Low Frequency Dielectric Properties
of Polyether Electrolytes

by

John J. Fontanella & Mary C. Wintersgill

Prepared for Publication
in
Polymer Electrolyte Reviews - 2.

U. S. Naval Academy
Department of Physics
Annapolis, MD 21402-5026

June 1988

Reproduction in whole or in part is permitted for any
purpose of the United States Government

This document has been approved for public release
and sale; its distribution is unlimited
Low Frequency Dielectric Properties of Polyether Electrolytes. (Unclassified)

John J. Fontanella and Mary C. Wintersgill

Prepared for publication in Polymer Electrolyte Reviews - 2. (Unclassified)

Beyond their interest as fundamental properties of a material, the dielectric constant and loss are of particular significance for ion conducting polymers. For example, the dielectric constant plays a fundamental role in the ability of a polymer to dissolve salts. The reason is that the dielectric constant is a measure of the reduction of Coulomb interactions and thus high dielectric constant fluids greatly reduce ion-ion interactions, inhibiting crystal formation. The dielectric loss
is interesting as it probes a wide variety of phenomena including the electrical conductivity along with any relaxations which may be present in the material including that associated with the glass transition. Consequently, it is worth reviewing some of what is known concerning the dielectric properties of these materials. The discussion will be limited to poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO).
LOW FREQUENCY DIELECTRIC PROPERTIES OF POLYETHER ELECTROLYTES

Mary C. Wintersgill and John J. Fontanella

Physics Department
U.S. Naval Academy
Annapolis, MD, USA 21402-5026
Beyond their interest as fundamental properties of a material, the dielectric constant and loss are of particular significance for ion conducting polymers. For example, the dielectric constant plays a fundamental role in the ability of a polymer to dissolve salts. The reason is that the dielectric constant is a measure of the reduction of Coulomb interactions and thus high dielectric constant fluids greatly reduce ion-ion interactions, inhibiting crystal formation. The dielectric loss is interesting as it probes a wide variety of phenomena including the electrical conductivity along with any relaxations which may be present in the material including that associated with the glass transition. Consequently, it is worth reviewing some of what is known concerning the dielectric properties of these materials. The discussion will be limited to poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO).

2. DEFINITIONS AND BASIC CONCEPTS

The best approach to the dielectric constant is via the polarization vector (dipole moment per unit volume):\(^2\)

\[P = \varepsilon_0 \chi_e \vec{E} \] \hspace{1cm} (1)

where \(\varepsilon_0 \) is the permittivity of free space, \(\chi_e \) is the electric susceptibility, and \(\vec{E} \) is the electric field. Next, the electric displacement vector, \(\vec{D} \), is defined to be:

\[\vec{D} = \varepsilon_e \vec{E} + \vec{P} \] \hspace{1cm} (2)

from which it follows that:
\[D = \varepsilon_0 (1 + \chi_e) E \]

which leads to the definition of the real part of the dielectric constant (relative permittivity), \(\varepsilon' \), as:

\[\varepsilon' = 1 + \chi_e \tag{4} \]

so that:

\[D = \varepsilon_0 \varepsilon' E \tag{5} \]

The imaginary part of the dielectric constant, \(\varepsilon'' \), is related to the electrical conductivity, \(\sigma \), which is defined by:

\[J = \sigma E \tag{6} \]

where \(J \) is the electric current density. The definition of \(\varepsilon'' \) follows from Maxwell's equation (in this case written for harmonic fields):

\[\nabla \times H = j\omega D + J \tag{7} \]

where \(H \) is usually known as the magnetic field intensity. Substituting, then,

\[\nabla \times H = (j\omega \varepsilon' + \sigma) E \tag{8} \]

and thus

\[\nabla \times H = j\omega \varepsilon_0 (\varepsilon' - \frac{\sigma}{\varepsilon_0 \omega}) E \tag{9} \]

from which the definition:

\[\varepsilon'' = \frac{\sigma}{\varepsilon_0 \omega} \tag{10} \]

follows in order to define the complex dielectric constant:

\[\varepsilon = \varepsilon' - j\varepsilon'' \tag{11} \]

Often, the loss tangent:

\[\tan \delta = \frac{\varepsilon''}{\varepsilon'} = \frac{\sigma}{\varepsilon_0 \omega \varepsilon'} \tag{12} \]

is also defined which is a measure of the ratio of the conduction current relative to the displacement current. It is important to realize, then, that the true real part of the dielectric constant arises from the
polarization of the material as given by Eq. (1).

