HYDROGEN RESPONSE OF PALLADIUM COATED SUSPENDED GATE FIELD EFFECT TRANSISTOR (U) UTAH UNIV SALT LAKE CITY DEPT OF CHEMISTRY S PONS ET AL. 30 JUL 96 TR-69
Hydrogen Response of Palladium Coated Suspended Gate Field Effect Transistor

By

Stanley Pons, J. Cassidy, J. Janata

Prepared for Publication in Analytical Chemistry

University of Utah
Department of Chemistry
Salt Lake City, Utah 84112

July 30, 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale: its distribution is unlimited.
A suspended metal gate field effect transistor was studied as a hydrogen sensor and the surface processes at an electrochemically deposited Pd layer on the gate were examined.
HYDROGEN RESPONSE OF PALLADIUM COATED SUSPENDED GATE
FIELD EFFECT TRANSISTOR.

John Cassidy and Stanley Pons
Department of Chemistry
and
Jiří Janata*

Department of Bioengineering, University of Utah,
Salt Lake City, Utah, 84112, U.S.A.

* To whom correspondence regarding this manuscript should be addressed.
BRIEF

Suspended gate field effect transistor with electrodeposited palladium responds reversibly to hydrogen in the range of 3 ppm to 10^5 ppm. The mechanism of this response includes both the surface and the bulk effect of hydrogen on the electron work function of palladium.
Abstract

A suspended metal gate field effect transistor was studied as a hydrogen sensor and the surface processes at an electrochemically deposited Pd layer on the gate were examined. It has been found that the time constant as well as the magnitude of the response depends on the operating conditions particularly on the presence of oxygen. If the device is tested in air the dynamic range spans logarithmically five decades of partial pressure of hydrogen.
Introduction.

Since the first report of palladium metal oxide field effect transistor (PdMOSFET) for use as hydrogen sensors appeared in 1975, there has been a growing interest in the analytical use of the palladium hydrogen system. The resulting sensors have taken the form of transistors, Schottky diodes, and capacitors. Although most of those sensors respond to hydrogen, some have been modified to detect other electrically neutral compounds. This is the focus of the more recent research, which should ultimately lead to multicomound sensors. Such devices have already been developed for ionic species and the methods of data acquisition and interpretation have been described. A complete review of the operation of chemically sensitive field effect transistors has been published recently. The properties and description of Pd MOS structures have been reviewed as well as the fundamental properties of the palladium hydrogen system.

Suspended gate field effect transistor (SGFET) is a generic structure which can be made chemically selective for different compounds by deposition of different layers on the suspended metal gate. This has been
already demonstrated by electrochemically coating the suspended gate with polypyrrole for use as an alcohol sensor. The source of the signal in Pd MOSFET has been the subject of much interest. According to the present model, the hydrogen is adsorbed on the palladium surface (following a Langmuir isotherm at higher concentrations) where it dissociates and diffuses through the bulk palladium to the Pd/SiO$_2$ interface. The resulting layer of hydrogen dipoles induces a potential drop at this interface. Studies of changes of Pd work function and of the Pd surface potential have shown that this process is dominated by the changes of the dipole potential at the Pd/insulator interface.

The exact mechanism of surface interaction between hydrogen and palladium is still under investigation, primarily by UHV techniques. A general outline of this mechanism is as follows: In inert atmosphere the hydrogen can adsorb in two forms. The first is a strongly bound form (\(r\) type adsorption) present at low coverages or at low temperatures. The H atom is situated directly above the Pd atom at the surface. The second is a weakly chemisorbed form (\(s\) type adsorption) where the hydrogen is situated in between the Pd atoms in the surface. The latter form which
occurs at high surface coverage is in rapid equilibrium with the bulk hydrogen and can be easily removed under vacuum. The r type adsorbed hydrogen, on the other hand, cannot be removed under vacuum at room temperature. At room temperature the saturation of the metal occurs at a hydrogen to palladium ratio of 0.6. At this point the d bands of the metal are filled and the protons are completely dissolved in the metal. Thus, the paramagnetic susceptibility has been found to be zero. In this situation the Fermi level of the metal is shifted to higher energies and the surface potential increases. Since the hydrogen is dissolved in the metal, the lattice is strained. The resulting change in dimensions has been used as a means for sensing hydrogen and has also been examined by X-ray studies.

