B-Spline-Bezier Representation of Tau-Splines

Dieter Lasser

July 1988

Approved for public release; distribution unlimited

Prepared for:

Naval Postgraduate School
Monterey, CA 93943
This report was prepared in conjunction with research conducted for the National Research Council and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

DIETER LASSER
Department of Mathematics

Reviewed by:

HAROLD M. FREDRICKSEN
Chairman
Department of Mathematics

Released by:

KNEALE T. MARSHALL
Dean of Information and Policy Sciences
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS-53-88-006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-Spline-Bezier Represenation of Tau-Splines</td>
<td>Technical Report 588-7.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(s)</th>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieter Lasser</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Postgraduate School - Code 53</td>
<td>Direct Funding</td>
</tr>
<tr>
<td>Monterey, CA 93943</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>12. REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Postgraduate School - Code 53</td>
<td>July 1988</td>
</tr>
<tr>
<td>Monterey, CA 93943</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. NUMBER OF PAGES</th>
<th>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</th>
<th>15. SECURITY CLASS. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>National Research Council</td>
<td>unclassified</td>
</tr>
<tr>
<td></td>
<td>2101 Constitution Avenue, N.W.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20418</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. DISTRIBUTION STATEMENT (of this Report)</th>
<th>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD, CAGD, Bezier Curves, B-Spline Curves, Nu-Splines, Tau-Splines, Geometric Continuity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract: We present a B-spline-Bezier representation of τ splines, curvatuere and torsion continuous quintics which have been introduced in CAGD by Hagen in 1985. Explicit formulas are given for the conversion of the B-spline-Bezier representation to the τ spline representation and vice versa, and conditions and certain ranges of tension values are derived which insure the positivity of the design parameters.</td>
</tr>
</tbody>
</table>
Abstract: We present a B-spline-Bezier representation of τ splines, curvature and torsion continuous quintics which have been introduced in CAGD by Hagen in 1985. Explicit formulas are given for the conversion of the B-spline-Bezier representation to the τ spline representation and vice versa, and conditions and certain ranges of tension values are derived which insure the positivity of the design parameters.

0. Introduction

In 1974, Nielson [Nielson 74] gave a piecewise polynomial alternative to splines under tension [Schweikert 66], [Cline 74], the so-called v spline. The v splines are curvature continuous interpolating cubics and they are the solution of the minimization of

\[\int_{t_0}^{t_N} \|X''(t)\|^2 dt + \sum_{i=0}^{N-1} \nu_i \|X'(t_i)\|^2, \quad \nu_i \geq 0 \]

(1)

over the space

\[H^2 = \{ X: X'' \in L^2[t_0, t_N], X' \text{absolutely continuous on } [t_0, t_N] \} \]

subject to interpolation conditions and certain end conditions. [Nielson 74, 86]

In [Boehm 85] a B-spline-Bezier representation of v splines was given, the v spline, and Boehm also pointed out the close relation to Barsky's β splines. [Barsky 81] Some details on this relation can be found in [Fritsch 86] especially conversion equations between β splines and v splines.
In 1985 Hagen [Hagen 85] generalized Nielsen's approach by using
\[\int_{t_0}^{t_N} \|X^{(K)}(t)\|^2 \, dt + \sum_{i=0}^{N-1} \sum_{l=1}^{K-1} v_{i,l} \|X^{(L)}(t_i)\|^2 \, dt , \quad v_{i,l} \geq 0 \]
\[(K \geq 2) \], rather than (1), minimizing now with respect to
\[H^K = \{ X: X^{(K)}(t) \in L^2[0, t_N], X^{(K-1)} \text{ absolutely continuous on } [0, t_N] \} \]
and satisfying interpolation and generalized end conditions. Hagen's concept of 'geometric spline curves' includes for \(K = 2 \) Nielsen's \(v \) splines and yields for \(K = 3 \) to curvature and torsion continuous quintics, the \(\tau \) splines.