Often, confusion concerning the dielectric constant arises because of the operational definition of the real part of the dielectric constant (which is here designated as the apparent dielectric constant) is:

\[\varepsilon'_{\text{app}} = \frac{C}{C_0} \]

where \(C_0 \) is the capacitance of any configuration of electrodes where the space surrounding them is vacuum and \(C \) is the capacitance with an isotropic material filling the space. The confusion arises because charges which are free to move within the material, but are blocked at the electrodes, can give a large contribution to the capacitance measured by an instrument. This has been referred to as space charge polarization and is often observed in ionic conductors. \(^3\) (In the case of lanthanum fluoride, the polarization effects are apparently due to surface effects. \(^4\)) As this contribution is a consequence of the ionic conductivity, it will be both frequency and temperature dependent. Specifically, the apparent dielectric constant will decrease as frequency increases and will decrease as temperature decreases. The reason for identifying this false contribution to the dielectric constant in the case of polymers, of course, is that it does not contribute to the solvation characteristics of the material.

The operational definition of the imaginary part of the dielectric constant is often taken to be:

\[\varepsilon'' = \frac{G}{\omega C_0} \]

where \(G \) is the conductance of the material. Consequently, \(G/\omega \) differs from \(\varepsilon'' \) only via \(\varepsilon_0 \) and the geometrical factor contained in \(C_0 \).
are no ambiguities associated with this definition of c^2 other than those associated with separating the various contributions which again can be done via the frequency and temperature dependence.
3. Poly(ethylene oxide) and Poly(propylene oxide)

A plot of the "apparent" real and imaginary parts of the dielectric constant for PEO vs. temperature is shown in Fig. 1. The two relaxation regions usually seen\(^5\)\(^-\)\(^18\) in this material, \(\alpha_a\) and \(\gamma\), are apparent in the imaginary parts along with their contributions to the real part of the dielectric constant.

As regards its impact on the solubility of ions in PEO, the real part of the dielectric constant is an extremely important component of these results. The false part of the dielectric constant, that due to space charge or surface effects is apparent at high temperatures. As discussed in section 2, it is identifiable by its strong frequency and temperature dependence. It is seen to be insignificant below the glass transition temperature. Qualitatively subtracting off this contribution, the dielectric constant of the solid at about room temperature is approximately 4. Aside from a possible small contribution from the \(\alpha_c\) relaxation, this represents the dielectric constant of typical PEO at room temperature. This implies very little reduction of ion-ion interactions and thus raises the question of why PEO has such an affinity for ions. The answer can be found in the data of Porter and Boyd\(^13\) who studied the dielectric constant of both molten and solid PEO. Their data are shown in Fig. 2 and it is seen that the dielectric constant of molten, and hence amorphous PEO is approximately 8. This shows at least part of the reason why PEO is a fairly effective solvent for a large number of salts.

This line of reasoning can be pursued further by considering the dielectric constant of PPO which is shown in Fig. 3.\(^19\),\(^20\) The data are
similar to that reported by Varadarajan and Boyer21. The differences may be due to the fact that those authors studied low molecular weight (3034) material while the present work is for PAREL 58 elastomer (Hercules, Inc.) which is a high molecular weight material which contains about 57% of allyl glycidyl ether. However, the differences are within the approximately 15% uncertainty of the absolute dielectric constant for the present work. The relative variation with temperature or frequency is accurate at about 0.1%. It is apparent that the dielectric constant of about 5.5 is smaller than for amorphous PEO. This is a consequence of the methyl group making PPO less polar than PEO and correlates with the fact that PPO is not as strong a solvent as PEO. In fact, it has been recently shown20,24 that at elevated temperatures salts have a tendency to precipitate out of PPO. Indeed, it has been observed20 that the higher the melting point of the salt, the lower the salt precipitation temperature implying that the stronger the ion-ion interaction, the easier it is for the salt to precipitate out. In ref. 20 it was pointed out that the variation of the dielectric constant with temperature shown in Fig. 3 can be used to explain the effect. Specifically, it is seen that the dielectric constant decreases as temperature increases in PPO and thus screening of the Coulomb interaction becomes weaker as temperature increases.

