PHOTOCHEMICAL REACTION OF TRIETHYLSILYL(TETRACARBONYL)-COBALT WITH ETHYLE... (U)

MASSACHUSETTS INST OF TECH CAMBRIDGE DEPT OF CHEMISTRY

UNCLASSIFIED F SEITZ ET AL. 07 JAN 88 TR-10 F/G 7/3 NL
REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADE SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT
Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Department of Chemistry

6b. OFFICE SYMBOL
(if applicable)

7a. NAME OF MONITORING ORGANIZATION
Office of Naval Research

7b. ADDRESS (City, State, and ZIP Code)
Chemistry Division
800 N. Quincy Street
Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING ORGANIZATION
Office of Naval Research

8b. OFFICE SYMBOL
(if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
N00014-84-K-0553

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT ACCESSION NO.

11. TITLE (Include Security Classification)
Photochemical Reaction of Triethylsilyl(tetracarbonyl)cobalt with Ethylene: Implications for Cobalt Carbonyl-Catalyzed Hydroisilation of Alkenes

12. PERSONAL AUTHOR(S)
Friedrich Seitz and Mark S. Wrighton

13a. TYPE OF REPORT
technical interim

13b. TIME COVERED
FROM
TO
1/7/88

14. DATE OF REPORT (Year, Month, Day)
1/7/88

15. PAGE COUNT
13

16. SUPPLEMENTARY NOTATION
Prepared for publication in Angewandte Chemie

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
photocatalysis, hydrosilation, olefin insertion, catalysis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
See Attached Sheet

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
Unclassified/Unlimited

21. ABSTRACT SECURITY CLASSIFICATION
Unlimited

22a. NAME OF RESPONSIBLE INDIVIDUAL
Mark S. Wrighton

22b. TELEPHONE (Include Area Code)
617-253-1597

22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR
83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
Summary

For the first time, insertion of an unactivated alkene into the metal-silicon bond of a catalytically active transition metal complex has been demonstrated. In addition, formation of CH₄, not SiMe₄, when (CO)₄Co-Me is reacted with Me₃SiH, is clearly inconsistent with the traditional Chalk-Harrod mechanism for transition metal catalyzed hydrosilation of olefins. Both reactions are key steps in a new mechanism for hydrosilation.
Photochemical Reaction of Triethyldimethylsilyletetracarbonyl-cobalt with Ethylene: Implications for Cobalt Carbonyl-Catalyzed Hydrosilation of Alkenes

by

Friedrich Seitz
BASF AG
Kunststofflaboratorium
6700 Ludwigshafen
West Germany

and

Mark S. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139

Prepared for publication in *Angewandte Chemie*

January 7, 1983

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
PHOTOCHEMICAL REACTION OF TRIETHYLSILYL(TETRACARBONYL)COBALT
WITH ETHYLENE: IMPLICATIONS FOR COBALT CARBONYL-CATALYZED
HYDROSILATION OF ALKENES*

Friedrich Seitz*
BASF AG
Kunststofflaboratorium
6700 Ludwigshafen
West Germany

and

Mark S. Wrighton*
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 U.S.A.

*Dedicated to Prof. Dr. Helmut Dörfel on the occasion of his 60th birthday.

*Address correspondence to either author.
Summary

For the first time, insertion of an unactivated alkene into the metal-silicon bond of a catalytically active transition metal complex has been demonstrated. In addition, formation of CH₄, not SiMe₄, when (CO)₄Co-Me is reacted with Me₃SiH, is clearly inconsistent with the traditional Chalk-Harrod mechanism for transition metal catalyzed hydrosilation of olefins. Both reactions are key steps in a new mechanism for hydrosilation.
The commonly proposed Chalk-Harrod mechanism,[1-3] Scheme I, for transition metal catalyzed hydrosilation of alkenes involves as the key steps the insertion of an alkene into a M-H bond, step (3), and the reductive elimination of an alkyl and a silyl ligand to form an alkylsilane, step (5). Whereas the insertion of alkenes into M-H bonds is well documented,[4] the reductive elimination of an alkylsilane has only been reported for \((\text{CO})_4\text{Fe(alkyl)}(\text{SiR}_3)\),[5] and this is a slow reaction at 298 K. More importantly, the mechanism in Scheme I cannot explain the formation of alkenyl-silanes, that are frequently observed as by-products of hydrosilation reactions.[6-9]

An alternative mechanism, Scheme II, has been suggested for the photocatalyzed hydrosilation of alkenes using Fe(CO)₅,[6] M₃(CO)₁₂ (M = Fe, Ru, Os)[7] or (CO)₄Co-SiR₃[8] as catalysts. The key steps of this mechanism are the insertion of an alkene into a M-Si bond, step (3), and the reductive elimination of an alkyl and a hydrido ligand, step (5). Evidence for all steps required by this mechanism has been obtained for \((\eta^5-\text{C}_5\text{Me}_5)-\text{(CO)}_3\text{Fe-SiR}_3\).[10] We have now extended these investigations to \((\text{CO})_4\text{Co-SiR}_3\) which is known to be an efficient hydrosilation catalyst under irradiation.[8]

It has been shown[11] that near UV photolysis of \((\text{CO})_4\text{Co-SiEt}_3\) at 77 K in a methylcyclohexane (MCH) matrix yields the 16-electron complex \((\text{CO})_3\text{Co-SiEt}_3\) and CO as the only species detectable by FTIR.[12] The same coordinatively unsaturated complex is obtained at 77 K, when the matrix contains ethylene. However, in this case warmup of the matrix leads to disappearance of bands attributed to \((\text{CO})_3\text{Co-SiEt}_3\) and formation of new bands at 1968 (sh) and 1961 cm⁻¹. These bands are also observed upon near-UV irradiation of a solution of \((\text{CO})_4\text{Co-SiEt}_3\) and ethylene in MCH at 210 K. We attribute the bands at 1968 and 1961 cm⁻¹ to \((\text{CO})_3(\text{C}_2\text{H}_4)\text{Co-SiEt}_3\), formed by addition of ethylene to photogenerated \((\text{CO})_3\text{Co-SiEt}_3\). Coordination of ethylene is...
also evidenced by 1H-NMR spectroscopy.[13]

According to Scheme II the next step in the catalytic cycle is insertion of the coordinated alkene into the Co-Si bond, step (3). To investigate this reaction a solution of (CO)$_3$(C$_2$H$_4$)Co-SiEt$_3$ was slowly warmed to 298 K and monitored by FTIR. Above 265 K a slow reaction is observed. The unexpected reaction product is the acyl complex (CO)$_4$Co-C(O)C$_2$H$_5$, established spectroscopically by comparison with independently synthesized material.[14] We assume that insertion into the Co-Si bond, step (3), does indeed take place, but, since no R$_3$SiH necessary for step (4) is present, R-SiR$_3$ transfer takes place instead, step (6). The complex obtained is expected to undergo loss of vinyl(triethyl)silane, step (7). Free vinyl(triethyl)silane can be detected in the reaction mixture by gas chromatography. We have thus demonstrated formation of an alkenylsilane. Since we have used a large excess of ethylene the 16-electron metal complex formed in step (7) undergoes addition of ethylene, followed by insertion into the Co-H bond and addition of two molecules of CO to form (CO)$_4$Co-C(O)C$_2$H$_5$, reactions (a-c). Consistent

\[
\text{(CO)}_3\text{Co-H} + \text{C}_2\text{H}_4 \rightarrow \text{(CO)}_3\text{Co-H} \quad \quad \quad \quad \quad \text{(a)}
\]

\[
\quad \quad \quad \quad \quad \text{C}_2\text{H}_4
\]

