Application of Speech Recognition to the Integrated Tactical Decision Aid (ITDA)

by

Jerry K. Hill

March 1988

Thesis Advisor: Gary K. Poock

Approved for public release; distribution is unlimited.
Application of Speech Recognition to the Integrated Tactical Decision Aid (ITDA)

Jerry K. Hill

March 1988

Abstract (continue on reverse if necessary and identify by block number)

The author investigates the operation of the "Integrated Tactical Decision Aid", (ITDA), using a VOTAN 6050 series II, speaker dependent, continuous Speech Recognition Device, (SRD). The ITDA's unique features directly affect the application of an SRD. It is an interactive, menu driven program designed to be operated from the keyboard only. The SRD must be connected to the host computer, the HP 9020, through a remote user port. The ITDA is multi-leveled with several menu names being assigned to different levels. The SRD can not assign more than one meaning to the same word. These problems were mostly overcome and the ITDA was successfully operated by voice. The recommended vocabulary for the ITDA 'CONTACTS' module is presented. Speech Recognition applications to C3 systems is summarized as a very efficient method of man-machine interface. The current ITDA software does not permit an efficient application of speech. Software changes to the ITDA are recommended as well as further studies in this area.

20 Distribution/Availability of Abstract
X unclassified/unlimited

21 Abstract Security Classification
Unclassified

22a Name of Responsible Individual
Gary K. Poock

22b Telephone (Include Area code)
(408) 646-2636

22c Office Symbol
55PK
Application of Speech Recognition to the Intergrated Tactical Decision Aid (ITDA) by

Jerry K. Hill
Captain (P), United States Army
B.S., United States Military Academy, 1977

Submitted in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY
(Command, Control and Communications)

from the
NAVAL POSTGRADUATE SCHOOL
March 1988

Author: Jerry K. Hill
Approved by: Gary K. Poock, Thesis Advisor

CDR Joseph S. Stewart, USN, Second Reader

Carl R. Jones, Chairman, Command, Control and Communications Academic Group

Kneale T. Marshall, Acting Academic Dean
ABSTRACT

The author investigates the operation of the "Integrated Tactical Decision Aid", (ITDA), using a VOTAN 6050 series II, speaker dependent, continuous Speech Recognition Device, (SRD). The ITDA's unique features directly affect the application of an SRD. It is an interactive, menu driven program designed to be operated from the keyboard only. The SRD must be connected to the host computer, the HP 9020, through a remote user port. The ITDA is multi-leveled with several menu names being assigned to different levels. The SRD can not assign more than one meaning to the same word. These problems were mostly overcome and the ITDA was successfully operated by voice. The recommended vocabulary for the ITDA "CONTACTS" module is presented. Speech Recognition applications to C3 systems is summarized as a very efficient method of man-machine interface. The current ITDA software does not permit an efficient application of speech. Software changes to the ITDA are recommended as well as further studies in this area.
TABLE OF CONTENTS

I. SPEECH RECOGNITION AND THE OPERATION OF THE "INTEGRATED TACTICAL DECISION AID" ... 1
A. INTRODUCTION ... 1
B. PURPOSE OF THE THESIS .. 2
C. CONSTRAINTS .. 2
D. SUMMARY .. 2

II. THE INTEGRATED TACTICAL DECISION AID (ITDA) .. 3
A. EVOLUTION OF THE ITDA .. 3
B. ITDA SYSTEM DESCRIPTION ... 3
C. HOST COMPUTER/HARDWARE .. 4
D. MAN-MACHINE INTERFACE AND THE ITDA ... 4
 1. Menu Selection ... 4
 2. Special Function Keys ... 6
 3. Data Entry ... 6
 4. Menu Structure ... 6
E. SUMMARY AS APPLIES TO VOICE APPLICATION .. 8

III. AUTOMATIC SPEECH RECOGNITION SYSTEMS ... 9
A. OVERVIEW .. 9
B. VOTAN SPEECH RECOGNITION SYSTEM MODEL 6050 SERIES II 11
 1. Capacity .. 11
 2. Programming .. 12
 3. Training .. 14
 4. Operation .. 17
 5. Interface with ITDA ... 18

IV. VOCABULARY SELECTION ... 21

V. SCENARIO APPLICATION .. 25

VI. CONCLUSIONS AND RECOMMENDATIONS ... 27
A. CONCLUSIONS .. 27
B. RECOMMENDATIONS ... 28

APPENDIX A
ITDA MODULE DESCRIPTION ... 29

APPENDIX B
PREPARING THE VOTAN AND INTERFACING WITH ITDA 31
 A. PREPARING AND PROGRAMMING THE VOTAN ... 31
 B. TRAINING THE VOCABULARY ... 34
 C. INTERFACING WITH ITDA .. 35

APPENDIX C
CONTACTS MODULE MENU ITEMS WITH CORRESPONDING VOICE COMMANDS 37
APPENDIX D
COMPLETE LISTING OF MENU ITEMS FOR THE CONTACTS MODULE WITH CORRESPONDING NUMBERS. 44

APPENDIX E
SCENARIO APPLICATIONS 49

APPENDIX F
COMPLETE MENU STRUCTURE FOR THE ITDA VERSION 2.0 51
I. SPEECH RECOGNITION AND THE OPERATION OF THE
"INTEGRATED TACTICAL DECISION AID"

A. INTRODUCTION

The ever increasing complexity of modern combat has caused the development and use of computer assisted command and control decision aids.

The major goal of command and control (C2) decision aids is to assist the decision maker by taking him beyond the burden of analyzing data with standard data manipulation and display techniques toward working with information relevant to his real world problem domain. [Ref 1]

The computer assisted C2 decision aid has added one more dimension to the complexity of the man-machine interface in command and control.

The man-machine interface and man's communication with the computer can be accomplished in a variety of ways. The most natural and efficient form of communication for man is that of speech. [Ref. 2] Speech activation, therefore should be considered as an appropriate interface in order to optimize the operation of the decision aid.

Research and subsequent technology in the area of automatic speech recognition has produced a variety of devices available today. A Speech Recognition Device (SRD) is one that translates recognized verbal commands into a predetermined output string which is then sent to the computer. There are many advantages of using speech to communicate with a computer. The most important of these, particularly in a command and control environment, is the ability to send multiple commands to the computer with a single voice command. It is not affected by low light levels, frees the operators hands and eyes to accomplish other tasks, and gives the operator freedom of movement, not confining him to a keyboard. [Ref. 3: p.3]
B. PURPOSE OF THE THESIS

The numerous research efforts in the area of speech recognition and its application have increased the awareness of the importance and value of the speech interface. The study and development of computer assisted C2 decision aids has enhanced the commander’s ability to direct, coordinate and control forces in the battle arena. The purpose of this thesis is to bring these two technologies together, to further enhance the operation of the C2 decision aid, by accomplishing the speech interface and developing a usable vocabulary.

C. CONSTRAINTS

This research was accomplished with the following restrictions: The speech recognition system to be used was the VOTAN 6050 SERIES II. No changes could be made to the Integrated Tactical Decision Aid software.

D. SUMMARY

This thesis summarizes research in the area of speech recognition and that of the Integrated Tactical Decision Aid (ITDA). The hardware interface of the VOTAN continuous speech recognizer with the ITDA host computer, the HP 9020, is discussed as well as the software interface of the voice application to the ITDA characteristics. A possible vocabulary for one module of the ITDA and examples of successful speech operation of the ITDA are provided. The tools used in developing a vocabulary for the ITDA are provided in lieu of a complete vocabulary for the following reasons: For the voice interface to be completely successful, the ITDA program needs to be modified, which would also change the vocabulary. The author’s conclusions from this effort and recommendations for further studies are also presented.
II. THE INTEGRATED TACTICAL DECISION AID (ITDA)

A. EVOLUTION OF THE ITDA

The Integrated Tactical Decision Aid was developed and is under constant revision by the Naval Air Development Center (NADC) as the Central Design Agency. The current version, Version 2.0, is now being fielded throughout the fleet. The ITDA is periodically updated and revised based on input from the field. This constant attention to and revision of the ITDA is making it a very useful and widely accepted addition to the Command, Control, and Communication (C3) system.

B. ITDA SYSTEM DESCRIPTION

The ITDA contains twelve modules which range from data management to decision support in the tactical environment. Appendix A contains a brief description for each module. Each of the modules fall into one of three categories, Stand Alone subsystems, Tactical Modeling, or General Support and Database. Each covered in a user's manual. [Ref. 4: p. 50]

The following are Tactical Modeling:
1. Antiair Warfare Module (AAW);
2. Antisubmarine Warfare Module (ASW);
3. Antisurface Warfare Module (ASUW), includes SASHEM;
4. Electronic Warfare Module (EW); and
5. Contacts Module.

The ITDA includes five Stand Alone subsystems:
1. Automated Strike Operations Decision Aid (ASODA);
2. Communication Planning Support (COPS);
3. Pattern Analysis Decision Aid (PANDA);
4. SAG or SAG Harpoon Engagement Module (SASHEM); and

The remaining two are General Support and Database modules:
1. Automatic Data Entry Module (ADE); and
2. Feature Build/Modify Ports.
C. HOST COMPUTER/HARDWARE

The Navy Standard Desktop Computer, the Hewlett Packard 9000 series 500 Model 20 microcomputer, HP 9020 is the host computer for the ITDA. The HP 9020 has a 32-bit central processing unit with 3.0 megabyte RAM, an interactive keyboard and Color-graphics display. It supports input from remote terminals through a Multiplexor Card (MUX Card) and a standard RS 232 cable.

The main keyboard of the HP 9020 has the standard alphanumeric keyboard (QWERTY style), a numeric keypad and several control keys. A row of sixteen special function keys (soft keys) provides a means for various programmable applications of up to thirty-two single key-stroke commands. [Ref. 4: p. 51] The ITDA makes good use of these special function keys which provides the user with greater flexibility in operation. Figure 2.1 is a display of the HP 9020 keyboard and ITDA special function key overlay. The Special Function Keys, (SFK), can be used any time "SFK" is displayed in the center of the menu row.

D. MAN-MACHINE INTERFACE AND THE ITDA

The Man-Machine Interface with the ITDA is primarily accomplished through a menu-driven interactive program. It is programmed to be operated from the HP 9020 main keyboard, providing only database access to remote users. [Ref. 5]

1. Menu Selection

The selection of menu items can be done by one of three methods:

a. By pressing the alphanumeric keyboard number which corresponds to the menu item number;

b. By pressing the numeric keypad number which corresponds to the menu item; or

c. By moving the highlighted menu item to the desired option by use of the space-bar and then pressing the Carriage Return <CR>. One space moves the highlighted item one position to the right. [Ref. 4: p. 53]
Figure 2.1 HP 9020 Key Board and Special Function Key Overlay
Note, methods a and b do not require the use of the <CR>. Once a menu item has been selected, the menu must completely refresh itself before another selection can be made.

2. Special Function Keys

The Special Function Keys (SFKs) provide the user with additional options and capabilities. The following is a listing of the SFKs and a brief description.

- SFK#0 Produce new geographic plots.
- SFK#1 Access plot aid routine.
- SFK#2 Design, edit, and delete formations and tracks.
- SFK#3 Return directly to the Main Menu from any other menu in the ITDA.
- SFK#4 Provide on-line Help.
- SFK#5 Toggle graphics and alphanumerics on and off.
- SFK#6 Change the system Time and Date.
- SFK#7 Store and Recall geoplot screens

3. Data Entry

At some point in the operation of the ITDA the user will be required to input data in the format of alphanumerics or cursor movement. The user will be prompted for the data entry by means of a short message on the screen. After the user's response the ITDA may request additional data or return to a menu program. At some levels, when prompted for data entry, the user must enter the requested data in the proper format or he will not be permitted to continue. An error message such as: "INVALID LAYER DATA: RENTER!", will be displayed. The user would remain in this state until the proper data was entered or until the escape sequence (!<CR>) was executed. [Ref. 4: pp. 68-69]

4. Menu Structure

The ITDA menu structure is organized in the form of a hierarchical system with the selection of a menu item from one level leading to another set of menu options, and so on. Appendix E, ITDA CDA-TREE, shows how this structure is set
up. The assignment of menu items to the key positions or numbers is based on frequency of use. Those items most often used are assigned item number 1, the next most often used is assigned item number 2 and so on. [Ref. 6] Therefore the same menu item name such as "SURFACE" will not always be assigned to the same item number. The number of menu options available varies from two to a maximum of eight. Some menu programs have gaps between the selections. For example: items 1, 2, and 3 may be used, 4, 5, 6, and 7 not used and item 8 used. This provides some standardization in that some keys are always in the same position, key number 8 is primarily the "EXIT" key which will take the program back up one level. Figure 2.2 shows an example of the menu program from the Main Menu through the first two levels of the "CONTACTS" module. Selection number 1 of the first level, leads to the second level and selection number 1 of the second level leads to the third. Notice the letters SFK above each menu line. This indicates that the Special Function Keys may be utilized with in this menu program.

Figure 2.2 Menu Program Example
E. SUMMARY AS APPLIES TO VOICE APPLICATION

The following characteristics of the ITDA are of particular interest when applying it to a Speech Recognition System as in the context of this study:

- The ITDA was not designed to be operated from a remote terminal.
- The same menu names are not always assigned to the same item number.
- Gaps are present in some of the menu programs.
- Prompts to the user for data input are displayed on the graphics screen.
- Multiple commands cannot be given, the menu must refresh itself completely before the next selection can be made.

The description of how these characteristics affect the application of Speech will be discussed in later chapters.
III. AUTOMATIC SPEECH RECOGNITION SYSTEMS

A. OVERVIEW

Speech recognition systems can be categorized by combinations of four generic types. The first breakdown is that of speaker dependent versus speaker independent. A speaker dependent system takes samples of the potential user's voice, stores them in memory, and uses that stored "voice" data in making comparisons and recognitions. A speaker independent system has algorithms which supposedly handle many different voice patterns. It need not be trained by the user and should be able to recognize the voice of anyone who uses it.