For PEO, the variation of the dielectric constant with temperature within the amorphous phase is not clear at the present time. Before the crystalline phase melts, the dielectric constant of the bulk material actually increases with increasing temperature. This is apparent from Fig. 1a and is expected in that the strength of the loss peak associated with the glass transition, \(\alpha_a \), increases as temperature increases as seen in
This behavior often occurs in semicrystalline polymers. However, the variation of the dielectric constant with temperature above the melting point remains to be determined. It is likely that it will behave similarly to the results for PPO shown in Fig. 3 where Curie-Weiss behavior is seen, i.e. both the loss peak and dielectric constant decrease approximately as $1/T$. In any event salt precipitation, if it occurs, will take place at higher temperatures than in PPO because of the higher dielectric constant of PEO.

It has been well established that the α_a relaxation in P_EO and the α relaxation in PPO are associated with the glass transition. For example, for typical loss peaks as shown in Fig. 4, it has been shown that the peak position, which is approximately equal to the reciprocal of the relaxation time, follows a VTF equation:

$$\omega_p = AT^{-1/2} \exp\left(-\frac{E_a}{k(T-T_o)}\right)$$ \hspace{1cm} (15)

ω_p is the imaginary part of the Havriliak-Negami function for the complex capacitance, $C^*=C-jG/\omega$:

$$C^* = \frac{D}{[1 + (i\omega \tau)^{(1-a)}]^{\beta}}$$ \hspace{1cm} (16)

was best-fitted to the data in order to determine the peak positions. Typical results are shown in Fig. 4. For the three temperatures, the three constant Havriliak-Negami parameters were found to be $D=6.4$, $a=0.35$, and $\beta=0.53$ while τ_o varied from 1.84×10^{-5} s to 4.79×10^{-8} s to 0.37×10^{-2} s for 230.8K, 221.8K, and 215.8K respectively. By fitting Eq. (15) to the
relaxation time data, it was found that $E_a = 0.659 \text{ eV, } T_o = 135.85 \text{K}$, and $\log_{10} A = 13.95 \text{K}^{1/2} \text{cm}^{-1}$. These parameters are important for comparison with the results for the ionic conductivity as discussed in section 4.

Another indication that the α relaxation is associated with the glass transition temperature, is that these relaxations are strongly dependent upon pressure as is usually the case for glass transition temperatures. The data for PEO27 and PPO28 are shown in Figs. 4 and 5, respectively. From the data it was concluded that the alpha relaxations and hence the glass transition temperatures shift about $4 ^\circ \text{C/kbar}$ for PEO and $17 ^\circ \text{C/kbar}$ for PPO. These values are typical for glass transitions in polymers.

To analyze the data from an isothermal point of view is also useful. However, the loss peak vs. frequency is not observable for PEO at the frequencies used in the present work. This is expected on the basis of the data for PEO presented by Connor et al.9 Consequently, such results can only be presented for PPO. In that case, the quantity usually used to describe these processes is the activation volume, which is defined by:

$$\Delta V = \left(\frac{\partial g}{\partial P} \right)_T$$ \hspace{1cm} (17)

where g is the Gibbs energy for the process in question. In order to treat the α relaxation properly, a free volume expression such as Eq. (15) should be used. The difficulty is to identify the Gibbs energy. One such model29 contains the requisite form, however, there are a large number of ambiguities associated with the other terms such as the entropy and other constants. For example, Papke et al.29 arrived at an expression for the free volume activation volume for electrical conductivity, but did not take into account that T_o is likely to be strongly pressure dependent. A more
correct expression exists and, in fact, was used to show that \(T_0 \) cannot
be equal to the glass transition temperature. That result has since been
verified by careful fitting of electrical conductivity data. However, in view of the remaining ambiguities, that approach will not be considered
further until a more complete free volume theory exists.

