Hanex Simulations of Laser-Target Interactions:
I. Radiation Processes

JOHN L. GIULIANI, JR AND MARGARET MULBRANDON

Plasma Physics Division

ELLIS HYMAN

Science Applications International Corporation
McLean, VA 22101

June 8, 1988

This work was sponsored by DNA under "RB RC/Atmospheric Effects and Mitigation."
Work Unit Code and Title RB RC/00166, Plasma Structure Evolution.

Approved for public release; distribution unlimited.
Numerical simulations of the laser-target interaction and subsequent plasma blowoff expansion for the PHAROS III experiment are presented using the HANEX code. This report emphasize the properties of the radiation field and the photo-absorption physics in the background gas. The multi-frequency radiation transport technique employed in HANEX is fully described. Likewise, the phenomenological treatment in HANEX for the ionization, dissociation, and heating in the background gas resulting from radiation deposition is presented. The evolution of the background plasma due to radiation deposition is studied from the time of the peak of the laser pulse to 60 nsec later. Model spectra of the heated plasma blowoff predict strong emission lines from highly ionized nitrogen and aluminum in the cavity.
16. SUPPLEMENTARY NOTATION

This work was sponsored by DNA under "RB RC/Atmospheric Effects and Mitigation,"
Work Unit Code and Title: RB RC/00166, Plasma Structure Evolution.

*Science Applications International Corporation, McLean, VA 22101
CONTENTS

I. INTRODUCTION ... 1

II. RADIATION AND PHOTO-CHEMISTRY 4
 A. Emission, Absorption, and Transport 4
 B. Photo-Chemistry of the Background Gas 10

III. DISCUSSION OF RESULTS .. 11
 A. Radiation Deposition in the Background Gas 12
 B. Model Spectra of the Blowoff Plasma 14

IV. SUMMARY AND DISCUSSION ... 17

ACKNOWLEDGEMENT .. 18

REFERENCES .. 19

DISTRIBUTION LIST ... 29
HANEX SIMULATIONS OF LASER-TARGET INTERACTIONS:
I. RADIATION PROCESSES

I. INTRODUCTION

Over the past several years the Plasma Physics Division at the Naval Research Laboratory has run a laser-target experiment with the objectives of modeling physical processes occurring in a high altitude nuclear explosion (HANE)\(^1\). This latter program is under the auspices of the Division of Atmospheric Effects at the Defense Nuclear Agency. In this regard the experiment is intended to provide a physical understanding of nuclear disturbed environments in order to provide reliable predictions of the degradation of radar, communications and, potentially, advanced weapons systems.

The experiment, which has been recently upgraded and is referred to as PHAROS III, illuminates one side of a planar target with a beam from a neodymium laser. The target, usually comprised of aluminum, is a few microns thick and the laser energy is typically 100 Joules. The laser intensity at the target surface is about \(10^{13}\) Watts/cm\(^2\) and the laser wavelength is 1 micron. During the laser pulse of \(-5\) nanoseconds FWHM, the front side of the target absorbs the laser light predominantly by inverse bremsstrahlung and heats up to a temperature of \(-1\) keV. The resulting overpressure leads to a forward ablative blowoff with velocities of \(-10^7\) cm/sec toward the laser, and a slower backward acceleration of the rear side of the target. When a background gas, typically molecular nitrogen, is present in the surrounding chamber at pressures ranging from 0.5 to 5 Torr, the forward expanding debris forms a blast wave as it sweeps up the background. The blast wave reaches 1 cm at \(-100\) nanoseconds. The rearward moving debris also forms a shock wave in the nitrogen, but its precise character depends on the target thickness. This pressure regime is suitable for studying strong to moderate collisional coupling between the debris and background gas. At lower pressures, a kilogauss magnetic field can be produced around the target in order to study collisionless coupling mechanisms.

As part of the theoretical effort to understand the blast wave formation in the high pressure regime, a numerical simulation code was developed within the Plasma Physics Division\(^2\). This simulation code modeled the dynamics with a Lagrangian difference scheme in one spatial dimension. It began with a
laser pulse impinging on a cold, aluminum, planar target. The target disassembly occurred by heating due to inverse bremsstrahlung absorption of the laser beam. While the target remained in the near solid phase, the ideal equation of state was corrected to include the zero temperature isotherm of solid aluminum. The subsequent vaporization and hydrodynamic expansion of the debris and swept-up background gas was followed out to \(-1\) cm assuming perfect coupling, i.e., a contact discontinuity was maintained between the debris and background. The nearly radial expansion of the debris-air interface was accounted for by employing a unique oblate spheroidal geometry with the symmetry axis along the initial laser beam. The initial target position is in the central part of the geometry which is planar. Separate ion and electron temperatures were included as well as the thermal conduction from each species. Magnetic fields were not included for these high pressure models. In order to follow the atomic physics starting from the dense, solid phase to the low density gas phase, a time-dependent chemistry model was used developed including all the ion and neutral species of both aluminum and nitrogen. Saha ionization equilibrium conditions are maintained while the aluminum is near solid density. After vaporization, both the debris and background chemistry evolved in a non-equilibrium manner. A simple radiation transport scheme was developed to model the heating of the backside of the target due to x-rays from the critical surface at the front side.