\[
\text{(CO)}_3\text{Co-H} \rightarrow \text{(CO)}_3\text{Co-CH}_2\text{CH}_3 \quad \quad \quad \quad \quad \text{(b)}
\]

\[
\quad \quad \quad \quad \quad \text{C}_2\text{H}_4
\]

\[
\text{(CO)}_3\text{Co-CH}_2\text{CH}_3 + 2\text{CO} \rightarrow \text{(CO)}_4\text{Co-C(O)CH}_2\text{CH}_3 \quad \quad \quad \quad \quad \text{(c)}
\]

with consumption of two molecules of CO for one metal complex, the formation of (CO)$_4$Co-C(O)C$_2$H$_5$ stops, once 40% of photogenerated (CO)$_3$(C$_2$H$_4$)Co-SiEt$_3$,
i.e. 80% of CO, reacts. The rate limiting step in this reaction sequence appears to be the ethylene insertion into the Co-Si bond, since none of the intermediates could be observed. Insertion of ethylene into the Co-Si bond (step (3)) is the first example of insertion of an unactivated alkene into the M-Si bond of a catalytically active complex. In the presence of R₃SiH step (7) in Scheme II in presumably followed by reaction of (CO)₃Co-H with R₃SiH to regenerate (CO)₃Co-SiR₃ and H₂.

We have so far demonstrated steps (1)-(3) and (6) and (7) of Scheme II. To obtain evidence for steps (4) and (5), we turned to (CO)₄Co-Me as a model complex for the alkyl complex (CO)₄Co-CH₂CH₂SiR₃. Due to the lability of cobalt alkyl complexes, the reactions could not be spectroscopically monitored. We therefore reacted (CO)₄Co-Me with Me₃SiH and analyzed products by ¹H-NMR.[15] We assume thermal CO loss occurs from (CO)₄Co-Me giving (CO)₃Co-Me, corresponding to the intermediate (CO)₃Co-CH₂CH₂SiR₃ in Scheme II, but also to (CO)₃Co-C₂H₅ in Scheme I. In both cases, as well as with our model complex, the next step is oxidative addition of the silane, reaction (d).

\[
\begin{align*}
\text{(CO)₃Co-Me} + \text{Me₃SiH} & \rightarrow \text{(CO)₃Co-Me} + \text{SiMe₃} \\
\text{(CO)₄Co-Me} & \rightarrow \text{CH₄} + \text{(CO)₃Co-SiMe₃}
\end{align*}
\]

In Scheme II this is followed by elimination of the alkyl and the hydrido ligand to yield, in the case of our model compound, CH₄ and (CO)₃Co-SiMe₃, reaction (e). In contrast, from Scheme I we would expect elimination

\[
\begin{align*}
\text{(CO)₃Co-Me} & \rightarrow \text{CH₄} + \text{(CO)₃Co-SiMe₃}
\end{align*}
\]
of the silyl and the alkyl ligand to yield SiMe$_4$ and (CO)$_3$Co-H, reaction (f). We find CH$_4$, not SiMe$_4$ by 1H-NMR ($\delta = 0.18$ ppm) and (CO)$_4$Co-SiMe$_3$ by FTIR. We cannot completely rule out the possibility that some SiMe$_4$ is also formed, but formation of CH$_4$ is certainly the predominant reaction.

We have thus found evidence for all steps postulated in Scheme II. Formation of CH$_4$, not SiMe$_4$, in the reaction of (CO)$_4$Co-Me with Me$_3$SiH is clearly inconsistent with the Chalk-Harrod mechanism, Scheme I. We therefore propose the mechanism depicted in Scheme 2 for hydrosilation catalysis at least with cobalt carbonyl complexes. This new mechanism involves as the key step the insertion of an olefin into a Co-Si bond.

