated large week-to-week changes of the OI 5577 Å night airglow from Thule with minor and major stratospheric warmings. Thus, it seems established that these apparently irregular large scale temperature changes taking place over days and weeks are mainly connected to effects of the changes in the circulation pattern and temperatures in the lower mesosphere and stratosphere. They seem also to be present during seasons with no major stratospheric warmings.

From Fig. 4 it may also be seen that the cold mesopause regions occur before the lower mesosphere and stratosphere start to warm. Simultaneous unpublished measurements from Fairbanks (65° N) during the 1984-85 stratospheric warming...
sem to indicate the same pattern. i.e. a cooling of the mesopause is seen before the heating of the stratosphere take place (Viereck et al., 1986).

Transmission of gravity waves into the mesosphere is controlled by the propagation in and the interaction with the environment. Phenomena as refraction, reflection and critical-level absorption due to variation in mean zonal wind, and the square of the Brunt-Väisälä frequency (N^2) with height may cause major changes in the waves with height (selective filtering). Spatial inhomogeneities in the transmissivity and or in the gravity-wave sources are thought to be capable of exciting large scale gravity waves or planetary waves (Fritts et al., 1984). Such large scale excited waves may be important in wave-wave interaction in connection with stratospheric warmings (Smith, 1985).

Gravity waves may thus be important both in the warming of the stratosphere and in the cooling of the upper mesosphere.

If the winter mesosphere and mesopause region is kept warm largely from energy deposited by breaking gravity waves originating in the lower atmosphere, a slight change in the circulation pattern of the underlying atmosphere would affect the propagation of these waves (Dunkerton and Butchart, 1984) and the heating rate. Thus, Lindzen (1981) and Holton (1983) have suggested that appearance of easterlies will inhibit propagation of quasi-stationary gravity waves to the mesosphere. This would allow the mesopause and upper mesospheric region to undergo radiative cooling. A 10-20 K per day cooling rate could occur (Chamberlain, 1978; Ebel, 1984), which is in the range of actual average cooling seen. It is also consistent with the observation of the cooling taking place before the heating is observed in the lower part of the atmosphere (Holton, 1983).

The 10 day running average temperature in Fig. 6 (averaged for all four seasons) also shows a peculiar drop in the temperature during the end of December followed by a very warm period in January. The standard deviation in the 10 days running average is in the range 2-5 K, which means that the December-January dip is real and has a total amplitude of 20-30 K. A closer look at data for each year shows the tendency for a mesopause cooling to occur around New Year each year, even during 1993-94 which was not a year with a major stratospheric warming (Labitake et al., 1985). No auroral effects seem to have a seasonal pattern that could account for part of the December-January "wave" in the mesopause and lower thermospheric temperature. Thus, we may conclude that this "wave" seems to be entirely associated with changes in the gravity wave activity and in the circulation, temperature or transport in the underlying atmosphere. A further consequence of this seems to be that, on average, mesopause temperatures in the northern polar cap reach a maximum in January, and not in December, as predicted by the CIRA 1972 model atmosphere.

The peculiarity that the mesopause region seems to warm up dramatically just after the cooling accompanied by the stratospheric and somewhat compensates for the cold period, causing an extremely warm mesopause in January, cannot be explained yet. However, investigations for the coming years are planned which may provide an answer to this.

5. SUMMARY

Mesopause lower thermosphere temperatures have been deduced from spectrophotometric observations of the night airglow OH emissions close to Longyearbyen on West Spitsbergen, 78 N, 15 E. Long. geographically during the 80-81, 82-83, 83-84 and 84-85 winter seasons. A 12 M. Ebert Fastie spectrophotometer has been used to obtain the emission spectra with a spectral resolution of 7 A, resolving the P-1 and P-3 lines of the OH (6-2) and (8-3) bands. A monthly average temperature maximum of 223 K is found to occur in January with monthly averages of 206, 212, 212 and 198 K, respectively for November, December, February, March (Smith, 1981). The January monthly average is about 10 K higher than the respective CIRA 1972 model atmosphere temperature at 90 km, 70 N. A relatively low temperature in late December followed by a warm mesopause in early January is seen to be consistent for all four seasons. In the 10-day running average temperature this appears as a 20-30 K amplitude temperature wave around years end. This "wave" might be associated with circulation changes i.e. stratospheric warmings in the lower mesosphere and stratosphere, and physically related to the changes in the occurrence of breaking gravity waves at the mesopause caused by interaction with the general flow in the underlying atmosphere. Large hour-to-hour variations in the temperature are regularly seen, indicating presence of gravity waves. Hourly temperatures as large as 283 K and as low as 158 K have been observed.

Acknowledgements - Financial support for this research was provided by National Science Foundation through Grant ATM-8313727 to the Geophysical Institute of the University of Alaska and by the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant. The author also wants to thank Mr. Rod Viereck, Jim Baldridge and Dan Osborne for programming and technical assistance.
REFERENCES

Kolbe, G. (1959) Nightglow observations at As during the IGY. Geophysica norvegica 20, 1.

MID-WINTER HYDROXYL NIGHT AIRGLOW EMISSION INTENSITIES IN THE NORTHERN POLAR REGION

H. E. MYRAAS* and C. S. DEEBH

Geophysical Institute, University of Alaska, Fairbanks, AK 99775, U.S.A.

(Received in final form 28 June 1983)

Abstract—Ground-based spectrophotometric measurements of night airglow OH (0-3) band absolute intensities at the polar cap region (78.4° N) during winter solstice are reported. A mean value of 425 ± 40 R is found for the absolute intensity of the OH (0-3) band. Maximum and minimum daily mean values were 700 and 230 R, respectively, with hourly mean values ranging from 180 to 1020 R. Neither a winter solstice minimum nor maximum in the intensity is obvious from the data. No consistent correlation was found between the absolute intensity and geomagnetic and solar activity. A mean transport of O and O3 into the polar cap region corresponding to a meridional wind speed of at least 25 m s⁻¹ at 90 km height seems necessary to maintain the observed intensity. A dominant semidiurnal tide component is found in the intensity data, both on a 20-day and a 3-day time scale.

1. INTRODUCTION

The night airglow emissions originating from the X²Π, 1–X²Π transition of the hydroxyl molecule are confined to the 80–93 km region of the atmosphere. The emissions are a consequence of the ozone reaction (Bates and Nicolet, 1950; Herzberg, 1951):

\[\text{O}_3 + \text{H} \rightarrow \text{OH}(v=0) + \text{O}_2 \] (1)

Additional mechanisms have also been proposed (Nicolet, 1970; Krasovsky, 1972) but have not so far been shown to contribute significantly compared to the ozone mechanism. Various and Llewellyn, 1972; Harrison and Kendall, 1973; Llewellyn and Long, 1978; Takeuchi et al., 1981; Takahashi and Batista, 1981; Myraas et al., 1983).

Measurements of the OH emission alone or together with other night airglow emissions such as the OI 5577 and 6300 Å lines and the O3(3Σ) and (1Δ) bands may be used as a means of remotely monitoring the spatial and temporal variations of the odd oxygen concentration as well as the dynamical behavior of the atmosphere. Neutral temperatures at the mesopause level may be found by analyzing the rotational line intensity distribution of the emission bands (Kvifte, 1959).

Extensive studies of the OH night airglow have been carried out at low and mid-latitudes in order to clarify the excitation mechanism and behavior of the OH night airglow itself, and also as a means of remotely studying other atmospheric parameters and processes, such as temperature, wind, composition, tides, gravity waves, etc. (Menzel, 1950; Dufuy, 1951; Chamberlain and

By contrast, very little is known regarding airglow emission in the winter polar cap region. Reed (1976) utilized photometric data at 6250 Å, 50 Å bandwidth from the Ogos spacecraft and found a strongly variable enhanced intensity level during part of the 1967–68 winter at high latitudes that seems not totally explainable by auroral contamination. The enhancements may be explained by an enhanced OH night airglow emission and partly by an increased nightglow continuum from NO2 (Gadsden and Marovich, 1973). Walker and Reed (1976) showed that the enhanced levels probably were connected with stratospheric warming events. In both these works which are based on photometric data, auroral contribution to the enhancements cannot be ruled out and it seems difficult to attribute the enhancement to a specific emission, i.e. OH or NO2.

Other airglow measurements in the polar cap region are the OI 5577 Å emission study carried out at the Antarctic station using photographic equipment (Sandford, 1964; Müllin et al., 1977) report ground-based measurements of the OI 5577 Å emission from Thule, Greenland. They found the OI 5577 Å night airglow emission in polar cap region to be quite different from that observed at mid- and low latitudes. No significant diurnal variation was found in the data: large amplitude variation, on the time scale minutes to hours are relatively common and for periods of 4–19
days, strongly enhanced levels are found to exist. This pattern is similar to that found in the OH intensity reported here, and may point toward a common source. They also show that the intensity distribution is different from lower latitudes, i.e., showing a skewed bimodal distribution for polar region compared to a skewed unmodal at low and mid-latitudes, also found by Sandford (1984). A correlation between boundary crossing of the interplanetary field and the sign of the gradient of the airglow intensity (i.e., increasing or decreasing slope) was also found to exist for two of the observing seasons.

Ismail and Cogger (1982) extended the study by Mullen et al. (1977) using data from the ISIS-2 satellite. They attributed the enhanced OH 5577 Å emission periods to increased meridional transport of oxygen into the polar cap and showed that stratospheric warming events might result in an enhanced polar cap OH 5577 Å airglow.

In two recent papers, Myrabo et al. (1983) and Myrabo (1983) have reported ground-based measurements of OH emissions from Spitsbergen (78° N) during winter solstice condition. Large amplitude variation of both intensity and temperature up to ±70 K in temperature is found in the internal gravity wave period range. On a larger timescale, the daily mean temperatures show a wave-like pattern with deviations from the mean, each lasting for about 3–10 days. A semi-diurnal but no diurnal variation in the temperature is also evident.