Some of the conclusions of the numerical simulations were concerned with the nature of the cavity or bubble which forms behind the forward moving blast wave. It was found that this region is hotter (\(T_e \approx 60\text{eV}\)) and more rarefied (\(n_e \approx 2 \times 10^{17} \text{cm}^{-3}\)) than the surrounding blast wave (\(T_e \approx 20\text{eV}\) and \(n_e \approx 3 \times 10^{18} \text{cm}^{-3}\)). However, the cavity is highly overionized for its temperature, with the debris species predominantly \(\text{Al}^+9\), \(\text{Al}^+10\), and \(\text{Al}^+11\). The results for the blast wave region are in good agreement with the experimental results \(^3\), as is also the electron density in the cavity, at least for that part of the cavity near the blast wave \(^4\). The high charge state result in the cavity was unexpected, though no experimental determination one way or the other is presently known. There are several simplifications in the above described numerical code which might weaken the conclusions. First, the assumption of a contact discontinuity between the debris and air is not strictly valid, even at 5 Torr pressure. The aluminum
and nitrogen will mix to some degree and subsequent charge exchange between the two elements could lower the charge state of aluminum in the mixing region. Second, the simplified radiation treatment used only 12 frequency bins, did not specifically account for resonant line emission, and the chemistry model did not include self-absorption within each grid cell. The neglect of these radiative effects could alter the cavity temperature.

In order to improve the previous calculations and solidify the conclusions we have upgraded the simulation code in two major ways. The new code is referred to as the HANEX code. For the first upgrade, the cross-streaming of the aluminum debris through the nitrogen background is followed approximately. Since the basic simulation code is hydrodynamic, it models the ion and electron gases as a Maxwellian distribution with small deviations due to temperature gradients. By allowing for additional deviations to the distribution function due to composition and partial pressure gradients, relative drift velocities between the aluminum ions, nitrogen ions, and electrons arise. The model is consistent as long as the relative drift velocities are small compared to the sound speed. The resulting mixing by diffusion of the highly charged aluminum and the low charged nitrogen in the cavity region leads to charge exchange between the two species. The theory behind our drift calculation and charge exchange cross-sections will be reported on in a companion report.

The second major upgrade to the original code deals with radiation transport. We have increased the frequency resolution of the radiation spectrum from 12 to 166 frequency bins. This permits resolving the edges of the ground states of all aluminum and nitrogen species and including 41 resonance transitions. We have also improved the calculation of the emission and absorption processes. The theory behind our second upgrade, along with a discussion of the background air chemistry, will be discussed in §II of this report. The processes of radiation absorption, subsequent ionization, and heating in the background plasma are addressed in §III. We present details of these processes at a position 2 cm away from the target and over the time between the peak of the laser pulse to just before the shock front sweeps over this position. Also model spectra from the simulation runs will be presented in §III. These spectra are calculated as if a spectroscopic camera viewed the experiment perpendicular to the laser axis. The highly ionized
emission lines from resonant transitions which appear in the model spectra are indicative of the highly ionized cavity. Direct comparison with observed spectra in the UV to X-ray energy bandpass should provide one direct test of the validity of our simulation models.

II. RADIATION AND PHOTO-CHEMISTRY

A. Emission, Absorption, and Transport.

The treatment of radiation in the HANEX code follows the same basic transport scheme used in the earlier simulation code; the radiation intensity is calculated along a single ray according to the fundamental radiative transfer equation,

\[
\frac{dI_v}{ds} = -\kappa_v I_v + j_v.
\] (1)

Here \(I_v \) is the radiation intensity in ergs/cm\(^2\)·sec·sd·Hz, \(\kappa_v \) is the absorption coefficient in cm\(^{-1}\), and \(j_v \) is the emission coefficient in ergs/cm\(^3\)·sec·sd·Hz. Each of these quantities are carried at position \(s \) and frequency \(v \), where \(s \) is the path length along the single ray parallel to the laser axis and passing through the target center.

In the earlier code the intensity, absorption, and emission coefficients were averaged over 12 frequency bins. In the HANEX code, however, the resolution of the radiation spectrum is vastly improved by employing 166 frequencies between 1 eV and 10 keV. The radiation transport is then calculated frequency-by-frequency and the absorbed radiation energy is averaged into frequency bins. The frequencies are chosen to resolve a number of spectral features composed of edges and lines. Each ground state of aluminum and nitrogen leads to an absorption edge for the outermost valence electron subshell, giving 20 edges. Each edge is resolved by two frequencies, one slightly above and the other slightly below the edge.
Furthermore, 41 strong resonance lines between the ground and excited states are included, with at least one from each ionic species. The specific lines are listed by ion species and energy in Table I. (The letters in parentheses refer to Fig. 7 discussed in section III.b.) Each resonance line is resolved by three frequencies, one at line center and the other two in the line wings. The line resolution is too crude for determining line profiles for it treats each line as a triangular distribution, but the resolution is sufficient to account for the energy exchange between the dynamics and radiation.