The second generic breakdown of speech recognition systems is that of discrete versus continuous speech. A discrete system can only recognize one word or phrase at a time. The word/phrase must be spoken in a continuous phrase of sound. The user must pause approximately one tenth of a second between words/phrases. This pause tells the recognizer that the word is over and it then will search for a match. With a continuous speech recognizer the user speaks more naturally with no artificial pauses or breaks. The recognizer distinguishes the various words or phrases and compares them to stored data for the match. The discrete system is better for single inputs such as a menu driven program. The continuous speech system is better when longer strings of data are being entered to the computer such as latitude and longitude coordinates. The continuous speech recognition system creates a more natural man-machine interface and works equally well in a discrete mode. [Ref. 3: p. 1]

There have been over 35 different theses, reports and experiments conducted at the Naval Postgraduate School related to speech recognition and its applications. From this
work the following conclusions can be drawn. Voice input can be much faster than manual, fewer mistakes are made and operators perform up to 25% more work on additional tasks while using voice input on the primary task. [Ref. 7] The amount of stress and workload put on the operator has an effect on the accuracy of the Speech Recognition Device (SRD). Increased mental workload can cause an increase in errors, however through careful vocabulary selection this error increase can be minimized. [Ref. 8] Increased stress also increases errors. This can be minimized and even eliminated by training the SRD under the same level of stress as is expected during operations or training with composite samples from several different stress levels. [Ref. 9] Operators of SRD may not need a lot of training in the use of the SRD. In one study, first time users achieved at least as high of recognition accuracy as those who had been trained and had practiced using the device. [Ref. 10] Another study showed that after only two weeks of experience the error rate of users decreased significantly and that generally speaking, experienced users of SRD have better recognition accuracy. [Ref. 11] In relation to the several months it takes to train an operator on the ITDA, the additional two weeks to become familiar with a SRD is not too great a burden.

There are two types of errors with respect to SRDs. The first being that of non-recognition. This is where the system does not make a match which, in a sense, is the same as not hearing the phrase. The second is that of mis-recognition, that being the case when the SRD makes a match but matches the wrong phrase. The first type can primarily be attributed to the operator not saying the phrase the same way that it was trained or saying a word that is not in the vocabulary. The second error is primarily attributed to vocabulary selection, having words or phrases that are very similar to one another.
B. VOTAN SPEECH RECOGNITION SYSTEM MODEL 6050 SERIES II

The VOTAN VTR 6050 Series II (VOTAN) is a speaker dependent, continuous speech recognition system. It is a convenient, portable, stand alone unit which can be connected to any system using a standard RS-232 port. Its output is standard ASCII or hexadecimal equivalent. It operates in two different modes: Voice Terminal (VTR) and Voice Peripheral (VP). The VTR mode is a direct interface between the host computer and terminal. This is the mode used in operating the ITDA through the HP 9020 host. Figure 3.1 shows the configuration for operating the ITDA with the VOTAN. The VP mode is used for telephone applications and is not discussed further.

![Figure 3.1 Configuration to run the ITDA with VOTAN](image)

1. Capacity

The storage capacity of the VOTAN is supported by three internal components. They are:
- VTR System Memory (approximately 500K)
- Floppy Disk Memory (maximum of 760K)
- Voice Card Memory (maximum of 22K)

Additional storage capacity can be obtained by storing voice data in the host computer. The average word will use 200-250 bytes of memory, for 1 pass training (multiply that amount by the number of training passes or templates desired). More templates give a higher recognition accuracy. The VTR System Memory can hold 2000-3000 words, depending on the number of
templates. The Voice Card can hold only one set at a time. The maximum number of word templates per set is 150. The recommended number of words is 10-20. [Ref. 12: pp. 1.11-1.12] Since the VOTAN searches all available templates to insure an accurate recognition, fewer words in the set will increase the speed of the recognition. The smaller sets take up less memory thereby providing more space for multiple training passes which will increase the accuracy of recognition.

The System Memory can hold multiple sets. The VOTAN will switch from one set to the next instantaneously. [Ref. 12: p. 1.11] The switch is accomplished in one of two ways. The first by using a switch word, where a word or phrase is recognized and the system is told to load the new set on the voice card. The second is by setting a predetermined number of recognitions from the on-line set after which the switch takes place. In order to effect the switch, when using a switch word, the set label must be included in a "COMMON" set. The common set is active, on the Voice Card, at all times.

There are certain words reserved by the VOTAN as task words. The following is a list of the VOTAN task words with their associated tasks.

- **GO TO SLEEP** Stop recognizing.
- **LISTEN TO ME** Start listening again.
- **INITIALIZE** Start recognizing from the set specified by the SYS command. Clear the message and data buffers.
- **VERIFY** Play all the messages in the message buffer.

This task word set is also active on the Voice Card at all times. [Ref. 12: p. 1.11]

2. **Programming**

The VOTAN is designed to be easily programmed. Crucial to the successful implementation and operation of the system is the careful planning and selection of a vocabulary so as not to exceed memory and to minimize set switches, the
latter not as critical as the former. It must be remembered that the Voice Card is limited to 22K, which includes all common and task words as well as the active set. For example, if your file contains 10 sets, each with a COMMON identifier, those 10 COMMON words will occupy 10 spaces on the Voice Card. The 4 Task Words will occupy another 4 spaces therefore the Voice Card will start out with 14 words before a set is ever loaded to the card. Assume that each of the above 14 words or phrases take 500 bytes, you will have used 7K of the possible 22K. With the size of the ITDA vocabulary it is possible to exceed the 22K with just set labels. For this reason the vocabulary is broken into several files, each file further broken into sets. The separate files need to be restored manually.

The VOTAN is programmed in the off-line mode. This mode does not permit the transfer of any commands to the host, and is primarily used in the programming and training phases. There are several commands used in programming the VOTAN. The following example gives a brief description of those used in the application described in this thesis. All programming is done from the VT 102 terminal. The user first enters the edit mode by typing edt, he then enters the set label and subsequent word/phrases in that set with their associated host strings. The following is an example of programming the VOTAN.

EDT {allows you to enter the EDITOR}
S:EXISTING_CONTACT,CM {identifies the set as EXISTING_CONTACT, and puts it in the COMMON (CM) set}
EXISTING_SUBMARINE,HS=11\OD {EXISTING SURFACE is the prompt, the commands sent to the host are 11 followed by a carriage return, hexadecimal \0D}
DELETE_DATA,HS= \0D {the host string in this case is two spaces and a carriage return, the hexadecimal representation for space could also have been used}
S:NUMBERS,CM {identifies a new set, NUMBERS, which again is a common word}
ONE, HS=1

(TWO is the prompt and a 1 is sent to the data buffer)

TWO, HS=2

(TWO is the prompt and a 2 is sent to the data buffer)

THREE, HS=3

(similar to above)

POINT, HS=.

(POINT is the prompt and a period is sent to the buffer)

ENTER, HS=\OD, SD

(a carriage return is sent to the buffer and then all data in the buffer is sent to the host computer)

FORGET_IT, CD

(the word to clear the data buffer is FORGET IT, this would be used if an error was made, the data would be deleted before it was sent to the host)

SDB1

(turns the data buffer on, must be give at the executive level after a > prompt)

A complete listing of the VOTAN programming commands is found in the Users Guide which is reference 14. Appendix B and Appendix C gives a listing of the vocabulary for use with the ITDA. The vocabulary will be discussed in Chapter IV, Vocabulary Selection.

3. Training

The single most important factor in achieving recognition accuracy is that of training. [Ref. 3: p. 3] The VOTAN can be trained in two different modes, Single Pass and Training In Phrases. In the single pass mode, the VOTAN helps the user train each word, one time. The single pass training can then be repeated as many times as the user would like. It is recommended to have at least two passes but no more than five. [Ref. 12: p. 2.3] More passes gives the VOTAN that many more templates from which to make a comparison and a match. More training passes equates to greater accuracy. It is in the single pass mode that a composite template can be created. Each pass can be made at various levels of operator stress to develop a template that will serve equally well under various stress levels. A composite template using many different users can also be developed in this mode. Studies have shown that speaker dependent systems can very closely simulate speaker independent systems by composite training.
Accuracy was maintained at 99\% when the speech patterns of four different users were combined with the primary user, and over 95\% when four users created the composite template and a fifth user attempted the recognition. [Ref. 13] This would be especially useful in time critical situations where there just is not enough time for all potential operators to train their own vocabularies. In the military, with the frequent rotation of operators due to transfers, it would be useful to have a composite template for the in-coming operator. Other useful applications of this principle are in cross training, the inexperienced operator can add his training templates to the experienced one, both can operate the system simultaneously without changing disks or files.

The Training In Phrases mode requires that at least two passes have been made with the single pass mode. In this mode the VOTAN selects several words to be trained in a phrase. In some situations this is much more accurate because it more closely resembles the way the operator will speak during operation. In normal conversations some words tend to get slurred, the slurred word may not be close enough to the one trained to get a recognition. In these cases the Training In Phrases is very beneficial. [Ref. 12: p. 2.4] The VOTAN has an algorithm which selects the words for each phrase. Each phrase will consist of several words. The user will train the phrases by saying the words in the order presented. Each word will get trained at the beginning of the phrase, in the middle of the phrase, and at the end of the phrase. This type training also takes care of the various voice inflections that occur naturally by the position of the word in the phrase. Training In Phrases is time consuming and memory consuming. If the users vocabulary is not experiencing recognition problems there is no need for this type training. If only a portion of the vocabulary is questionable, that portion may be trained separately by the phrase mode. [Ref. 12: p. 2.5]
Good training habits should be developed and enforced. One study demonstrated that operators who are supervised throughout the training process achieve better recognition rates than those who train by themselves. [Ref. 3: p. 4] Training should be done in the same environment as is expected for operations. The voice should be warmed up but not tired, conduct the training at midday. [Ref. 12: p. 2.3] A test of this principle was conducted during this thesis research. The demonstration vocabulary was trained at midday and exercised at various times throughout the day with no significant differences in the dist1 (described in chapter IV) recognition level. All distances were in the mid 20 range. The same vocabulary was retrained at 2200 hrs and exercised at 1000 hrs the following day. In all cases the dist1 recognition level increased by at least 10 points, and for many words as much as 20 points. Another test, an unintentional test of recognition was also completed. That being, how a head cold with nasal congestion affects recognition. The following observation is made: When the vocabulary was trained without a cold, and exercised with a cold, there was no significant difference in the recognition levels. When the vocabulary was trained with a cold and exercised without a cold, there was a significant difference in the dist1 recognition level. There is no scientific or statistical data to support this, it is merely an observation.

When training, do not shout or exaggerate the words, attempt to speak in as normal a pattern as possible. Voice patterns do not change significantly over time, however it is recommended to retrain approximately every six months. This is not critical in that a study was done with voice patterns that were five years old and recognition accuracy did not decrease at all. [Ref. 14]
Basic training techniques and habits are summarized as follows:
- **Plan how you will say each word ahead of time.**
- **Train under the same conditions that you will operate in.**
- **Speak normally, with no special intonation or enunciation.**
- **Use a clear, firm tone. Do not exaggerate the word.**
- **Train each word at least two times.**
- **Use the least number of templates that will give accurate recognition.**
- **In noisy environments adjust the gain to block out background noise.**
- **Train at midday, when the voice is warmed up but not tired.**
- **Where possible, retrain every six months.**

4. **Operation**

When the VOTAN is first turned on, it comes **on-line**. It is in this mode that communication with the host computer is accomplished. The user must first take the VOTAN off-line and select which file he would like to have activated, he restores that voice data to the Voice Card then puts VOTAN back on-line and operation can begin. Some commands can be programmed to happen automatically each time the VOTAN is initialized. The set to be restored to the Voice Card is one such command. Another is the use of the Data Buffer as indicated in the above example. The Data Buffer is very useful, especially where accuracy is critical. The SRD may be 100% accurate but if the operator says the wrong thing, an error is still made. By using the buffer this type of operator error can be corrected. The use of these automatic commands would have to be considered for each application and may not be appropriate for some. Once on-line the commands are sent directly to the host. The keyboard can also be used to input data and in some situations a combination of voice and manual input may be best. Such would be the case with the ITDA, when entering new contacts, where the name of the contact may not have been stored or trained.
5. Interface with ITDA

The hardware interface between VOTAN and the ITDA is accomplished as per Figure 3.1. The software interface is much more complicated. As was pointed out in chapter II, the ITDA was not programmed with the application of voice in mind, or with the possibility of being operated by a remote user. This fact has created some significant problems, not all of which were able to be overcome. The Air Force recently conducted a study of applying speech recognition to a Weapons Control Station. They faced a similar problem, the original software was not developed with a speech application in mind. The software was not expecting input through a host port, the port that the SRD was connected to. They solved their problem by changing the software. [Ref. 15: pp. 24-28]

VOTAN is treated as a remote user, and as such must input data through the MUX card. Data sent through the MUX card is not expected by the ITDA and not accepted until a carriage return is sent. Since a carriage return is one method of selecting menu items from ITDA, the required carriage return <CR>, was not only sending the data but also executing the next highlighted menu item when it was not wanted. This was overcome by using a combination of numeric entries and "space bar" followed by a <CR>. For example, to execute key number 8, the command would be 7 spaces and a <CR>. The 7 spaces would move the highlighted item from block 1 to block 8, the <CR> would send the data through the MUX card and also execute item 8. For multiple commands, only the last level of commands need use the "space bar" <CR> method. For example, the key strokes or menu item numbers to input an "AIR" contact in the CONTACT module would be 113. The VOTAN command line would be: 11++\0D, where the "+" sign represents a hit on the space bar, and the "\0D" is the hexadecimal representation for a carriage return. No generalizations can be made using the "space bar" <CR> method. Many times in the ITDA flow chart there are gaps in the menu. Gaps are where
item numbers are skipped, such as: 1, 2, 3, are used 4, 5, 6, are skipped, and 7 and 8 are used. In this case only 4 spaces and a <CR> would cause item number 8 to be executed. This same problem prevents the use of just one set, the set of numbers 1 to 8, and using voice to step through each level one at a time, the same as with manual input. This last method, the single set of numbers 1 to 8, would be a good alternative when the carriage return problem is solved. Programmers at NADC indicate that this could be done. [Ref. 16] It was not done nor was the possibility able to be verified under the constraints of this work.