The purpose of this paper is to continue the study of the OH emission in polar cap region, utilizing the 1982 83 season absolute intensity measurements at winter solstice. From results reported in the previous papers and in this paper, it seems evident that the OH intensity and temperature patterns in polar cap regions are mainly governed by large and small scale transport and wave phenomena. A disturbed OH intensity and temperature pattern were strongly fluctuating with time with periods from minutes to days, seemed more to be the rule than the exception.

2 OBSERVATIONS AND DATA REDUCTION

The OH emission data employed in this work were part of measurements undertaken during the 1982 83 campaign of the Multi-National Svalbard Auroral Expedition (Deehr et al., 1980) close to Longyearbyen on West Spitsbergen (78° N, Lat. 15° E, Long. geographic).

OH emissions are normally predominant in the near infrared part of the night sky spectrum. Contamination by auroral molecular emission as in the auroral zone (Vaillance-Jones, 1974; Mervether, 1975) is most of the time insignificant at Spitsbergen because of a much lower occurrence frequency of auroras (Strøm and Belton, 1967) and because auroras at these latitudes are generally at a higher altitude and emit mainly atomic lines (Sivert and Deehr, 1980). Thus, a normal high responses auroral spectrophotometer operated at a resolution of 2000/Å bandwidth may be used to obtain measurement of the OH bands and lines clearly resolved from auroral emissions.

At the Longyearbyen Observatory, a 1 m and a 1.2 m high-throughput Ebert-Fastie spectrophotometer are coupled to a mini-computer recording in a photon-counting mode. The 1 m instrument, used for the measurements reported here, is further described by Dick et al. (1970) and Sivert et al. (1972).

The spectrophotometer was normally operated for 24 h a day from December 1982 to January 1983. For the absolute intensity measurements reported here, only periods with clear sky and stable atmospheric transmission were selected. The transparency of the atmosphere was checked by visually observing a known sequence of non-variable stars (10–20°), intensity variation of the stars could routinely be detected. Within periods where detectable transparency variation occurred, data were not utilized. Spectra were also rejected when Fraunhofer lines occurred during twilight and full moon periods.

The spectrophotometer was pointed toward the zenith and the OH (8-3) band lines in the 258–741 Å region were scanned in 6 or 32 Å using the spectrophotometer in the second order with 1 or 2 mm slit corresponding to a bandwidth of 1.5 and 3 Å respectively. Each scan was recorded on magnetic tape. Individual rotational temperatures were calculated from 1- and 3-h integrated scans, by employing Kifts's method using the intensity ratio of the P(1,1) P(1,3), P(1,1) and P(1,5) lines (Kifts, 1959). The total band intensity was calculated using the well-known formula for the variation of the intensity of the lines in a rotational-vibrational band as a function of the angular momentum J /Herzberg, 1950:}

\[I = \sum \frac{C \cdot S \cdot l \cdot I}{N} \cdot e^{-CT} \]

where \(I \) is the total 8-3 band intensity, \(C \) a constant, \(S \cdot l \cdot I \) the line strength, \(F \cdot l \) the rotational term value in the upper vibrational level, \(c \) the wavelength of the line, and \(k \), \(c \), \(k \) and \(T \) their usual meaning. The total OH (8-3) band intensity was thus calculated and the constant \(C \) determined using the absolute intensity of the P(1,1) line together with the temperature, \(T \), calculated from the P, Q branches using Kifts's method. Summations for the R, Q, and P branchs up to \(N = 9 \) were performed. The line strength of Hön and London
(1935) and the F(e) values as determined from Dieke and Crosswhite (1948) and Kvitne (1959) have been used. Absolute intensity calibration was performed in the field using a standards lamp and a diffusing screen.

Probable error for a single measurement i.e. 1 or 3 h integration is estimated to be \(\pm 3 \% \) in the temperature and less than \(\pm 10 \% \) in the relative intensity. The uncertainty of the absolute scale is about \(20 \% \), mainly due to calibration uncertainty. The absolute intensity was not corrected for atmospheric extinction.

Example of the quality of the data used is given in Fig. 1. The daily means are indicated by filled squares and straight lines are drawn between each solstice. Independent measurements by Visconti et al. (1982) and by Harrison et al. (1971) at 51° N also show winter intensity maxima in accordance with Shefov (1969a). On the other side, measurements by Kvitne (1967) from Tromsø 70° N geographically show a clear tendency of a decreasing intensity during the autumn towards the end of November pointing towards a minima at winter solstice. Because the main production of \(O_3 \) is related to solar photodissociation (Giachardi and Wayne, 1972; Simonaitis et al., 1973; Moreels et al., 1977), by the process

\[
O_3 + h_v \rightarrow O + O_2,
\]

one might expect the diminishing production of \(O_3 \) in the 24-h polar night to lead to a decrease in the \(O_2 + M \rightarrow O_3 + M \)

The results reported by Kvitne (1967) and the winter solstice minimum of the \(O_3 \) 5577 Å night glow emission in polar cap regions found by Muller et al. (1977) also suggest that one rather should expect a
winter solstice minimum than a maximum at these latitudes i.e. > 70°N. However, the one season of data presented here do not rule out a broad (> 1 month) minimum or maximum. The dominance of the wave-like pattern may also partly mask an eventual trend around solstice.

On a planetary scale the absolute intensity of OH emission is found to be at a minimum around 25° (geographic), increasing steadily poleward towards 68°N (Shefov, 1969a). Absolute intensity measurements above 70° latitude have only been recorded from airborne platforms like those by Nossin (1964) and by Sivjee et al. (1972) providing data only for a few hours not sufficient to establish any seasonal trend or mean value. The mean winter solstice value of 425 ± 40 R found here for the OH (8-3) band is therefore the first mean value based on a more extensive data set. It is close to the yearly mean found by Krassovsky et al. (1956) at 55°N. Compared with more recent measurements, it almost duplicates the 2 yr mean of 408 ± 40 R reported by Takahashi et al. (1977) from Brazil (23°S) which is very close to the normalizing latitude employed by Shefov (1969a) in his work i.e. the latitude of minimum intensity of the OH emission. Thus, using the 2 yr mean Brazilian value to calculate an expected winter solstice maximum at 68°N employing Shefov’s (1969a) latitudinal and seasonal variations, an emission intensity of ~ 350 R is found. Extrapolating this value according to Shefov’s results, i.e. a latitudinal increase and a winter solstice maximum, gives an even higher value at ~ 78°N by 20-30° (i.e. ~ 1.2 LR). If we instead assume a winter solstice minimum at 80°N of the same order, i.e. ~ 30°, an emission intensity of ~ 530 R is calculated for winter solstice condition at 80°N. The latter value is in much better agreement with the actual value observed.

The data material gathered so far, thus suggest a winter solstice minimum of OH emission rather than a maximum at extreme high latitudes, i.e. > 70°. This is in agreement with the OH 5577 A nightglow emission minimum in polar cap regions reported by Müller et al. (1977). However, data for more seasons should be gathered before making any firm conclusions on this.

3.2. Relation to solar and geomagnetic activity

It was first suggested by Krassovsky (1956) that OH emission intensity should be affected by geomagnetic disturbances. Shefov (1959) reported an intensification of the OH emission intensity during magnetically disturbed periods. Later study by Berg and Shefov (1962) and Saito (1962) failed to show a definite correlation between OH emission intensity and geomagnetic activity.

In a later work Shefov (1969a) using an impressive amount of data, gives experimental evidence for a direct effect on the OH emission intensity and temperature from geomagnetic disturbances. He found a wave-like disturbance in the intensity with an amplitude up to 10°, of the OH emission intensity at Zvenigorod (55°N) travelling equatorward from the auroral zone with an apparent speed of ~10 m s⁻¹. The amplitude decreased as the disturbance moved equatorward. Theoretical calculations by Maeda (1968) and Maeda and Aitkin (1968) concerning the dissociation of O₂ molecules in the case of impact of electrons at the appropriate altitude, show the effects to be very small on the O and O₂ concentration. Dissociation of O₂ associated with auroral substorm directly seems therefore not sufficient to explain Shefov’s data. More recent discussion (Brekke, 1977) concerning effects from Joule heating and ion drag heating on mesospheric and thermospheric temperatures also concludes that the energy present in an auroral substorm seems not sufficient to alter the mean temperature significantly in the 90 km region.

From comparison between the variation in the daily mean OH emission intensity and planetary geomagnetic disturbance index Kp, time of storm sudden commencement and boundary crossing of the interplanetary magnetic field, no consistent correlation can be seen from Fig. 1 between OH emission intensity and the other parameters. Applying 3-h averages instead of daily averages and allowing for time delays, still leaves us with an inconsistent correlation, i.e. positive correlation between one or more peaks may be found while a negative or no correlation applies to the rest of the data. This is very similar to the findings by Saito (1962) and Weill and Christophe-Glaume (1967). While Shefov (1969a) argued that these observations showed negative results because the sites were too far from the auroral regions and/or data only covered a couple of days, this objection cannot be held against our data. Svalbard is far more closely surrounded by the auroral oval than Zvenigorod.

One may, therefore, conclude that the data so far available indicate a very small or no direct correlation between daily mean or 3-h mean OH emission intensities and geomagnetic disturbances in polar cap regions. It is evident that this also applies to the OH rotational temperature as given in the upper part of Fig. 1.