The plasma emission processes include free-free bremsstrahlung, free-bound radiative recombination, and bound-bound emission lines. The absorption processes include free-free, bound-free, bound-bound, and inner shell. For the free-free processes the absorption coefficient is

$$\kappa_{\nu, ff} = \sigma_{\nu, ff} n_e = \frac{4}{3} \left(\frac{2\pi}{3}\right)^{1/2} \frac{e^6}{m_e^{3/2} c \left(kT_e\right)^{1/2}} g_{ff} n_e n_i <Z^2> \left(\frac{1 - e^{-h\nu/kT_e}}{h\nu^3}\right),$$

where e is the elementary charge, m_e is the electron mass, c is the speed of light, k is the Boltzmann constant, T_e is the electron temperature, n_e is the electron density, n_i is the ion density, and $<Z^2>$ is the averaged squared-charge, i.e.,

$$<Z^2> = \sum_j \frac{n_j Z_j}{n_i}$$

and n_j is the number density of ions in ionization stage j with charge Z_j. From Kirchoff's law the corresponding emission coefficient is

$$j_{\nu, ef} = \frac{8}{3} \left(\frac{2\pi}{3}\right)^{1/2} \frac{e^6}{m_e^{3/2} c \left(kT_e\right)^{1/2}} g_{ef} n_e n_i <Z^2> e^{-h\nu/kT_e}.$$

The free-free Gaunt factor g_{ff} was fixed at unity throughout the range $1 \text{ eV} < \nu < 10 \text{ keV}$.

For the bound-free processes, let $\sigma_{\nu, bf}(j,k)$ be the cross-section for photo-absorption from ionization stage j and excited level k to the next higher ionization stage $j+1$. Using the Milne relation to connect the cross-section for photo-absorption to the cross-section for induced recombination
from ion stage \(j+1 \) to excited level \(k \) of ion \(j \), the photo-absorption cross-section, corrected for induced recombination, is found to be

\[
\sigma'_{\nu,bf}(j,k) = \sigma_{\nu,bf}(j,k) \left(1 - \Theta e^{-\hbar \nu / kT_e}\right),
\]

where

\[
\Theta = \frac{n_{j+1}e U_j}{n_{j,k} U_{j+1} g_{j,k} \frac{m_e}{2\pi \hbar^2 kT_e} \left(\frac{m_e}{m}\right)^{3/2} \frac{\hbar}{m_e} I_{j,k} / kT_e}.
\]

Here \(I_{j,k} \) is the ionization energy of excited level \(k \) of ionic state \(j \), the statistical weight of the same level is \(g_{j,k} \), and \(U_j \) is the partition function for the ionic state \(j \). The corresponding emission coefficient due to recombination to level \(k \) of ion state \(j \) is given by

\[
j_{\nu,bf}(j,k) = n_{j,k} \sigma_{\nu,j,k} \frac{2\hbar \nu^3}{c} \Theta e^{-\hbar \nu / kT_e}.
\]

Several approximations have been employed in these equations in the HANEX code. First, only ground states are considered in the bound-free processes. Second, every photo-absorption cross-section, \(\sigma_{\nu,j} \), is assumed to fall off as \(1/\nu^3 \) above the threshold frequency. Finally, the combination of the partition functions and statistical weights in \(\Theta \) is taken as unity, as it would be in local thermodynamic equilibrium (LTE). The cross-section, \(\sigma_{\nu,bf,j} \), at threshold is the maximum of two values: (i) one based on the radiative recombination coefficient from the Milne relation (see Appendix 1 of Ref. 5), and (ii) the other based on the inner shell opacity data discussed in the next paragraph. The first value insures detailed balance in regions of high density.

In addition to the valence shell absorption process discussed above we included the inner shell opacity. This process is important in the backside of the target and in the ambient background gas where the flux of high energy photons formed at the frontside of the laser-heated target is absorbed. The
dependence of the absorption cross-section on energy is taken from Ref. 6 for the neutral species. For the ionized atoms the same energy dependence is used but the threshold frequency for each of the shells shifts to higher energies. These shifts are given by Roothaan-Hartree-Fock calculations of the atomic level binding energies in Ref. 7.

For bound-bound photo-absorption from the ground level of ion stage \(j \) to excited state \(k \), the cross-section corrected for stimulated emission, is

\[
\sigma_{\nu, bb}(j \rightarrow k) = \frac{\alpha e^2}{m_c} f_{jk} \phi_{\nu} \left(1 - \frac{n_{j,k} g_{j,k}}{n_{j} g_j} \right),
\]

where \(f_{jk} \) is the oscillator strength for the transition and \(\phi_{\nu} \) is the line profile function. Under conditions of LTE for the excited states the term in parentheses reduces to \(1 - \exp(-h \nu_{jk}/kT) \). The corresponding line emission coefficient is

\[
j_{\nu, bb}(j \rightarrow k) = n_{j,k} a_{jk} \frac{h \nu_{jk}}{4\pi} \phi_{\nu},
\]

with the relation between the Einstein coefficients being

\[
\frac{\alpha e^2}{m_c} f_{jk} = \frac{B_{jk} h \nu_{jk}}{c}; \quad g_{j} B_{jk} = g_{k} B_{kj}; \quad B_{kj} = \frac{c^3}{8\pi h \nu_{jk}^3} A_{kj}.
\]

Resolution of the line profile would require many frequencies over the Doppler line profile \(\phi_{\nu, D} \). We have simplified the analysis by adopting a triangular line profile which vanishes at \(\nu_{jk} - \Delta \nu \) and \(\nu_{jk} + \Delta \nu \), where \(\Delta \nu \) is the full width at half maximum of a Doppler profile. At line center the profile function is then \(\phi_{\nu}(jk) = 1/\Delta \nu \), which specifies the cross-section for the line absorption in eqn. (7).