A problem much greater than the <CR> is the lack of required prompts to the operator on a remote terminal. The VOTAN makes the input through the MUX card and the graphics are manipulated on the HP 9020 screen. All operations appear normal until the program reaches a point where the operator must enter data other than simple menu items. The prompts to the operator are not displayed, he is faced with a static screen, with no menu items to choose from. As was pointed out in Chapter II, there is no graceful exit from some levels, either the operator makes the required data entries in the proper format or he is told "INVALID DATA, REENTER" in this case he doesn’t even get the error message. There currently is not a solution to this problem, other than the operator being so familiar with the program that he knows what is wanted at all times. Through careful vocabulary selection this problem can be minimized but still requires a very familiar operator. The "BREAK_OUT" phrase is included in the vocabulary with the associated key strokes which will get the operator out of the situation just described, it will not however get him the prompts. This problem was also described to the programmers at NADC, who once again felt that the corrective action might not be too difficult. [Ref. 16]

The final problem associated with this particular application of a Speech Recognition System is that of
multiple meaning words. There are several words which are used quite often in the ITDA. The problem lies in that the same key strokes are not associated with those words each time they are used. For example the word "SURFACE", has a keystroke of 2 assigned in one occurrence and a 3 in another. This prevented the use of a "Frequently Used" word set. Additionally VOTAN will not permit the use of multiple meaning words at all within the same file even with set separations. To overcome this, each occurrence of the word had to have a spelling variation. The word was spoken the same way each time in training and in recognition but the proper keystrokes would be associated with the proper occurrence of the word because of the set separation. The above manipulation is possible only because the words are separated by sets and only one set is active on the Voice Card at a time. Therefore there is no chance of misrecognition between the two words. Detailed examples are given in Appendix C. for the word "EXIT".

VOTAN is able to give multiple commands to the ITDA, however because of the present software only one command is executed at a time. The difference between manual and voice operation is that the manual operator must wait for the menu to refresh itself before entering the next command. The voice operator's commands are buffered in the VOTAN and are sent and executed on the very instant that the menu is refreshed. The voice operator sees the menu items flash on the screen as the multiple commands are executed.
IV. VOCABULARY SELECTION

The selection of the vocabulary is important in several aspects. First, the accuracy of recognition is affected by word selection. Under periods of increased mental workload, the greater number of errors occur between words that are similar. [Ref. 17] Multi-syllable words are better than monosyllable words. [Ref. 12: p. 2.4] The SRD takes the voice data, compresses it and then analyzes each part and compares it to stored data, the more parts to compare with, the greater the recognition accuracy. Finally the man-machine interface is affected by the vocabulary chosen. Words or phrases should be selected so that the user feels most comfortable, vocabularies should be tailored to individual users desires.

Vocabulary selection probably ranks equally in importance with vocabulary training. [Ref. 3: p. 4] With the size of the ITDA vocabulary it is critical to successful implementation that the vocabulary be carefully planned and selected. It has been pointed out that similar words can cause errors in certain situations. There are obvious similar words such as "no" and "go", but other words which do not seem similar to the human ear do get mis-recognized in the VOTAN "ear". [Ref. 12: p. 2.7] VOTAN provides a measuring device by which these similar words can be detected and changed in order to enhance the recognition accuracy. That device is the Acceptance Level. The Acceptance Level is a measure of how closely what is said matches a template that is stored. A 0 (zero) is an exact match and a 255 is the worst case, where anything said is recognized. [Ref. 12: pp. 2.6-2.7] The user establishes the level of recognition which will be accepted. That level is currently set at 50 and for most applications is acceptable. When exercising the vocabulary, each word is listed with a dist1 and dist2 acceptance level. The dist1 is
the closest word and the dist2 is the next closest. By comparing these two levels, potential mis-recognitions can be identified. Figure 4.1 is an example of the dist1 and dist2 acceptance level display for the ITDA vocabulary.

<table>
<thead>
<tr>
<th></th>
<th>dist1</th>
<th></th>
<th>dist2</th>
</tr>
</thead>
<tbody>
<tr>
<td>005</td>
<td>024</td>
<td>039</td>
<td>071</td>
</tr>
<tr>
<td>006</td>
<td>026</td>
<td>016</td>
<td>048</td>
</tr>
<tr>
<td>014</td>
<td>032</td>
<td>022</td>
<td>036</td>
</tr>
<tr>
<td>037</td>
<td>006</td>
<td>038</td>
<td>030</td>
</tr>
</tbody>
</table>

For best recognition, the dist1 acceptance level should be between 20 and 30. As can be seen by this example, some pairs of words are more similar than others. On the first line, the word NUMBERS was spoken and recognized with a dist1 of 24. The next closest word was NEW_CONTACT at a distance of 71. The recognition differential between the two is good. The greater the distance, the better. Word number 014 NINER, has a dist1 of 32 and is very close to the dist2 word of ENTER. These two words are prime candidates for mis-recognition. To correct the situation, one of the words could be changed, the words could be isolated by set separations, or attempt the Training In Phrases solution. Word 037 EDIT and word 038 EXIT, sound very similar, but to VOTAN the recognition difference is very great. Notice that it is possible for both the dist1 and dist2 word to be below the recognition acceptance level of 50. This does not create a problem as long as the distance difference is acceptable. The user decides what is acceptable based on the application. For use with the ITDA a difference of at least 10 is acceptable. The recognition acceptance level can be changed to suit the situation. It is currently set at 50 which is to say that if the dist1 is not 50 or less there would not be a recognition. In applications where absolute accuracy is required, the
level can be set much lower. Lowering the level will reduce the mis-recognition errors but may increase the non-recognition errors. After exercising the vocabulary several times if a trend is established such that the distl levels do not go above a certain point, then the recognition level should be lowered to that point. Selecting a vocabulary is an evolutionary process. The user is advised to change and update the vocabulary with words and phrases that improve the distl and dist2 differences.

Words should be selected which will give the user a clue as to what functions will be performed as a result of saying that word/phrase. The length of the word or phrase affects recognition. Multi-syllable words are better than mono-syllable. Longer words/phrases provide more distinctive information which VOTAN uses to make comparisons. (Ref. 12: p. 2.4) With the ITDA, attempt to use the entire menu item name, such as "DELETE ALL BEFORE TIME". A drawback to the long phrases is that they are difficult to say the same way twice. This example could be shortened to "DELETE ALL BEFORE", without losing any recognition accuracy and still maintaining meaning. Appendix C should be consulted. It contains a summary of tools for developing a vocabulary and the actual vocabulary selected for the CONTACTS module.

In the application described in this thesis, that of running the ITDA with the VOTAN, the following were considerations in vocabulary selection. By studying the CDA TREE in Appendix F, one can see that there are many changes in the various categories, these are very convenient for set and file selection and breakdown. One can also see that there are several instances where the same word or phrase has different commands associated with it. This causes significant problems if those words are not separated by set selection or even separate files. An example is in the CONTACTS module, under INPUT CONTACT. The word SURFACE is menu item number 1, and requires a 1 to be sent to the host.
Under MODIFY CONTACT, the same word, SURFACE, is menu item number 3 and requires a 3 to be sent to the host. The VOTAN will not permit programming the same word with multiple meanings, another word could be substituted for one of the SURFACE words but that could lead to confusion and errors on the part of the operator. It is best to separate these occurrences by sets. There are several words or phrases that are similar. In the CONTACTS module, under PLOT CONTACT are the phrases PLOT ALL and PLOT AIR. The word AIRCRAFT was substituted for the word AIR, and it is just as natural for the operator to say AIRCRAFT which makes this a good substitution. There are other similarities such as ACCEPT DATA and EDIT DATA, ALL SUB and SPEC SUB. There are different ways to deal with each situation, sometimes by deleting the word that is the same, in this case DATA, the problem is eliminated. In all cases where an abbreviated word is used, by saying the whole word, such as SPECIAL SUBMARINE instead of SPEC SUB, the problem is eliminated.

The application of speech recognition to the ITDA is not restricted to the VOTAN 6050 series II recognizer. Any SRD can be used as long as the output string is ASCII and/or hexadecimal and the connecting hardware is a standard RS 232 cable. If the SRD does not have the set switching features of the VOTAN, it must have a very large capacity for the vocabulary.
V. SCENARIO APPLICATION

A possible application of speech recognition with the ITDA is that of operating it in a predetermined scenario. This type application would be useful and effective in situations where the type of information needed from the ITDA as well as the order in which it would be requested was known in advance. Examples of this type scenarios are: Presenting status reports; Recommended Sonobuoy placements for a given situation; and Sequence of events supporting an upcoming exercise.

To present a status report to a Battle Group Commander the user would program the voice commands the execute the key strokes which would adjust the geoplot to display the geographic locations of all vessels in that battle group, all enemy vessels within the radius of concern, and current readiness posture. For placement of sonobuoys, the user would program several generic type tracks and assign those corresponding key strokes to specific phrases, when a particular track is encountered, the user simply says the phrase which corresponds to that track and the recommended pattern would be displayed.

Pre-programming for specific or generic scenarios can also be accomplished. Certain operations routinely encounter similar if not the same situations. Appendix E is an example of one such scenario. During the execution of the ITDA program in this particular scenario, the ITDA operator is free to move around the Command Information Center, (CIC), and can be accomplishing additional tasks such as maintaining a message traffic log. The total number of manual key strokes to run this scenario is __, the total number of voice commands to run the same scenario is __. The time to execute this scenario manually was approximately 14 minutes, by voice 7 1/2 minutes.
Many other operational oriented scenarios and routine tasks can be developed. The development being limited only by the imagination of the operator. Each of the above type applications have their own advantages. However, they all have the following in common. The voice application is faster, is more efficient in terms of man hour usage, and is more accurate.
VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The complexity of the Command, Control, and Communication (C3) system will be multiplied many times by the added pressures of combat. The commander who makes the most efficient use of his assets in Directing, Coordinating, and Controlling forces will gain the advantage over his opponent. The Computer Assisted Decision Aid has evolved into an essential component of the C3 system. Just as essential is the man-machine interface with the computer. The application of Speech Recognition Devices to military systems is a potential 'high pay-off' asset which will give the commander the advantage. [Ref. 15: p.25]

This thesis investigated the advantages of SRDs in the C3 environment and its application to the Integrated Tactical Decision Aid. Users of SRDs have demonstrated that information can be processed more rapidly and with less errors, that operators can accomplish more work and have greater flexibility to accomplish more than one task. In modern combat one cannot afford the luxury of a dedicated keyboard operator, he must be able to do many things simultaneously. SRDs give this added flexibility.

The ITDA is a valuable decision aid currently in use. The combination of speech technology with the ITDA would be a quantum leap forward towards achieving maximum efficiency in the man-machine interface. The VOTAN 6050II SRD was connected to the host computer for the ITDA. The ITDA was operated by voice with a great deal of success. As the ITDA currently exists an ideal interface is not possible. Ideal being that the operator workload, both mental and physical, would be reduced by the addition of speech. With the current application, critical prompts to the operator are lost which would increase the mental workload, forcing the operator to
memorize what prompts should appear to him for the entry of data. Programming the VOTAN to operate the ITDA is awkward with the present software, requiring much trial and error and voice command manipulation.

B. RECOMMENDATIONS

The application of speech recognition to the ITDA should be pursued. The required changes in the ITDA software, should not affect the manual operation of the program and could be relatively easy to do. NADC is the controlling agency for the ITDA, future studies with this application should be directly with them. Speech Recognition is the ideal interface with machines and is the technology of the present and future, therefore developments of and modifications to existing decision aids should be conducted with the application of speech technology in mind.
APPENDIX A
ITDA MODULE DESCRIPTION

The following description of the ITDA modules is an extract from Appendix A, Module Description. [Ref. 4].

- **AAW**
 From the main display selection menu of the Antiair Warfare (AAW) tactical decision aid, options exist to display tracks, PIMs, and associated graphics. Algorithms for intercept and stationing problems are provided. Graphics displays enhance the information presented. The action functions are used to quickly change the display, measure range and bearing between points, or to compute stationing times based on time of arrival computations.

- **ASW**
 The Antisubmarine Warfare (ASW) allows analysis for localizing and engaging a submarine.

- **ASUW**
 The Antisurface Warfare (ASUW) module allows the user to plan and monitor the assignment of surface surveillance aircraft to achieve surface search and localization objectives in the vicinity of a Battle Group, and to plan or simulate the engagement of surface contacts.

- **EW**
 The Electronic Warfare (EW) module enables calculation and display of satellite information, aircraft coverage altitude, environmental effects on radio frequency propagation, and the effect of terrain masking (shadowing) on radar detection of a surface vessel.

- **CONTACTS**
 This module allows the operator to input, modify, delete, and plot contacts, and includes the capability to generate ellipses, given two or more bearings for a contact.

- **ASODA**
 The Automated Strike Operations Decision Aid (ASODA) assists the Strike Operations Officer and his staff in the performance of their duties, ranging from routine functions to operating in a contingency tasking and planning role. Functions within ASODA are: executive control, administrative support, force management, mission planning, schedules, and weapons employment effects.

- **COPS**
 The Communication and Planning Support (COPS) program is designed to assist the Navy communications community in forecasting HF propagation. This module allows shipboard communications personnel to determine the coverage of an intended HF emission as a function of power, frequency, location (distance), time of day, and solar activity.
- **PANDA**
The Pattern Analysis Decision Aid (PANDA) is designed to provide assistance to an antisubmarine warfare (ASW) analyst in determining optimal sonobuoy search pattern geometry, spacing, and orientation given the prevailing environmental conditions and current knowledge of probable target characteristics, location and movement.

- **SASHEM**
The SAG or SAG HARPOON Engagement Model (SASHEM) provides for the evaluation of multiple shooter versus multiple target HARPOON tactics. Probabilities of target acquisition (PACQ) and weapon hit (PHIT) are calculated and displayed. PACQ algorithms account for environmental effects, target motion, and target location errors. The PHIT calculation is based on extensive Soviet Antiship Missile Defense (ASMD) information. For each of the Soviet ship classes in the database, the effectiveness of search radars, ESM suites, and hardkill ASMD systems against each HARPOON missile block are considered. SASHEM is accessed through ASUW.