3.3. Relation to transport and wave phenomena

3.3.1. Gravity waves. Figure 1 shows that the behavior of intensity and temperature during December reveals a similar pattern. It may be described as consisting of a relatively stable level with three main
enhanced periods. This is particularly obvious for the temperature. In an earlier paper, when only the temperature pattern was available, Myrabo (1983) argued that enhanced temperatures lasting for a few days most likely were due to gravity wave effects, i.e. direct energy deposition as a consequence of the breakdown of the waves (Hines, 1965) and/or turbulent diffusion increased by gravity wave action (Zimmerman and Murphy, 1977) transporting warmer air down from above. The intensity enhancements simultaneous with temperature enhancements further strengthen this suggestion. Increased turbulent diffusion produced by gravity waves may be seen to be a sufficient mechanism to explain both the enhanced intensity and temperature levels by vertical mixing of oxygen and warmer air from above. Increased turbulent diffusion was successfully applied by Moreels et al. (1977) in an oxygen–hydrogen atmospheric model to simulate mid- and high latitude observed deviations from a chemical production and loss pattern. Harrison et al. (1971) also pointed out a change in the downward transport or height of the oxygen profile as an explanation of observed enhancements in the OH emission intensity.

Unfortunately, due to persistent clouds or mist, only a few days of absolute intensity measurements were available during January. However, both the mean intensity later in January and the behavior of the daily means seems to be not significantly different from December.

3.3.2. Stratospheric warming. A stratospheric warming is normally associated with a cooling of the mesosphere (Labitzke, 1977, 1980; Schoeberl, 1978). Connected with such a warming is also a large-scale redistribution and mixing of the upper atmosphere (McIntyre, 1978; Labitzke, 1981) that is expected to result in a large increase in the OH emission intensity (Fukuyama, 1977; Walker and Reed, 1976; Fishkova, 1978). The cold mesopause during New Year 1983 does coincide with a stratum event (Naujokat et al., 1983), but we can hardly see any large scale enhancement of the OH- emission intensity following this event. This is opposite to results reported by Walker and Reed (1976).

Thus, it seems that a stratum is not necessarily needed to result in a large enhancement of OH emission intensities in the polar regions.

3.3.3. Meridional transport. As previously mentioned in Section 3.1, there is no production of odd oxygen compounds by solar photodissociation in the polar cap region during mid-winter. To keep the OH emission intensity at the observed 400 R level for the 18–31 band requires a certain meridional transport from the terminator. An approximate calculation was made assuming:

1. the meridional flux to replace the loss (mainly by emission) by equation (1);
2. a loss rate of $4 \times 10^5 \text{cm}^{-3} \text{s}^{-1}$ at the OH emission peak (90 km) (Moreels et al., 1977);
3. a dark polar cap 650 km radius at 90 km height

This results in a meridional wind speed of the order of 20 m s$^{-1}$, which may be compared with the 9 m s$^{-1}$ semidiurnal tide temperature associated wind speed derived from part of the December temperature data presented in Fig. 1 (Myrabo, 1983). Nisbett and Glenar (1977) have analyzed data from a series of high latitude vapor trail experiments and arrived at a meridional transport of 50 m s$^{-1}$ into the polar cap region in the altitude range 100–110 km. Ismail and Cogger (1982) from OI 5577 A airglow measurements required meridional wind speed into the polar cap of 10–20 m s$^{-1}$ to explain the observed OI 5577 A intensity and variations.

Assuming that a significant fraction of the O$_2$ is transported across the polar cap, an even higher wind speed than 20 m s$^{-1}$ would be needed. To explain the intensity gradients of the enhanced periods and the levels reached, a meridional wind speed up to 40 m s$^{-1}$ for some hours is needed. This seems to be rather high for the particular altitude range under consideration (i.e. ~90 km) but Deehr et al. (1986) observed the effects at 57°N, 145°W of an Li release from 58°N, 95°W within 12 h implying an average speed of 60 m s$^{-1}$. Even though the release was near 160 km altitude, the Li was at the mesopause by the time of the observation. Vertical mixing of oxygen from above could be one possible source in addition to meridional transport.

3.4. Short term behavior—intensity and temperature correlations

Fluctuations in both OH emission intensity and rotational temperature in the gravity wave period range (i.e. ~5 min or more) with amplitudes from ±20 K in temperature and ±20°, intensity are not uncommon for OH measurements generally. These fluctuations appear now and then at all latitudes, but it is not regular behavior (Shefov, 1969a; Wiens and Weill, 1973; Takahashi et al., 1974; Misawa and Takeuchi, 1978).

From OH emission data obtained during the 1980.81 observed season at Longyearbyen, it became clear that very large amplitude regular and irregular oscillations in both intensity and temperature also could occur in the polar cap region. A special event, believed to be due to the passage of gravity waves, with amplitudes up to ±70 K in temperature within a few hours was reported by Myrabo et al. (1983).
OH data obtained in 1982-83 further confirm that medium-to-large amplitude oscillations in both temperature and intensity are not exceptional for OH emissions in the polar cap region. As found from observations at F2 region heights (Thome, 1988; Shashun'Kina and Yudovich, 1980) substorms and geomagnetic disturbances are likely to generate internal gravity waves. Internal gravity waves, launched from geomagnetic disturbances and traveling downward into the mesopause region, though not containing enough energy to alter the mean temperature significantly, may cause OH temperature and intensity oscillations around the mean values. Observations by Shagaev (1974) and Krassovsky et al. (1977) showed that at least some of the gravity waves recorded at mid- and high latitudes near the mesopause probably originate in the auroral zone and that they were connected with geomagnetic disturbances.

Figure 2 shows a 75-h (i.e. ~3 days) continuous record of the OH intensity and temperature as obtained from 1-h integrations of emission spectra. This seems to represent a relatively normal behavior, and as can be seen, considerable variations in both temperature and intensity take place.

The correlation between intensity and temperature for the OH emission has been the subject of many papers and widely different and seemingly opposing results have been reported, i.e. both positive, negative and no correlation (Takahashi et al., 1974, 1977; Misawa and Takeuchi, 1978; Visconti et al., 1971; Harrison et al., 1971; Shefov, 1970; Takeuchi et al., 1981).

The 400 h of data, presented in Fig. 2, cover an equivalent time period of about 50 nights of observations at mid- and low latitudes, assuming 4 h as a typical observing night. Choosing separate 3-h periods corresponding to 10-15 nights we are able to produce both positive, slightly negative and insignificant correlation between temperature and intensity. Consideration of only the data between 25 December 1300 U.T. and 27 December 0700 U.T., altogether 39 points, results in a correlation coefficient of 0.81. On the other hand, the data from 26 December 1200 U.T. to 27 December 2200 U.T., consisting of 30 points, gives a negative correlation, i.e. 0.09. The negative correlation is not significant. Figure 3 shows an intensity-temperature plot in the case of a correlation coefficient of 0.81. The above analyses were also performed using 30-min integrated spectra, thus providing twice the number of points, i.e. 78 and 60 respectively. The result was not significantly different. For limited time intervals, typically less than 12 h, a higher correlation coefficient could sometimes be obtained by shifting the intensity and temperature curves relative to each other. Whether this indicates a real phase shift between intensity and temperature, as reported by some authors (Noxon, 1978; Takahashi et al., 1979), is difficult to justify because applying the same time shift, in other cases results in the opposite effect, i.e. lowers the correlation coefficient.

Mechanisms, such as horizontal transport, vertical transport, turbulent mixing, diffusion, tides and gravity waves act differently on the temperature and the intensity. We believe that the rather confusing patterns observed in both intensity and temperature, resulting in positive, negative and insignificant correlation, and sometimes all three possibilities within a 24-h period, only reflect the dynamical and chemical complexity of the OH-emitting region. From data so far collected.
Hydroxyl night airglow emissions

Fig. 3 OH (R-3) band intensity-temperature plot using the measurements between 25 December 1300 UT to 27 December 0700 UT 1982 (see Fig. 3). The best linear relationship is indicated by the least square regression analysis line. The slope is 11.2 R K.

It seems that transport and wave phenomena are dominant factors in the overall behavior of the OH emitting layer in polar regions.

3.5 Tidal components

In a previous paper Myrabo (1983) reported the presence of a semi-diurnal tide in the December 1982 temperature data by applying a superimposed epoch analysis of 19 consecutive days. A diurnal tide component was not evident.

Using Fourier analysis of the intensity data covering the same time interval, a dominant power peak around 12 h is found with far less power around 24 h. According to a model calculation by Forbes (1982) one should expect the diurnal tide mode to be dominant at high latitudes and polar regions. Spezziucino (1989) and Teitelbaum and Blamont (1975) have argued that random interaction with gravity waves has more important affect on the first diurnal mode than on the second. Thus, the effect of averaging over a period of 3 days could be to cancel out the diurnal mode. To check this we have applied Fourier analysis to the three consecutive days of intensity data shown in Fig. 2. As seen from the result presented in Fig. 4, the semi-diurnal tide mode is again the dominant mode. The energy seen around 4-5 h and around 3 h are on the limit of what is significant, and may partly be due to side lobes appearing from the Fourier analysis and noise in the intensity data.

The finding of the semi-diurnal tide mode also to dominate on a time scale as short as 3 days may be interpreted to be due to a very high occurrence frequency of gravity waves effectively interacting with the diurnal tide mode but not with the semi-diurnal. The dominance of the semi-diurnal tide in the intensity data also confirms our previous result using the temperature data (Myrabo, 1983).

4. SUMMARY

Ground-based observations of atmospheric OH emission intensity and temperature have been carried out at 78°N during December and January 1982-83. The results from the analysis of the temperature data is reported elsewhere (Myrabo, 1983).

A mean value of 425 ± 40 R is found for the absolute intensity of the OH (R-3) band. Maximum and minimum daily mean values were 770 and 320 R respectively, while the hourly mean values ranged from 180 to 1020 R.

The daily mean values of the intensity show large amplitude variations qualitatively very similar to those found in the OI 5577 Å airglow emission in polar cap regions (Müllen et al., 1977). There is, however, no obvious minimum or maximum seen within the 1 month-long period covered around solstice as there was for the OI 5577 Å airglow emission (Müllen et al., 1977). A broad minimum or maximum cannot be ruled out, however the relatively low mean value of 425 ± 40 R rather indicates a minimum than a maximum. The lack of production of O by photodissociation of O₂ in the polar cap region during the polar night also suggest a minimum. The flux of O and O₂ necessary to keep the OH emission at the observed level indicates a meridional transport corresponding to a wind speed of at least 20 m s⁻¹ at 90 km height. However, vertical transport induced by gravity waves and mixing would lower the necessary wind speed considerably.