The cross talk between our time-dependent chemistry and radiation transport proceeds in the following manner. After a hydro timestep \(\delta t \) the chemistry integrator is called. The chemistry package advances the species' abundances over \(\delta t \) and simultaneously calculates for each grid cell, \(h \), the
frequency and time integrated emission from bremsstrahlung, recombination, and line radiation. To complete the solution for the timestep δt in our time-splitting scheme, the radiation package is called last. It begins by redistributing the integrated emission (from the chemistry package) into a frequency grid for each cell according to the frequency dependence of the different j_v's in eqns. (3), (6), and (8). Likewise the absorption coefficients are evaluated from eqns. (2), (4), and (7) at each frequency, and the optical depth through each cell h, of width Δh, is formed as $\tau_{v,h+1/2} = n_s \Delta h$. The transport equation (1) is now solved for the radiation energy E_v at the cell interfaces, once in the forward direction (+)

$$E_{v,+} = E_{v,-} e^{-\tau_{v,h+1/2}} + \frac{1}{2} j_{v,h+1/2} 4\pi V_{h+1/2} \delta t \delta v \frac{1 - e^{-\tau_{v,h+1/2}}}{\tau_{v,h+1/2}}$$

and once in the rearward direction (-),

$$E_{v,-} = E_{v,h+1} e^{-\tau_{v,h+1/2}} + \frac{1}{2} j_{v,h+1/2} 4\pi V_{h+1/2} \delta t \delta v \frac{1 - e^{-\tau_{v,h+1/2}}}{\tau_{v,h+1/2}}$$

where $j_{v,h+1/2}$ is the total radiation emitted at frequency v from all processes, δt is the time step, δv is the frequency interval around the frequency v, and $V_{h+1/2}$ is the volume of cell $h+1/2$. The factor 1/2 in front of $j_{v,h+1/2}$ means that one half of the photons move forward and the other half backward. The boundary conditions at the outermost cell interfaces are that no radiation energy enters the system. The radiation energy absorbed in cell h at frequency v is given by

$$H_{v,h+1/2} = (E_{v,+} + E_{v,-}) e^{-\tau_{v,h+1/2}}$$

$$+ j_{v,h+1/2} 4\pi V_{h+1/2} \delta t \delta v \left[1 - \frac{1 - e^{-\tau_{v,h+1/2}}}{\tau_{v,h+1/2}} \right]$$
The last term in this equation is the amount of energy that is both emitted and then re-absorbed within cell \(h \). The chemistry package also determines this quantity, but under slightly different conditions. If one subtracts from \(H_{\nu, h+1/2} \) the amount of radiated energy, \(\Delta H \), which the chemistry routine already re-absorbed within cell \(h \), the remainder gives the heating of the electrons in cell \(h \):

\[
H'_{\nu, h+1/2} = H_{\nu, h+1/2} - \Delta H_{\nu, h+1/2}.
\]

The amount of radiation lost from the system is given by the sum of \(E^+ \) at the forward cell interface and \(E^- \) at the rearward cell interface. If molecular nitrogen is present in a cell, \(H_{\nu, h+1/2} \) is modified as discussed below.

Before returning to the next hydro and chemistry step the radiation routine calculates an escape probability for each frequency from

\[
P_{\nu, \text{esc}} = 1 - e^{-\tau_{\nu, h+1/2}}.
\]

The chemistry routine then uses this probability in the next timestep to determine the fraction of emitted radiation by a given process which is re-absorbed within the same cell (\(= \Delta H \)). This feature takes account of the re-absorption of radiated energy in optically thick cells and therefore effectively decreases the radiative emission leaving a cell.

The scheme we have just described has been tested for consistency by analyzing a high density 10eV material. The resulting spectrum reproduced the blackbody limit to within a percent. Furthermore, the simulation runs conserved total radiative, chemical, internal and kinetic energy to within 3%.

The above scheme does have the limitation that it cannot handle photo-pumping and photo-ionization from one cell to another. An energy-consistent simulation of this process in a time-dependent, non-equilibrium chemistry, which is coupled to the radiation transport, would require major code development and testing. At present those photons which would lead to pumping or ionization are treated the same as the remaining photons, i.e., they are deposited as electron heating. This approximation of converting all the absorbed non-local photons to pure electron heating is reasonable in regions near local thermodynamic equilibrium (LTE). However, in the cold, neutral background the photo-ionization due to the non-local photons
predominantly determines the state of the gas. The special treatment of radiation deposition for this region is discussed next.