The aim of this paper is to give a B-spline-Bezier representation of \(\tau \) splines. We also derive the conversion equations between the Bezier and the originally given Hermite representation in [Hagen 85]. We discuss positivity conditions on the design parameters of the Bezier representation and value ranges for the point weights, the \(v_i \)’s.

Because we like to find a B-spline-Bezier representation of \(\tau \) splines, we first introduce the Bezier representation of segmented curves. In section II we give a short discussion of Nielsen’s \(v \) splines while Hagen's \(\tau \) splines are discussed in section III.

I. Bezier representation of segmented curves

Let \(X(t) \) be a planar or spatial parametrized curve defined with respect to a partition of the domain space by 'knots'
\[t_0 < t_1 < \ldots < t_N . \]

The parameter space segmentation induces a curve segmentation in Segments \(X_j: [t_i, t_{i+1}] \to \mathbb{R}^d \) \((d = 2,3)\). A local parameter \(u \in [0,1] \) can be introduced such that
\[l = 0, \ldots, N-1 \]
\[X(t) = X_j(u) \quad \text{for} \quad t \in [t_i, t_{i+1}] \]
by the linear interpolation of \(t_i \) and \(t_{i+1} \):
\[t = (1-u) t_i + u t_{i+1} , \quad \text{where} \quad u \in [0,1] . \]

The derivatives have to be calculated now by the chain rule, i.e.
\[X^{(r)}(t) = \frac{d^r}{dt^r} X(t) = \frac{d^r}{du^r} X_j(u) = \frac{1}{\Delta_i} \frac{d^r}{du^r} X_j(u) \]
where \(\Delta_i \equiv t_{i+1} - t_i \).

Now the segments might be given in Bezier representation, that means
\[X_j(u) = \sum_{k=0}^{n_l} b_{n_l+k} B_k^n(u) \]
\[\text{where} \quad b_{n_l+k} \in \mathbb{R}^d \quad (d = 2, 3) , \quad u \in [0,1] \quad \text{and} \]
\[B_k^n(u) = \binom{n}{k} u^k (1-u)^{n-k} \]
are the (ordinary) Bernstein polynomials of degree \(n \) in \(u \). The coefficients \(b_i \) are called Bezier points. They form in their natural ordering given by their subscripts the vertices of the so called Bezier polygon.
The derivatives of \(X_i(u) \) with respect to \(u \) are given by

\[
\frac{d^r}{du^r} X_i(u) = \frac{n!}{(n-r)!} \sum_{k=0}^{n-r} \Delta^r b_{n+k} B_k^{n-r}(u)
\]

where

\[
\Delta^r b_\alpha = \delta^r_{\alpha-1}(b_\alpha + 1 - b_\alpha)
\]

so that \(X(t_i) = X_{i-1}(1) = X'_i(0) \), the common boundary point of \(X_{i-1}(u) \) and of \(X_i(u) \), we have for the left sided derivatives of \(X(t) \)

\[
X^{(r)}(t^-_i) \equiv \lim_{t \rightarrow t^-_i} X^{(r)}(t) = \frac{1}{\Delta^r_{i-1}} \frac{n!}{(n-r)!} \Delta^r b_{n+r-1}
\]

and for the right sided derivatives

\[
X^{(r)}(t^+_i) \equiv \lim_{t \rightarrow t^+_i} X^{(r)}(t) = \frac{1}{\Delta^r_i} \frac{n!}{(n-r)!} \Delta^r b_{n-i}
\]

II. **Nu-splines**

Nielsen's \(\nu \) splines are solutions of the minimization of (1) over the space \(H^2 \) subject to the interpolation conditions

\[
X(t_i) = X_i, \quad i = 0, ..., N
\]

and one of the following end conditions

i.) \(X'(t_0) = X'_0 \), \(X'(t_N) = X'_N \).

ii.) \(X^{(r)}(t_0^-) = \nu_0 X'(t_0) \), \(X^{(r)}(t_N^-) = \nu_N X'(t_N) \).

iii.) \(X(t_0) = X(t_N) \), \(X'(t_0) = X'(t_N) \), \(X^{(r)}(t_0^-) - X^{(r)}(t_N^-) = (\nu_0 + \nu_N) X'(t_0) \).