- **TEPEE**
The Tomahawk Engagement Planning and Exercise Evaluation (TEPREE) module produces Tomahawk Antiship Missile (TASM) engagement plans which replicate engagements designed on the Tomahawk Weapon Control System (TWCS), by using the same algorithms. An operator can, therefore, be confident that an engagement designed on the TWCS can be reproduced on the TEPREE and vice versa. TEPEE goes beyond just producing TASM engagement designs. TEPEE allows: exercise reconstruction and evaluation of engagements, scenario generation, HARPOON missile engagement training, and automatic data entry.

- **ADE**
The Automatic Data Entry (ADE) module is designed to manage the receipt and processing of OPINTEL, oceanographic, and LINK 14 messages. It contains facilities to log incoming messages, view messages, and plot contact data they contain, and to manage up to sixteen communications channels.

- **FEATURES**
The Feature Build decision aid is used to create special map areas, known as features, to represent operational areas, rendezvous areas, etc., which the operator defines to meet the specific needs. In addition to the ability to specify geographic areas, the operator can define start times and stop times for each area so that the various areas can turn on or off automatically. Individual map features have unique names and can be polygons or circles. Features are organized into groups, with each group residing in a separate database.

- **PORTS**
The Modify Ports decision aid of the General Support module is used to display ports on the geoplot. The operator has the capability to: Define the location of a port, Assign a name to a port, Assign a symbol to mark the port, Assign a color to a port symbol and name. Ports data can be entered, modified, or deleted at the discretion of the operator. Once entered, ports can be displayed on the geoplot by using the Special Function Keys.
APPENDIX B
PREPARING THE VOTAN AND INTERFACING WITH ITDA

This appendix illustrates how to put the VOTAN into operation with the CONTACTS module of the ITDA. The vocabulary here is the recommended one for use with the current version, 2.0, of the ITDA housed in the HP 9020 and the VOTAN 6050 II. The entire vocabulary for the CONTACTS module is contained in Appendix C.

A. PREPARING AND PROGRAMMING THE VOTAN

Connect the VOTAN to the HP 9020 by way of the RS 232 ribbon cable, one end to the HOST port on the VOTAN the other to the MUX CARD, second port. Connect the VOTAN to the terminal by way of another RS 232 cable, one end to the TERMINAL port of the VOTAN the other to the VT 100/102 terminal itself.

To program the VOTAN and train the vocabulary, only the terminal and VOTAN itself are used. Turn on the power to the VOTAN and terminal. The following will be displayed if the connections have been made properly:

VOTAN Voice Terminal V5.1
- On Line -

Take the VOTAN off-line by holding down the CONTROL key and pressing the "b" then "a" keys, the following will be displayed:
- Off Line -
V>

The VOTAN is now ready for programming. The V> prompt is the executive level prompt. The commands used here have been described in chapter III. For a more complete description see the users guide. Enter the following just as it is listed here. The use of upper or lower case characters does make a difference, you can use either, just remember which for the purpose of restoring your file.
EDT
(END THIS AND EACH OF THE FOLLOWING LINES WITH A CARRIAGE RETURN)

S: NUMBERS, CM
ONE, HS=1
TWO, HS=2
THREE, HS=3
FOUR, HS=4
FIVE, HS=5
SIX, HS=6
SEVEN, HS=7
EIGHT, HS=8
NINE, HS=9
ZERO, HS=0
NORTH, HS=N
SOUTH, HS=S
EAST, HS=E
WEST, HS=W
BREAK OUT, HS=!: BD
MAIN MENU, HS=1 BS
ENTER, HS=0 BD
EXECUTE SD
DELETE BD
S: MONTHS, CM
JANUARY, HS=JAN
FEBRUARY, HS=FEB
MARCH, HS=MAR
APRIL, HS=APR
MAY, HS=MAY
JUNE, HS=JUN
JULY, HS=JUL
AUGUST, HS=AUG
SEPTEMBER, HS=SEP
OCTOBER, HS=OCT
NOVEMBER, HS=NOV
DECEMBER, HS=DEC
S: NAMES, CM
NIMITZ, HS=NIMITZ
NEW JERSEY, HS=NEW JERSEY
MISSOURI, HS=MISSOURI
RED ONE, HS=RED ONE
BLUE TWO, HS=BLUE TWO
S: EXISTING CONTACT, CM, NS=NUMBERS, CT=1
EXISTING SUBMARINE, HS=11 \OD
EXISTING SURFACE, HS=11++ \OD {THE "++" INDICATES A SPACE}
EXISTING AIRCRAFT, HS=11+++ \OD
S: REPORT TYPE, CM, NS=DATA, CT=1
POSITION, HS= \OD
DATUM CIRCLE, HS=+ \OD
LINE OF BEARING, HS=++ \OD
RANGE, HS=+++ \OD
CONTROL ZONE, HS=++++ \OD
ELLIPSE, HS=+++++ \OD
SOSUS BOX, HS=+++++++ \OD
EXIT, HS=+++++++ \OD
S: DATA, NS=COMMON, CT=1
ACCEPT, HS= \OD
EDIT, HS=+ \OD
DELETE, HS=++ \OD
EXIT, HS=+++ \OD
S: NEW CONTACT, CM, NS=COMMON, CT=1
NEW SUBMARINE, HS=1 \OD
NEW SURFACE, HS=1++ \OD
NEW AIRCRAFT, HS=1+++ \OD
S: CONTACT TYPE, CM, NS=COMMON, CT=1
FRIENDLY, HS= \OD
HOSTILE, HS= \OD
NEUTRAL, HS= \OD
BATTLE GROUP, HS=+++ \OD
EXERCISE ENEMY, HS=++++ \OD

32
This completes the programming of the file. The V> prompt should be displayed. Save the file by typing:

FSV A CONTACTS <CR>

You will see:

Saving Data...Save Complete

B. TRAINING THE VOCABULARY

To begin training, at the V> prompt type:

TRS<CR>

You will see:

Single word training (<CR>,X)

Press <CR>. You will hear the beep and see:

001 GO_TO_SLEEP

Say "GO_TO_SLEEP" You will then see:

Proceed? (y,n,x,g) or any number of error messages. If you are not sure of yourself or you get an error message, do not proceed, type "n" and try again. If you get an error message you will find its meanings in the users guide. The VOTAN will proceed through your vocabulary to the end. You must have two templates for each word before you can train in phrases, if you elect to do that. (See chapter III) You can now exercise your vocabulary. To exercise the vocabulary means to practice saying the words for recognition. The VOTAN is in the Off Line mode with no commands going to the host. At the V> prompt type EXR<CR>. You will see:

Continuous Recognition
You may now say any of the words that you have trained. The voice card will have only the "COMMON" set active at this time. You must first say one of the words in the "COMMON" set, to switch to another set, say the name of the set label. As you say the words, they will appear on the screen. The set label will appear twice, once to identify it as a set label and the second time with its associated word number. Figure B.1 is an example of the displays when exercising the vocabulary.

NUMBERS

005 NUMBER dist1=024 039 NEW_CONTACT dist2=071
006 ONE dist1=026 016 NORTH dist2=048
011 SIX dist1=023 020 ESCAPE dist2=033

DATA

037 EDIT dist1=006 038 EXIT dist2=030

Figure B.1 Vocabulary Exercise Display

After you are satisfied with your vocabulary exercise, get back to the V> prompt by holding down the "Ctrl" key and pressing the V key. The dist1 and dist2 are assigned values to the level of recognition, 0 being the best and 255 the worst (see chapter III). Dist1 is assigned to the recognized word and dist2 the next closest word. The Acceptance Level is set at 50, if a word does not have a distance less than or equal to 50, it will not be recognized. Note that many times both dist1 and dist2 are less than 50, the lowest distance will be recognized. If your dist1 is consistently low, you may want to lower the Acceptance Level. In the above example a 30 would do.

C. INTERFACING WITH ITDA

After the vocabulary is programmed and trained, it is time to apply it to the ITDA. Put the VOTAN on line by typing ONL<CR>. Turn on the ITDA Hard Disk and the HP 9020. Log on as a "Super User". At the login prompt type "root". At the
prompt for password enter the password. At the # prompt type: init 2. You have now activated the second port of the MUX card, this is where the RS 232 cable should be. Press "Ctrl and D", this will log you off of the HP 9020. Now go to the VT 100 terminal. You should have a login prompt, login to your account. At the $ prompt type: cat|/itdabin/itda <CR> The HP 9020 screen will have some extraneous writing and graphics blocks over the menu items. Hold down the shift key and press key number 28 on the special function key pad of the HP 9020 to clear the blocks. Use the arrow keys to move the cursor to the top left hand corner of the screen and press the delete key until all writing has been removed. On the VT 100 terminal take the VOTAN off line with the Ctrl-ba sequence. Restore the file with: FRS A CONTACTS, put the VOTAN back on line with: ONL and begin operations.
APPENDIX C
CONTACTS MODULE MENU ITEMS WITH CORRESPONDING VOICE COMMANDS

The following is the "CONTACTS" module "CDA Tree Outline" for the ITDA version 2.0, which is currently in use at the Naval Postgraduate School. Some of the menu items differ from that published by NADC. The numbers correspond to the key which executes the command indicated. The words to the right are the recommended voice commands with output strings. VOTAN does not accept breaks between words, where two words are listed as either a set label or a vocabulary phrase, the words must be entered in VOTAN with an underscore, "_", between the words, such as "DELETE_ALL". Where a "+" symbol is shown, insert a space during the VOTAN programming.

By following this example one should be able to learn the tools used to create the vocabulary for the ITDA. It is more important to learn the tools so that individual users can create their own vocabulary than to be given a complete vocabulary for the following reasons: To be most comfortable with the voice input the user should tailor his vocabulary to best suit his needs and style. There are differences between individual versions of the ITDA which are in use, those differences significantly affecting the assigned values of the Host Strings (HS) for the vocabulary. The most significant reason is that until a change is made to the ITDA program which will provide remote users with required prompts, the use of voice is not very practicable. The required change is relatively minor and should be pursued.

This file will be labeled "CONTACTS". It will contain several sets. The vocabulary is listed with comments where appropriate. The comments are in brackets {).
(THE FILE IS NAMED "CONTACTS," RESTORE IT TO THE VOTAN WITH THE "FRS A CONTACTS" COMMAND.)
(THE FIRST SET IS LABELED "MAIN MENU," THERE IS ONLY ONE MEMBER OF THE SET, THAT BEING THE WORD FOR THE MODULE THAT IS WANTED; CONTACTS.)

S:MAIN_MENU,CM,NS=COMMON,CT=1

1 CONTACTS

FOR AN EXISTING CONTACT

11 INPUT CONTACT

(AFTER ONE RECOGNITION FROM THIS SET, (CT=1) THE NEXT SET IS AUTOMATICALLY LOADED, THE NEXT SET BEING "COMMON" (NS=COMMON). THIS SET LABEL IS ALSO PART OF THE "COMMON" SET (CM).)

111 SUBSURF

EXISTING_SUBMARINE,HS=1

112 SURFACE

EXISTING_SURFACE,HS=1+

113 AIR

EXISTING_AIRCRAFT,HS=1++

(At this point VOTAN has switched to the common set, TDA will prompt you to enter a name or number of the displayed contacts. You can have a set called "NAMES" and keep it updated and/or use the "NUMBERS" set, both sets should be in the "COMMON" set and can be recalled by stating the name of the set. You will say "NUMBERS" and then say the appropriate numbers to respond to the prompt.)

S:REPORT_TYPE,CM,NS=DATA,CT=1

(AFTER ENTERING THE NAME OR NUMBER OF THE CONTACT YOU WILL BE ASKED FOR THE REPORT TYPE, HENCE THE SET "REPORT_TYPE", IT IS COMMON (CM), THEREFORE YOU MUST SAY "REPORT_TYPE" TO HAVE THIS SET LOADED, THEN YOU MAY BEGIN SAYING WORDS FROM THIS SET. THE NEXT SET IS "DATA" WHICH WILL BE LOADED AFTER ONE RECOGNITION (CT=1).)

11#1 POSIT

POSITION,HS=

11#2 DATUM CIRCLE

DATUM_CIRCLE,HS=+

11#3 LINE OF BRG

LINE_OF_BEARING,HS=++

11#4 RANGE/BEARING

RANGE,HS=++++

11#5 CZ CONTACT

CONTROL_ZONE,HS=++++

11#6 ELLIPSE

ELLIPSE,HS=+++++

11#7 SOSUS BRG BOX

SOSUS_BOX,HS=++++++

11#8 EXIT

-EXIT,HS=+++++++ (THIS EXIT TAKES THE USER BACK TO THE "REPORT_TYPE" PROMPT. "REPORT_TYPE" IS A COMMON SET, THE USER JUST SAYS "REPORT_TYPE" AND VOTAN IS WHERE IT SHOULD BE.)

(NOTE THIS "EXIT", ITS HOST STRING (HS) IS SEVEN SPACES FOLLOWED BY A CARRIAGE RETURN. THE NEXT "EXIT" HAS A
DIFFERENT HOST STRING. VOTAN WILL NOT ALLOW THE SAME WORD TO HAVE MORE THAN ONE HOST STRING, EVEN THOUGH THEY ARE IN DIFFERENT SETS. TO GET AROUND THIS, USE DIFFERENT VARIATIONS IN THE SPELLING OF THE WORD OR ADD EXTRANEOUS CHARACTERS, SUCH AS THE - BEFORE THE E. SAY THE WORD THE SAME WAY EACH TIME YOU TRAIN. SINCE ONLY ONE SET IS ACTIVE AT A TIME, THERE WON'T BE A PROBLEM OF RECOGNITION, AND THE CORRECT HOST STRING WILL BE SENT.)

S:DATA, NS=COMMON, CT=1

(THESE IS SET "DATA", IT IS NOT A COMMON SET AND THE WORD "DATA" WILL NOT BE PART OF THE VOCABULARY. THE ONLY WAY TO ACCESS THIS SET IS TO HAVE A RECOGNITION FROM THE "REPORT TYPE" SET. AFTER ONE RECOGNITION YOU WILL AGAIN HAVE THE COMMON SET LOADED.)

11##1 ACCEPT DATA ACCEPT, HS=\0D
11##2 EDIT DATA EDIT, HS=+\0D
11##3 DELETE DATA DELETE, HS=++\0D
11##8 EXIT EXIT, HS=++++\0D

(NOTE THIS "EXIT" HAS NO - BEFORE THE E. THIS EXIT ALSO TAKES THE USER BACK TO THE "REPORT TYPE" PROMPT. "REPORT TYPE" IS A COMMON SET, THE USER JUST SAYS "REPORT-TYPE" AND VOTAN ADJUSTS THE VOICE CARD TO BE WHERE IT SHOULD BE.)