B. Photo-Chemistry of the Background Gas

The phenomenology in the region ahead of the shock is complex and far from LTE. In this section we describe the essential approximations adopted to model the chemistry for this region in the HANEX code. During the laser pulse the ionization and heating of the background gas is driven by the absorption of the UV and X-rays from the laser heated target. In this deposition phase the electron temperature in the background gas is not well defined, i.e., the electron distribution is not Maxwellian. An absorbed high energy photon will ionize or dissociatively ionize background N_2 molecules and create energetic electrons. These electrons will lose most of their energy by further ionization and/or electronic excitation of molecules and atoms. Thermal equilibration of the fresh, high energy electrons with the older, lower energy electron population takes place primarily through collisional de-excitation of these excited states. Radiation losses are negligible. Further, some portion of the electron energy will excite vibrational levels of the N_2 molecules. But the relaxation time for vibrational energy is long, about 10^{-6} sec for a 5 Torr background pressure, so vibrational temperature is not well defined either. The neutrals and ions will be heated through collisional quenching of the vibrationally excited states. Following the time dependent development of these processes in detail is beyond the scope of this work. In order to approximate the state of the background we have developed a simplified model to account for these ionization, dissociation and heating processes.

The absorbed photon energy is apportioned according to the following prescription. First, the cross section for N_2 is assumed to be twice that of N. Then, for every 35 eV of the absorbed photon energy one ion is created, either N^+ or N_2^+, depending on the relative abundance of N and N_2. In addition, in the case of absorption by N_2 molecules, for every 55 eV of absorbed photon energy one N_2 is dissociated. The remaining energy after ionization or dissociation of N_2 is divided evenly between the heavy
particles and the electrons. For photo-ionization by N all the remaining energy is given to the electrons. Apportioning some of the energy to the heavy particles compensates approximately for the energy fed in from vibrational states, which is not tracked in detail.

Time dependent chemistry for atomic nitrogen of all charge states has been described in a previous report\(^2\). In order to follow the behavior of the background gas, \(N_2\) chemistry is also required. The following two-body reactions and rate coefficients have been added to the chemistry model:

\[
\begin{align*}
N_2 + e &\rightarrow N_2^+ + 2e \quad \text{at} \quad 1.3 \times 10^{-8} \ \frac{4T_e}{e} e^{-(15.58/T_e)} \ \text{cm}^3/\text{sec}, \\
N_2 + e &\rightarrow N + N^+ + 2e \quad \text{at} \quad 4.0 \times 10^{-9} \ \frac{4T_e}{e} e^{-(25.31/T_e)} \ \text{cm}^3/\text{sec}, \\
N_2 + e &\rightarrow N + N + e \quad \text{at} \quad 1.5 \times 10^{-8} \ \frac{4T_e}{e} e^{-(9.76/T_e)} \ \text{cm}^3/\text{sec}, \\
N_2^+ + e &\rightarrow N + N \quad \text{at} \quad 4.3 \times 10^{-8}/T_e^{.39} \ \text{cm}^3/\text{sec},
\end{align*}
\]

where \(T_e\) is the electron temperature in eV for an equivalent Maxwellian distribution. In the last reaction the products are really N and \(N(2^D)\). However, the \(N(2^D)\) is assumed to be immediately deexcited by electron collisions with the 2.38 eV/reaction distributed to the electron gas.

Although this prescription may seem in some degree arbitrary, it can be justified by the results of a much more detailed calculation performed by two of the authors using a similar spectrum for the deposited radiation\(^8\). The results of this simple model for fractional ionization and dissociation, as well as the temperatures, are in qualitative agreement with the detailed code.

III. DISCUSSION OF RESULTS

We begin by noting that the total radiation loss from the laser-target interaction is not large. Figure 1a displays the temporal energy budget for our standard run, \(\text{vis.}\), a 100 J laser energy shot on a 5.6 um thick aluminum target with 1.5 Torr background pressure of \(N_2\). Of the total laser energy, half is assumed to be focused and absorbed into a spot o. 125 um radius on the target. For a laser pulse of 10 nsec this results in a peak intensity of
-1.6x10^{13} \text{ Watts/cm}^2. \text{ (Note that the 125 \mu m is the radius of the neck in the oblate spheroidal geometry of the HANEX code pictured in Fig.1 of Reference 2.) Figure 1a in the present report shows that the time-integrated energy lost through radiation is -20\% of the absorbed laser energy. However, radiation does play a significant role in transferring energy from hotter regions to colder ones. Initially the laser radiation is absorbed by inverse bremsstrahlung in a thin surface layer of the target. Secondary radiation from this hot, dense region competes with electron thermal conduction and the impulse shock wave in transferring energy to the rear side of the target. Forward propagating radiation from this same hot region is the main source of energy deposition in the background gas during the laser pulse. At later times, radiation from the frontside blast wave becomes important both for determining the condition of the background and the energy loss from the system. Figure 1b displays the positions of the frontside, as well as the rear side, shockfronts as a function of time. In the next subsection we will focus our attention on the properties of the background gas and blast wave. In addition to energy transfer, radiation losses can be used as a diagnostic tool. In the following subsection we will discuss how UV and X-ray spectra of the blowoff plasma may be used to discern the charge species in the cavity region within the blast wave.