The daily mean OH emission intensity and temperature show no evidence of any consistent correlation with geomagnetic or solar activity.
A dominant semidiurnal tide component in the OH intensity is found and strongly confirms the previous finding of the same variation in the temperature data (Myrabo, 1983). Even on a time scale of three days, the semidiurnal component is dominant. The power spectra appearing from Fourier analysis barely reveal any peak around 24 h, i.e. the diurnal component.

From the OH data gathered so far, it seems that transport and wave phenomena are the dominant mechanisms defining the behavior of both OH intensity and temperature. Further airglow observations are necessary to understand the complex mesopause region dynamics and photochemistry in the polar regions.

Acknowledgements—Financial support for this research was provided by National Science Foundation through grants ATM80-1271 and ATM82-001 to Geophysical Institute of the University of Alaska. One of us (HKM) was supported by a fellowship grant from Royal Norwegian Council for Scientific and Industrial Research.

REFERENCES

Harrison, A. W. and Keadal, D. J. W. (1973) Airglow hydroxyl intensity measurements 0.8-2.3 Å. Planet. Space Sci. 21, 1371.

Menzel, A. B. (1975) High latitude airglow observations of correlated short term fluctuations in the hydroxyl. Meteor S-
Hydroxyl night airglow emissions

1 band intensity and rotational temperature. Planet. Space Sci. 23, 1211

Sandford, B. P. (1964) Aurora and airglow intensity variations with time and magnetic activity at southern high latitudes. J. atmos. (err. Phys. 28, 149.

Thorne, G. (1968) Long-period waves generated in the polar atmosphere during the onset of magnetic storms. J. geophys. Res. 73, 6319.

Abstract. The O\textsubscript{2} atmospheric (0-1) band at 9645 \AA\ has been observed in the airglow during the 1982/1983 winter solstice from the ground at Longyearbyen, West Spitsbergen (78.4°N latitude, 15°E longitude, geographic). The average (0-1) band intensity for the continuous 18-hour period of the observations is found to be 445 R ± 40 R. The mean temperature deduced from the O\textsubscript{2} (0-1) atmospheric band rotational structure is found to be 254 K ± 3 K compared to a mean of 249 K ± 2 K for the OH (0-3) band rotational temperature. This indicates a shallow mesopause with an upper temperature gradient of ~1 K/km. Comparison with previous observations shows little or no latitude dependence, although there is considerable scatter in the data indicating that the O\textsubscript{2} airglow is highly variable in time of the order of hours or less.

Introduction

The O\textsubscript{2} \((^3\Sigma^+ - ^1\Sigma^+)\) atmospheric band system was discovered in the night airglow by Meinel [1950] who observed the (0-1) band emission at 9645 \AA. Morphology, diurnal and seasonal intensity variations were extensively studied by Berghier [1956] from Haute-Provence (43.9°N, geographic) using photographic techniques. Early absolute intensity measurements were reported by Barbier [1956] and Dufay [1958]. Mean values of 2000 R and 1460 R were given for the (0-1) band. Later ground-based measurements have shown significantly lower values, giving mean intensities in the range 400-500 R for the (0-1) band. Rocket measurements made at Longyearbyen on 27 February 1968 and 5 March 1968; [Broadfoot and Kendall, 1968; Wallace and Hunten, 1968; Shefov, 1971].

The (0-1) band is not observed from the ground due to absorption by O\textsubscript{3} in the lower atmosphere. Observations of the volume emission rate as a function of altitude have been made from rockets [Felder, 1961; Tatarskaya, 1963; Witt et al., 1979; Tatarskaya et al., 1971]. The alitudes of the maximum emission from these measurements of the (0-0) band center about 94 ± 3 km except for the results reported by Tatarskaya [1963] who found a profile maximum at 80 km.

Before the rocket measurements, the (0-0) band emission intensity was estimated using the (0-1) band and a Franck-Condon factor. Fraser et al. [1954] predicted a ratio of 21 for the intensity ratio between the (0-0) and (0-1) bands, ignoring possible variations in the transition moment. Laboratory measurements by Noxon [1961] gave a value of 20 ± 4 while Viehöll [1965] reported a factor of 20. A measured intensity ratio for the (0-0) to (0-1) bands was found to be 17 ± 2 by Wallace and Hunten [1968] using dayglow measurements. A value close to 20 has thus been commonly accepted [Greer et al., 1981].

Observations of O\textsubscript{2} atmospheric band airglow cover a wide range of latitudes, but both the ground-based and rocket measurements have been made at less than 50° except one recent rocket experiment by Witt et al. [1979] at 68°N. It has been suggested [Deams et al., 1976; Feldmann, 1978] that the atomic oxygen concentration and the night airglow atmospheric band emission would decrease toward high latitudes. This has been contradicted by Witt et al. [1979], who found a relatively high O\textsubscript{2} (0-0) band night airglow emission at 68°N.

A low value of the odd oxygen concentration at 95-100 km height would result in a very low 5577 Å green line night airglow and a low O\textsubscript{2} atmospheric band emission. A minimum (100 R) for the 5577 Å green line night airglow for winter solstice in the polar cap region is reported by Mullen et al. [1977] and by Ismail and Goetter [1982]. O\textsubscript{2} atmospheric band night airglow observations have not been reported from the polar cap region. It is the purpose of this paper to report recently obtained spectrophotometric night airglow measurements of the (0-1) band at 78.4°N during winter solstice.

Observations and Data Reduction

The spectra used in this work were part of measurements made during the 1982/1983 campaign of the Multi-National Svalbard Auroral Expedition [Deehr et al., 1980] close to Longyearbyen on West Spitsbergen (78.4°N latitude, 15°E longitude, geographic).

Night airglow OH emission features are normally predominant in the near-infrared spectral region in the polar cap [Gault et al., 1981; Myrabo et al., 1982]. The aurora in the polar cap is usually at a high altitude, and emits mainly atomic lines [Stivel and Deehr, 1980]. Thus, a high-resolution auroral spectro-photometer may
Estimated to be

The coaligned, steerable synthetic spectra (Henriksen et al., 1983) were used to measure the night airglow features clearly resolved from auroral emissions. Figure 1 shows an example of a spectrum which includes the 7800 to 8800 Å region. The bandwidth was approximately 7 Å and the OH and O₂ emissions are indicated.

At the Longyearbyen observatory, 1-m and 1/2-m high-throughput Ebert-Fastie spectrophotometers operate in a photon-counting mode and are coupled to an on-line digital data processing system. The coaligned, steerable instruments are described by Dick et al. (1970) and Sivaraj et al. (1972). During an 18-hour period of clear weather (1900 UT, January 11, to 1300 UT, January 12, 1983), the spectrophotometers were pointing toward the zenith and the spectral regions 7280–7410 Å and 8580–8830 Å covering the OH (0–1) atmospheric band were recorded. The OH (0–1) and O₂ (0–1) atmospheric bands were scanned in 32 and 12 Å, respectively, with the 1-m and 1/2-m Ebert-Fastie spectrometer instruments at a spectral resolution of 1.5 and 2.5 Å, respectively. Each scan was recorded on tape and spectra were obtained each 30 min for OH and each hour for O₂ by summing individual scans. Examples of the OH (0–1) band spectrum are given by Myrabo et al. (1984). Figure 1 shows an example of a 1-hour integration of the O₂ (0–1) band at a resolution of 2.5 Å.

Absolute intensity calibration was performed in the field using a standard lamp and a diffusing screen. The OH rotational temperature has been calculated using the relative intensities P₂ (3), P₁ (3), P₁ (4) and P₁ (5) lines and Kivite’s method (Kivite, 1959). The O₂ (0–1) atmospheric band temperature was estimated by comparing with synthetic spectra (Henriksson et al., unpublished manuscript 1983).

Probable error in the rotational temperatures calculated from relative intensity ratios is estimated to be ±10 K. The error in the absolute intensities is approximately 20%, mainly due to calibration uncertainty.

The incidence of aurora was monitored by the intensity of the 7320/30 Å 0–11 lines, the N₂ lines and the H₂ 1 P (2,1) band. The measurements reported were obtained during a period devoid of aurora except around 0700 UT in the morning of January 12. The relative contribution from aurorally excited O₂ (0–1) emission could be estimated together with intensities of other auroral lines and bands. It was observed that the intensity of the 0700 Å band around 0700 UT have been excluded from the data in order to insure that the intensity and temperature data used here contain no auroral components.

Results and Discussion

Absolute Intensity of O₂ Atmospheric Bands (0–0) and (0–1)

Absolute intensity measurements of the O₂ atmospheric (0–1) band taken during a continuous 18-hour period in January 1983 at 78° are shown in Figure 3. The mean intensity during the observational period is 445 ± 40 R. The data have not been corrected for atmospheric extinction. The OH (8–3) band intensity is given in Figure 3 for comparison. Both the OH and O₂ emission intensities tend to increase during the observing period. The mean OH (8–3) band emission intensity during this 18-hour observing period was 518 R. This may be compared with a mean of 425 R found for the whole 1982/1983 observ-
ing season [Myrabø and Deehr, 1984]. Thus, the mean value for this 18-hour period was approxi-
mately 12% higher than the seasonal mean.

A search for other ground-based observations, unfortunately, yields very few recent measurements
of absolute intensities. Measurements by Misawa and Takeuchi [1978], Misawa et al. [1980]
and Takauchi et al. [1981] are all in arbitrary units. Ground-based absolute measurements avail-
able for comparison after 1960 are by Berg and Shefov [1962], Broadfoot and Kendall [1968]
and Shefov [1971]. Absolute emission intensities of the (0-1) band were also estimated by Wallace and

From the above measurements, we have calcu-
lated the expected (0-0) band emission intensi-
ties by applying a Franck-Condon factor of 20.
The resulting ground-based calculated (0-0) band
intensities are plotted versus latitude in Figure 4
together with available absolute measurements of
the (0-0) band intensity as obtained from rocket flights. The values calculated from
ground-based observations are marked with a G,
while the rocket measurements are marked with an R. The rocket measurements are those by Packer
[1961], Magill et al. [1970], Witt et al. [1979]
and Deans et al. [1976].