\(\nu \) splines fulfill at any knot \(t_i \) (\(i = 1, ..., N-1 \)) the continuity conditions

\[
X(t^+_i) = X(t^-_i)
\]

(4)

\[
X'(t^+_i) = X'(t^-_i)
\]

(5)

\[
X^{(r)}(t^+_i) = X^{(r)}(t^-_i) + \nu_i X'(t^-_i)
\]

(6)

what can be written in matrix form as

\[
X^+_i = A_i X^-_i
\]

The \((r+1)^2\) matrix \(A_i \) is called connection matrix and the 'vector' \(X_i^+ \) with \(r + 1 \) elements of \(\mathbb{R}^d \) (\(d \geq r \), here is \(r = 2 \)) is sometimes called the \(r \)-jet of \(X \).

Because the curvature of a planar resp. spatial curve is given by

\[
\kappa = \frac{|X' \cdot X''|}{||X'||^3} \quad \text{resp.} \quad \kappa = \frac{|X' \times X''|}{||X'||^3}
\]

(7)

we see that a \(\nu \) spline is curvature continuous.

B-Spline-Bezier Representation of Tau-Splines
A Bezier representation of v splines can be derived by inserting (3) for \(n = 3 \) into (4) to (6). We get as continuity conditions of the Bezier representation (Figure 1)

\[
(1 + q_l) b_l = q_l b_{l-1} + b_{l+1}
\]
\[
(1 + \gamma_l q_l) b_{l-1} = \gamma_l q_l b_{l-2} + s_l
\]
\[
(\nu_l + q_l) b_{l+1} = q_l s_l + \gamma_l b_{l+2}
\]
where

\[
q_l = \frac{\Delta_l}{\Delta_{l-1}}
\]
\[
\nu_l = \frac{1}{1 + \frac{1}{1 + q_l} \frac{\Delta_l}{2 \nu_l}}
\]

(8) allows the evaluation of the \(\nu_l \)'s of the Bezier representation of a v spline, i.e. the evaluation of the \(\nu_l \)'s for given \(v \) values. On the other side, the corresponding v spline to a given curvature continuous cubic Bezier spline, a so-called v spline, has \(v \) values given by

\[
v_l = \frac{2}{\Delta_l (1 + q_l) (\frac{1}{\nu_l} - 1)}
\]

(9) was first given by Boehm in [Boehm 85]. He also presented a B-spline representation for curvature continuous cubics, and pointed out the relation to Barsky's uniformly-shaped \(\beta \) splines. [Barsky 81] The connection to general \(\beta \) splines, sometimes called explicit, discrete or discretely-shaped \(\beta \) splines [Hoellig 86], [Bartels et al. 87], was also pointed out by Niessing and given by Fritsch (see [Fritsch 86]). In fact, looking at the connection matrices of \(\gamma \) splines, v splines and (general) \(\beta \) splines [Dyn et al. 85] we see that \(\beta \), \(\gamma \) and v splines are nothing else than different representations of curvature continuous cubics.

Figure 1. Construction of the Bezier polygon for v splines

Dyn and Micchelli [Dyn et al. 85] have shown that the existence of non-negative local support basis functions which sum to one follows - for geometrically continuous spline curves, i.e. spline curves with continuous differential geometric invariants like curvature, torsion, etc. - from the total positivity of the connection matrix. For v splines the total positivity of \(A_l \) has the meaning \(\nu_l \geq 0 \) and that is exactly the range for the tension parameters \(\nu_l \) covered by the minimum norm