NEW CONTACT S:NEW_CONTACT, CM, NS=COMMON, CT=1

111 NEW_SUBMARINE, HS=1\0D
112 NEW_SURFACE, HS=1+\0D
113 NEW_AIRCRAFT, HS=1++\0D

(AT THIS POINT VOTAN HAS SWITCHED TO THE COMMON SET. ITDA WILL PROMPT YOU TO ENTER A NAME OR NUMBER OF THE CONTACT, SINCE IT IS A NEW CONTACT ENTER A NAME. YOU CAN HAVE A SET CALLED "NAMES" AND KEEP IT UPDATED AND/OR USE THE "ALPHABET" SET, BOTH SETS SHOULD BE IN THE "COMMON" SET AND CAN BE RECALLED BY STATING THE NAME OF THE SET. YOU WILL SAY "ALPHABET" AND THEN SPELL THE APPROPRIATE WORDS TO RESPOND TO THE PROMPT.)

S:CONTACT_TYPE, CM, NS=COMMON, CT=1

11#1 FRIENDLY FRIENDLY, HS=\0D
11#2 HOSTILE HOSTILE, HS=+\0D
11#3 NEUTRAL NEUTRAL, HS=++\0D
11#4 BATTLE GROUP BATTLE_GROUP, HS=++++\0D
11#5 EXER HOSTILE EXERCISE_ENEMY, HS=++++\0D
11#6 UNKNOWN UNKNOWN, HS=+++++\0D
11#8 EXIT EXIT-, HS=+++++\0D TOPOF MENU

(THE FOLLOWING MENU ITEMS ARE ALREADY PROGRAMED IN PREVIOUS SETS AS INDICATED BY * SET LABEL)

11##1 POSIT * REPORT TYPE
11##2 DATUM CIRCLE * REPORT TYPE

39
(THIS FINISHES THE "INPUT CONTACT" PORTION OF THE "CONTACTS" MODULE. NOW IS THE TIME TO POINT OUT ONE OF THE PROBLEMS WITH THE ABOVE METHOD. NOTE THE ABOVE "EXIT", WHEN THE USER Chooses THIS HE WILL BE TAKEN TO THE TOP OF THE MENU. THE VOTAN HOWEVER HAS SWITCHED TO THE SET "REPORT TYPE", IT WILL BE NECESSARY FOR THE USER TO SAY "INITIALIZE" TO GET VOTAN BACK WHERE IT SHOULD BE.)

12 MODIFY CONTACT

121 HARDCOPY OPTION S : L A T E S T _ H A R D _ C O P Y , C M , NS=CONTACT_TYPE, CT=2

1211 LATEST CONTACT LATEST_CONTACT, HS=21\0D
12111 ALL ALL_OF_THEM, HS=\0D
12112 SUBSURF SUBMARINES, HS=+\0D
12113 SURFACE SURFACE, HS=++\0D
12114 AIR AIRCRAFT, HS=++++\0D

(THE SET LABEL "CONTACT TYPE", WILL BE SWITCHED TO AUTOMATICALLY AFTER TWO RECOGNITIONS FROM THIS SET)

1211#1 FRIENDLY * CONTACT TYPE
1211#2 HOSTILE * CONTACT TYPE
1211#3 NEUTRAL * CONTACT TYPE
1211#4 BATTLE GROUP * CONTACT TYPE
1211#5 EXER HOSTILE * CONTACT TYPE
1211#6 UNKNOWN * CONTACT TYPE

S : H A R D _ C O P Y _ C O N T A C T S , C M

1212 ALL SUB ALL_SUBMARINES, HS=21+\0D
1213 SPEC SUB SPECIAL_SUBMARINE, HS=21+++\0D
1214 ALL SURFACE ALL_SURFACE, HS=21++++\0D
1215 SPEC SURFACE SPECIAL_SURFACE, HS=21+++++\0D
1216 ALL AIR ALL_AIRCRAFT, HS=21++++++\0D
1217 SPEC AIR SPECIAL_AIRCRAFT, HS=21+++++++\0D

40
122 DELETE OPTION
1221 ALL
1222 ALL SUB
1224 ALL SURFACE
1226 ALL AIR
122#1 DELETE ALL
122#2 DELETE ALL BEFORE TI
1223 SPEC SUB
1225 SPEC SURFACE
1227 SPEC AIR
122#1 DELETE REPORT
122#2 DELETE ALL BEFORE TI
122#3 DELETE ALL
123 EDIT OPTION
1231 SUBSURF
1232 SURFACE
1233 AIR
123#1 EDIT LINE
123#2 EDIT NAME
123#3 EDIT TYPE
123#31 SUBSURF
123#32 SURFACE
123#33 AIR
123#3#1 FRIENDLY
123#3#2 HOSTILE
123#3#3 NEUTRAL
123#3#4 BATTLE GROUP
123#3#5 EXER HOSTILE
123#3#6 UNKNOWN
123#4 EDIT ID CODE
123#6 LIST CONTACT
LIST_CONTACTS, HS=++++\OD
S: PURGE_OPTION, CM

124 PURGE OPTION
PURGE, HS=2+++\OD

1241 ALL
-ALL_OF_THEM, HS=\OD

1242 ALL SUB
-ALL_SUBMARINE, HS=\OD

1243 SPEC SUB
-SPECIAL_SUBMARINE, HS=++++\OD

1244 ALL SURFACE
-ALL_SURFACE, HS=++++\OD

1245 SPEC SURFACE
-SPECIAL_SURFACE, HS=++++\OD

1246 ALL AIR
-ALL_AIRCRAFT, HS=++++\OD

1247 SPEC AIR
-SPECIAL_AIRCRAFT, HS=++++++\OD

S: PLOT_CONTACTS, CM

13 PLOT CONTACT
PLOT, HS=+++\OD

131 PLOT ALL
-ALL_OF_THEM, HS=\OD

132 PLOT SUBSURF
--SUBMARINE-, HS=\OD

133 PLOT SURFACE
---SURFACE-, HS=++++\OD

134 PLOT AIR
---AIRCRAFT-, HS=++++\OD

135 PLOT GROUP ID
-GROUP_ID, HS=++++\OD

S: PLOT_CLASS, CM, NS=CONTACT_TYPE, CT=2

136 PLOT CLASS
-CLASS, HS=++++\OD

1361 SUBSURF
---SUBMARINE-, HS=\OD

1362 SURFACE
---SURFACE-, HS=\OD

1363 AIR
---AIRCRAFT-, HS=++++\OD

136#1 FRIENDLY
* CONTACT_TYPE

136#2 HOSTILE
* CONTACT_TYPE

136#3 NEUTRAL
* CONTACT_TYPE

136#4 BATTLE GROUP
* CONTACT_TYPE

136#5 EXER HOSTILE
* CONTACT_TYPE

136#6 UNKNOWN
* CONTACT_TYPE

S: SPECIAL_CONTACT, CM

137 SPEC CONTACT
SPECIAL, HS=++++++\OD

1371 PLOT STATUS
STATUS, HS=\OD

1372 PLOT HISTORY
HISTORY, HS=\OD

1374 BEST FIT TRACK
BESTFIT_TRACK, HS=\OD

1375 DEAD RECKONING
DEAD_RECKONING, HS=++++\OD

1376 RADIAL EXPANSION
RADIAL_EXPANSION, HS=++++\OD
SUMMARY OF VOCABULARY BUILDING TOOLS

1. NAME THE FILE AFTER THE MAIN MENU ITEM. IE CONTACTS.

2. MAKE A NEW SET FOR EACH LEVEL. NAME THE SET SOMETHING THAT CORRESPONDS TO THE TYPE OF INFORMATION IN THAT SET, IE REPORT_TYPE, OR BY THE TYPE FUNCTION THAT IS PERFORMED, IE NEW_CONTACT. DO NOT NAME THE SET ONE OF THE FUNCTIONS THAT MUST BE PERFORMED.

3. FOR THE MOST PART, THE NEXT SET CAN AND SHOULD BE SPECIFIED. THIS MAKES THE SWITCH AUTOMATIC, AND REDUCES THE CHANCE FOR ERROR BY LIMITING THE AVAILABLE WORDS TO BE RECOGNIZED.

4. ALL SETS CAN BE LISTED AS "COMMON", HOWEVER ALL COMMON WORDS ARE ACTIVE AT ALL TIMES AND TAKE UP PART OF THAT VALUABLE 32K.

5. NON-COMMON SETS ARE THOSE THAT ONLY APPLY TO ONE SPECIFIC SET PREVIOUSLY USED, OR THAT ARE ONLY ACCESSED THOUGH ANOTHER SET. IE "DATA".

6. SAME WORDS WITH MULTIPLE MEANINGS CAN NOT BE IN THE SAME SET. THEY MUST HAVE A SPELLING VARIATION IN EACH OF THE DIFFERENT SETS THAT THEY ARE USED. IE: _EXIT, EXIT, EXIT_.

43
APPENDIX D
COMPLETE LISTING OF MENU ITEMS FOR THE CONTACTS MODULE WITH CORRESPONDING NUMBERS

The following is the CONTACTS module "CDA Tree Outline" for the ITDA version 2.0, revised 15 December 1986. The numbers correspond to the key which executes the command indicated. Due to the classification of this thesis an explanation of the various menu items is not provided. Where the "#" appears in the number sequence, the "#" may be substituted by any of the last digits from the group immediately preceding the group with the "#". Comments have been added to assist the reader in following the flow of commands. This menu outline is for the version of the ITDA currently in use at the Naval Postgraduate School and differs in some items from that published by NADC.

MAIN MENU

***************BEGINNING OF "CONTACTS" MODULE***************

1 CONTACTS
 11 INPUT CONTACT
 EXISTING CONTACT
 111 SUBSURF
 112 SURFACE
 113 AIR
 (HERE YOU ARE PROMPTED FOR THE NAME OR NUMBER OF THE CONTACT, A LIST IS PROVIDED FOR YOU)
 *
 11#1 POSIT
 11#2 DATUM CIRCLE
 11#3 LINE OF BRG
 11#4 RANGE/BEARING
 11#5 CZ CONTACT

44
11\#6 ELLIPSE
11\#7 SOSUS BRG BOX
 11\#1 ACCEPT DATA
 11\#2 EDIT DATA
 11\#3 DELETE DATA
11\#8 EXIT * {THIS EXIT TAKES YOU EASY TO THE PREVIOUS *}

11\#8 EXIT
118 EXIT
 NEW CONTACT
111 SUBSURF
112 SURFACE
113 AIR
 {HERE YOU ARE PROMPTED FOR A NAME FOR THE NEW CONTACT}
 ** 11\#1 FRIENDLY
 11\#2 HOSTILE
 11\#3 NEUTRAL
 11\#4 BATTLE GROUP
 11\#5 EXER HOSTILE
 11\#6 UNKNOWN
 11\#8 EXIT

 11\#1 POSIT
 11\#2 DATUM CIRCLE
 11\#3 LINE OF BRG
 11\#4 RANGE/BEARING
 11\#5 CZ CONTACT
 11\#6 ELLIPSE
 11\#7 SOSUS BRG BOX
 11\#8 EXIT **

118 EXIT
12 MODIFY CONTACT
 121 HARDCP OPTION
 1211 LATEST CONTACT
 12111 ALL
 12112 SUBSURF

45
12113 SURFACE
12114 AIR
 1211#1 FRIENDLY
 1211#2 HOSTILE
 1211#3 NEUTRAL
 1211#4 BATTLE GROUP
 1211#5 EXER HOSTILE
 1211#6 UNKNOWN
1212 ALL SUB
1213 SPEC SUB
1214 ALL SURFACE
1215 SPEC SURFACE
1216 ALL AIR
1217 SPEC AIR
122 DELETE OPTION
1221 ALL
1222 ALL SUB
 122#1 DELETE ALL
 122#2 DELETE ALL BEFORE TI
1223 SPEC SUB
 12231 DELETE REPORT
 12232 DELETE ALL BEFORE TI
 12233 DELETE ALL
1224 ALL SURFACE
 12241 DELETE ALL
 12242 DELETE ALL BEFORE TI
1225 SPEC SURFACE
 12251 DELETE REPORT
 12252 DELETE ALL BEFORE TI
 12253 DELETE ALL
1226 ALL AIR
 12261 DELETE ALL
 12262 DELETE ALL BEFORE TI
1227 SPEC AIR
 12271 DELETE REPORT
12272 DELETE ALL BEFORE TI
12273 DELETE ALL

123 EDIT OPTION
 1231 SUBSURF
 1232 SURFACE
 1233 AIR
 123#1 EDIT LINE
 123#2 EDIT NAME
 123#3 EDIT TYPE
 123#31 SUBSURF
 123#32 SURFACE
 123#33 AIR
 123#3#1 FRIENDLY
 123#3#2 HOSTILE
 123#3#3 NEUTRAL
 123#3#4 BATTLE GROUP
 123#3#5 EXER HOSTILE
 123#3#6 UNKNOWN
 123#4 EDIT ID CODE
 123#6 LIST CONTACT

124 PURGE OPTION
 1241 ALL
 1242 ALL SUB
 1243 SPEC SUB
 1244 ALL SURFACE
 1245 SPEC SURFACE
 1246 ALL AIR
 1247 SPEC AIR

13 PLOT CONTACT
 131 PLOT ALL
 132 PLOT SUBSURF
 133 PLOT SURFACE
 134 PLOT AIR
 135 PLOT GROUP ID
 136 PLOT CLASS

47
1361 SUBSURF
1362 SURFACE
1363 AIR
 136#1 FRIENDLY
 136#2 HOSTILE
 136#3 NEUTRAL
 136#4 BATTLE GROUP
 136#5 EXER HOSTILE
 136#6 UNKNOWN
137 SPEC CONTACT
 137#1 PLOT STATUS
 137#2 PLOT HISTORY
 137#4 BEST FIT TRACK
 137#5 DEAD RECKONING
 137#6 RADIAL EXPANSION
 137#1 SUBSURF
 137#2 SURFACE
 137#3 AIR
 137#7 ERASE LAST SOLN
16 BUILD ELLIPSE
 161 LAT: LNG BEARING
 163 HFDF BEARING
 164 ENTER ELLIPSE
 165 EDIT CONTACTS
 166 DELETE ALL CONTACTS
The hypothetical situation and mission is as follows: The US Naval Forces have been given the mission of escorting Oil Tankers through the Gulf of Oman, the Straits of Hormuz, and into the Arabian Sea.