Although there seems to be little or no vari-
ation with latitude, the (0-0) intensities calcu-
lated from the time-averaged ground-based ob-
servations of the (0-1) band show a small scatter
(20%) at about twice the value of the rocket
observations, although the latter are much more
scattered. Correction for extinction and re-
emission of self-absorbed (0-0) band emission is not
included in the ground-based calculations. The
extinction should be about 10% for the appropri-
te wavelength region [Allen, 1963], while the
correction due to reemission is found to be
about 10% [Wallace and Hunten, 1968]. These
effects should, therefore, cancel out.

The scatter in the rocket data may be ex-
plained as a result of the short time interval of
each measurement of the highly variable airglow
compared to the time-averaged ground-based data.

(See Figure 3, or Noxon [1978], and Weinstock
[1978]). A mean value of 4.1 kR with a standard
deviation of 2.7 is found for the rocket measure-
ments while the ground-based estimates have a
mean value of 8.4 with a standard deviation of 1.1.
It should be mentioned that absolute measurements
from the ground of the (0-1) band prior to 1960
have been excluded from these data as it is felt
that they may contain a systematic calibration
error (Barbier [1956], 2000 R; Dufay [1958], 1500 R)
compared to later results (see Figures 4 and 5).
The value of 2000 R by Barbier [1956] and 1500 R by
Dufay [1958] would only compound the discrepancy
between the rocket and ground-based observations.

A rocket experiment to observe both the (0-0) and
(0-1) bands has been carried out (P. R. Harris,
personal communication, 1983) and preliminary
results using the generally accepted Franck-Condon
factor of 17 to 22 indicate that the differences
between the ground-based and rocket data may be
reconciled and much higher intensities can occur
on a time scale less than that of the time-averaged
ground-based data.

O_2 (0-1) Atmospheric Band and OH (8-3) Band Rotational Temperatures

Temperatures deduced from the O_2 (0-1) atmo-
spheric band and OH (8-3) band P$_2$ lines, are shown in Figure 5.
These are 1-hour and 30-min averages for the
18-hour period in the same manner as for the in-
tensity data. The overall temperature difference
between the O_2 and OH band temperatures is seen to
be small and mean values of 254 K ± 3 K and
249 ± 2 K are found for the respective emissions.
The two temperatures may also be seen to follow a
similar trend, which is reasonable since they
originate in the same atmospheric height domain;
the OH intensity maximum is usually found 3-8 km
lower than the O_2 emission [Moreels et al. 1977; Witt et al., 1979; Watanabe et al., 1981].
Although considerable variation in both the O_2
and the OH temperature takes place during the ob-
serving period, on wavelike pattern that could be
attributed to gravity wave effects as found by
Noxon [1978] is seen in this particular data
collection. The variations in both the O_2 and OH
temperatures may rather be interpreted as being
due to transport and mixing phenomena which seem
to govern the dynamical behavior of the polar
winter atmosphere at mesopause height [Myrabø and Deehr, 1984].
These data were plotted together with available rocket observations of the (0,1) band intensity of 5-6 km. Vibrational transition probabilities of the P branch of the O2 (0-1) atmospheric band. Sci., 83, 2151, 1978.

Assuming a reasonable difference in the peak height of the O2 atmospheric emissions and the OH (83) band, the mean temperature difference of 5 K gives a positive temperature gradient of 1 K/km for the 90 to 95-km region. This confirms previous findings of a shallow polar mesopause with a relatively small positive temperature gradient in the 90 to 95-km region [Myrabo, 1984] for winter solstice conditions.

Summary

The (0-1) atmospheric bands in the night airglow have been observed from Longyearbyen (78°N) during winter solstice conditions using spectrophotometric equipment. The observations reported here were confined to an 18-hour continuous clear-weather observing period from 0900 UT, January 11, to 0300 UT, January 12, 1983. The raw data were recorded with a spectral resolution of 2.5 A, which resolved the rotational structure of the P branch of the O2 (0-1) atmospheric band.

A mean O2 (0-1) atmospheric band intensity of 445 ± 40 K, ranging from 350 K to 5.3 K, is found. The mean temperature deduced from the O2 (0-1) atmospheric band rotational structure is 2.5 K ± 3 K compared to a mean of 249 K ± 2 K for simultaneous measured OH (8-3) band rotational temperature. The mean temperature difference between the O2 (0-1) atmospheric band and the OH (8-3) band yields a positive temperature gradient for the 90 to 95-km region of 1 K/km, assuming a reasonable height difference between the two emissions of 5-6 km.

All available time-averaged ground-based observations of the (0,1) band intensity were used to calculate the intensity of the (0,0) band. These data were plotted together with available rocket observations of the (0,0) band as a function of latitude. No latitude dependence was observed, and although the rocket data were half the intensity of the ground data on the average, the scatter was considerably larger. This indicates that a further correction to the ground-based or the rocket data may be necessary and that the O2 airglow is highly variable on a time scale of hours.

Fig. 5. The hourly and half-hourly mean temperatures from the R and P branches of the O2 atmospheric (0-1) bands and the OH (83) band P, lines observed in the zenith airglow at Longyearbyen on January 11/12, 1983. Straight lines are drawn between each half-hourly and hourly value, respectively.

Acknowledgments. Financial support for this research was provided by National Science Foundation through grants ATM80-12719, ATM82-14682, ATM82-00114 and ATM83-13272 to the Geophysical Institute of the University of Alaska and by the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant to one of us (K.K.M.). The observations at Svalbard are made through a cooperative effort involving the Universities in Fairbanks, Tromsø and Oslo, with the help and cooperation of the Great Norwegian Spitsbergen Coal Company and the Norwegian Polar Institute.

The Editor thanks the two referees for their assistance in evaluating this paper.

References

Henriksen, K., G. G. Svjizeh, C. S. Deehr, and K.

Misawa, K., and T. Takeuchi, Correlation among O$_2$ O(3-1) atmospheric bands, O(8-3) band and O(1) 5577 A and among P(2), P(3) and P(1) and P(2) lines of OH (8-3) band, J. Atmos. Terr. Phys., 40, 421, 1978.

Witt, G. J., Stegman, B. H. Solheim, and E. I. Ljewellyn, A measurement of the O$_2$(\(\text{^3}F\)) \(\text{^3}P - \text{^3}S\) atmospheric band and the 0(1)-0(3) green line in the nightglow, Planet. Space Sci., 27, 341, 1979.
4.9 Myrabo H K, C S Beehr, G J Romick and K Henriksen, Mid-winter intensities of the night airglow $O_2(0-1)$ atmospheric band emission at high latitudes, J Geophys Res, 91, 1684 (1986)
HIGH-LATTER INTENSITY AT THE NIGHT AIRGLOW \(\frac{1}{2} \) (1-1) ATMOSPHERIC BAND EMISSION AT LOW LATITUDES

A. K. Tyndall
Norwegian Defence Research Establishment, Kjeller, Norway

A. S. Neves and C. J. Ronan
Contribution - Institute, University of Alaska, Fairbanks

K. Helliasen
Arctic Observatory, University of Tromsø, Norway

ABSTRACT. Absolute intensities of the \(\frac{1}{2} \) (1-1) atmospheric band night airglow emission at Spitsbergen \(\left(78^\circ \text{N}, 17^\circ \text{E} \right) \) have been observed during a 7-month period around winter solstice (1982-1983). Intensities ranging from \(10 \) to \(100 \) R with a mean of \(10 \) R are observed. There is no clear maximum or minimum around solstice. A semiannual tide component giving rise to a \(2 \pi \sin \theta \) intensity variation of the \(\frac{1}{2} \) (1-1) atmospheric band emission is present in the data. The maximum and minimum are found to occur at about \(\pm 30^\circ \) and \(\pm 90^\circ \) local time, respectively. The semiannual tide component larger than \(10\%-20\% \) is present in the data. The semi-diurnal and short time variations exhibit a quasi-regular wave pattern which may be associated with gravity waves.

1. Introduction

Night airglow observations provide a powerful tool for the study of the ionosphere and the upper atmosphere. Ground-based observations are important for studying auroral and geomagnetic phenomena because rocket measurements only give a snapshot in time, whereas ground-based observations are usually integrated over a large area at widely spaced time intervals.

Ground-based night airglow observations in the polar regions are very sparse compared to lower latitudes. This is also the case for rocket measurements. In some recent papers by B. M. McEwen et al. (1982a, 1984), Verrall (1984) and McEwen et al. (1984), ground-based measurements of \(\frac{1}{2} \) (1-1) atmospheric band have been reported. The \(\frac{1}{2} \) (1-1) atmospheric band has been given by McEwen et al. (1982b). The \(\frac{1}{2} \) (1-1) atmospheric band has been given by McEwen et al. (1982a, 1984).

The emission from the \(\frac{1}{2} \) (1-1) atmospheric band has been given by McEwen et al. (1982b). The \(\frac{1}{2} \) (1-1) atmospheric band has been given by McEwen et al. (1982a, 1984).

Copyright 1984 by the American Geophysical Union.