\(^1\) The first local basis for \(G^2 \) splines was developed by Niessing and Lewis in 1975. [Lewis 75] A local basis for uniformly-shaped \(\beta \) splines was given in [Barsky 81] and for discretely-shaped \(\beta \) splines in [Bartels et al. 84], see also [Cohen 87].
characterization of \(v \) splines. \([\text{Nielsen 74, 86}]\) For \(v_t \geq 0 \) we obtain from (9) the \(y_t \) range:

\[y_t \leq 1 \]

(remark: \(v_t = 0 \leftrightarrow y_t = 1 \) is the usual \(C^2 \) cubic spline). But working with \(y \) splines we know that \(y_t > 1 \) are possible as well. Indeed, if we request positive design parameters, i.e. \(y_t > 0 \), so that such important properties like the convex hull and the variation diminishing property are given, (8) yields to

\[I = 1, \ldots, N - 1 \quad v_t > - \frac{2}{\Delta_t} (1 + q_t). \]

(10)

Hence not only positive tension values but \(v_t \) values in the range given by (10) guarantee positive design parameters (remark: \(v_t < 0 \) yields to \(y_t > 1 \)) and therefore properties like the two mentioned above. This result goes conform with work done by Barsky [Barsky 84] who extended the theory of \(v \) splines by identifying certain ranges for the \(v_t \)'s that guarantee a unique solution of the interpolation problem. In the special case of a uniform, an equidistant parametrization, i.e. \(q_t = 1 \), Barsky gives the range \(v_t > -4 \) which is also given by (10).

III. Tau-splines

Hagen's \(\tau \) splines are solutions of the minimization of (2) over the space \(H^K \) for \(K = 3 \) subject to the interpolation conditions

\[I = 0, \ldots, N \quad X(t_I) = X_I \]

and one of the following end conditions (\(L = K, \ldots, 2(K - 1) \))

i.) \(X^{(K-1-L)}(t_0) = X_0^{(K-1-L)}, \quad X^{(K-1-L)}(t_N) = X_N^{(K-1-L)}, \)

ii.) \(X^{(L)}(t_0^+) = v_{0,2K-1-L}X^{(K-1-L)}(t_0), \quad X^{(L)}(t_N^-) = v_{N,2K-1-L}X^{(K-1-L)}(t_N), \)

iii.) \(X(t_0) = X(t_N), \quad X^{(K-1-L)}(t_0) = X^{(K-1-L)}(t_N), \quad X^{(L)}(t_0^+) - X^{(L)}(t_N^-) = (v_{0,2K-1-L} - v_{N,2K-1-L})X^{(K-1-L)}(t_0). \)

\(\tau \) splines fulfill at any knot \(t_I \) (\(I = 1, \ldots, N - 1 \)) the continuity conditions

\[X(t_I^+) = X(t_I^-) \]

(11)

\[X'(t_I^+) = X'(t_I^-) \]

(12)

\[X''(t_I^+) = X''(t_I^-) \]

(13)

\[X'''(t_I^+) = X'''(t_I^-) + v_{1,2} X'(t_I^-) \]

(14)

\[X''''(t_I^+) = X''''(t_I^-) - v_{1,1} X'(t_I^-) \]

(15)

Because the curvature of a spatial curve is given by (7) and the torsion by

\[\tau = \frac{|X', X'', X'''|}{\|X' \times X''\|^2} \]

we see that a \(\tau \) spline is curvature and torsion continuous.

B-Spline-Bezier Representation of Tau Splines
The connection matrix of a general torsion continuous contact of two curve segments of \(\mathcal{R}^d \) (\(d \geq 3 \)) of degree \(n \) (\(n \geq 4 \)) - we speak about \textbf{geometric} \(C^1 \) \textbf{continuity} - briefly \(GC^1 \) \textbf{continuity} - is given by [Dyn et al. 85], [Lasser, Eck 88]:

\[
A_{GC^1} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \omega_{11} & 0 & 0 \\
0 & \omega_{12} & \omega_{13} & 0 \\
0 & \omega_{23} & \omega_{13} & \omega_{11}
\end{bmatrix}
\]

Comparing \(A_{GC^1} \) with (11) to (14), we see that \(\tau \) splines do not take advantage of all shape parameters offered by the concept of torsion continuity. They rather form a subset of the set of \(GC^3 \) continuous curves.