DESIRED INFORMATION: Satellite coverage for H-hour. The locations and dispositions of all friendly vessels, all enemy vessels, and all commercial vessels. Present the above information in hard copy form.

KNOWN INFORMATION: H-hour, D-day, Latitude and Longitude of the center of the Straits of Hormuz, group name of the friendly units.

ITDA DATA BASE INFORMATION: Current location of all known vessels, Satellite Tracks.

VOCABULARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: MIDDLE EAST CM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H HOUR, HS = 31 550 JUL 87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EASTERN, HS = \BP \OD 26 30 N 05 630 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WORLD, HS = \OD 70 00 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SATELLITE, HS = 8 24 17 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRAITS OF HORMUZ, HS = \BP \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARABIAN-SEA, HS = \OD 04 00 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEARCH, HS = 2 \ODDN \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISPOSITION, HS = \BP SB \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEMY SUBMARINES, HS = 3 6 1 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEMY-SURFACE, HS = 6 2 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENEMY-AIRCRAFT, HS = 6 3 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRIENDLY FORCES, HS = \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUE FORCE, HS = BLUE FORCE \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HARD COPY, HS = \BP BW \OD 5 48 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AREA, HS = \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRIVE ON, HS = Y \ODY ODY ODY \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEASE WORK, HS = N \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 MINUTES, HS = \OD OD 15 \OD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL, HS = 6 2 \OD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXECUTION

VERBAL COMMAND

- **EASTERN**
 - Begins changing the map display to the Eastern Hemisphere.

- **WORLD**
 - Sets the radius of the display screen, these two words must be used together.

 (The screen will now be adjusting to the Eastern Hemisphere)

49
SATELLITE BEGINS THE SEQUENCE TO DISPLAY THE SATELLITE COVERAGE.

HHOUR GIVES THE DATE TIME GROUP FOR THE TRACK SEARCH.

15_MINUTES SETS THE TRACK DURATION AT 15 MINUTES. THESE THREE WORDS MUST BE GIVEN TOGETHER.

(THE SCREEN NOW SHOWS THE SATELLITE TRACKS)

DRIVE_ON EXTENDS THE SATELLITE TRACKS FOR ONE HOUR.

CEASE_WORK ENDS THE SATELLITE TRACK PROGRAM.

HARD_COPY ACTIVATES THE PRINTER FOR THE GEOPLOT.

STRAITS_OF_HORMUZ BEGINS ZOOMING IN ON THE STRAITS OF HORMUZ.

ARABIAN_SEA SETS THE RADIUS OF THE DISPLAY AT 400 MILES, THESE TWO MUST BE GIVEN TOGETHER.

AREA SEARCH RESTARTS THE SATELLITE TRACK PROGRAM.

AREA SEARCH ENDS THE SATELLITE TRACK PROGRAM. THESE TWO MUST BE GIVEN TOGETHER.

DISPOSITION BEGINS SEQUENCE FOR PLOTTING VESSELS.

ENEMY_SUBMARINES PLOTS ALL KNOWN ENEMY SUBMARINES.

ENEMY_SURFACE PLOTS ALL KNOWN ENEMY SURFACE.

ENEMY_AIRCRAFT PLOTS ALL KNOWN ENEMY AIR ASSETS.

COMMERCIAL PLOTS ALL KNOWN COMMERCIAL VESSELS.

FRIENDLY_FORCES BEGINS SEQUENCE TO PLOT A FRIENDLY GROUP.

BLUE_FORCE PLOTS THE GROUP NAMED BLUE_FORCE.

(THE GEOPLOT NOW DISPLAYS ALL KNOWN ASSETS IN THE AREA, ENEMY, FRIENDLY, COMMERCIAL, SUBSURFACE, SURFACE, AND AIR.)

The operator was free to move about, he was able to take the print out of the geoplot from the printer and pass it on to the commander, he was also able to operate additional keyboards. The total number of voice commands is 19, the total number of manual commands to accomplish the same scenario is 96. A significant difference, voice is much faster and the opportunities for errors is much less.
APPENDIX F

COMPLETE MENU STRUCTURE FOR ITDA VERSION 2.0

The following is the "CDA Tree Outline" for the ITDA version 2.0, revised 15 December 1986. As published by NADC. The numbers correspond to the key which executes the command indicated. Due to the classification of this thesis an explanation of the various menu items is not provided. Where the "#" appears in the number sequence, the "#" may be substituted by any of the last digits from the group immediately preceding the group with the "#".

MAIN MENU

***************BEGINNING OF "CONTACTS" MODULE***************

1 CONTACTS

11 INPUT CONTACT
 111 SURFACE
 112 SUBSURF
 113 AIR

EXISTING CONTACT
 * 11#1 POSIT
 11#2 DATUM CIRCLE
 11#3 LINE OF BRG
 11#4 RANGE/BEARING
 11#5 CZ CONTACT
 11#6 ELLIPSE
 11#7 SOSUS BRG BOX
 11##1 ACCEPT DATA
 11##2 EDIT DATA
 11##3 DELETE DATA
 11##8 EXIT *

NEW CONTACT
 ** 11#1 FRIENDLY
 11#2 HOSTILE
11#3 NEUTRAL
11#4 BATTLE GROUP
11#5 EXER HOSTILE
11#6 UNKNOWN
11#8 EXIT

11##1 POSIT
11##2 DATUM CIRCLE
11##3 LINE OF BRG
11##4 RANGE/BEARING
11##5 CZ CONTACT
11##6 ELLIPSE
11##7 SOSUS BRG BOX
11##8 EXIT **

12 MODIFY CONTACT
121 HARDCP OPTION
1211 LATEST CONTACT
12111 ALL
12112 SUBSURF
12113 SURFACE
12114 AIR

1211#1 FRIENDLY
1211#2 HOSTILE
1211#3 NEUTRAL
1211#4 BATTLE GROUP
1211#5 EXER HOSTILE
1211#6 UNKNOWN

1212 ALL SUB
1213 SPEC SUB
1214 ALL SURFACE
1215 SPEC SURFACE
1216 ALL AIR
1217 SPEC AIR

122 DELETE OPTION
1221 ALL
1222 ALL SUB

52
122#1 DELETE ALL
122#2 DELETE ALL BEFORE TI
1223 SPEC SUB
 12231 DELETE REPORT
 12232 DELETE ALL BEFORE TI
 12233 DELETE ALL
1224 ALL SURFACE
 12241 DELETE ALL
 12242 DELETE ALL BEFORE TI
1225 SPEC SURFACE
 12251 DELETE REPORT
 12252 DELETE ALL BEFORE TI
 12253 DELETE ALL
1226 ALL AIR
 12261 DELETE ALL
 12262 DELETE ALL BEFORE TI
1227 SPEC AIR
 12271 DELETE REPORT
 12272 DELETE ALL BEFORE TI
 12273 DELETE ALL
123 EDIT OPTION
 1231 SUBSURF
 1232 SURFACE
 1233 AIR
 123#1 EDIT LINE
 123#2 EDIT NAME
 123#3 EDIT TYPE
 123#31 SUBSURF
 123#32 SURFACE
 123#33 AIR
 123#331 FRIENDLY
 123#332 HOSTILE
 123#333 NEUTRAL
 123#334 BATTLE GROUP
 123#335 EXER HOSTILE

53
123#6 UNKNOWN
123#4 EDIT ID CODE
123#6 LIST CONTACT

124 PURGE OPTION
1241 ALL
1242 ALL SUB
1243 SPEC SUB
1244 ALL SURFACE
1245 SPEC SURFACE
1246 ALL AIR
1247 SPEC AIR

13 PLOT CONTACT
131 PLOT ALL
132 PLOT SUBSURF
133 PLOT SURFACE
134 PLOT AIR
135 PLOT GROUP ID
136 PLOT CLASS
1361 SUBSURF
1362 SURFACE
1363 AIR
136#1 FRIENDLY
136#2 HOSTILE
136#3 NEUTRAL
136#4 BATTLE GROUP
136#5 EXER HOSTILE
136#6 UNKNOWN

137 SPEC CONTACT
1371 PLOT STATUS
1372 PLOT HISTORY
1374 BEST FIT TRACK
1375 DEAD RECKONING
1376 RADIAL EXPANSION
137#1 SUBSURF
137#2 SURFACE
137#3 AIR
1377 ERASE LAST SOLN
16 BUILD ELLIPSE
161 LAT/LNG BEARING
163 HFDF BEARING
164 ENTER ELLIPSE
165 EDIT CONTACTS
166 DELETE ALL CONTACTS

***************BEGINNING OF "WARFARE" MODULE***************

2 WARFARE
 21 ASW
 211 LOC
 2111 ASW COVERAGE
 21111 TABLE TGT/FREQ
 21112 FOM TABLE
 2111#1 LIST
 2111#2 INPUT
 2111#3 EDIT
 2111#4 DELETE
 21113 PLAN SCREEN
 211131 SELECT TARGET
 211132 SELECT ASSET
 2111321 CTC DATA
 21113211 SUBSURF
 21113212 SURFACE
 21113213 AIR
 2111322 USER SELECT
 2111323 DELETE
 211133 SCREEN CENTER
 211134 SELECT STATION
 211135 COMPUTE COVERAGE
 2112 AREA SEARCH
 21121 CURSOR AREA

55
211211 PLOT AREA1
211212 NEW AREA1
211213 PLOT AREA2
211214 NEW AREA2
211215 PLOT AREA3
211216 NEW AREA3
21122 AREA PD CALC
211221 AREA SIZE
211222 DELETE RANGE
211223 SEARCH SPEED
211224 TARGET SPEED
211225 SEARCH TIME
2113 SEARCH BARRIER
21131 GENERAL BARRIER
21132 CURSOR BARRIER
2113#1 BARRIER LENGTH
2113#2 DETECT RANGE
2113#3 BARRIER SPEED
2113#4 TARGET SPEED
2113#5 TARGET WINDOW
2113#6 ADV/REC ANGLE
2113#7 SECTOR COVRG
2114 ASW PLANNING
21141 SUBSURF
21142 SURFACE
21143 AIR
2114#1 SET TIME
2114#2 EXECUTE ON
2114#4 REPORT ACT/DEAC
2114#6 PLOT HISTORY
2115 BOUY PLANNING
21151 INPUT
21152 MODIFY
21153 DELETE
2116 PROPLOSS

56
21161 DESIG ENV
21162 EDIT ENV
21163 SSP
 211631 BT
 2116311 LIST BT
 2116312 ADD BT
 2116313 EDIT BT
 2116314 DELETE BT
 2116315 DELETE ALL
 2116316 CONVERT TO SSP
 211632 TXBT
 21165 RUN RAYMODE
 21167 LST/PLT PROPLOSS
 211671 LIST PROPLOSS
 211672 PLOT PROPLOSS
 211673 SELECT FILE

212 ENGAGE
 2121 AIM POINT
 2122 SELECT YIELD
 21221 DIAL A YIELD
 21222 10KT
 21223 20KT
 21224 100KT
 21225 1MEG
 21226 CHANGE VARIABLE
 2122#1 TOP VIEW
 2122#11 REMOVE ALL
 2122#12 TOGGLE PTV1
 2122#13 TOGGLE PVT10
 2122#14 TOGGLE BSURGE
 2122#15 TOGGLE POOL
 2122#16 TOGGLE ASHOCK
 2122#17 TOGGLE PVV
 2122#2 SIDE VIEW
 2122#21 TOGGLE PVT1

57
2122#22 TOGGLE PVT10
2122#23 TOGGLE ASHOCK
2122#3 ESR/OSR
2122#31 TOGGLE ESR PVV
2122#32 TOGGLE OSR PVV
2122#33 TOGGLE VERBOSE
2122#4 BLUEOUT

2123 ASROC
21231 TOP VIEW
212311 REMOVE ALL
212312 TOGGLE PTV1
212313 TOGGLE PVT10
212314 TOGGLE BSURGE
212315 TOGGLE POOL
212316 TOGGLE ASHOCK
212317 TOGGLE PVV
21232 SIDE VIEW
212321 TOGGLE PVT1
212322 TOGGLE PVT10
212323 TOGGLE VERBOSE
21233 ESR/OSR
212331 TOGGLE ESR PVV
212332 TOGGLE OSR PVV
212333 TOGGLE VERBOSE
21234 BLUEOUT

2124 SUBROC
21241 SUBROC1
21242 SUBROC2
2124#1 TOP VIEW
2124#11 REMOVE ALL
2124#12 TOGGLE PTV1
2124#13 TOGGLE PVT10
2124#14 TOGGLE BSURGE
2124#15 TOGGLE POOL
2124#16 TOGGLE ASHOCK
2124#17 TOGGLE PVV
2124#2 SIDE VIEW
2124#21 TOGGLE PVT1
2124#22 TOGGLE PVT10
2124#23 TOGGLE ASHOCK
2124#3 ESR/OSR
2124#31 TOGGLE ESR PVV
2124#32 TOGGLE OSR PVV
2124#33 TOGGLE VERBOSE
2124#4 BLUEOUT

2125 B57/SEALANCE
21251 SEA LANCE1
21252 SEA LANCE2
21253 SEA LANCE3
21254 B57 1
21255 B57 2
21256 B57 3

2125#1 TOP VIEW
2125#11 REMOVE ALL
2125#12 TOGGLE PTV1
2125#13 TOGGLE PVT10
2125#14 TOGGLE BSURGE
2125#15 TOGGLE POOL
2125#16 TOGGLE ASHOCK
2125#17 TOGGLE PVV