Alternatively, an "Arrhenius" activation volume can be calculated via:

\[
\Delta V_{\text{Arr}} = -kT (\partial \ln \omega_p / \partial P)_T \quad (18)
\]

The reason that this is called an Arrhenius activation volume is that it is
based on the assumption of Arrhenius behavior which, of course, is not
really valid for these materials as Eq. (18) follows from (17) under the
assumption that the process is described by:

\[
\omega_p = c \exp(-g/kT) \quad (19)
\]

where \(c \) is a pressure independent constant.

The large Arrhenius activation volumes, 46-81 cm\(^3\)/mol, calculated
from Eq. (18) are understandable in that the relaxation is controlled by
the large scale segmental motions of the polymer chain involved in the
glass transition i.e. large numbers of atoms are involved in the
reorientation process and thus a large volume change of the material is
necessary as the dipoles proceed from the minimum energy position to the
saddle point.

This is in contrast to results for the \(\gamma \) relaxation for PEO for
which the activation volume is found to be very small\(^{27,31} \), on the order of
4 cm\(^3\)/mol. This is consistent with the usual interpretation of \(\gamma \) as due
to the motion of very small segments of the polymer chain\(^{32-34} \). It is
interesting that these motions are associated with the amorphous phase and
persist above the glass transition and into the molten region for PEO.13 It has been shown that the process exhibits Arrhenius behavior with an activation energy of about 0.33 eV. Further, Rietman et al.35 have pointed out that a nuclear magnetic resonance signal with a similar activation energy exists in these materials36. This signal is probably correlated with the Y relaxation. It follows that the motions represented by this process must be included in any complete theory of ion conduction in these materials.

There is another relaxation which is often observed in PEO. That relaxation is either labeled $\alpha_c^{17,37-39}$ or merely α_4^{40} which occurs at a higher temperature (or lower frequency) than α_a. That relaxation is easily seen in the thermally stimulated depolarization current (TSDC) results shown in Fig. 7. TSDC is essentially a very low frequency (on the order of mHz) dielectric relaxation experiment. That relaxation is somehow related to the crystalline phase. However, Porter and Boyd13 were not able to identify such a relaxation in PEO.
4. PEO and PPO Containing Ions

Of most interest when salts are added to the polyethers, of course, is the electrical conductivity. Insight into the conductivity can be obtained from a study of the \(\alpha \) relaxation. Specifically, it is clear that for amorphous polymers the electrical conductivity exhibits VTF type behavior and thus an equation similar to Eq. (15) is appropriate, namely,

\[
e = AT^{-1/2} \exp\left[-\frac{E_a}{k(T-T_o)}\right]
\]

(20)

By fitting Eq. (20) to the electrical conductivity data for PPO containing various lithium salts, it was found\(^{25}\) that the activation parameters, \(E_a \) and \(T_o \), are very close to for those obtained for the electrical relaxation time for the \(\alpha \) relaxation. For example, for PPO-LiCF\(_3\)SO\(_3\) \(E_a = 0.056 \) eV and \(T_o = 214K \) is 34°C lower than the central glass transition temperature.\(^{25}\) To emphasize the correlation, this best fit curve for the electrical conductivity is plotted in Fig. 8 along with the conductivity and data for the \(\alpha \) relaxation. It is seen that the peak positions can be scaled to follow the same VTF curve as the electrical conductivity. Consequently, this represents evidence that the dominant process controlling the ionic conductivity is the same as that for the \(\alpha \) relaxation. Since it has been known for many years that the \(\alpha \) relaxation is controlled by large scale segmental motions of the polymer chains, that must also be the dominant process controlling ionic conductivity in amorphous polymers. Of course, this alone does not imply that large scale segmental motions represent the transport mechanism, because the electrical conductivity does not
distinguish between ion concentration and mobility. However, using NMR techniques on PPO containing NaClO₄, it has been shown that over a temperature range where the conductivity changes by five orders of magnitude the carrier concentration changes by only a small amount (about 20%). Consequently, carrier generation plays only a minor role in the variation of electrical conductivity with temperature. The combined results show, then, that the dominant process controlling ion motion is indeed large scale segmental motion of the polymer chains.