Furthermore we like to mention that \(\tau \) splines and \textbf{visual} \(C^3 \) \textbf{continuous curves}, briefly \(VC^3 \) \textbf{continuous curves}, i.e. curves having \textbf{contact of order} \(r \) [Geise 62] with \(r = 3 \), are spanning two 'almost totally separated' subsets of the set of \(GC^3 \) continuous curves. The connection matrix of two curve segments having contact of order 3 is given by [Dyn et al. 85], [Lasser 88]:

\[
A_{VC^3} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & v_1 & 0 & 0 \\
0 & v_2 & v_1 & 0 \\
0 & v_3 & 3v_1v_2 & v_1
\end{bmatrix}
\]

and therefore, comparing \(A_{VC^3} \) with \(A_{GC^1} \). \(VC^3 \) \textbf{continuous curves} form a subset of the set of \(GC^3 \) continuous curves. and, comparing \(A_{VC^3} \) with (11) to (14), we see that the only curves being \(\tau \) splines as well as \(VC^3 \) \textbf{continuous curves} are the usual \(C^3 \) continuous curves.

To find a Bezier representation of \(\tau \) splines we insert (3) for \(n = 5 \) into (11) to (15) and get as continuity conditions of the Bezier representation (Figure 2)

\[
(1 + q_0) b_I = q_I b_{S_{I-1}} + b_{S_{I+1}}
\]

\[
(1 + \gamma_1 q_I) b_{S_{I-1}} = \gamma_1 q_I b_{S_{I-2}} + s_I
\]

\[
(\gamma_I + q_I) b_{S_{I+1}} = q_I s_I + \gamma_I b_{S_{I+2}}
\]

\[
(1 + \delta_1 q_I) b_{S_{I-2}} = \delta_1 q_I b_{S_{I-3}} + e^-_I
\]

\[
(\delta_I + e_I q_I) s_I = e_I q_I e^-_I + \delta_I e^+_I
\]

\[
(e_I + q_I) b_{S_{I+2}} = q_I e^+_I + e_I b_{S_{I+3}}
\]

\[
(1 + \rho_I q_I) b_{S_{I-3}} = \rho_I q_I b_{S_{I-4}} + \gamma_I
\]

\[
(\rho_I + \sigma_I q_I) e^-_I = \sigma_I q_I e^-_I + \rho_I \gamma_I
\]

\[
(\sigma_I + \tau_I q_I) e^+_I = \tau_I q_I t_I + \sigma_I \gamma_I
\]

\[
(\tau_I + q_I) b_{S_{I+3}} = q_I t_I + \tau_I b_{S_{I+4}}
\]
where
\[q_l = \frac{\Delta_l}{\Delta_{l-1}} \]
and
\[\tau_l = 1 \]
and
\[\delta_l = \frac{1}{1 + \frac{1}{(1+q_l)^2} \frac{\Delta_l}{3} v_{l,2}} \]
\[\epsilon_l = \frac{1}{1 + \frac{q_l}{(1+q_l)^2} \frac{\Delta_l}{3} v_{l,2}} \]
and
\[\rho_l = \frac{1}{3q_l - R_l} \]
\[\sigma_l = q_l^2 \frac{1}{T_l - 3 + (T_l - S_l) \frac{q_l}{\epsilon_l}} \]
\[\tau_l = q_l \frac{3 - T_l}{3 - T_l} \]

with
\[R_l = \frac{3q_l - 1 + \frac{1}{(1+q_l)^3} \frac{\Delta_l^3}{24} v_{l,1}}{1 + \frac{1}{(1+q_l)^3} \frac{\Delta_l}{3} v_{l,2}} \]
\[S_l = \frac{2(1-q_l) + \frac{1-q_l}{(1+q_l)^3} \frac{\Delta_l^3}{24} v_{l,1}}{1 + \frac{2q_l}{(1+q_l)^3} \frac{\Delta_l}{3} v_{l,2}} \]
\[T_l = \frac{3-q_l + \frac{q_l}{(1+q_l)^3} \frac{\Delta_l^2}{24} v_{l,1}}{1 + \frac{q_l^2}{(1+q_l)^3} \frac{\Delta_l}{3} v_{l,2}} \]