Paper number 538522

-0277.86/0034-0612903.00

1984
TABLE 1. Characteristics of spectrometer

<table>
<thead>
<tr>
<th>Component</th>
<th>Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of spectrometer</td>
<td>1/2 m Ebert-Fastie</td>
</tr>
<tr>
<td>Field of view</td>
<td>6" x 6"</td>
</tr>
<tr>
<td>Instrument bandpass</td>
<td>11219</td>
</tr>
<tr>
<td>Dark count rate</td>
<td>1-3 counts/s</td>
</tr>
<tr>
<td>Entrance slit width</td>
<td>65 mm</td>
</tr>
<tr>
<td>Spectral dispersion</td>
<td>14 A/mm</td>
</tr>
<tr>
<td>Spectral sensitivity</td>
<td>(with 1 A resolution)</td>
</tr>
<tr>
<td>Detector</td>
<td>Hamamatsu R943-O 2A, AEU tube</td>
</tr>
</tbody>
</table>

airglow features in auroral regions is the contamination by aurora. If the emissions are not excited by auroral particle bombardment, overlying auroral features may normally be filtered out or accounted for if a high enough spectral resolution is used. If the airglow emission also occurs in the aurora, as is the case for the [OI] 5577 A line and the [O] (0-1) atmospheric band, there is no direct way of knowing if the photons originate in the aurora or airglow. A simultaneous monitoring of pure auroral features, such as the 3914 or 4369 A NO airglow band, could be used to select time periods devoid of auroral emission features. This method was used by Mullin et al. (1977) and Telle and Cogger (1982) to isolate the night airglow component of the [OI] 5577 A line. The problem of establishing a threshold intensity for auroral incidence is alleviated by using a spectrophotometer with a sufficient resolution to record the night airglow and the auroral reference emissions in the same spectra. At very high latitudes, atomic lines dominate the auroral spectrum for most of the time (Elshue and Deehr, 1950; Gault et al., 1981; Yrland and Deehr, 1984). This makes the night airglow component of the [O] (0-1) atmospheric band much easier to isolate and far less sensitive to auroral emission than the [OI] 5577 A line.

The spectral region shown in Figure 1 includes the [OI] 5549 auroral line as an auroral reference emission. This is in addition to the [O] (0-1) band. An auroral component in the [O] 5549 band at 1-10 km was indicated by the [O] 8446 line rising high above the OH lines, by a factor of 2 or more. For calculating the absolute intensities of the [O] (0-1) atmospheric band, we have thus only selected spectra with no auroral emissions and only during clear and stable weather conditions. Weather conditions were checked visually by viewing standard stellar sequences. The resulting daily distribution of the spectra is depicted in Figure 2.

Absolute calibration of the spectra were carried out in the field using a standard source. The absolute intensities were calculated by using the area under the band emission and by comparing the night airglow component of the [O] (0-1) atmospheric band. The uncertainty in the band intensity measured from each 30 min spectrum is estimated to be ±15, mainly due to calibration uncertainties. The relative uncertainty due to photon noise and reading off each band intensity is less than ±15.

3. Results and Discussion

3.1. Short Time Variations

The typical short time pattern of the intensity variations of the [O] (0-1) band emission is somewhat similar to that found for the OH emission in the polar region (Yrland et al., 1983; Yrland and Deehr, 1984). Intensity variations of a factor of 2 or more within a few hours are common. The intensity variations observed often show wave-like cyclic changes which shift frequency only after a few cycles or are interrupted by peaks or step changes. It is rather unusual to see longer periods (6-12 hours) with slow-amplitude, smooth variations as is often the case at lower latitudes (Bertler et al., 1986; Nakawa and Takeuchi, 1975).

Figure 3 shows a typical example of the intensity variation with time during a 1-hour period from December 25-26, 1982. It seems reasonable to believe that these variations are associated with gravity waves. Normally, little or no correlation is observed between the intensity.
During a Pig. 0.

Typical example of the intensity variation of the $^{1}D_2$ (D-1) atmospheric band as obtained during a 14-hour period from December 22-26, 1982.

Fig. 4. Two consecutive spectra of the $3658-5840$ Å region showing an almost 100% decrease in the $^{1}D_2$ (D-1) band intensity, while the OH emission is left unchanged.
by related phenomena. Seen from a dynamical point of view, this would divide the polar upper atmosphere into two height regions, i.e., below 85-90 km and above 90-95 km, dominated from below and above respectively, by breaking gravity waves with a turbulent-free mesopause region in between. This picture also fits with rocket measurements from Andoya (69°N) of the turbulence in the 80-100 km region as recorded during the NAPINE campaign 1983/1984 (T. A. Blita, private communication, 1984).

3.2. Diurnal and Semidiurnal Variations

The large, irregular intensity variations with periods less than 24 hours mask any diurnal or semi-diurnal variations in any single 24-hour period. In order to bring out these daily variations we have used a superimposed epoch method, employing all of the absolute intensity data for the 20-day period between December 6 and December 20, 1982. Figure 6 gives the result, showing a semidiurnal intensity variation of the OI (5577 Å) atmospheric band with an amplitude variation of approximately ±1% from the average. A semidiurnal tide curve has been fitted to the data following the method of Pettedidier and Teitelbaum [1975]. The best fit curve gives maximum and minimum of the emission intensity at 1600 UT and 0400 UT. Universal time and local solar time differs only by about 20-30 min, which places the position of the maxima and minima as expressed in local solar time (LST) at approximately 1000 and 2000 LST and 0000 and 1000 LST, respectively.

As seen in Figure 6, there is no sign of a diurnal variation. To test this further, Fourier analysis of the data was undertaken. No diurnal component larger than 5% was found in the Fourier spectra. Myrabøe et al. [1984a] found no diurnal variation in the OH rotation temperature and in the OH intensity larger than ±1% and ±5%, respectively. The absence of a diurnal variation in the O(I) (5577 Å) atmospheric band intensity is therefore not surprising. A negligible diurnal tide effect in the 80-100 km region at extreme high latitudes seems therefore to be established. This is contrary to the model calculations of Forbes [1982] but agrees with Beer [1975] and Spizzichino [1970].

According to Teitelbaum and Klaasen [1975] and Spizzichino [1969], the first diurnal mode effectively interferes with gravity waves. Averaging over several days cancels the diurnal mode. The short time behavior of the intensity variations also (see section 3.1) indicates strong gravity wave activity which, in connection with the above hypothesis, should explain the absence of the first diurnal tide mode.

Myrabøe et al. [1977] also failed to find any semidiurnal tide component at the 100-km level. However, recent OH observations from Svalbard [Myrabøe, 1986; Myrabøe and Deehr, 1984] have revealed a dominant semidiurnal tide component both in the rotational temperature and emission intensity data. The semidiurnal variations in the OI (5577 Å) atmospheric band intensity found here confirm the presence of a dominant semi-diurnal tide at extreme high latitudes, at least in the 83-95 km region. However, the amplitude of the tidal component is slightly weaker than normally found for the OI (5577 Å) band and the OII 3007 Å at mid and high latitudes [Breston and Silverman, 1970; Pettedidier and Teitelbaum, 1975].
1977). The time for the maxima and minima fits very well with the calculations of Pettit and Teitelbaum [1977], which predict a maximum intensity of the green line at 100-km height to occur around 0130 local time for winter conditions at 53°N. A shift of the emitting layer of 5-7 km, i.e., around 93-96 km which is a reasonable height for the O$_2$ (0-1) band (Dennie et al., 1976), leads to the maximum occurring 2 to 2 1/2 hours later (Pettit and Teitelbaum, 1977). This is very close to the maximum seen in Figure 5. The calculations of Pettit and Teitelbaum also agree very well with experimental (O1) 5577 Å data from mid-latitude stations (Brenton and Silverstein, 1970).

3. Seasonal and Day-to-Day Variation

Six-hour mean intensities have been obtained by averaging 30-min spectra. A minimum of three 30-min spectra were used to calculate each 6-hour mean. Normally, 6 to 12 spectra were used. Figure 7 shows the resulting intensity variation time plot. The pattern in the day-to-day variations is similar to that found for the [O1] 5577 Å line at Thule by Mullen et al. [1977] and that by Ismail and Cogger [1981] from the ISIS 2 data. It is characterized by irregular peaks with intensity variations up to a factor of 5 or more in a few days. The largest 6-hour mean found in the O$_2$ (0-1) atmospheric band is 1125 R and the lowest value is 165 R with a seasonal average of 570 R ± 60 R. The seasonal average is slightly larger than that reported for a shorter period by Myrabo et al. [1984b].

In the data from Thule of the [O1] 5577 Å line, Mullen et al. [1977] found a correlation between interplanetary magnetic field polarity, 1-2 "sunny" or "cloudier" sectors corresponding to B$_z$ positive or negative and B$_\phi$ positive or negative, increasing and decreasing, respectively, [O1] 5577 Å nightglow trend. Such a correlation is not clear in this data set, as both an increasing and decreasing trend is found for positive interplanetary magnetic field polarity. It might be pointed out that day 346-348 (November 20-21) and January 1-10 were disturbed periods and that both these periods show pronounced maxima in the O$_2$ (0-1) intensity, although the latter may be partly associated with a stratospheric warming event.

From the ISIS 2 data, Ismail and Cogger [1982] note an enhanced level of polar [O1] 5577 Å nightglow emission during stratospheric warming events. Unfortunately, the time interval covered by our data set only contains one stratospheric warming event around year's end. In the satellite data for the polar area, there is a warming tendency on January 6-8, 1983, that only reaches the 4-sigma level. [Neuhold et al., 1983; Myrabo et al., 1984b]. Unfortunately, due to severe storms and full moon conditions, we have a large gap in our data set in this period. However, a very steady increase in the O$_2$ (0-1) atmospheric band intensity is seen between January 2 and January 10, which may be associated with the stratospheric event of January 6-8.

Ismail and Cogger [1982] found a pronounced minimum in the [O1] 5577 Å line in the southern hemisphere during winter solstice. A similar tendency should be expected for the O$_2$ (0-1) atmospheric band; however, we do not find a pronounced minimum in the emission of the O$_2$ (0-1) atmospheric band during winter solstice. But in the other hand, northern [O1] 5577 Å hemisphere night airglow data from Thule (1977) during three long winter periods of 1977-1979 seem to show a clear minimum around winter solstice. Indeed, the results by Ismail and Cogger from the northern hemisphere are not conclusive. The result from Ismail and Cogger showing the clear minimum in the southern hemisphere where there is no midwinter sudden stratospheric warming, indicates that the lack of seasonal effect in the northern hemisphere may be due to the effect of the stratospheric warming.