A. Radiation Deposition in the Background Gas.

The deposition of energy in the gas at early times depends on the spectrum of the radiation from the target. This, however, depends on the plasma conditions in the target. In Fig. 2 are plots of the electron and ion density, velocity, average ion charge, and electron and ion temperatures vs. radius at a time near the peak of the laser pulse (5.48 msec after the pulse begins). The left boundary in the plots coincides with the rear edge of the foil and the extent on the right side includes only part of the blowoff region. Three distinct regions can be enumerated in these plots. A cold dense backside with some rearward expansion near the foil edge, a low density, hot blowoff, and a transition region with steep gradients in temperature, density, and charge state. The blowoff region is composed of high charge states of Al and will emit radiation mostly from K-shell lines
and recombination. Because the density is relatively low, especially toward the front, most of the generated radiation escapes in the forward direction. From the backside through the transition layer the Al charge states increase, from +3 to +10. The radiation produced in these regions will therefore be from L-shell lines, recombination and bremsstrahlung. Because of the high densities in these two regions, the line radiation is very optically thick and almost none escapes. Even the recombination edges have a optical depth greater than one, so much of the spectral structure will be absorbed. The radiation which does emerge resembles a blackbody at a temperature near that of the front of the high density region. This radiation will pass through the blowoff region unattenuated because it lies below the K-absorption edge. Thus the radiation from the target at the peak of the laser pulse looks like a blackbody near 40 eV plus a high energy component of Al K-shell edges and lines.

A plot of the radiation intensity at a position 2 cm from the target along the laser axis, for the case described above, is presented in Fig. 3a. Superimposed on the target spectrum, one can clearly see the absorption edge due to the intervening N and N₂ between the target and the above position. The energy absorbed by the background at this 2 cm location as a function of the photon energy is shown in Fig. 3b. The spectral regions that are most important for absorption at this time of the peak laser pulse lie between 40 and 200 eV due to the L-edge of nitrogen. Another absorption peak at 450 eV is due to the nitrogen K-edge. The radiation from 15 to 40 eV, which actually has the maximum absorption crosssection, has already been absorbed by atoms nearer the target. The electrons produced by photo-ionization at 2 cm will therefore be quite energetic.

After the peak of the laser pulse the plasma rapidly expands and the emitted radiation per unit volume drops. However, the amount of radiation that reaches 2 cm declines more slowly. Although the emitting target material is optically thick during the laser pulse, it has a small surface area. After the material expands it becomes optically thinner and the volume emissivity specifies the radiation. The large volume of the expanded plasma maintains the amount of radiation energy incident at 2 cm. As the blowoff region expands into the nitrogen background, line radiation from the blast wave becomes an important source of energy deposition in the more distant
background. In Figs. 4a and 4b the incident and absorbed spectrum, respectively, are shown at a time 60 nsec after the peak of the laser pulse. At this time both spectra are dominated by line radiation from the blast wave as is evidenced by the series of sharp lines near 30 - 60 eV. The fraction of the total energy incident at 2 cm in each of four spectral intervals is plotted as a function of time in Fig. 5a. The shift from energetic photons at early times to less energetic ones at late time can be seen in this figure. In Fig. 5b the fraction of the total energy absorbed at 2 cm is shown for the same intervals. The most energetic interval contains photons above 667 eV. This radiation is from the K-shell of aluminum and originates in the blowoff region. The radiation originating mostly from the backside region is divided into two spectral intervals, 153 eV to 398 eV, and 398 eV to 667 eV. The lowest interval, photon energy less than 153 eV, is predominately from the cold target regions at early times and from line radiation from the blast wave at later times.

The effect of the deposition of the radiation on the background gas depends on the energy absorbed per atom. In Fig. 6a the time integrated and the rate of energy absorbed per atom at 2 cm is shown. The nearly constant rate of energy absorption after 20 nsec is due to the fact that the decrease in the radiative output from the shock front per unit area is compensated by a decrease in the distance to the shock as it moves outward and closer to 2 cm. The densities of N_2^-, N, N_2^+, N^+ and the electrons n_e are presented vs. time in Fig. 6b. We note that the fraction of ionization is only a few percent during the laser pulse but rises to nearly 15% just before the time that the shock overruns the position at 2 cm.

B. Model Spectra of the Blowoff Plasma.

Inclusion of the physics of radiation emission and absorption in a simulation code is important for modeling the dynamical evolution of the laser-target interaction and blowoff. In addition, a numerical method for radiation transport can create model spectra which can be compared with experiment. It often happens that spectroscopic observations provide the most detailed data of a plasma experiment.
To produce model spectra we have employed the previously described radiation transport scheme with several modifications in a postprocessor. The first modification is a change in the transport direction. In the hydrochemistry-radiation code the radiation was transported along a ray parallel to the laser beam axis. This approach successfully accounts for the transfer of radiation energy from an inner plasma region to an outer one. In the laser experiment all spectroscopic observations are performed with the camera line-of-sight perpendicular to the laser axis. To compare with these observations the postprocessor solved the radiation transport equation (1) along a set of rays perpendicular to the laser axis. Each ray, along which the transport equation is to be solved, begins at the far side of the plasma emitting region. After passing across the laser axis and through the near side of the emitting plasma, the ray encounters an extended region of neutral N_2. The addition of this absorbing region surrounding the blowoff plasma is the second modification. Transport through it models the fact that between a spectroscopic camera and the experiment lies an extended region of nitrogen at the background pressure. Finally, we assume in the postprocessor that the plasma blowoff is spherical about the laser target. This modification from the geometry of the hydrodynamic code, which is oblate spheroidal, permits a great simplification in computing the intensity along line-of-sight rays which pass above or below the laser axis. Viewing the blowoff plasma perpendicular to the laser axis, the emergent intensity along all rays which pass at a distance r from the target is equal to the solution of the transport equation for the ray which crosses the laser axis at position r. Geometrical considerations then allow the calculation of an approximate model spectra at any spatial position.