(20) to (24) allows the evaluation of the design parameters of the Bezier representation of a \(\tau \) spline and by this the Bezier representation is given. The design parameters are of course not independent of each other any longer. This is obvious because two shape parameters are given by (11) to (15) but five are given by (16) to (19). The dependences are
\[\delta_l = \frac{q_l \epsilon_l}{1 - (1-q_l) \epsilon_l} \text{ resp. } \epsilon_l = \frac{\delta_l}{q_l + (1-q_l) \delta_l} \]

B-Spline-Bezier Representation of Tau-Splines
and

\[\rho_f = \frac{1}{\delta_f} \frac{(1 + q_f \delta_f)(\epsilon_f + \delta_f)}{3(1 + q_f) \sigma_f - (\delta_f + q_f \epsilon_f)} \quad \text{resp.} \quad \sigma_f = \frac{(\delta_f + q_f \epsilon_f) \delta_f \rho_f}{3(1 + q_f) \delta_f \rho_f - (1 + q_f \delta_f)(\epsilon_f + \delta_f)} \]

(26)

\[\tau_f = \frac{(\epsilon_f + q_f)(\epsilon_f + \delta_f)\sigma_f}{\epsilon_f 3(1 + q_f) \sigma_f - (\delta_f + q_f \epsilon_f)} \quad \text{resp.} \quad \rho_f = \frac{(1 + q_f \delta) \epsilon_f \tau_f}{(\epsilon_f + q_f) \delta_f} \]

(27)

That means if an interpolating \(\tau \) spline is given, i.e. \(v_{l,1} \) and \(v_{l,2} \) values, then the design parameters of the Bezier representation of the \(\tau \) spline have to be determined in such a way, that they fulfill the equations (25) to (28). And the equations (25) to (28) are valid if the design parameter are determined by (29) to (24). On the other side, the design parameters of a torsion continuous quintic Bezier spline curve have to fulfill the conditions (25) to (28) to make the quintic Bezier spline being an interpolating \(\tau \) spline in Bezier representation. That means either \(\delta_f \) or \(\epsilon_f \) can be chosen as independent design parameter and, let's say in case of \(\delta_f \), \(\epsilon_f \) has to be determined by (25) as \(\epsilon_f = \epsilon_f(\delta_f) \) and in addition either \(\rho_f \) or \(\sigma_f \) or \(\tau_f \) can be chosen as independent design parameter and, e.g. in case of \(\rho_f \), \(\sigma_f \) and \(\tau_f \) have to be determined by (26) and (27) as \(\sigma_f = \sigma_f(\rho_f) \) and \(\tau_f = \tau_f(\rho_f) \). If the design parameters of the Bezier representation are determined in this way, then the Bezier spline is equivalent to an interpolating \(\tau \) spline having the property of minimizing (2) and we can calculate the \(v_{l,1} \) and \(v_{l,2} \) that means the point weights defining the jumps of the third and fourth derivatives in the knots of the \(\tau \) spline by

\[v_{l,1} = \frac{3}{\Delta_f} (1 + q_f)(\frac{1}{\delta_f} - 1) \quad \text{resp.} \quad v_{l,2} = \frac{3}{\Delta_f} (1 + q_f)^2 \left(\frac{1}{\epsilon_f} - 1 \right) \]