The day-to-day variation in behavior in our O$_2$ (0-1) atmospheric data shows the same type of pattern as seen in the [O1] 5577 Å night glows from the northern polar region (Mullen et al., 1977) during winter solstice, i.e., large irregular variations. This type of behavior therefore seems to be common both for the [O1] 5577 Å line and the O$_2$ (0-1) atmospheric band night airglow in the northern polar region. It is different from the normal morphological pattern of the night airglow at lower latitudes and is therefore reasonable to connect to the dynamical situation of the polar atmosphere in the 80-120 km region (Myrabo et al., 1983, 1984b; Myrabo and Demer, 1984).

We think that these irregular variations are partly connected to temporal and spatial variations in the occurrence of gravity waves and their interactions with the zonal winds in the stratosphere and the mesosphere. Model calculations by R. Solomon (private communication, 1984) using a chemical-dynamical model including gravity waves parameterization (Lindzen, 1981; Holton, 1983) have shown how the [O1] 5577 Å night airglow spring maximum at high latitude reported by Cogger et al. [1981] can be reproduced in the model as a direct result of the seasonal variation in the propagation and breaking of gravity waves and the associated diffusion of odd oxygen. Thus the maximum in the [O1] intensity is produced as a result of the feedback from the stratosphere and corresponding cooling of the mesosphere. In the ground state, small-scale and local gravity wave blocking by zonal-wind results in shorter periods cooling of the mesosphere and possible enhanced night airglow levels in the altitude regions affected. Such enhanced levels of the night airglow, resulting in gravity wave interaction and subsequent stratospheric warming, could also explain the lack of a clear minimum during solstice in the northern hemisphere night airglow as compared to southern hemisphere where sudden warmings during solstice do not occur [Lambert, 1977].

4. Day and (0-1) Intensities

The seasonal mean value of 570 R ± 60 R found here for the O$_2$ (0-1) atmospheric band also appears rather large as seen from a photochemical point of view, i.e., the polar cap is for most of the winter solstice period without solar irradiance at the 10-4 level. This should cause little or no photoionization of O$_2$ into excited states (Morse et al., 1971). The presence of a strong O$_2$ (0-1) atmospheric emission therefore requires other sources for exciting the O$_2$ mole-
an intensity variation of the with but emission within and resolution of winter solstice using spectrophotometric equipment is taken into account for the observed emission rates. Assuming the reaction rate coefficient given by Young and Slack (1968; Deans et al., 1980; Deehr, 1976; Deehr et al., 1982; Aasomingen, 1967) for the (0-1) band and a shorter atmospheric band, the number density of oxygen atoms and their combination with nitrogen is more than sufficient to account for the observed emissions. The reaction rate coefficient is taken into account for the observed emission rates. Assuming the reaction rate coefficient given by Young and Slack (1968; Deans et al., 1980; Deehr, 1976; Deehr et al., 1982; Aasomingen, 1967) for the (0-1) band and a shorter atmospheric band, the number density of oxygen atoms and their combination with nitrogen is more than sufficient to account for the observed emissions. The reaction rate coefficient is taken into account for the observed emission rates.

Different reaction rates have been used. It is well known (Wallace and Hunten, 1968) that the laboratory obtained reaction rate by Young and Slack (1968; Deans et al., 1980; Deehr, 1976; Deehr et al., 1982; Aasomingen, 1967) is taken into account for the observed emission rates. Assuming the reaction rate coefficient given by Young and Slack (1968; Deans et al., 1980; Deehr, 1976; Deehr et al., 1982; Aasomingen, 1967) for the (0-1) band and a shorter atmospheric band, the number density of oxygen atoms and their combination with nitrogen is more than sufficient to account for the observed emissions. The reaction rate coefficient is taken into account for the observed emission rates.

The rate coefficient given by Young and Slack (1968; Deans et al., 1980; Deehr, 1976; Deehr et al., 1982; Aasomingen, 1967) for the (0-1) band and a shorter atmospheric band, the number density of oxygen atoms and their combination with nitrogen is more than sufficient to account for the observed emissions. The reaction rate coefficient is taken into account for the observed emission rates.

The observations on Svalbard are made through a cooperative effort involving the University of Alaska and the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant to one of us (M. A.). The observations on Svalbard are made through a cooperative effort involving the University of Alaska and the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant to one of us (M. A.). The observations on Svalbard are made through a cooperative effort involving the University of Alaska and the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant to one of us (M. A.).

Acknowledgements: Financial support for this research was provided by the National Science Foundation through grants ATM-811727, ATM-81-4642 and ATM-82-00114 to the Geophysical Institute of the University of Alaska and by the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant to one of us (M. A.). The observations on Svalbard are made through a cooperative effort involving the University of Alaska and the Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant to one of us (M. A.).

References

Daly, W. Studie photoelectricque du spectre du ciel nocturne dans le proche infra-rouge, Auto., Angers, 134, 1959.

Linzen, E. S. Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707, 1981.

Miehle, K. and Y. Takeuchi, Correlation among O (0) (2S) atmospheric band, 08 (3-1) band and 08 (3-1) 5577A line and among P (2), F (3) and P (4) lines of OH (E-B) band, J. Atmos. Terr. Phys., 42, 121, 1980.

Mokwa, E. D. and A. Check, Correlation among 0 (0) (2S) atmospheric band, 08 (3-1) band and 08 (3-1) 5577A line and among P (2), F (3) and P (4) lines of OH (E-B) band, J. Atmos. Terr. Phys., 42, 121, 1980.

Night airglow O_2 (0-1) atmospheric band emission during the northern polar winter

H K Myrabo

Norwegian Defence Research Establishment
P O Box 25, N-2007 Kjeller, Norway

ABSTRACT

The O_2 (0-1) atm band night airglow has been observed from the ground near Longyearbyen (78°N) during the 1983/84 winter solstice period. The 24 months of observations show no minimum in the emission around winter solstice, but rather large variations with enhancements lasting for days. An average atomic oxygen concentration at the 95 km level of $1.5 \times 10^{14} \text{ cm}^{-2}$ is deduced from the average emission intensity of 405K. The absence of a clear minimum in the oxygen concentration during the northern polar winter solstice period, as compared to the southern polar region, is believed to reflect differences in the circulation and transport in the upper mesosphere and lower thermosphere.

1 INTRODUCTION

The height interval 80-120 km is an important region of the upper atmosphere. It contains the transition region between the ionosphere and the lower neutral atmosphere, i.e., from conditions of diffusive separation to a well-mixed mesosphere. Gravity waves from below (generated in the troposphere) and from above (in connection with auroral activity) are believed to break in this region and deposit a considerable amount of energy, causing enhanced eddy diffusion flux.
and affecting the chemistry (Ebel, 1985; Myrabo et al, 1986). At high latitudes the 80-120 km region is known to undergo large temperature changes (cooling) and disturbances in the circulation associated with stratospheric warming events (Labitzke et al, 1985; Matsuno, 1971; Myrabo et al, 1984). The atmospheric atomic oxygen concentration peaks at this altitude (Murphree et al, 1984).

Night airglow emissions originating from atomic and molecular oxygen have been extensively used to monitor the oxygen concentration and to study transport processes and chemistry of the upper atmosphere (Dufay, 1959; Silverman, 1970; Petitdidier and Teitelbaum, 1977; Cogger et al, 1981). However, most of this work has been concentrated at mid- and low-latitudes. Recently Elphinstone et al (1984) utilized a large data base of ISIS 2 OI 5577Å limb scans to construct a global circulation model of the 80-120 km region consistent with the airglow data. Only latitudes less than 40° were included.

At high latitudes both the OI 5577Å and the O₂ b²Σg emissions might be used to monitor the peak oxygen concentration, transport and dynamics of the 80-120 km region (Murphree et al, 1984; Deans et al, 1976, Myrabo et al, 1986). Night airglow measurements of these emissions are sparse in the polar regions. Except for the observations by Myrabo et al, (1986), they are based on photometric data and thus may have a higher risk of auroral contamination (both emissions also occur in the aurora). Ground based photometric observations of the OI 5577Å line from Thule (76°N) have been reported by Müllen et al (1977). Results from Antarctica, utilizing ISIS 2 OI 5577Å limb scans are given by Ismail and Cogger (1982). A clear winter solstice minimum is seen in the Antarctica data, while the Thule observations are characterized by large amplitude irregular variations lasting for periods of days to weeks (Müllen et al, 1977). Recently Myrabo et al (1986) reported similar irregular behaviour of the O₂ (0-1) atm band (i.e., O₂ (b²Σg - X²Σ−g)) emission during winter solstice at 78°N. A possible seasonal trend around winter solstice could not be clarified due to a rather short (38 days) observing period. New O₂ (0-1) atm band night airglow emission data from Spitsbergen (78°N) covering a 24 month period around winter solstice, is consistent with the OI 5577Å Thule observations, clearly
showing that the northern polar region has no winter minimum in the oxygen concentration.

2 OBSERVATIONS

The O_2 (0-1) atm band emission were observed from near Longyearbyen on West Spitsbergen (78.4°N; 15°E) during the 1983/84 Multi-National Svalbard Auroral Expedition (Deehr et al, 1980). The spectral region from 8235 to 8685Å was scanned in 12 seconds employing a $\frac{1}{2}$ M Ebert-Fastie spectrophotometer pointing towards the zenith. A band-width of 7Å clearly resolved the R and P branches of the O_2 (0-1) atm band and the P1 and P2 lines of the OH (6-2) band. Individual scans (300) were summed and averaged to obtain hourly mean spectra. Only spectra during clear weather periods and with no auroral features were used. The aurora was monitored by the OI 8446Å line present in the spectrum (Myrabo et al, 1986). An example of a typical spectrum used for calculating the O_2 (0-1) atm band intensity is presented in Figure 1. The OH (6-2) P-lines, the OI 8446Å auroral line and the OH (7-3) R branches are indicated in addition to the O_2 (0-1) atm band. The absolute intensities were obtained by calibrating the spectrophotometer in the field, using a standard lamp and a diffusion screen (Hamwey, 1985). For the O_2 (0-1) atm band the area under the R and P branches represent the absolute intensity (see Figure). The uncertainty in the absolute intensity is estimated to be 20%, mainly due to uncertainty in the calibration. The relative uncertainty is mainly due to photon noise and to the uncertainty in the background subtraction. This is less than 5% for a single one hour mean. From the hourly values of the intensities, daily averages were formed. At least 3 hourly values have been used to obtain a daily average. A ±12-15% bias due to the semi-diurnal variation has been removed, assuming the amplitude and phase found by Myrabo et al (1986). Because the daily averages were obtained from 3-10 hourly values, the average correction was less than 5%. Possible seasonal variations of the amplitude and phase of the tides should therefore not effect the result significantly. Probably the largest uncertainty in the daily values are caused by short time variations of the intensity (Myrabo et
al., 1986). An example of this is given in Figure 2 showing 20 minute averages of intensities during the evening of 25 December.

Figure 1 Example of 1 hour of averaged scans used to obtain the absolute intensities for the $O_2 (0-1)$ atm band. The $OH (6-2)$ P-lines, the auroral OI 8446Å and the R branches of the $OH (7-3)$ band are also indicated.

The daily means of the $O_2 (0-1)$ atm band intensities as obtained during the observing period from 25 November 1983 to 6 February 1984 is presented in Figure 3. The result from the 1982/83, 38-days of observations, is given on the same plot (dashed line) for comparison, as an extension of the data set. Winter solstice is marked with an arrow. Figure 4 compares the $O_2 (0-1)$ band 864.5 nm night airglow data from Spitsbergen to reflect differences in the dynamics of the two regions. The dashed line indicates the seasonal trend in the Antarctica data. Both the OI 5577Å line and the $O_2 (0-1)$ atm band intensities are given with similar relative scales, i.e., one unit corresponds to the same relative variation.
Figure 2 Variation of the O$_2$ (0-1) atm band intensities in the evening of 25 December. Intensities are obtained from 20 minutes of averaged individual scans. Observed values are marked.

Figure 3 The daily mean intensities of the O$_2$ (0-1) atm band for the 1983/84 season. The result from the 82/83 season is given on the same plot (dashed line) for comparison.
3 DISCUSSION

3.1 The winter solstice pattern and the differences between the two poles

The OI 5577Å line and the O₂ (0-1) atm band emissions originate at about the same altitude (Greer et al, 1981) and are known to covary (Dufay, 1959). As pointed out in an earlier paper by Myrabo et al (1986) the OI 5577Å line and the O₂ (0-1) atm band emission should show the same seasonal variation and reflect the atomic oxygen concentration in the 85-105 km region.

From Figure 3 it can be seen that both the 1982/83 and 83/84 winter season at 78°N show irregular peaks of enhanced O₂ (0-1) atm band intensity levels, lasting for a few days to a week or more. This
95

is very similar to the OI 5577Å night airglow observations from Thule (76°N) reported by Müller et al. (1977). It is also seen from Figure 3 that there is no minima around winter solstice in the O$_2$ (0-1) atm band emission at 78°N. When the O$_2$ (0-1) atm band data from the 1983/84 season are plotted together with the Antarctica data from Ismail and Cogger (1982) (Figure 4), the differences are easier to see, i.e., the O$_2$ (0-1) atm band from the northern hemisphere show much larger day-to-day variations than do the OI 5577Å emission from Antarctica.

Each of the filled triangles in Figure 4, i.e., the Antarctic data, corresponds to averaging of several limb scans during a single pass. From the temporal coverage in the Antarctic data as compared to the ground-based observations a relatively larger scatter should be expected in the Antarctic data than in the ground-based data. From Figure 4 the opposite is seen. If the day-to-day variation in both the OI 5577Å line and O$_2$ (0-1) atm band emissions were mainly connected to auroral activity, one would expect both the northern and southern polar regions to show a similar type of behaviour. Ismail and Cogger (1982) have compared the enhanced OI 5577Å line emission from Thule with 30 mbar temperatures over northern Canada and find a relatively good correlation if a 0 and 14 day delay is allowed for. Myrabo et al. (1984) have shown that the mesopause (i.e., ~90 km) temperatures are affected by disturbances in the circulation pattern at stratospheric levels (i.e., stratwarms). It is therefore reasonable to believe that the main part of the variations are connected to circulation changes in the stratosphere and lower mesosphere, affecting the lower thermospheric oxygen concentration and temperature through vertical mixing and horizontal transport. The differences between the two poles may then be explained as differences in mid-winter circulation disturbances, i.e., the northern winter stratosphere is known to have large disturbances while the southern winter stratosphere has only small scale disturbances (Schöberl, 1978).

Some of the enhancements may indirectly be connected to auroral activity producing odd oxygen followed by a downward transport of the oxygen from the auroral source. The period 8-12 January 1983 shows a 2-3 times enhancement of the O$_2$ (0-1) atm band which is closely connected to a period of high auroral average activity around 8-10
January. In order to enhance the O atom concentration by a ratio e, i.e. -2.7, during a 24 hour period at the 95 km level, assuming downward diffusion from 110 km, an eddy diffusion coefficient,

$1) \ k_1 = \Delta h^2/T_D = 2.6 \times 10^7 \ \text{cm}^2/\text{sec}$

is needed, Δh being the height difference and T_D the time over which the diffusion takes place. Thus assuming that the mechanism for excitation of the $O_2 \ b^1\Sigma$ state of O_2 is a two step process (Torr et al, 1985), i.e.,

$2) \ O + O + M \rightarrow O_2^{*\ast} + M$

followed by

$3) \ O_2^{*\ast} + O_2 \rightarrow O_2(b^1\Sigma) + O_2$

Following the photochemical scheme and the model atmosphere given in the paper by Torr et al (1985), an eddy diffusion coefficient of the order of $6 \times 10^7 \ \text{cm}^2/\text{sec}$ is needed to account for a 2.5 times enhancement of the intensity over 24 hours. The effect of eventually neglecting the quenching by oxygen and even assuming a direct Chapman mechanism for the excitation of the $O_2 \ b^1\Sigma$ state is negligible on the deduced oxygen profile below about 97-98 km. This is clearly seen from Mc Deans et al (1976) (Deans et al assumed a direct Chapman excitation mechanism and neglected the quenching by oxygen).

The value $6 \times 10^7 \ \text{cm}^2/\text{sec}$ is a rather large eddy diffusion coefficient compared to average values, mainly quoted around $10^8 \ \text{cm}^2/\text{sec}$ (Von Zahn and Herwig, 1977). It is not unreasonably large, however, since the eddy diffusion coefficient may be highly variable (Weinstock, 1985; Thrane et al, 1985). We may therefore conclude that parts of the enhancement could be associated with aurorally produced oxygen. However, a further separation of the sources have to await measurements of several emissions at different heights, including probably both OH, Na, $O_2 (0-1)$ and OI 5577Å emissions (Myrabo et al, 1987).
3.2 Absolute intensities of the \(\text{O}_2 (0-1) \) atm band emission and an estimate of the oxygen concentration and its variation

The mean intensity of the \(\text{O}_2 (0-1) \) atm band for the 1983/84 season was found to be 405R. Daily averages ranged from 180 to 780 R with lowest and highest hourly value of 160 and 860 R, respectively. This is slightly lower than the 570 R 1982/83 seasonal average, but still a relatively high \(\text{O}_2 (0-1) \) atm band night airglow intensity as compared to lower latitudes (Packer, 1961; Deans et al, 1976; Megill et al, 1970).

Assuming a two step process \((\rightarrow (2) \text{ and } (3))\) to be responsible for the emission and using the reaction rates and coefficients given by Torr et al, (1985) one might, to a first approximation, deduce an atmospheric oxygen concentration of \(1.5 \times 10^{11} \text{ cm}^{-3} \) at 95 km.

The highest and lowest measured intensity corresponds to an oxygen concentration of \(2 \times 10^{11} \text{ cm}^{-3} \) and \(1 \times 10^{10} \text{ cm}^{-3} \), respectively. The neutral temperatures are taken to be 220 K for these estimates (Myrabo, 1984). Thus, the oxygen concentration may vary by more than 1000%. Some of this variation might, however, be related to temperature variation as the excitation of \(\text{O}_2 (b^1 \Sigma^+ \text{ g}) \) might be temperature dependent (Wright, 1982). The relatively high oxygen concentration found in the northern polar region during winter solstice must be either transported to the 90-100 km region from outside or produced locally by auroral events and downward diffusion of oxygen.

Knowing the differences in the behaviour of the night airglow \(\text{O}_2 (0-1) \) atm band and the \(\text{O}1 \ 5577 \text{Å} \) line in the two polar caps, disturbances in the stratosphere and lower mesosphere causing circulation and eddy diffusion changes in the mesopause and lower thermosphere region could be responsible for the variation in the supply of atomic oxygen.

Whether this supply of oxygen comes from aurorally produced oxygen or from photodissociation of \(\text{O}_2 \) in the sunlit lower latitude atmosphere or both, is not yet known. However, experiments is prepared to clarify these questions.
Acknowledgement

Financial support for this research was provided by National Science Foundation through grant ATM-8313727 to the Geophysical Institute of the University of Alaska and by Royal Norwegian Council for Scientific and Industrial Research through a fellowship grant. The author also wants to thank Mr B Erickson, Mr D Osborne and Ms D L Wilkinson for programming and technical assistance.

References

END
DATE FILMED
10 - 88
DTIC