As an example, we study the spectra arising from a laser produced plasma for a 5 Torr background pressure and 20 J laser energy on a 4.6 micron thick aluminum target of radius 125 microns. Artificial masks were used so that only the forward moving blowoff plasma would contribute to the model spectra. Specifically, if the target and blowoff plasma are enclosed by a large circle, the back side of the circle away from the laser beam was blocked off. Further, a disc of radius 0.25 cm was centered on the initial position of the target to block out emission from the dense target material. To maximize the emission intensity, the model spectra was time integrated over the first 100
nsec of the run. Figure 7a shows the resulting model spectrum. The low energy continuum is due to bremsstrahlung and the high energy jagged continuum results from recombination edges of nitrogen and aluminum. The large gap in the continuum between 15 eV and -50 eV is due to the inner shell absorption by the 10 cm long path of extended nitrogen. The strong emission lines are labeled by letters according to Table I. The model spectrum includes emission from the blast wave formed in the background nitrogen gas as well as emission from the cavity within the blast wave. This cavity is composed of aluminum and nitrogen. The latter has been mixed in by diffusio. The high energy lines, particularly those above -100 eV, are emitted from the cavity. The parent ionic species of these lines from both aluminum and nitrogen reveal a highly charged region. The lower energy lines arise from the blast front. In the simulation for this run the electron temperature is -20 eV in the blast wave, but rises to -70 eV in the cavity. Hence, as has been noted in the Introduction, the cavity is overionized for its temperature. This situation is a remnant of the early-time freezing out of the charge state; the initially hot target material cools by expansion at a faster rate than the recombination rate. Early in time the blast wave was also much hotter and the swept-up nitrogen was thereby ionized up. Due to the difficulties in directly measuring the density and temperature of the frontside cavity region, we suggest that experimental spectra in the UV and X-ray domain should be quite revealing in light of the predicted spectra of Fig. 7a. For comparison, a similar model spectra of the rear side is presented in Fig. 7b. In this case the masks were turned over to block out the frontside and target emission. At late times the cavity stretches from the frontside blastwave, through the initial target position, and backwards to the rearward moving shock. Hence some of the moderately high ionization stages appear both in the front and backside spectra; for instance, lines i,j,m,n,q,r,t, and u. Other lines from moderately high ionization stages of aluminum such as h,k,o, and p, appear on the backside but not the frontside spectrum. The striking difference between the backside and frontside spectra is the strong lines from low ionization stages of aluminum (lines a and b) on the rearside spectrum only, in contrast with the cluster of lines (v-z) from Al11 and Al12 on the frontside spectrum only. These features from the spectra reflect the details of the simulation run:
the frontside cavity is more highly ionized than the rear-side one, while the rearward moving blast wave is denser and cooler than its frontside counterpart.

IV. SUMMARY AND DISCUSSION

In this report we have presented a review of the multi-frequency radiation transport scheme used in the NRL HANEX simulation code. Likewise we have discussed the model incorporated in HANEX for the absorption, ionization, excitation, and heating of the background nitrogen resulting from the deposition of the high energy target and blast wave radiation. Results were presented for the evolution of the background nitrogen from the time of the peak in the laser pulse to 60 nsec later. Model spectra of the cavity and blast wave region indicate strong lines from highly ionized aluminum and nitrogen. This result suggests that UV and X-ray spectroscopy of the plasma blowoff could be used to investigate the nature of the cavity and verify our long-standing prediction of a hot (50-70 eV), overionized (Z-5-10) cavity within the blast wave.

The transport scheme and deposition model described in section II employed several simplifying assumptions. First, the boundaries of the oblate spheroidal geometry, so useful for the dynamic expansion, impose the artificial condition that the radiation is constrained to diverge through a cone of 45 degrees half-angle. At late times when the radiation is predominately from the blast wave this condition will produce a small error since any deposition occurs nearby. But at early times this condition will over estimate the flux at a distant background position. Fortunately, the time integrated radiation escaping the target at early times is low compared to the final value of about 15 to 20%. Second, the treatment of line transport is very approximate and leads to an overestimate of the line absorption when the lines are moderately thick as in the dense target regions; no allowance is made for line radiation to escape through broad wings of the line profile. Third, the assumption that all the energy absorbed in a cell is put into heating of the electrons will not cause errors if the cell is near equilibrium, as in the dense target region and the blast
wave. However, when the target material falls to low density (the cavity) the plasma is far from equilibrium. This material does not absorb much energy because the absorption cross-section is near zero for the low energy photons that dominate our spectrum. In this region a more careful treatment of absorbed radiation would somewhat decrease the electron temperature. The problem of depositing radiation in the cold neutral background gas has only been approximated. The energy absorbed in the nitrogen K-shell will lead to further, though lower energy, radiation and therefore not be deposited locally. This process could effect the temperatures of neutrals and ions, as well as the electrons. It is believed that the prescription used for the deposition process should provide values for densities to within a factor of two.