B-Spline-Bezier Representation of Tau-Splines

8
and
\[v_{1,:} = \frac{24}{\Delta^3} \left(1 + q_i \right)^2 \left[(1 + q_i)(1 - 3q_i) - \left(\frac{1}{\epsilon_i} + q_i \right)(1 - 3q_i) \right] \]

resp.
\[v_{1,:} = \frac{24}{\Delta^3} \left(1 + q_i \right)^2 \left[\left(\frac{1}{\epsilon_i} + q_i \right) \left(\frac{q_i}{\epsilon_i} + q_i - 2 \right) + \frac{2}{\epsilon_i} (1 - q_i^2) \right] \frac{\epsilon_i \delta_i}{\epsilon_i + \delta_i} \]

resp.
\[v_{1,1} = \frac{24}{\Delta^3} \left(1 + q_i \right)^2 \left[(1 + q_i)(q_i - 3) - (1 + q_i) \left(\frac{q_i}{\epsilon_i} - 3 \right) \right] \]

and so on.

The \(\tau \) splines form a subset of the set of \(G^3 \) continuous quintics. The \textbf{B-spline-Bezier representation of Tau splines} is therefore identical with the B-spline-Bezier representation of \(G^3 \) continuous quintics which was given in \cite{Eck87, Lasser.Eck88}, with the restriction that for a \(\tau \) spline the design parameters \(\gamma_i, \delta_i, \epsilon_i, \rho_i, \sigma_i, \tau_i \) and \(\tau_i \) can not be chosen independently of each other as in case of the \(G^3 \) continuous quintic spline curve. We rather have to set \(\gamma_i = 1 \) and have to choose \(\delta_i, \epsilon_i, \rho_i, \sigma_i, \) and \(\tau_i \) according to the dependences given by (25) to (28).

Let's discuss now the \textbf{positivity of the design parameters} for \(\tau \) splines. The dependences (25) to (28) imply the following:

Because of (25), positivity of \(\delta_i = \delta_i(\epsilon_i) \) needs
\[0 < \epsilon < \frac{1}{1 - q_i} \quad \text{in case of} \quad q_i < 1 \Rightarrow \Delta_i < \Delta_{i-1} \]
\[\epsilon > 0 \quad \text{in case of} \quad q_i \geq 1 \Rightarrow \Delta_i \geq \Delta_{i-1} \]

On the other side, positivity of \(\epsilon_i = \epsilon_i(\delta_i) \) needs
\[\delta > 0 \quad \text{in case of} \quad q_i \leq 1 \Rightarrow \Delta_i \leq \Delta_{i-1} \]
\[0 < \delta < \frac{q_i}{1 - q_i} \quad \text{in case of} \quad q_i > 1 \Rightarrow \Delta_i > \Delta_{i-1} \]

Because of (27) and (28), positivity of \(\rho_i = \rho_i(\tau_i) \) and of \(\sigma_i = \sigma_i(\tau_i) \) needs
\[\tau > \frac{(\epsilon_i q_i + q_i \epsilon_i + \delta_i)}{3(1 + q_i)\epsilon_i} \]

On the other side, because of (26) and (27), positivity of \(\rho_i = \rho_i(\sigma_i) \) and of \(\tau_i = \tau_i(\sigma_i) \) needs
\[\sigma > \frac{\delta_i q_i + q_i \sigma_i}{3(1 + q_i)} \]

and because of (26) and (25), positivity of \(\sigma_i = \sigma_i(\rho_i) \) and of \(\tau_i = \tau_i(\rho_i) \) needs
\[\rho > \frac{(1 + q_i \delta_i)(\epsilon_i + \delta_i)}{3(1 + q_i)\delta_i} \]

\textbf{B-Spline-Bezier Representation of Tau-Splines}
The minimum norm characterization of \(\tau \) splines works for non-negative tension parameter \(v_{1,2} \) and \(v_{1,2} \) only. As for \(\nu \) splines we can extend the theory of \(\tau \) splines by requesting the positivity of the design parameters.