2125#2 SIDE VIEW
2125#21 TOGGLE PVT1
2125#22 TOGGLE PVT10
2125#23 TOGGLE ASHOCK

2125#3 ESR/OSR
2125#31 TOGGLE ESR PVV
2125#32 TOGGLE OSR PVV
2125#33 TOGGLE VERBOSE

2125#4 BLUEOUT

22 AAW

59
221 UNIT PIM

2211 ADD/EDT UNIT

22111 LOCAL UNIT

221111 SUBSURF
221112 SURFACE
221113 AIR

221111#1 FRIENDLY
221111#2 HOSTILE
221111#3 NEUTRAL
221111#4 BATTLE GROUP
221111#5 EXER HOSTILE
221111#6 UNKNOWN

221111#1 LAT/LNG
221111#2 BRG/RNG
221111#3 CURSOR

221111#7 ACTION FUNCTION

221111#71 RANGE BRG

221111#711 UNIT LABEL
221111#712 CURSOR POINT
221111#713 LAT LNG

221111#72 CPA
221111#73 SELECTIVE ERASE
221111#74 SELECTIVE DRAW

221111#75 UPDATE TIME
221111#76 START TIME

221111#761 UNIT LABEL
221111#762 LAT LNG
221111#763 REFUNIT BRG RNG
221111#764 CURSOR POINT

22112 GLOBAL AIR
22113 GLOBAL SURFACE

60
22114 GLOBAL SUB
22117 ACTION FUNCTION
 221171 RANGE BRG
 2211711 UNIT LABEL
 2211712 CURSOR POINT
 2211713 LAT/LNG
 221172 CPA
 221173 SELECTIVE ERASE
 221174 SELECTIVE DRAW
 221175 UPDATE TIME
 221176 START TIME
 2211761 UNIT LABEL
 2211762 LAT/LNG
 2211763 PEFUNIT BRG/RNG
 2211764 CURSOR POINT
22112 DELETE UNIT
22113 BUILD TRACK
 22131 ADD/EDT TRACK
 * 221311 ENTER LAT/LNG
 221312 ENTER BRG/RNG
 221313 ENTER CURSOR * (IF NEW TRACK)
 22132 UNIT TRACK
 221321 ADD LEG
 ** 221322 MODIFY LEG
 221322#1 ENTER LAT/LNG
 221322#2 ENTER BRG/RNG
 221322#3 ENTER CURSOR ** (IF EXSISTING TRACK)
 22133 DELETE LEG
221177 ACTION FUNCTION
 2211771 RANGE BRG
 22117711 UNIT LABEL
 22117712 CURSOR POINT
 22117713 LAT/LNG
 2211772 CPA
 2211773 SELECTIVE ERASE
61
221374 SELECTIVE DRAW
221375 UPDATE TIME
221376 START TIME
 2213761 UNIT LABEL
 2213762 LAT/LNG
 2213763 REFUNIT BRG/RNG
 2213764 CURSOR POINT

2214 DELETE TRACK
2216 DELETE ALL
2217 ACTION FUNCTION
 22171 RANGE BRG
 221711 UNIT LABEL
 221712 CURSOR POINT
 221713 LAT/LNG
 22172 CPA
 22173 SELECTIVE ERASE
 22174 SELECTIVE DRAW
 22175 UPDATE TIME
 22176 START TIME
 221761 UNIT LABEL
 221762 LAT/LNG
 221763 REFUNIT BRG/RNG
 221764 CURSOR POINT

222 GRAPHICS
 2221 CIRCLE
 2222 RECTANGLE
 2223 ELLIPSE
 222#1 RED
 222#2 YELLOW
 222#3 GREEN
 222#4 CYAN
 222#5 BLUE
 222#6 MAGENTA
 222#7 WHITE
 222#8 ERASE
2224 SECTOR
 22241 AXIS RADIALS
 22242 RADIALS
 22243 BOUND RADIALS
 2224#1 RED
 2224#2 YELLOW
 2224#3 GREEN
 2224#4 CYAN
 2224#5 BLUE
 2224#6 MAGENTA
 2224#7 WHITE
 2224#8 ERASE

2227 ACTION FUNCTION
 22271 RANGE BRG
 222711 UNIT LABEL
 222712 CURSOR POINT
 222713 LAT/LNG
 22272 CPA
 22273 SELECTIVE ERASE
 22274 SELECTIVE DRAW
 22275 UPDATE TIME
 22276 START TIME
 222761 UNIT LABEL
 222762 LAT/LNG
 222763 REFUNIT BRG/RNG
 222764 CURSOR POINT

223 INTCPT
 2231 INTCPT THREAT

2232 AEW STATION
 22321 COMPUTE AEW RNG
 22322 INPUT AEW RNG
 22327 ACTION FUNCTION
 223271 RANGE BRG
 2232711 UNIT LABEL
 2232712 CURSOR POINT

63
2232713 LAT/LNG
223272 CPA
223273 SELECTIVE ERASE
223274 SELECTIVE DRAW
223275 UPDATE TIME
223276 START TIME
 2232761 UNIT LABEL
 2232762 LAT/LNG
 2232763 REFUNIT BRG/RNG
 2232764 CURSOR POINT

2233 LNG RNG INTCPT
2237 ACTION FUNCTION
 22371 RANGE BRG
 223711 UNIT LABEL
 223712 CURSOR POINT
 223713 LAT/LNG
 22372 CPA
 22373 SELECTIVE ERASE
 22374 SELECTIVE DRAW
 22375 UPDATE TIME
 22376 START TIME
 223761 UNIT LABEL
 223762 LAT/LNG
 223763 REFUNIT BRG/RNG
 223764 CURSOR POINT

224 TACTICS
 2241 CAP STA
 22411 FIXED CAP RANGE
 22412 COMPUTE KEEP OUT
 22413 COMPUTE CAP RANGE
 2243 VECTOR LOGIC
 22431 MODIFY GRID/STA
 224311 V1 GRID PARAMS
 224312 LIST STATIONS
 224313 ADD STATION

64
224314	MODIFY STATION
224315	DELETE STATION
224317	ACTION FUNCTION
2243171	RANGE BRG
22431711	UNIT LABEL
22431712	CURSOR POINT
22431713	LAT/LNG
2243172	CPA
2243173	SELECTIVE ERASE
2243174	SELECTIVE DRAW
2243175	UPDATE TIME
2243176	START TIME
22431761	UNIT LABEL
22431762	LAT/LNG
22431763	REFUNIT BRG/RNG
22431764	CURSOR POINT
22432	OVERLAY GRID
22433	OVERLAY THREAT
22434	OVERLAY STATIONS
22435	TANKING
224351	GRID MILEAGE
2243511	# OF SECTORS
22435111	ONE
22435112	TWO
22435113	THREE
2243512	MR/LR DISTANCE
2243513	V1 DISTANCE
224352	GRID TIMING
2243521	TIME GOAL
2243522	FUEL TIME
2243523	IBK TOINTIME
224353	ADD PLATFORM
2243531	CAP
2243532	CBIK
2243533	LBK
2243534 SHUTTLE
2243535 KINGPIN
2243536 SAC
2243537 DLI
224354 DEL PLATFORM
224355 MOD PLATFORM
224357 GRID MANAGER
 2243571 STORE GRID
 2243572 RECALL GRID
 2243573 PURGE GRID
 2243577 RUN GRID
22437 ACTION FUNCTION
 224371 RANGE BRG
 2243711 UNIT LABEL
 2243712 CURSOR POINT
 2243713 LAT/LNG
 224372 CPA
 224373 SELECTIVE ERASE
 224374 SELECTIVE DRAW
 224375 UPDATE TIME
 224376 START TIME
 2243761 UNIT LABEL
 2243762 LAT/LNG
 2243763 REFUNIT BRG/RNG
 2243764 CURSOR POINT
2247 ACTION FUNCTION
 22471 RANGE BRG
 224711 UNIT LABEL
 224712 CURSOR POINT
 224713 LAT/LNG
 22472 CPA
 22473 SELECTIVE ERASE
 22474 SELECTIVE DRAW
 22475 UPDATE TIME
 22476 START TIME

66
224761 UNIT LABEL
224762 LAT/LNG
224763 REFUNIT BRG/RNG
224764 CURSOR POINT

226 STORE RECALL
 2261 STORE DATA
 2262 RECALL DATA
 2263 PURGE DATA

227 ACTION FUNCTION
 2271 RANGE BRG
 22711 UNIT LABEL
 22712 CURSOR POINT
 22713 LAT/LNG
 2272 CPA
 2273 SELECTIVE ERASE
 2274 SELECTIVE DRAW
 2275 UPDATE TIME
 2276 START TIME
 22761 UNIT LABEL
 22762 LAT/LNG
 22763 REFUNIT BRG/RNG
 22764 CURSOR POINT

23 ASUW
 231 LOC
 2311 SURF SURVEIL
 23111 CURRENT SSSC
 231111 GEOPLOT OVERLAY
 231112 REVIEW ASSIGNS
 2311121 ENTER LAUNCH
 2311122 EDIT CYCLE
 2311123 DEBRIEF UPDATE
 231113 HRDCPY ASSIGNS
 23112 PLAN SSSC
 231121 GEOPLOT ANLYS MAP
 231122 REVIEW ASSIGNS

 67
231123 HRDCOPY ASSIGNS
231124 PLAN CYCLE
231125 RECALL LAST PLAN
231126 STORE PLAN
23113 OVERLAY SSSC GRID
23114 CHANGE SSSC MAP
 231141 INIT REALTIME
 231142 INIT ANALYSIS
 231143 REALTIME TO ANALYS
 231144 ANLYS - REALTIME
 231145 REALTIME GRID
 231146 ANALYS GRID

232 ENGAGE
 2321 SASHEM
 23211 PLAN SCENARIO
 232111 ENVIRONMENT
 232112 HOSTILE SAG
 2321121 EDIT AOU
 2321122 INPUT HOSTILE
 2321123 EDIT HOSTILE
 2321124 DELETE HOSTILE
 232113 SHOOTER HARPOON
 2321131 INPUT SHOOTER
 2321132 EDIT SHOOTER
 2321131#1 CURSOR KEYS
 2321131#2 MANUAL ENTRY
 2321133 DELETE SHOOTER
 2321135 INPUT HARPOON
 2321136 EDIT HARPOON
 2321137 DELETE HARPOON
 23212 LIST SCENARIO
 232121 LIST ENVIRON
 232122 LIST HOSTILES
 232123 LIST SHOOTERS
 232124 LIST HARPOONS

68
232125 DISPLAY RESULTS
23213 REDRAW DISPLAY
23214 PACQ/PHIT
 232141 CALC PACQ
 232142 CALC PHIT
 232143 ENG SUMMARY
23216 FILE MANAGMNT
23217 DELETE SCENARIO

24 EW

241 SAT VUL
 2411 SATELL REVIEW
 24111 INPUT SATELL
 24112 EDIT SATELL
 24113 DELETE SATELL
 24114 SATELL ACT/DEAC
 24115 LIST SATELL
 24117 HRDCOPY
 2412 SATVUL CALC
 2413 LIST TABLE
 2414 HRDCOPY TABLE
 2415 TIME LINE
 2417 SATELL PLOT
 24171 EFOV PLOT
 24172 STEP EFOV PLOT
 24173 TRACK SAT PLOT
 24174 CLOSEUP SAT HIT
 24175 SET TIME

242 SATCAT
 2421 SATCAT COVERAGE
 2422 SATCAT STATION
 242#1 CURSOR
 242#2 MANUAL

243 IREPS

**************(ELECTROMAGNETIC FUNCTIONS MAIN MENU)**************
2431 METEOROLOGICAL
 24311 VIEW Radiosonde DATA FILE
 24312 Radiosonde INITIAL ANALYSIS

2432 ELECTROMAGNETIC PROPOGATION
 24321 ATMOSPHERIC REFRACTIVITY PROFILE
 GENERATOR
 243211 ENTER AN M-UNIT PROFILE
 243212 SPECIFY A RADIASONDE DATA SET
 243213 GENERATE A HISTORICAL
 REFRACTIVITY DATA SET

24322 SELECT REFRACTIVITY PROFILE

24323 EDIT THE EM SYSTEM DATA FILES
 243231 PLATFORM RADAR/COMMUNICATION
 DEVICES
 2432311 ADD A NEW PLATFORM
 2432312 CHANGE AN EXISTING
 PLATFORM
 24323121 ADD A NEW
 ELECTROMAG.DEVICE
 243231211 SPECIFIC
 HEIGHT-FINDER
 RADAR
243231212 NON HEIGHT-FINDER RADAR
243231213 GENERIC HEIGHT-FINDER RADAR
243231214 COMM.DEVICE

24323122 CHANGE AN EXISTING EM DEVICE
24323123 DELETE AN EXISTING EM DEVICE

2432313 DELETE AN EXISTING PLATFORM

243232 JAMMER DEVICES
2432321 ADD A NEW JAMMER
2432322 CHANGE AN EXISTING JAMMER
2432323 DELETE AN EXISTING JAMMER

243233 COVER SYSTEMS
2432331 ADD A NEW COVER
 24323311 METRIC
 24323312 ENGLISH
2432332 CHANGE AN EXISTING COVER
2432333 DELETE AN EXISTING COVER

243234 LOSS SYSTEMS
2432341 ADD A NEW LOSS
 24323411 METRIC
 24323412 ENGLISH
2432342 CHANGE AN EXISTING LOSS
2432343 DELETE AN EXISTING LOSS

243235 JAMMER VICTIM SYSTEMS
2432351 ADD A NEW JAMMER/VICTIM SYSTEM
 24323511 METRIC
 24323512 ENGLISH
2432352 CHANGE AN EXISTING JAMMER/VICTIM SYSTEM

71
DELETE AN EXISTING JAMMER/VICTIM SYSTEM

ELECTROMAGNETIC PROPAGATION CONDITIONS SUMMARY

METRIC
ENGLISH

ELECTROMAGNETIC PATH LOSS VERSUS RANGE

ELECTROMAGNETIC COVERAGE DIAGRAM

ELECTRONIC COUNTER MEASURES (ECM) EFFECTIVENESS

ELECTRONIC SUPPORT MEASURES (ESM) RANGE TABLES

METRIC
ENGLISH

SURFACE SEARCH RADAR RANGE TABLES

METRIC
ENGLISH

HISTORICAL PROPAGATION CONDITION SUMMARY

ADVANCE PAPER

*******(END OF THE ELECTROMAGNETIC FUNCTIONS MAIN MENU)******

RADAR SHADOWING

TERRAIN DISPLAY

PLOT ELEVATION

SINGLE CELLS
ENTIRE REGION

ELEV’N PLOT TYP

DEFAULT PLOT
LOGRTHM PLOT
MIN/MAX PLOT

STATIC AIRCRAFT

MOVING AIRCRAFT

CURSOR
MANUAL

72
244##2 MANUAL
244##3 RNG/BRG FROM SHIP
244##1 HRDCOPY

2444 AREA CALCULAT
2445 BLIND ZONES
 244#1 RED
 244#2 YELLOW
 244#3 GREEN
 244#4 CYAN
 244#5 BLUE
 244#6 MAGENTA
 244#7 WHITE
 244#8 ERASE
 244#81 ZOOM
 244#82 DOUBLE RADIUS