Some physical properties of the Pd MOSFET have yet to be fully explained, however, the detection of less than 10 ppm of hydrogen is routinely possible in relatively short times.

For the detection of hydrogen at a Pd MOSFET whose surface has been oxidized the hydrogen does not reach the bulk until the surface palladium oxide has been reduced to the metal. Hydrogen-containing neutral
molecules such as $\text{H}_2\text{S}^{27,28}$, NH_3^{29} and hydrocarbons30 can be detected at palladium surfaces if the sensitivity is enhanced by thin coatings of other metals such as Ir and Rh.

The design of the present device31 may be viewed as a logical progression from the Pd MOSFET discussed above, although its mode of operation is substantially different. It is an advance over the porous Pd gate8,32, the cantilevered gate33, and the Pd MOSFET with deliberately etched holes$^{34-36}$. Conducting polymers such as polypyrrole, which has been found to be sensitive to NH_3^{37}, have been electrochemically deposited on the suspended gate16,17.

The composition of the solid insulator is quite important; The layer of SiO_2 cannot be contaminated since it is protected by a layer of inert Si_3N_4 which has been shown to be impervious to hydrogen38. Thus, the hydrogen spillover39,40 leading to so-called "hydrogen induced drift" is not expected to occur in devices covered with silicon nitride.
EXPERIMENTAL

The preparation of the basic device has been detailed in a previous publication31. The distance from the mesh to the substrate is on the order of 1000 Å. The substrate insulator is composed of a layer of Si\textsubscript{3}N\textsubscript{4} (800 Å) on top of a layer of SiO\textsubscript{2} (800 Å). After the devices were scribed they were bonded to a TO-4 header by heating to \(\sim 400^0\text{C}\) at which temperature a Si/Au eutectic is formed, providing excellent electrical contact. The devices were then wirebonded using an ultrasonic wirebonder (Tempress Model C series 1713) and finally encapsulated with epoxy to protect the aluminium wires. For low temperatures, Epon 825 (E.V.Roberts, 8500 Steller Dr., Culver city, CA 90230) and Jeffamine D-230 (Texaco P.O.Box 430, Bellaire, TX 77401) were used and at high temperatures Epotek H77 (Epoxytek Inc.,14 Fortune Dr., P.O Box 567, Billarica, MA 01821) was used. In each case fumed silica (Cab-o-sil,Cabot Corp., Tuscola, IL 61953) was used as a thixotropic agent. After encapsulation, the Pt mesh was connected as a working electrode in a two electrode system with Pt wire as the counter electrode. The deposition was done from the solution of
0.3M PdCl₂ in 0.5 M NH₄Cl acidified to pH 1 with HCl. A series of current pulses (\(i = 800 \mu A/cm^2 \), pulse width 10 ms) was applied to the mesh in order to deposit a total of 0.8 micromoles of Pd corresponding to an average thickness of 100 Å. It was found that at low current densities (20 \(\mu A/cm^2 \)), the deposited metal consisted of grains of amorphous Pd black. At higher current densities (>900 \(\mu A/cm^2 \)) a shiny deposit was obtained. An inherent disadvantage of this method of deposition is the lack of control of the potential at the working electrode. Concomitant evolution of hydrogen which could cause a phase transition could therefore not be excluded.

The testing system consisted of a Carle Gas Chromatograph (model 211 c) which was adapted to accommodate a FET transistor as described previously. A separate heating tape was used to control the temperature of the FET detector block. The transistor current was controlled by means of a feedback circuit. Gases were used as received from Liquid Air Corporation (Geneva Rd., Orem, Utah) and were calibrated against standards (Ideal Gases Ltd. 977, New Durham Rd., P.O.Box 807, Edison, NJ 08878). Deposition of Pb was carried out from a
fluoroborate bath and Zn was deposited from a cyanide bath. The effect of the deposition of these metals on the \(H_2 \) response was examined.

RESULTS AND DISCUSSION

Figure 1 shows a plot of the source to drain current \(I_d \) against gate voltage \(V_g \). The drain to source voltage \(V_d \) was 1 V and the scan rate was 100 mV/sec. The \(V_g/I_d \) curve was recorded on a Hewlett Packard semiconductor parameter analyzer (model 4145 A) interfaced to a HP 9872C plotter. The SGFET (curve 2) and the Pd SGFET (curve 3) are compared to the response of a MOSFET on a similar chip. As expected for the SGFET the current is lower. The equation for the characteristic curve for a MOSFET operated in saturation is

\[
I_d = \frac{n_e C_0' W}{2L} (V_g - V_T)^2
\]

(1)

where \(V_T \) is the threshold voltage, \(C_0' \) is the gate capacitance. \(W \) and \(L \)
are the gate width and length respectively, and n_e is the electron mobility. This equation applies to the SGFET when an air-gap capacitance C_G is placed in series with the solid insulator gate capacitance C_0 yielding overall capacitance:

$$C_0' = \frac{C_GC_0}{C_G + C_0}$$

(2)

Because C_G is a reciprocal function of the thickness of the air gap it follows that as the thickness decreases, the capacitance and the current increases. The threshold voltage becomes more negative since it is related to C_0 and to the work function difference between the deposited metal and the semiconductor. The downward bending of the experimental $I_d - V_g$ curves seen in Fig.1 is due to the presence of series resistance in the N-diffusions in the transistor chip [46].

The kinetic experiments consisted of examining the response for concentration steps from a background to a certain concentration of H_2. Both the rising and falling transients were studied (Figure 2).
response of the thermal conductivity detector (T.C.D.) in parallel with the FET detector showed that the concentration step itself had a very short rise time and that the slow rise time in the case of the FET was due to the slow kinetics at the surface. In Figure 3 a function related to a first order process \(\ln(A/x) \), where \(A \) and \(x \) are defined in Figure 2, is plotted against time as a function of temperature. The first order process is dominant only for low concentrations on the rising part of the transient. The slope is seen to increase with temperature and a rate equation of the following general type can be formulated for the slowest step of the process\(^1\):

\[
\text{rate} = (1-e)^2 K_1 \exp(-2E_1/RT)
\]

where \(e \) is the fraction of occupied sites, which in the case of small concentrations is small enough for the first term in Eq.(3) to be ignored. \(E_1 \) represents the activation energy for chemisorption\(^1\) and is shown in Figure 4. In this Figure the potential energy of the s type adsorbed hydrogen atom is shown for the most stable position is 0.5 Å below the surface of the metal\(^14\). The constant \(K_1 \) is the flux of the species to the surface and includes a term for the sticking coefficient.
If the s type hydrogen is present there is an immediate rapid equilibrium formed with the bulk of the metal and the alpha hydride is formed. According to some authors the signal is derived from this phase transition4. A first approximation proposed by Lundstrom47 which is based on the relationship between the gate potential and the dipole moment created by the adsorbed hydrogen does not correlate well with the response of our devices.

The effect of the ratio of bulk to surface states has been observed by thermal desorption studies of palladium powder, foil and wire. In the case of the wire the diffusion from the bulk is limiting but the model is complex due to a moving phase boundary and no simple solution has been found 48.

At higher concentrations, on the rising transient, the situation is more complicated (Figure 5). For a set of temperatures, at longer times, the curves tend toward a constant slope independent of temperature. The deviation at short times might be due to the change in the type of hydrogen occupied sites e. At longer times the process is limited by diffusion from the surface into the bulk where the rate for this process is given by
rate = \theta K_2 \exp(-E_2/RT) \tag{5}

where \(\theta = 1 \) and \(E_2 \) is the activation energy for the transport of hydrogen from the surface into the bulk. For the s type adsorbed hydrogen this is a relatively small barrier. The rising transient due to the exposure to hydrogen may therefore be characterized by two limiting processes. In Figure 6 the log of the rate constant as determined from the slopes of the graphs in Figure 3, is plotted against inverse temperature. This slope yields an estimate for the value of \(E_1 \) (-5.7 Kcal/mole) which compares well with that of Auer and Grabke 49 (-6.8 Kcal/mole). Their resistance measurements were made under conditions of reduced pressure and with metal foil whereas these particular measurements were made at a Pt mesh electrochemically coated with a thin (on the order of 50-100 Å) layer of Pd.

The case of the falling transient (step-down in concentration) is depicted in Figure 7 where the term \(\ln(A/x) \) related to a first order process is again plotted against time. At short times a straight line
behavior is observed indicating that when $\theta=1$ the following rate law holds:

$$\text{rate} = \theta^2 K_3 \exp(-2E_3/RT)$$

(6)

where the hydrogen is leaving as H_2 and the barrier for removal at the surface is E_3. At short times the surface is saturated and the hydrogen leaves with an apparent first order rate. At longer times, however, the desorption is determined by a combination of the above process and the diffusion from the bulk:

$$\text{rate} = (1-\theta)X K_4 \exp(-E_4/RT)$$

(7)

where X is the atomic fraction of the atoms in the bulk and E_4 is the energy required to reach the surface from the bulk. The hydrogen desorption is very sensitive to pressure changes and an increase in pressure slows down the desorption drastically. It can be seen from Figures 5 and 7, at long times, that the lines whose slopes are independent
of temperature indicate that the process dictating diffusion into the bulk is qualitatively similar to that governing diffusion from the bulk. Because of the relative uncertainty of measuring the response at long times, no quantitative data can be obtained under these conditions.

The overall response of our transistor takes the form of a negative shift in V_T which has also been seen by Lundstrom \cite{7}. The source of the signal, in our case, is the lowering of the electron work function of palladium. As long as the contact Pd/Pt is ohmic there should be no contribution from the possible change of the work function of the platinum layer \cite{17}. The basic requirement for analytical use of these devices involves the characterization and regeneration of the original surface. The exposure to hydrogen is seen to be more "reversible" \cite{26} in a carrier gas containing oxygen, than in an inert gas. However, on exposure to oxygen over long times at high temperatures the sensing surface is oxidized. There have been few explicit results in the literature about the response time for the hydrogen palladium systems. LeRoy \cite{9} reports a rise and fall time of approximately 5 minutes for 50 ppm hydrogen in air at 150$^\circ$C and a response of 100 mV. The speed and magnitude of the response of the
sensor described herein is faster and higher, as expected, because of the ease of entry of the sample into the sensor. However, the same problems of irreversible penetration of hydrogen into the metal on first exposure in an inert gas are experienced as described by others.

A typical response for exposure to 100 ppm H_2 is shown in Figure 8 for two carrier gases: nitrogen and air. It is seen that the response in air is different both with respect to magnitude and characteristic shape from that in nitrogen. It appears that oxygen is irreversibly bound to the surface of the palladium even in the presence of hydrogen. Switching the carrier from nitrogen to air returns the response to the original baseline. The presence of oxygen in this case appears to clean up the surface and strip off any residual hydrogen. Thus the order of exposure of the device to oxygen and hydrogen is important; if the oxygen reaches the surface first it sticks even in the presence of hydrogen. If, on the other hand, the surface is first covered with hydrogen, then the oxygen appears to strip it off. There is no response on switching from nitrogen to air, a result which is contrary to that previously reported for Pd MOSFET.

The optimum operating temperature for the Pd SGFET with respect to
the time response was determined to be 140\(^0\)C. When air is used as a carrier the rising part of the transient is much slower. The sensor was stable at 100\(^0\)C under a flow of air for 24 hours and after a regeneration with 100 ppm of H\(_2\) the same response was obtained as before (the regeneration took the form of a more slowly rising transient). The change of the threshold voltage \(\Delta V_T\) as a function of hydrogen concentration in air and in nitrogen is shown in Fig. 9. The slope of the response in nitrogen between 100 ppm and 10\(^5\) ppm is reproducible and linear (80 \(\pm\) 9 mV, at 140\(^0\)C). On the other hand the response in air is lower but uniform over the whole range from 0 to 10\(^5\) ppm. The slope is strongly affected by the state of the platinum surface before the deposition and by the palladium electrodeposition conditions. These effects require further study.

Preliminary investigation of the deposition of other metals has been carried out. The response to the step-change of hydrogen concentration in nitrogen from 0 to 100 ppm, for layers of Pb, Zn, and bare Pt were 20, 50, and 190 mV as compared to 800 mV for Pd. Because hydrogen has a very high overpotential on Pb it is not expected that this metal would produce a
hydrogen response. It is possible that the small signal obtained with Pb coated SGFET could be due to adsorption of hydrogen at the silicon oxynitride surface of the gate gap. These effects also require further study.

CONCLUSIONS

Although the Pd MOSFET is the closest relative of the Pd SGFET the fundamental difference between the operation of these two types of devices has its origin in their different structure. In the former, hydrogen enters the device through the outside Pd surface, diffuses through the bulk and creates the dipole at the SiO$_2$/Pd interface. It is this dipole which, according to the present theory8, dominates the signal. On the other hand in the SGFET the gas enters the gate gap and interacts with the inside Pd surface and then diffuses into the bulk. In this case the surface rather than interface potential is involved in the response [50]. Because the response extends over a wide range of concentrations (10 - 100,000 ppm) it is probable the the bulk of Pd is also involved. This could happen either through the direct modulation of the bulk term of the work function
(at high concentrations) or through the bulk effect on the surface equilibria. Further study is required to elucidate this point.