Because of (20) and (21), for \(\epsilon_i > 0 \) and \(\delta_i > 0 \) the tension parameter \(v_{1,2} \) has to be within the range

\[
v_{1,2} > \max \left\{ - (1 + q_l)^2 \frac{3}{\Delta l}, \quad \frac{(1 + q_l)^2}{q_l} \frac{3}{\Delta l} \right\}
\]

(29)

that means

\[
v_{1,2} > - \frac{(1 + q_l)^2}{q_l} \frac{3}{\Delta l} \quad \text{if} \quad q_l > 1 \quad \Rightarrow \quad \Delta l > \Delta_{l-1}
\]

\[
v_{1,2} > - \frac{12}{\Delta l} \quad \text{if} \quad q_l = 1 \quad \Rightarrow \quad \Delta l = \Delta_{l-1}
\]

\[
v_{1,2} > - (1 + q_l)^2 \frac{3}{\Delta l} \quad \text{if} \quad q_l < 1 \quad \Rightarrow \quad \Delta l < \Delta_{l-1}
\]

Thus not only non-negative but also certain negative \(v_{1,2} \) values are allowed.

Because of (22) to (24), for \(\rho_i > 0, \sigma_i > 0 \) and \(\tau_i > 0 \) the tension parameter \(v_{1,1} \) has to be within the ranges given by (30).

\[
v_{1,1} < \frac{24}{\Delta t} [(1 + q_l)^3 + q_l \Delta_{l} v_{1,2}]
\]

(30.1)

\[
v_{1,1} > - \frac{24}{\Delta t} \frac{(1 + q_l)^3 + 2(1 - q_l + q_l^2) \Delta_{l}}{2 + \frac{1}{1 + q_l} \frac{\Delta_{l}}{3}} v_{1,2}
\]

(30.2)

First \(v_{1,1} \) has to be chosen such that \(\epsilon_i > 0 \) and \(\delta_i > 0 \) is fulfilled, i.e. \(v_{1,2} \) has to be chosen within the range given by (29), than \(v_{1,1} \) can be chosen within the range given above.

For \(q_i = 1 \) (30) yields for example to

\[- 4 \frac{24}{\Delta t^3} < v_{1,1} < \frac{24}{\Delta t^3} (8 + \Delta_{l} v_{1,2})\]

Barsky [Barsky 84] extended the theory of \(\nu \) splines by identifying certain ranges for the \(\nu_i \)'s that guarantee a unique solution of the interpolation problem. This idea allows especially the consideration of different end conditions. The same can be done for \(\tau \) splines, and is indeed the topic of actual research.

Furthermore the idea of [Salkauskas 75] and [Foley 86,87] of introducing interval weights can be picked up to create interval weighted geometric spline curves\(^2\) minimizing

\[
\sum_{i=0}^{N} p_i \int_{t_{i-1}}^{t_i} \|X^{(K)}(t)\|^2 dt + \sum_{i=0}^{N} \sum_{j=L}^{K} v_{1,L} \|X^{(L)}(t_{i})\|^2 dt .
\]

For \(K = 3 \) we get interval weighted \(\tau \) splines. Actually we are working on this too.

\(^2\) These interval weighted geometric spline curves are in general not curvature, torsion, etc. continuous.

B-Spline-Bezier Representation of Tau-Splines
Acknowledgment

This paper was written while the author was supported by an one year award of the National Research Council, Washington, DC visiting during this time at the Naval Postgraduate School, Monterey, California.

The author would like to thank Professor Richard Franke whose effort made this visit possible. And also like to thank Professor Richard Franke for all his help during the time in Monterey.

References

Dyn, N, Edelman, A, Michelli, Ch A: On locally supported basis functions for the representation of geometrically continuous curves. IBM Thomas J Watson Research Center, Yorktown Heights, New York (1985)

B-Spline-Bezier Representation of Tau-Splines

Initial Distribution List

B-Spline-Bezier Representation of Tau-Splines
B-Spline-Bezier Representation of Tau-Splines
B-Spline-Bezier Representation of Tau-Splines
END
DATE
10-88
DTIC