ACKNOWLEDGEMENT

This research was supported in full by the Defense Nuclear Agency.
REFERENCES

<table>
<thead>
<tr>
<th>Element</th>
<th>Transition Energy (in eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al I</td>
<td>4.01 5.23 5.78</td>
</tr>
<tr>
<td>Al II</td>
<td>7.42(b)</td>
</tr>
<tr>
<td>Al III</td>
<td>6.67(a) 17.81</td>
</tr>
<tr>
<td>Al IV</td>
<td>7.44(o) 94.95(p)</td>
</tr>
<tr>
<td>Al V</td>
<td>44.34(k)</td>
</tr>
<tr>
<td>Al VI</td>
<td>40.03(h)</td>
</tr>
<tr>
<td>Al VII</td>
<td>34.92</td>
</tr>
<tr>
<td>Al VIII</td>
<td>37.95 49.74(l)</td>
</tr>
<tr>
<td>Al IX</td>
<td>43.73(j) 31.8 41.0(i)</td>
</tr>
<tr>
<td>Al X</td>
<td>37.24(g) 238.5(q)</td>
</tr>
<tr>
<td>Al XI</td>
<td>22.30 256.6(r)</td>
</tr>
<tr>
<td>Al XII</td>
<td>1598.0(v) 1869.0(x) 1964.0(y)</td>
</tr>
<tr>
<td>Al XIII</td>
<td>1724.0(w) 2042.0(z)</td>
</tr>
<tr>
<td>N I</td>
<td>10.33</td>
</tr>
<tr>
<td>N II</td>
<td>11.43(d) 13.53(f) 19.22 23.22</td>
</tr>
<tr>
<td>N III</td>
<td>12.51(e) 16.23 18.08 33.12</td>
</tr>
<tr>
<td>N IV</td>
<td>16.20 50.15(m)</td>
</tr>
<tr>
<td>N V</td>
<td>10.00(c) 59.24(n)</td>
</tr>
<tr>
<td>N VI</td>
<td>430.67(s) 497.94(t)</td>
</tr>
<tr>
<td>N VII</td>
<td>500.0(u)</td>
</tr>
</tbody>
</table>
Fig. 1(a) - Energy budget in time for the standard run described in the text. CHEM is the instantaneous energy locked up in ionization potential. RAD is the time-integrated amount of energy lost from the system through radiation. INT is the instantaneous thermal energy of random motion, and KE is the instantaneous kinetic energy of directed motion.

1(b) - The positions of the forward moving (FRONT) and rearward moving (BACK) shock fronts as a function of time.
Fig. 2. Structure of the target and blowoff region at the peak of the laser pulse for the standard run. 2(a) - The ion (solid), electron (dotted), and neutral (dashed) number densities. 2(b) - The mean velocity. The drift velocities WAL and WN are negligible over this region. 2(c) - The mean charge state. 2(d) - The ion (solid) and electron (dotted) temperatures.
Fig. 3(a)-Spectrum of the incident radiation intensity from the heated target at the peak of the laser pulse as a function of photon energy for a position 2 cm from the target and along the laser axis. 3(b)-Spectral distribution of the absorbed energy for the same conditions. The initial conditions are again for the standard run.
Fig. 4(a) and 4(b) - Same as Figures 3(a) and 3(b) except at 60 nanoseconds after the peak of the laser pulse.
Fig. 5(a)-The fraction of incident energy in four bands seen at 2 cm from the target as a function of time; solid for $E < 153$ eV, dash-dash-dot for $153 < E < 398$ eV, short dash for $398 < E < 667$ eV, long dash for $E > 667$ eV. 5(b)-Same as Figure 5a except for the fraction of absorbed energy. The initial conditions are again for the standard run described in the text.
Fig. 6(a)—The time integrated and differential energy absorbed per atom in the background gas at 2 cm from the target as a function of time. 6(b)—The density of different species in the background gas at 2 cm as a function of time. The initial conditions are again for the standard run described in the text.
Fig. 7(a)-A synthetic spectrum of the forward moving plasma blowoff and blast wave integrated in time (up to 100 nsec) and in space. The rearside and target region where blocked off. Prominent lines are marked by letters corresponding to those transitions listed in Table I. The initial conditions are for a 20 J laser shot with a 5 Torr background pressure.
Fig. 7(b)-A synthetic spectrum for the rearward moving plasma. In this case the frontside and target have been blocked off.
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, DC 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, DC 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN ODST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
01CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT PROGRAM MANAGEMENT OFFICE
WASHINGTON, DC 20330
01CY ATTN J-3 WWMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68112
01CY ATTN JSTPS/JLKS
01CY ATTN JPST C. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO, F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS