ADHESION BETWEEN POLYSTYRENE AND POLYMETHYL METHACRYLATE

by

K. Cho and A. N. Gent

Institute of Polymer Science
The University of Akron
Akron, Ohio 44325

March, 1988

Reproduction in whole or in part is permitted for
any purpose of the United States Government
Approved for public release; distribution unrestricted
Adhesion between Polystyrene and Polymethylmethacrylate

K. Cho and A. N. Gent

Institute of Polymer Science
The University of Akron
Akron, Ohio 44325

Office of Naval Research
Power Program
Arlington, VA 22217-5000

March 1988

Unclassified

According to attached distribution list.
Approved for public release; distribution unrestricted.

Submitted for publication in: The Journal of Adhesion

Adhesion, Fracture, Polymer Interfaces, Polymethylmethacrylate, Polystyrene

Measurements have been made of the energy required to break through unit area of polystyrene (PS), polymethylmethacrylate (PMMA), and joints prepared by molding the two polymers in contact. The results were:

- $1.23 \pm 0.5 \text{ kJ/m}^2$ (PS)
- $0.46 \pm 0.10 \text{ kJ/m}^2$ (PMMA)
- $0.22 \pm 0.04 \text{ kJ/m}^2$ for
the bonded joint. Thus, the interface was significantly weaker than either adherend, but surprisingly strong for two incompatible materials. Microscopy and selective dyeing revealed that fracture took place at the interface itself, with no appreciable transfer of material from one side to the other. It is concluded that van der Waals interactions are sufficient to create relatively strong bonds.
1. Introduction

Various test methods have been used to measure the fracture energy \(G \) of relatively stiff materials, and of adhesive joints between them. A simple torsion test, proposed by Outwater and Gerry (1), has been widely employed because of its many advantages (2-4). It utilizes simple flat rectangular specimens, and the failure force remains constant, at least in principle, while the crack is driven forward over long distances, so that an average value of the strength is readily obtained. Moreover, the fracture energy is given directly in terms of the specimen stiffness and dimensions and the measured failure force, so that no other measurements are necessary.

A new way of imposing the torsional couple \(M \) by means of a pulley arrangement has recently been proposed (5). It allows the Outwater torsion test to be carried out with specimens having a wider range of flexibility. Some experimental measurements were reported of the fracture energy of molded polystyrene bars, to demonstrate the utility of the proposed modification (5). At the same time, possible ways of measuring the fracture energy of adhesive bonds were proposed. We now wish to describe measurements of the strength of adhesion between two glassy plastics, polymethylmethacrylate and polystyrene, carried out with the new method.

Although these two polymers are unlikely to interdiffuse, the fracture energy required to separate them was found to be relatively high, as described below, comparable to the inherent strength of the two adherends. Studies of the fracture surfaces
have therefore been carried out, to establish whether or not a significant degree of interpenetration of the polymers took place.

2. **Experimental details**

 Sample preparation

 Commercial grade polymers were used in the experiments: polystyrene (PS), denoted Styron 685 (Dow Chemical Company) and polymethylmethacrylate (PMMA), denoted Plexiglas (Rohm and Haas Company). Before molding, the PMMA pellets were dried under vacuum for 5 h at 50°C.

 Sheets of PS and PMMA were prepared by compression molding at 140°C for about 30 min. They were machined as rectangular plates of various dimensions with a V-shaped groove along the center line of the lower surface. An initial saw cut was made at one end, Figure 1a, and the tip of the cut was sharpened by pressing a razor blade into the material at this point.

 For preparing adhesion specimens, molded sheets of each polymer were machined as rectangular plates, 150 mm long and 30 mm wide. They were washed with methanol and rinsed with distilled water. They were then dried under vacuum at 50°C for 5 h and kept in covered dishes to protect them from contamination.

 Sheets of PS and PMMA were bonded together along their edges in a mold, as shown in Figure 2, for 1½ h at 150°C. The pressure was then removed and the samples allowed to cool to room temperature. Testpieces were again prepared as
rectangular plates, 130 mm long and 40 mm wide by machining these molded sheets. Also, as before, a initial saw cut was made at one end and the tip of the cut was sharpened by pressing a razor blade into the material. An adhesion specimen is shown schematically in Figure 1b.

Measurement of fracture energy

The modified Outwater torsion test (5) was used to measure the fracture energy G_c for testpieces of PS and PMMA and to measure the separation energy G_a for PS-PMMA adhesive joints. All tests were carried out at room temperature, using an Instron test machine to apply the torsional couple M with a pulley arrangement as described previously.

Examination of fracture surfaces

Fracture surfaces were examined by two techniques. Direct observation was carried out using either an optical microscope or a scanning electron microscope. In the latter case, parts of the surfaces were removed from the specimen by careful sawing, and thin protective coatings of gold were deposited onto them to prevent surface charging.

A dye treatment was also employed to study the fracture surfaces of PS-PMMA adhesive joints, in order to check the failure mode; i.e., whether interfacial failure or cohesive failure had occurred. A dye solution was prepared by dissolving 0.05 per cent of a commercial dye (Oil Red 4B, Pfaltz and Bauer Company) in cyclohexane and filtering it to yield a clear red solution. Using a microsyringe, a droplet of dye solution was
applied to the fractured surfaces in covered dishes, and allowed to penetrate and dry. After dyeing, the samples were stirred in isooctane for 5 min at room temperature and the dyed surfaces were then wiped dry with a cotton applicator to remove unabsorbed dye. The samples were then washed with water and air-dried and the dyed surfaces were examined with an optical microscope.
3. **Experimental results and discussion**

Fracture energies for PS and PMMA

Experiments were carried out on molded plates of the two polymers to obtain the fracture energies G_c. In each case, when the initial saw cut tip was sharpened by pressing a razor blade into it, the crack was found to grow in a stable and continuous manner at a well-defined critical value of the applied torque, denoted M_c. On the other hand, when the initial crack tip was not sharpened in this way it developed catastrophically at a relatively high applied torque. It was also found advantageous to make the initial crack length c_0 comparable to or greater than the width $w/2$ of the testpiece arms.

Values of G_c were calculated from the critical values of applied torque at which the crack propagated using the relation (5)

$$G_c = M_c^2 / 2kT'$$ \hspace{1cm} (1)

where k denotes the torsional stiffness of the specimen for a crack length c of unity and T' is the thickness actually broken through (Figure 1). Results for G_c are given in Table 1. As can be seen they were largely independent of the specimen dimensions. For PS they yielded an average value of $1.23 \pm 0.5 \text{ kJ/m}^2$, in good agreement with published results, ranging from 0.5 to 3.0 kJ/m2 (6-8). For PMMA the average value was $0.46 \pm 0.10 \text{ kJ/m}^2$, also in good agreement with previously reported values, which range from 0.14 to 1.0 kJ/m2 (7-9).
Fracture energy for the PS -PMMA adhesive joint

Smooth and straight interfaces were obtained by molding plates of PS against plates of PMMA as described. Values of the work of separation G_a were determined in the same way as for homogeneous plates; the results are given in Table 2.

The mean value was 0.22 ± 0.04 kJ/m2, considerably smaller than that obtained for the fracture energy of either PS or PMMA. It is about one-half of the value of G_c for PMMA and about one-fifth of that for PS. Thus, failure is probably not cohesive within either of the contacting layers but probably takes place at the weaker interfacial plane. Attempts to verify this conclusion were made by examining the fracture surfaces microscopically, as described below.

Microscopy of the fracture surfaces

Broken surfaces of PS appeared to be quite rough in comparison to those of PMMA. Typical low-magnification photographs are shown in Figure 3. Characteristic craze bands are clearly evident in the PMMA surface, which resembles that reported by Berry (10), but the PS surface shows only a rough irregular fracture plane. However, photographs at higher magnification, shown in Figure 4, revealed that the PS surface consisted of relatively smooth areas, several hundred μm in size, separated by pronounced steps or surface cracks.

High-magnification views of the surfaces obtained by breaking the interface between the two polymers are shown in Figure 5. The
PS and the PMMA side of the interface look identical, and they both show small-scale roughness that is not at all characteristic of a fracture surface of PS (Figure 4a) but more resembles the crazed portions of a PMMA surface (Figure 4b). In fact, R.E. Robertson has shown that failure of a PS/PMMA bond is accompanied by severe crazing on the PMMA side of the joint (11). It is thought that failure takes place at the true interface between the two polymers in the present experiments, even though the fracture surface is different in character from that obtained by cohesive rupture of either polymer and more resembles that of PMMA. Evidence in support of this conclusion was obtained from dye studies, reported below.

Dye studies of separated surfaces

In order to determine whether fracture occurred within either polymer or at the interface between them, a sensitive method was required to detect small amounts of one polymer on the surface of the other. For this purpose a dye treatment was used. A suitable red dye was employed, Oil Red 4B, dissolved in cyclohexane, a good solvent for PS but not for PMMA. Thus, the dye was found to stain only PS and not PMMA. After a brief dye treatment the surfaces were washed with a non-solvent for both polymers, iso-octane, to remove unabsorbed dye. A PS surface could then be easily distinguished from a PMMS surface by the red color it acquired.
A dye-treated surface of the PMMA side of a fractured interface is shown in Figure 6. Small red regions, appearing dark in the photograph, show that some PS has been torn away from the bulk and transferred to the PMMA side. However, the surface area occupied by PS is extremely small, only one or two percent of the total, so that the surface is substantially all PMMA. When the other fracture surface was examined in the same way, it was found to stain uniformly red, indicating that it consisted solely of PS. Thus, fracture appeared to have separated the two polymers rather cleanly.

However, it is possible that a thin layer of PMMA, too thin to be detected by the dye technique, had been transferred to the PS side of the interface. In order to check whether any PMMA was present on the PS surface, test specimens were prepared by coating a pure PS surface with a dilute solution of PMMA in methyl methacrylate and drying them to give an extremely thin PMMA surface coating. On treating these specimens with dye solution, they were found not to show any red color, indicating that even a thin layer of PMMA will prevent PS from absorbing the dye under the experimental conditions used here. Thus it seems certain that fracture separated the two adhering polymers cleanly, at least on a scale of 0.1 μm or so, because only one of the surfaces could be dyed. This observation is consistent with the lower fracture energy found for separation in comparison with the fracture energies for cohesive rupture of the two polymers themselves (Tables 1 and 2).
4. **Conclusions**

The following conclusions are obtained.

(i) Fracture energies G_c for PS and PMMA plates are 1.23 ± 0.5 kJ/m2 and 0.46 ± 0.09 kJ/m2, respectively, in good agreement with previously-reported values.

(ii) When PS and PMMA are molded in contact they adhere together quite strongly, the fracture energy for the joint being 0.22 ± 0.04 kJ/m2.

(iii) Nevertheless, failure appears to take place at the interface between the two polymers, and not to any significant degree away from the interface.

(iv) It is concluded that van der Waals interactions, without any direct chemical bonding or molecular interdiffusion, are sufficient to provide relatively strong adhesive joints (11).

Acknowledgements

This work forms part of a program of research into the mechanics of adhesion supported by the Office of Naval Research (Contract N00014-85-K-0222) and by grants-in-aid from Lord Corporation and Westvaco.
References

Proceedings of the Second International Conference on Fracture,
B, 70, 201-211 (1957).
Basis of Yield & Fracture, Oxford," Institute of Physics and
<table>
<thead>
<tr>
<th>Testpiece dimensions</th>
<th>Stiffness $k \times 10^3$ (Nm²/rad)</th>
<th>Critical torque M_c (Nm)</th>
<th>Fracture energy G_c (kJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.13</td>
<td>0.52</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.043</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>2.39</td>
<td>0.94</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>0.13</td>
<td>1.1</td>
</tr>
<tr>
<td>20</td>
<td>3.79</td>
<td>1.90</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>42.1</td>
<td>0.39</td>
<td>1.0</td>
</tr>
<tr>
<td>40</td>
<td>1.89</td>
<td>0.67</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>12.1</td>
<td>0.119</td>
<td>0.9</td>
</tr>
<tr>
<td>40</td>
<td>2.39</td>
<td>1.15</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>0.234</td>
<td>1.8</td>
</tr>
<tr>
<td>40</td>
<td>3.79</td>
<td>1.62</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>70.0</td>
<td>0.563</td>
<td>1.4</td>
</tr>
<tr>
<td>60</td>
<td>1.13</td>
<td>0.37</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>0.045</td>
<td>0.7</td>
</tr>
<tr>
<td>60</td>
<td>1.89</td>
<td>0.54</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>0.124</td>
<td>1.3</td>
</tr>
<tr>
<td>60</td>
<td>3.79</td>
<td>1.76</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>103.0</td>
<td>0.660</td>
<td>1.2</td>
</tr>
<tr>
<td>PMMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.16</td>
<td>0.84</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>0.069</td>
<td>0.34</td>
</tr>
<tr>
<td>20</td>
<td>3.04</td>
<td>1.48</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>19.0</td>
<td>0.152</td>
<td>0.41</td>
</tr>
<tr>
<td>20</td>
<td>3.04</td>
<td>2.02</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>20.8</td>
<td>0.186</td>
<td>0.41</td>
</tr>
<tr>
<td>40</td>
<td>2.16</td>
<td>1.02</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>16.4</td>
<td>0.117</td>
<td>0.41</td>
</tr>
<tr>
<td>40</td>
<td>3.04</td>
<td>1.56</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>29.4</td>
<td>0.223</td>
<td>0.54</td>
</tr>
<tr>
<td>40</td>
<td>4.06</td>
<td>2.13</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>76.4</td>
<td>0.433</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Table 2: Measured fracture energies G_a for a PS/PMMA joint.

<table>
<thead>
<tr>
<th>Testpiece dimensions</th>
<th>Stiffness $k \times 10^3$ (Nm2/rad)</th>
<th>Critical torque M_c (Nm)</th>
<th>Fracture energy G_a (kJ/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (mm)</td>
<td>T' (mm)</td>
<td>c_o (mm)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.24</td>
<td>33</td>
<td>16.4</td>
</tr>
<tr>
<td>30</td>
<td>2.80</td>
<td>32</td>
<td>23.9</td>
</tr>
<tr>
<td>30</td>
<td>2.83</td>
<td>32</td>
<td>23.7</td>
</tr>
<tr>
<td>40</td>
<td>2.35</td>
<td>33</td>
<td>22.0</td>
</tr>
<tr>
<td>40</td>
<td>2.79</td>
<td>32</td>
<td>26.4</td>
</tr>
<tr>
<td>40</td>
<td>2.79</td>
<td>30</td>
<td>26.3</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Test specimens:
(a) PS and PMMA
(b) PS/PMMA joint.

Figure 2. Molding arrangement for PS/PMMA joint.

Figure 3. Fracture surfaces:
(a) PS (b) PMMA.

Figure 4. Fracture surfaces at higher magnification:
(a) PS (b) PMMA.

Figure 5. Fracture surfaces of a PS/PMMA joint:
(a) PS side (b) PMMA side.

Figure 6. Dye-treated fracture surface of a PS/PMMA joint, PMMA side. The dark regions were dyed red in the original view.
Figure 1
DISTRIBUTION LIST

Dr. R.S. Miller
Office of Naval Research
Code 432P
Arlington, VA 22217
(10 copies)

Dr. J. Pastine
Naval Sea Systems Command
Code 06R
Washington, DC 20362

Dr. Kenneth D. Hartman
Hercules Aerospace Division
Hercules Incorporated
Alleghany Ballistic Lab
P.O. Box 210
Cumberland, MD 20502

Mr. Otto K. Heiney
AFATL-DLJG
Elgin AFB, FL 32542

Dr. Merrill K. King
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22312

Dr. R.L. Lou
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. R. Olsen
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. Randy Peters
Aerojet Strategic Propulsion Co.
Bldg. 05025 - Dept 5400 - MS 167
P.O. Box 15699C
Sacramento, CA 95813

Dr. D. Mann
U.S. Army Research Office
Engineering Division
Box 12211
Research Triangle Park, NC 27709-2211

Dr. L.V. Schmidt
Office of Naval Technology
Code 07CT
Arlington, VA 22217

Dr. R. McGuire
Lawrence Livermore Laboratory
University of California
Code L-324
Livermore, CA 94550

P.A. Miller
736 Leavenworth Street, #6
San Francisco, CA 94109

Dr. W. Moniz
Naval Research Lab.
Code 6120
Washington, DC 20375

Dr. K.F. Mueller
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

Prof. M. Nicol
Dept. of Chemistry & Biochemistry
University of California
Los Angeles, CA 90024

Mr. L. Roslund
Naval Surface Weapons Center
Code R10C
White Oak, Silver Spring, MD 20910

Dr. David C. Sayles
Ballistic Missile Defense
Advanced Technology Center
P.O. Box 1500
Huntsville, AL 35807
DISTRIBUTION LIST

Mr. R. Geisler
ATTN: DY/MS-24
AFRPL
Edwards AFB, CA 93523

Naval Air Systems Command
ATTN: Mr. Bertram P. Sober
NAVAIR-320G
Jefferson Plaza 1, RM 472
Washington, DC 20361

R.B. Steele
Aerojet Strategic Propulsion Co.
P.O. Box 15699C
Sacramento, CA 95813