A similar correlation exists for the effect of pressure on the electrical relaxation time for the α relaxation and the electrical conductivity. Again, an "Arrhenius" activation volume can be calculated via:

$$\Delta V_{Arr} = -kT(\partial \ln \alpha/\partial P) \left(\frac{2}{3} \right)$$ \hspace{1cm} (21)

An updated version of the resultant activation volumes are plotted in Fig. 9, where the "Arrhenius" activation volumes are plotted vs. temperature above the "central" glass transition temperature. It is apparent that for these materials the effect of pressure on the electrical relaxation time for the α relaxation is the same as that for the electrical conductivity. This represents further evidence for the importance of large scale segmental motions as regards ionic conductivity.

The strong decrease of the "Arrhenius" activation volume with increasing temperature is a consequence of the VTF-type behavior of the conductivity. Specifically, it follows that for Arrhenius processes the activation volume scales with the Gibbs energy. That has been shown both experimentally and theoretically. Since the Gibbs energy for an Arrhenius process is calculated from the slope of a plot of log α vs.

13
1000/T, the effective Gibbs energy for VTF behavior must decrease strongly as temperature increases, as is apparent from Fig. 8. Thus, the "Arrhenius" activation volume is expected to decrease as temperature increases because it varies as the effective Gibbs energy.

It is noted that the effect of ions on the \(\alpha \) relaxation cannot be directly observed because the glass transition is shifted to higher temperatures and thus the \(\alpha \) relaxation, if it exists, will be masked by the high "background" conductivity. However, the effect of ions on the \(\gamma \) relaxation region has been directly observed. The most striking example is for PEO containing KSCN as shown in Fig. 10.17,38 The resultant DR spectrum is much more complex than for PEO (Fig. 10). On the other hand, PEO containing NaSCN which showed very little change in the DR region. This difference was attributed to the much larger size of the potassium ion, the effect being to produce more distortion in the polymer chain. Next, when the anion was changed from SCN to ClO\(_4\), as in PEO containing NaClO\(_4\), there was a strong shift in the \(\gamma \) relaxation region18. This is clear evidence of the interaction of the anion with the polymer chain. Finally, alkaline earth salts produce larger changes in the DR spectrum as shown in Fig. 11.37 It is interesting that for the better ionic conductor, the barium salt, that the \(\gamma \) relaxation region is shifted to higher temperatures (higher activation energy).

Recent TSDC studies39 have indicated that the \(\gamma \) relaxation region actually consists of several closely spaced relaxations and it is the relative populations of these which change giving rise to the shifts in the DR spectrum. Typical results are shown in Fig. 12 where the TSDC data for PEO containing NaSCN and NaClO\(_4\) are plotted. While the DR spectrum
apparently consists of one, albeit very broad, peak in the Y relaxation region,17,18 the TSDC spectrum for the same region indicates the presence of at least three closely spaced peaks.

Finally, when ions are added to PEO, it has been shown that the real part of the dielectric constant of the solid material increases by several percent.17 In fact, the increase is approximately that which would be expected for a mixture of salt (with dielectric constants from 5 to 10) and polymer. However, this result is for the solid which is itself a mixture of amorphous and crystalline regions and it is not clear what the dielectric constant is in the individual regions.

5. ACKNOWLEDGMENTS

This work was supported in part by the U.S. Office of Naval Research. The authors would like to thank Dr. S. G. Greenbaum of the Hunter College of CUNY, New York, NY and Dr. C. G. Andeen of Case Western Reserve University, Cleveland, OH for many helpful discussions.
6. REFERENCES