Because all processes involved in the response are consecutive and have different time constants the time response of the signal cannot be modeled by a single time exponential (Figures 5, 7, 8). Furthermore, the presence of oxygen seems to affect profoundly both the time constant and the absolute magnitude of the signal (Fig. 9). In nitrogen at low concentrations (< 10 ppm) both the rise and the recovery are slow but the magnitude of the response is very high. The preliminary data show that in air the signal is logarithmic over the whole range but the slope is strongly dependent on the palladium deposition conditions.
REFERENCES

23. Hardy, P.A., Balba, I.S., Manchester, F.D., in ref. 14 p.115
27. Shivaraman, M.S. J. Appl. Phys., 1976, 47, 3592
37. Nylander, C., Armgarth, M., Lundstrom, I. in ref. 28 p.203

47. Lundstrom, I., Shivaraman, M.S., Svensson, C.M. J. Appl. Phys., 1975, 46, 3876

FIGURE LEGENDS

Figure 1. $I_{DS} - V_G$ curves for 1: MOSFET, 2: Pt SGFET, 3: Pd SGFET, (60 μC). In all cases the V_D was 1V.

Figure 2. Concentration step of 1% H$_2$/N$_2$ injected into a background of air, $T=112^\circ$C. Flow rate is 30 mL/min

Figure 3. Representation of the results in terms of a first order parameter "ln (A/x)". Step change from 0 to 3ppm of H$_2$. The flow rate was 30 mL/min, the increasing slopes correspond to temperatures (■) 110$^\circ$, (□) 128$^\circ$, (◇) 135$^\circ$, and (◇) 140$^\circ$C, respectively.

Figure 4. Schematic representation of the potential energy of a hydrogen atom in contact with palladium. E_1 is the energy of chemisorption, E_3 is the energy required for two H atoms to associate and leave the surface, E_5 is the energy required for
the H to get into the bulk and E_4 is the energy to leave the bulk.

Figure 5. First order kinetics representation of a rising transient for exposure to 10% H_2 in N_2. The temperatures are (from top to bottom): (◇) 110°C, (●) 90°C, (■) 70°C, (□) 40°C, and (▲) 30°C.

Figure 6. Arrhenius plot of the rate constants found from the slopes of the curves in Figure 3, against inverse temperature. The concentration is 3 ppm and the rate constants are in sec$^{-1}$ and the temperature in °K.

Figure 7. First order representation of a falling transient for 1% H_2/N_2 concentration step. The increasing slopes are for temperatures of (■) 90°C, (●) 100°C, and (◇) 120°C, respectively. The three regions in the figure are discussed in the text.

Figure 8. A typical response for step change from 0 to 100 ppm hydrogen in nitrogen and air. The arrows indicate the sample injections.
Increasing time is from left to right.

Figure 9. A typical plot of the change of threshold voltage ΔV_T against hydrogen concentration in air and in nitrogen. The operating temperature was $140^\circ{\text{C}}$.
ACKNOWLEDGEMENT

We would like to thank Office of Naval Research and Standard Oil of Ohio Company for partial financial support of this work and Drs. Mira Josowicz and Steve Pyke for helpful discussions and encouragement.
Fig. 2
Fig. 7
Fig. 8
TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Doula</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems Command</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: CRO-AA-1P</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Philadelphia, Pennsylvania 19110</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Attn: Dr. S. Yaramoto</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>San Diego, California 92132</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Paul Delahay
Department of Chemistry
New York University
New York, New York 10003

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 5NH
United Kingdom

Dr. J. Driscoll
Lockheed Palo Alto Research Laboratory
3251 Hanover Street
Palo Alto, California 94304

Dr. D. N. Bennion
Department of Chemical Engineering
Brigham Young University
Provo, Utah 84602

Dr. R. A. Marcus
Department of Chemistry
California Institute of Technology
Pasadena, California 91125

Dr. J. J. Auborn
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Joseph Singer, Code 302-1
NASA-Lewis
21000 Brookpark Road
Cleveland, Ohio 44135