Mr. M. Stosz
Naval Surface Weapons Center
Code R10B
White Oak
Silver Spring, MD 20910

Mr. E.S. Sutton
Thiokol Corporation
Elkton Division
P.O. Box 241
Elkton, MD 21921

Dr. Grant Thompson
Morton Thiokol, Inc.
Wasatch Division
MS 240 P.O. Box 524
Brigham City, UT 84302

Dr. R.S. Valentini
United Technologies Chemical Systems
P.O. Box 50015
San Jose, CA 95150-0015

Dr. R.F. Walker
Chief, Energetic Materials Division
DRSMC-LCE (D), B-3022
USA ARDC
Dover, NJ 07801

Dr. Janet Wall
Code 012
Director, Research Administration
Naval Postgraduate School
Monterey, CA 93943

Director
US Army Ballistic Research Lab.
ATTN: DRXBR-IBD
Aberdeen Proving Ground, MD 21005

Commander
US Army Missile Command
ATTN: DRSMI-RKL
Walter W. Wharton
Redstone Arsenal, AL 35898

Dr. Ingo W. May
Army Ballistic Research Lab.
ARRADCOM
Code DRXBR - IBD
Aberdeen Proving Ground, MD 21005

Dr. E. Zimet
Office of Naval Technology
Code 071
Arlington, VA 22217

Dr. Ronald L. Derr
Naval Weapons Center
Code 389
China Lake, CA 93555

T. Boggs
Naval Weapons Center
Code 389
China Lake, CA 93555

Lee C. Estabrook, P.E.
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. J.R. West
Morton Thiokol, Inc.
P.O. Box 30058
Shreveport, Louisiana 71130

Dr. D.D. Dillehay
Morton Thiokol, Inc.
Longhorn Division
Marshall, TX 75670

G.T. Bowman
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065
DISTRIBUTION LIST

R.E. Shenton
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mike Barnes
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. Lionel Dickinson
Naval Explosive Ordinance
Disposal Tech. Center
Code D
Indian Head, MD 20340

Prof. J.T. Dickinson
Washington State University
Dept. of Physics 4
Pullman, WA 99164-2814

M.H. Miles
Dept. of Physics
Washington State University
Pullman, WA 99164-2814

Dr. T.F. Davidson
Vice President, Technical
Morton Thiokol, Inc.
Aerospace Group
3340 Airport Rd.
Ogden, UT 84405

Mr. J. Consaga
Naval Surface Weapons Center
Code R-16
Indian Head, MD 20640

Naval Sea Systems Command
ATTN: Mr. Charles M. Christensen
NAVSEA-62R2
Crystal Plaza, Bldg. 6, Rm 806
Washington, DC 20362

Mr. R. Beauregard
Naval Sea Systems Command
SEA 64E
Washington, DC 20362

Brian Wheatley
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mr. G. Edwards
Naval Sea Systems Command
Code 62R32
Washington, DC 20362

C. Dickinson
Naval Surface Weapons Center
White Oak, Code R-13
Silver Spring, MD 20910

Prof. John Deutch
MIT
Department of Chemistry
Cambridge, MA 02139

Dr. E.H. deButts
Hercules Aerospace Co.
P.O. Box 27408
Salt Lake City, UT 84127

David A. Flanigan
Director, Advanced Technology
Morton Thiokol, Inc.
Aerospace Group
3340 Airport Rd.
Ogden, UT 84405

Dr. L.H. Caveny
Air Force Office of Scientific
Research
Directorate of Aerospace Sciences
Bolling Air Force Base
Washington, DC 20332