2446 RADAR COVERAGE
 24461 MARK SITE
 244611 CURSOR
 244612 MANUAL
 24461#1 RED
 24461#2 YELLOW
 24461#3 GREEN
 24461#4 CYAN
 24461#5 BLUE
 24461#6 MAGENTA
 24461#7 WHITE
 24461#8 ERASE

24462 TRACK PLANNING
 244621 ESTBLH TRACK
 244622 ELEV'N PROFILE
 24464 MSL PROFILE
 24465 AGL PROFILE

2447 MAINT'N DATABASE
 24471 LOAD DTED
 244711 FROM FLOPPY

73
244712 FROM CART. TAPE
24472 ERASE DTED
244721 ERASE SGL CELLS
244722 ERASE ALL CELLS
24474 COPY SCREENS
 '44741 FLOPPY TO LIBR’Y
244742 LIBR’Y TO FLOPPY
244743 STORE SCREEN
244744 RECALL SCREEN
244745 DELETE SCREEN
24477 SHOW CATALOG
244771 ENTIRE
244772 ON HARD DISK

***************(BEGINNING OF GENERAL SUPPORT MAIN MENU)***************

3 GENERAL SUPPORT
 33 FEATURE BUILD
 331 CHANGE DATABASE
 332 ACT/DEA DATABASE
 333 INPUT FEATURE
 3331 CURSOR
 3332 MANUAL
 333#1 OFF
 333#2 ON
 333##1 RED
 333##2 YELLOW
 333##3 GREEN
 333##4 CYAN
 333##5 BLUE
 333##6 MAGENTA
 333##7 WHITE
 333##8 ERASE
 334 EDIT FEATURE
 3341 CURSOR

74
3342 MANUAL
335 ACT/DEA FEATURE
336 FEATURE COLOR CHG
3361 RED
3362 YELLOW
3363 GREEN
3364 CYAN
3365 BLUE
3366 MAGENTA
3367 WHITE
3368 ERASE
337 TO EDIT CIRCLES / TO EDIT AREAS
35 MODIFY PORTS
351 ADD A PORT/ANCH
352 MODIFY PORT/ANCH
35#1 RED
35#2 YELLOW
35#3 GREEN
35#4 CYAN
35#5 BLUE
35#6 MAGENTA
35#7 WHITE
35#8 ERASE
353 DELETE PORT/ANCH
357 HDCOPY PORT/ANCH

************ (BEGIN "STAND ALONES" MAIN MENU) ***************

5 STAND ALONES
51 PANDA
52 ASODA
54 TEPEE
55 COPS

************ (END "STAND ALONES" MAIN MENU) ***************
UNIX SHELL

ADE
 ADE ON/OFF
 PLOT
 SUBSURF
 SURFACE
 AIR
 ALL
 FRIEND
 HOSTILE
 UNKNOWN
 ALL
 START PLOT

MOVE TO ITDA
 SUBSURF
 SURFACE
 AIR
 ALL
 FRIEND
 HOSTILE
 UNKNOWN
 ALL
 SNAP SHOT
 MOVE TRACK

PURGE ADE DATA

EXIT

FROM THE MAIN MENU "EXIT" OPTION THE FOLLOWING PROGRAMS ARE PRESENTED

END PROGRAM
MACHINE CONFIGURE
05 AUTO RECONFIG
051 LOAD TEPEE
052 REMOVE TEPEE
053 OCEAN DATA
 0531 ADD OCEAN DATA
 05311 ADD ATLANTIC
 05312 ADD SOUTH ATL
 05313 ADD PACIFIC
 05314 ADD INDIAN
 05315 ADD MEDITERR
054 LOAD HI RES MAP
055 REMV HI RES MAP

06 BACK UP OPTIONS
061 ALL DATA
062 USER DATA
063 CONTACT DATA
064 TRACK DATA
065 4-W DATA
066 SECTOR DATA
067 INIT FLOPPY

07 RESTORE OPTIONS
071 ALL DATA
072 USER DATA
073 CONTACT DATA
074 TRACK DATA
075 4-W DATA
076 SECTOR DATA
077 INIT FLOPPY

***************SPECIAL FUNCTION KEY TREE***************

S1 MAP OPTIONS
 S11 EDIT CNTRAD
 S12 ZOOM
 S13 NEW MAP
S14 CLEAN MAP
S15 DOUBLE
S16 CENTER ON
 S161 CURSOR
 S162 CONTACT
 S1622 SURFACE
 S1623 AIR
 S163 TRACK PIM
S17 MAP STATUS
 S171 LAT/LNG LINES
 S172 LAND MASSES
 S173 RESOLUT'N

S2 PLOTS
 S21 PLOT STATUS
 S22 PLOT CONTACTS
 S221 PLOT ALL
 S222 PLOT SUBSURF
 S223 PLOT SURFACE
 S224 PLOT AIR
 S225 PLOT GROUP ID
 S226 PLOT CLASS
 S2261 SUBSURF
 S2262 SURFACE
 S2263 AIR
 S226#1 FRIENDLY
 S226#2 HOSTILE
 S226#3 NEUTRAL
 S226#4 BATTLE GROUP
 S226#5 EXER HOSTILE
 S226#6 UNKNOWN
 S227 SPEC CONTACT
 S2271 BY PLOT STATUS
 S2272 PLOT HISTORY
 S2274 BEST FIT TRACK
 S2275 DEAD RECKONING

78
S2276 RADIAL EXPANSION
S227#1 SUBSURF
S227#2 SURFACE
S227#3 AIR
S2277 ERASE LAST SOLN

S23 PLOT OVERLAYS
S231 GEOPLOT 4-WHISKY
S232 GEOPLOT SECTOR
S23#1 PLOT ON PIM
S23#2 PLOT ON LAT/LNG
S233 SOSUS STATION
S234 HFDF STATIONS
S235 MAP FEATURES
S237 PORTS
S2371 SYMBOLS ONLY
S2372 NAMES & SYMBOLS

S24 PLOT AIDS
S241 RNG/BRG
S2411 1ST PT CONTACT
S24111 SUBSURF
S24112 SURFACE
A24113 AIR
S2412 1ST PT CURSOR
S2413 1ST PT MANUAL
S2414 2ND PT CONTACT
S24141 SUBSURF
S24142 SURFACE
A24143 AIR
S2415 2ND PT CURSOR
S2416 2ND PT MANUAL
S2417 TO USE RHUMBLIN / TO USE GR CIRC

S242 PLOT BEARING
S2421 CONTACT
S24211 SUBSURF
S24212 SURFACE

79
S2421 AIR
 S2421#1 RED
 S2421#2 YELLOW
 S2421#3 GREEN
 S2421#4 CYAN
 S2421#5 BLUE
 S2421#6 MAGENTA
 S2421#7 WHITE
 S2421#8 ERASE

S2422 CURSOR
S2423 MANUAL
S2427 TO USE RHUMBLIN / TO USE GR CIRC
S243 RANGE CIRCLE
S2431 SGLCIRC CONTACT
 S24311 SUBSURF
 S24312 SURFACE
S24313 AIR
 S2431#1 RED
 S2431#2 YELLOW
 S2431#3 GREEN
 S2431#4 CYAN
 S2431#5 BLUE
 S2431#6 MAGENTA
 S2431#7 WHITE
 S2431#8 ERASE

S2432 SGLCIRC CURSOR
S2433 SGLCIRC MANUAL
 S243#1 RED
 S243#2 YELLOW
 S243#3 GREEN
 S243#4 CYAN
 S243#5 BLUE
 S243#6 MAGENTA
 S243#7 WHITE
 S243#8 ERASE

80
S2434 MULCIRC CONTACT
 S24341 SUBSURF
 S24342 SURFACE
 S24343 AIR
 S2434#1 RED
 S2434#2 YELLOW
 S2434#3 GREEN
 S2434#4 CYAN
 S2434#5 BLUE
 S2434#6 MAGENTA
 S2434#7 WHITE
 S2434#8 ERASE
S2435 MULCIRC CURSOR
S2436 MULCIRC MANUAL
 S243#1 RED
 S243#2 YELLOW
 S243#3 GREEN
 S243#4 CYAN
 S243#5 BLUE
 S243#6 MAGENTA
 S243#7 WHITE
 S243#8 ERASE
S2437 TO USE RHUMBLIN / TO USE GR CIRC
S244 CTCS IN RANGE
 S2441 CONTACT
 S2442 CURSOR
 S2443 MANUAL
 S244#1 SUBSURF
 S244#2 SURFACE
 S244#3 AIR
S2447 TO USE RHUMBLIN / TO USE GR CIRC
S245 LIMIT LINES
 S2451 MANUAL
 S2452 CURSOR
S246 LABEL PLOT

81
S247 CREATE GRAPHICS
S24#1 LETTER SIZE
S24#2 COLOR
 S24#21 RED
 S24#22 YELLOW
 S24#23 GREEN
 S24#24 CYAN
 S24#25 BLUE
 S24#26 MAGENTA
 S24#27 WHITE
 S24#28 ERASE
S24#3 JUSTIFY FRAME
 S24#31 LEFT JUSTIFY
 S24#32 CENTER
 S24#33 RIGHT JUSTIFY
 S24#34 GRID ON/OFF
 S24#35 FRAME ON/OFF
 S24#36 FRAME COLOR
 S24#361 RED
 S24#362 YELLOW
 S24#363 GREEN
 S24#364 CYAN
 S24#365 BLUE
 S24#366 MAGENTA
 S24#367 WHITE
 S24#368 ERASE
 S24#37 FRAME THICKNESS
S24#4 TYPE SITE
S24#5 TEXT
S24#6 CURSOR PLACE
S24#7 ERASE
S25 PLOT TRACKS
S3 TRACK DESIGN
 S31 4W BUILD
 S311 DESIGN 4-WHISKY
S312 PLOT 4-WHISKY
S313 CURSOR EDIT
S314 MANUAL EDIT
S315 PURGE 4-WHISKY
S316 ROUTE DESIGN
S317 HRDCOPY
S32 SECTOR BUILD
 S321 DESIGN SEC FRMTN
 S322 PLOT SEC FRMTN
 S323 INPUT/EDIT/DEL
 S324 PLOT BG UNITS
 S325 PURGE SEC FRMTN
S33 TRACK BUILD
 S331 DESIGN TRACK
 S332 LEG DATA
 S3321 INPUT LEG
 S33211 CURSOR
 S33212 MANUAL
 S3322 EDIT LEG
 S3323 DELETE LEG
 S3325 DEFAULT SPEED
 S3326 HRDCOPY
 S3327 TO USE RHUMBLIN / TO USE GR CIRC
 S333 COPY TRACK
 S334 DELETE TRACK
 S335 PLOT TRACK
 S336 HRDCOPY TRACK
S34 2-TRACK ANALYSIS
 S341 DESIGN TRACK 1
 S342 DESIGN TRACK 2
 S34#1 TRACK
 S34#2 SUBSURF CONTACT
 S34#3 SURFACE CONTACT
 S34#4 AIR CONTACT
 S34#5 MANUAL TRACK
S34#6 CURSOR TRACK
S343 SET TIM WINDOW
S35 INTRCPT ANALYSIS
S351 TRK TO INTRCPT
S352 INTRCPT TRACK
S35#1 TRACK
S35#2 SUBSURF CONTACT
S35#3 SURFACE CONTACT
S35#4 AIR CONTACT
S35#5 MANUAL TRACK
S35#6 CUF JOR TRACK
S353 TIM/SPD LIMITS

S4 TOP OF MENU
S5 HELP
S6 MAP TOGGLE
S7 TIME CHANGE
S71 MANUAL RESET
S72 SYSTEM RESET
S73 AUTO CLOCK
S8 SCREEN MGT
S81 STORE SCREEN
S82 RECALL SCREEN
S83 DELETE SCREEN
S84 PRINT TABLES
S85 PRINT GEOPLOT

******************END OF SPECIAL FUNCTION KEY TREE******************
REFERENCES

5. Interview between A. Zied, Dr., Naval Oceans System Center (NOSC), at the Naval Postgraduate School, Monterey, California, and the author, 2 April 1987.

June 1983.

16. Telephone conversation between Bob Kennedy, Naval Air Development Center (NADC), and the author, February 1988.

<table>
<thead>
<tr>
<th>No.</th>
<th>Distribution List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22304-6145</td>
</tr>
<tr>
<td>2.</td>
<td>Library, Code 0142</td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943-5002</td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943-5000</td>
</tr>
<tr>
<td>4.</td>
<td>CDR. J. Stewart, Code 55ST</td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943-5000</td>
</tr>
<tr>
<td>5.</td>
<td>LCDR. R. Hudson, Code 20C</td>
</tr>
<tr>
<td></td>
<td>Naval Air Development Center</td>
</tr>
<tr>
<td></td>
<td>Warminster, PA 18974-5000</td>
</tr>
<tr>
<td>6.</td>
<td>Dr. Al Zied, Code 433</td>
</tr>
<tr>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>7.</td>
<td>C3 Academic Group, Code 74</td>
</tr>
<tr>
<td></td>
<td>Prof. C. Jones</td>
</tr>
<tr>
<td></td>
<td>Naval Postgraduate School</td>
</tr>
<tr>
<td></td>
<td>Monterey, CA 93943-5000</td>
</tr>
<tr>
<td>8.</td>
<td>CPT Jerry K. Hill</td>
</tr>
<tr>
<td></td>
<td>8395 W. 4400 S.</td>
</tr>
<tr>
<td></td>
<td>Roy, Utah 84087</td>
</tr>
</tbody>
</table>