Dr. P. P. Schmidt
Department of Chemistry
Oakland University
Rochester, Michigan 48063

Dr. Manfred Breiter
Institut fur Technische Elektrochemie
Technischen Universitat Wien
9 Getreidemarkt, 1160 Wien
AUSTRIA

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. C. E. Mueller
The Electrochemistry Branch
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910

Dr. Sam Perone
Chemistry & Materials Science Department
Lawrence Livermore National Laboratory
Livermore, California 94550

Dr. Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. B. Brummer
EIC Incorporated
111 Downey Street
Norwood, Massachusetts 02062

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. A. B. Ellis
Chemistry Department
University of Wisconsin
Madison, Wisconsin 53706

Library
Duracell, Inc.
Burlington, Massachusetts 01803

Electrochimica Corporation
20 Kelly Court
Menlo Park, California 94025-1418
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. M. Wrighton
Chemistry Department
Massachusetts Institute
of Technology
Cambridge, Massachusetts 02139

Dr. B. Stanley Pons
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Donald E. Mains
Naval Weapons Support Center
Electrochemical Power Sources Division
Crane, Indiana 47522

S. Ruby
DOE (STOR)
Room 5E036 Forrestal Bldg., CE-14
Washington, D.C. 20595

Dr. A. J. Bard
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. Janet Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. Donald W. Ernst
Naval Surface Weapons Center
Code R-33
White Oak Laboratory
Silver Spring, Maryland 20910

Mr. James R. Moden
Naval Underwater Systems Center
Code 3632
Newport, Rhode Island 02840

Dr. Bernard Spielvogel
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Dr. Aaron Fletcher
Naval Weapons Center
Code 3852
China Lake, California 93555

Dr. M. M. Nicholson
Electronics Research Center
Rockwell International
3370 Miraloma Avenue
Anaheim, California

Dr. Michael J. Weaver
Department of Chemistry
Purdue University
West Lafayette, Indiana 47907

Dr. R. David Rauh
EIC Laboratories, Inc.
111 Downey Street
Norwood, Massachusetts 02062

Dr. Aaron Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02192

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton S09 5NH ENGLAND

Dr. R. A. Osteryoung
Department of Chemistry
State University of New York
Buffalo, New York 14214

Dr. John Wilkes
Air Force Office of Scientific Research
Bolling AFB
Washington, D.C. 20332

Dr. R. Nowak
Naval Research Laboratory
Code 6171
Washington, D.C. 20375

Dr. D. F. Shriver
Department of Chemistry
Northwestern University
Evanston, Illinois 60201
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. Hector D. Abruna
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. D. H. Whitmore
Department of Materials Science
Northwestern University
Evanston, Illinois 60201

Dr. A. B. P. Lever
Chemistry Department
York University
Downsview, Ontario M3J1P3

Dr. Alan Bewick
Department of Chemistry
The University of Southampton
Southampton, S09 5NH ENGLAND

Dr. Stanislaw Szpak
Naval Ocean Systems Center
Code 633, Bayside
San Diego, California 95152

Dr. E. Anderson
NAVSEA-56Z33 NC #4
2541 Jefferson Davis Highway
Arlington, Virginia 20362

Dr. Gregory Farrington
Department of Materials Science and Engineering
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. Bruce Dunn
Department of Engineering & Applied Science
University of California
Los Angeles, California 90024

M. L. Robertson
Manager, Electrochemical and Power Sources Division
Naval Weapons Support Center
Crane, Indiana 47522

Dr. Elton Cairns
Energy & Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Dr. T. Marks
Department of Chemistry
Northwestern University
Evanston, Illinois 60201

Dr. Richard Pollard
Department of Chemical Engineering
University of Houston
Houston, Texas 77004

Dr. Micha Tomkiewicz
Department of Physics
Brooklyn College
Brooklyn, New York 11210

Dr. M. Philpott
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931

Dr. Donald Sandstrom
Boeing Aerospace Co.
P.O. Box 3999
Seattle, Washington 98124

Dr. Joseph Gordon, II
IBM Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Carl Kannewurf
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois 60201

Dr. Nathan Lewis
Department of Chemistry
Stanford University
Stanford, California 94305