W.G. Roger
Code 5253
Naval Ordance Station
Indian Head, MD 20640

Dr. Donald L. Ball
Air Force Office of Scientific
Research
Directorate of Chemical &
Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Anthony J. Matuszko</td>
<td>Air Force Office of Scientific Research</td>
</tr>
<tr>
<td></td>
<td>Directorate of Chemical & Atmospheric Sciences</td>
</tr>
<tr>
<td></td>
<td>Bolling Air Force Base</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20332</td>
</tr>
<tr>
<td>Dr. Michael Chaykovsky</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Code R11</td>
</tr>
<tr>
<td></td>
<td>White Oak</td>
</tr>
<tr>
<td></td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td>J.J. Rocchio</td>
<td>USA Ballistic Research Lab.</td>
</tr>
<tr>
<td></td>
<td>Aberdeen Proving Ground, MD 21005-5066</td>
</tr>
<tr>
<td>B. Swanson</td>
<td>INC-4 MS C-346</td>
</tr>
<tr>
<td></td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td></td>
<td>Los Alamos, New Mexico 87545</td>
</tr>
<tr>
<td>Dr. James T. Bryant</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Code 3205B</td>
</tr>
<tr>
<td></td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>Dr. L. Rothstein</td>
<td>Assistant Director</td>
</tr>
<tr>
<td></td>
<td>Naval Explosives Dev. Engineering Dept.</td>
</tr>
<tr>
<td></td>
<td>Naval Weapons Station</td>
</tr>
<tr>
<td></td>
<td>Yorktown, VA 23691</td>
</tr>
<tr>
<td>Dr. M.J. Kamlet</td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Code R11</td>
</tr>
<tr>
<td></td>
<td>White Oak, Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Dr. Henry Webster, III</td>
<td>Manager, Chemical Sciences Branch</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 5063</td>
</tr>
<tr>
<td></td>
<td>Crane, IN 47522</td>
</tr>
<tr>
<td>Dr. A.L. Slafkosky</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td></td>
<td>Code RD-1</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20380</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

K.D. Pae
High Pressure Materials Research Lab.
Rutgers University
P.O. Box 909
Piscataway, NJ 08854

Prof. Edward Price
Georgia Institute of Tech.
School of Aerospace Engineering
Atlanta, GA 30332

Dr. John K. Dienes
T-3, B216
Los Alamos National Lab.
P.O. Box 1663
Los Alamos, NM 87544

J.A. Birkett
Naval Ordnance Station
Code 5253K
Indian Head, MD 20640

A.N. Gent
Institute Polymer Science
University of Akron
Akron, OH 44325

Prof. R.W. Armstrong
University of Maryland
Dept. of Mechanical Engineering
College Park, MD 20742

Dr. D.A. Shockey
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Herb Richter
Code 385
Naval Weapons Center
China Lake, CA 93555

Dr. R.B. Kruse
Morton Thiokol, Inc.
Huntsville Division
Huntsville, AL 35807-7501

J.T. Rosenberg
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

G. Butcher
Hercules, Inc.
P.O. Box 98
Magna, UT 84044

G.A. Zimmerman
Aeroject Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Prof. Kenneth Kuo
Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802

Dr. R. Bernecker
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

T.L. Boggs
Naval Weapons Center
Code 3891
China Lake, CA 93555
(DYN)

DISTRIBUTION LIST

Dr. C.S. Coffey
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

J.M. Culver
Strategic Systems Projects Office
SSPO/SP-2731
Crystal Mall #3, RM 1048
Washington, DC 20376

Prof. G.D. Duvall
Washington State University
Department of Physics
Pullman, WA 99163

D. Curran
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. E. Martin
Naval Weapons Center
Code 3858
China Lake, CA 93555

Dr. M. Farber
135 W. Maple Avenue
Monrovia, CA 91016

E.L. Throckmorton
Code SP-2731
Strategic Systems Program Office
Crystal Mall #3, RM 1048
Washington, DC 23076

Dr. M. Farber
Naval Weapons Center
Code 3858
China Lake, CA 93555

W.L. Elban
Naval Surface Weapons Center
White Oak, Bldg. 343
Silver Spring, MD 20910

Defense Technical Information Center
Bldg. 5, Cameron Station
Alexandria, VA 22314
(12 copies)

Dr. Robert Polvani
National Bureau of Standards
Metallurgy Division
Washington, D.C. 20234

C. Gotzmer
Naval Surface Weapons Center
Code R-11
White Oak
Silver Spring, MD 20910

Director
Naval Research Laboratory
Attn: Code 2627
Washington, DC 20375
(6 copies)

R.A. Schapery
Civil Engineering Department
Texas A&M University
College Station, TX 77843

Dr. Robert Polvani
National Bureau of Standards
Metallurgy Division
Washington, D.C. 20234

G.A. Lo
3251 Hanover Street
B204 Lockheed Palo Alto Research Lab
Palto Alto, CA 94304

(12 copies)

Dr. Robert Polvani
National Bureau of Standards
Metallurgy Division
Washington, D.C. 20234

R.A. Schapery
Civil Engineering Department
Texas A&M University
College Station, TX 77843

Dr. Y. Gupta
Washington State University
Department of Physics
Pullman, WA 99163

Administrative Contracting Officer (see contract for address)
(1 copy)
END
DATE
FILMED
5-88
DTIC