17. J. J. Fontanella, M. C. Wintersgill, J. P. Calame, and C. O. Andeen,

30. J. J. Fontanella, M. C. Wintersgill, J. P. Calame, F. P. Pursel, D. R.

Figure 1. (a) Real and (b) imaginary parts of the dielectric constant vs. T(K) for PEO with molecular weight 4×10^6. The curves (from left to right) are: short dash-10 Hz; chain link-10^2 Hz; solid-10^3 Hz; long dash-10^4 Hz; medium dash-10^5 Hz. Straight line segments connect the datum points which are not shown. The data are the same as shown in ref. 27 on a different scale and with a different frequency designation.
Figure 2. Real part of the dielectric constant vs. T(K) for PEO (Carbowax 20M): molten at 65.7°C (●,○); rapidly quenched crystalline («50%) solid (○); slowly cooled crystalline (80%) solid (●). The results are from ref. 13 by permission of the author.
Figure 3. Real (a) and imaginary (b) parts of the dielectric constant at five frequencies (features from left to right): 10 Hz-short dashed lines; 100 Hz-long dashed lines; 1000 Hz-solid lines; 10,000 Hz-dot dash (chain) lines; 100,000 Hz-dotted lines. Straight line segments connect the datum points. Curve (c) is a TSDC spectrum. A voltage of 200 V was applied to the sample for 15 min at a polarization temperature of 190K and the heating rate was 6 K/min.
Figure 5. Dielectric loss peaks for PEO at five pressures at 1000 Hz in the region of the glass transition for molecular weight 5×10^6. The curves (from left to right) are: (a) 0.0001 (1 atm.), (b) 0.04, (c) 0.08 (d) 0.12, and (e) 0.16 GPa. Straight line segments connect the datum points. The data are from ref. 27.
Figure 6. Dielectric loss peaks for PPC at seven pressures at 1000 Hz in the region of the glass transition. The curves (from left to right) are: (a) 0.0001 (1 atm.), (b) 0.03, (c) 0.06, (d) 0.09, (e) 0.12 GPa, (f) 0.15, and (g) 0.21 GPa. Straight line segments connect the datum points. The data are from ref. 28 which did not specify the frequency.
Figure 7. Low-temperature TSDC spectrum for PEO with a molecular weight of 5×10^6. The polarization temperature was 163K and the applied voltage was 300 V for 10 min. The sweep rate was 6.13 K/min.
Figure 3. Electrical conductivity data for PPO-LiCF$_3$SO$_3$ (electrolyte composition - PPO/salt = 8:1) and peak position for the α relaxation for PPO plotted vs. temperature relative to T$_0$. The solid line is the XTF equation best fit to the electrical conductivity data only. The data appear in various plots in refs. 25 and 28.
Figure 9. Activation volume vs. temperature relative to the "central"
glass transition temperature; PPO-LiCF$_3$SO$_3$ (O), PPO-LiClO$_4$ (□), PPO-LiI
(△), uncomplexed PPO α relaxation time (x), PPO-LiSCN (●),
PPO-NaClO$_4$ (O), PPO-NaI (★), PPO-NaSCN (electrical conductivity (●), 14C
and 22Na radio tracer measurements (+), C. Bridges and A. V. Chadwick,
Solid State Ionics, to be published). Electrolyte composition - PPO/salt = 8:1. This figure is from ref. 20.
Figure 10. Imaginary part of the dielectric constant vs. $T(K)$ for PEO-KClN with electrolyte composition $=$ PEO/salt $=$ 4.5:1. The data are long dash-10^2 Hz, solid-10^3 Hz, and chain link-10^4 Hz. Straight line segments connect the datum points which are not shown. This figure is from ref. 17.
Figure 11. Imaginary part of the dielectric constant vs. T(K) at 103 Hz for various materials: Solid-PEO; Chain link-PEO-Ca(SCN)$_2$:4H$_2$O; Dash-PEO-Ba(SCN)$_2$:3H$_2$O (electrolyte compositions - PEO/salt = 1:5:1). Straight line segments connect the datum points which are not shown. The data are from ref. 37.
Figure 12. TSDC spectra for: (a) uncomplexed PEO--solid line, (b) PEO–NaSCN--chain link, and (c) PEO–NaClO$_4$--dash. The strength for one material relative to another is not significant. Electrolyte composition - PEO/salt = 4.5:1. This figure is from ref. 39.
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Code CRD-AA-IP</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
</tbody>
</table>