Dr. Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
<th>City, State</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Robert Somoano</td>
<td>Jet Propulsion Laboratory</td>
<td>California Institute of Technology</td>
<td>Pasadena, California</td>
<td>91103</td>
</tr>
<tr>
<td>Dr. Johann A. Joebstl</td>
<td>USA Mobility Equipment R&D Command</td>
<td>DRDME-EC</td>
<td>Ft. Belvoir, Virginia</td>
<td>22060</td>
</tr>
<tr>
<td>Dr. Judith H. Ambrus</td>
<td>NASA Headquarters</td>
<td>M.S. RTS-6</td>
<td>Washington, D.C.</td>
<td>20546</td>
</tr>
<tr>
<td>Dr. Albert R. Landgrebe</td>
<td>U.S. Department of Energy</td>
<td>M.S. 68025 Forrestal Building</td>
<td>Washington, D.C.</td>
<td>20595</td>
</tr>
<tr>
<td>Dr. J. J. Brophy</td>
<td>Department of Physics</td>
<td>University of Utah</td>
<td>Salt Lake City, Utah</td>
<td>84112</td>
</tr>
<tr>
<td>Dr. Charles Martin</td>
<td>Department of Chemistry</td>
<td>Texas A&M University</td>
<td>College Station, Texas</td>
<td>77843</td>
</tr>
<tr>
<td>Dr. H. Tachikawa</td>
<td>Department of Chemistry</td>
<td>Jackson State University</td>
<td>Jackson, Mississippi</td>
<td>39217</td>
</tr>
<tr>
<td>Dr. Theodore Beck</td>
<td>Electrochemical Technology Corp.</td>
<td>3935 Leary Way N.W.</td>
<td>Seattle, Washington</td>
<td>98107</td>
</tr>
<tr>
<td>Dr. Farrell Lytle</td>
<td>Boeing Engineering and Construction Engineers</td>
<td>P.O. Box 3707</td>
<td>Seattle, Washington</td>
<td>98124</td>
</tr>
<tr>
<td>Dr. Edward Fletcher</td>
<td>Department of Mechanical Engineering</td>
<td>University of Minnesota</td>
<td>Minneapolis, Minnesota</td>
<td>55455</td>
</tr>
<tr>
<td>Dr. John Fontanella</td>
<td>Department of Physics</td>
<td>U.S. Naval Academy</td>
<td>Annapolis, Maryland</td>
<td>21402</td>
</tr>
<tr>
<td>Dr. Martha Greenblatt</td>
<td>Department of Chemistry</td>
<td>Rutgers University</td>
<td>New Brunswick, New Jersey</td>
<td>08903</td>
</tr>
<tr>
<td>Dr. John Wasson</td>
<td>Syntheco, Inc.</td>
<td>Rte 6 - Industrial Pike Road</td>
<td>Gastonia, North Carolina</td>
<td>28052</td>
</tr>
<tr>
<td>Dr. Walter Roth</td>
<td>Department of Physics</td>
<td>State University of New York</td>
<td>Albany, New York</td>
<td>12222</td>
</tr>
<tr>
<td>Dr. Anthony Sammells</td>
<td>Eltron Research Inc.</td>
<td>4260 Westbrook Drive, Suite 111</td>
<td>Aurora, Illinois</td>
<td>60505</td>
</tr>
<tr>
<td>Dr. C. A. Angell</td>
<td>Department of Chemistry</td>
<td>Purdue University</td>
<td>West Lafayette, Indiana</td>
<td>47907</td>
</tr>
<tr>
<td>Dr. Thomas Davis</td>
<td>Polymer Science and Standards Division</td>
<td>National Bureau of Standards</td>
<td>Washington, D.C.</td>
<td>20234</td>
</tr>
<tr>
<td>Ms. Wendy Parkhurst</td>
<td>Naval Surface Weapons Center R-33</td>
<td>R-33</td>
<td>Silver Spring, Maryland</td>
<td>20910</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 359/627

Dr. John Owen
Department of Chemistry and Applied Chemistry
University of Salford
Salford M5 4WT ENGLAND

Dr. Boone Owens
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. O. Thomas
University of Uppsala
Institute of Chemistry
Box 531
S-751 21 Uppsala, Sweden

Dr. O. Stafsudd
Department of Electrical Engineering
University of California
Los Angeles, California 90024

Dr. S. G. Greenbaum
Department of Physics
Hunter College of CUNY
New York, New York 10021

Dr. Menahem Anderman
W.R. Grace & Co.
Columbia, Maryland 20144