Acknowledgements. We thank the Deutsche Forschungsgemeinschaft and the Office of Naval Research and the National Science Foundation for partial support of this research.
References

12. IR spectroscopic data (CO stretching region) for relevant complexes (cm$^{-1}$): (CO)$_4$Co-SiEt$_3$: 2089 m, 2026, 1995 s; (CO)$_3$Co-SiEt$_3$: 1957 s, 1953 s; (CO)$_3$(C$_2$H$_4$)Co-SiEt$_3$: 1968 sh, 1961 s; (CO)$_4$Co-C(O)CH$_2$CH$_3$: 2105 m, 2045 m, 2023 s, 2002 s.

13. When a solution of (CO)$_4$Co-SiEt$_3$ in ethylene containing toluene-d$_8$ is irradiated, signals at $\delta = 1.15$ ppm (m) for Et$_3$Si and at 3.00 ppm (s) for coordinated ethylene are observed. For the resonance of coordinated ethylene cf. Y.-M. Wuu, J. G. Bentsen, C. G. Brinkley, M. S. Wrighton, Inorg. Chem. 26 (1987) 530.

14. Under 1 atm of CO at 0 $^\circ$C 210 mg (0.3 mmol) of PPN[Co(CO)$_4$] in 2 ml of THF was added to 200 mg (1.1 mmol) of [Et$_3$O]BF$_4$. After stirring the solution for 15 min, the solvent was removed in vacuo. The residue was redissolved in 1 ml of methylcyclohexane. [PPN]BF$_4$ and excess [Et$_3$O]BF$_4$ was removed via filtration and the solution was used without further purification. Only signals due to (CO)$_4$Co-C(O)CH$_2$CH$_3$ were observed in FTIR spectrum; cf. L. Marko, G. Bor, G. Almasy, P. Szabo, Brennst. Chem. 44 (1963) 184.

15. At 0 $^\circ$C 45 mg (0.3 mmol) of MeI was added to a solution of 70 mg (0.4 mmol) of Na[Co(CO)$_4$] in 1 ml THF-d$_8$. After 2 min the resulting (CO)$_4$Co-Me was reacted with 100 mg (1.3 mmol) of Me$_3$SiH. The solution was stirred for 20 min at 0 $^\circ$C and then warmed up. Immediately after the solution reached room temperature, a 1H-NMR spectrum was taken: $\delta = 0.18$ ppm for methane. Formation of (CO)$_4$C(O)CH$_3$ accompanies formation of (CO)$_4$Co-Me in the synthesis [see citation in ref. 14] and the thermolysis of the (CO)$_4$Co-Me/(CO)$_4$Co-C(O)CH$_3$ mixture in the presence of Me$_3$SiH gives CH$_3$CHO in addition to CH$_4$ [cf. also R. W. Wegman, Organometallics 5 (1986) 707, which shows formation of CH$_3$CHO from reaction of (CO)$_3$(PPh$_3$)Co-C(O)CH$_3$ with Et$_3$SiH or Ph$_3$SiH].
Scheme I: Chalk-Harrod mechanism for hydrosilation catalysis by C2H4 insertion into a M-H bond, illustrated for (CO)4Co-H [1-3].
Scheme II. Proposed mechanism for hydrosilation catalysis by C₂H₄ insertion into a Co-Si bond.
TECHNICAL REPORT DISTRIBUTION LIST, GEN

Office of Naval Research
Attn: Code 1113
800 N. Quincy Street
Arlington, Virginia 22217-5000

2

Dr. David Young
Code 334
NORDA
NSTL, Mississippi 39529

Dr. Bernard Douda
Naval Weapons Support Center
Code 50C
Crane, Indiana 47522-5050

1

Naval Weapons Center
Attn: Dr. Ron Atkins
Chemistry Division
China Lake, California 93555

Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko, Code L52
Port Hueneme, California 93401

1

Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314

12

U.S. Army Research Office
Attn: CRD-AA-IP
P.O. Box 12211
Research Triangle Park, NC 27709

DTNSRDC
Attn: Dr. H. Singerman
Applied Chemistry Division
Annapolis, Maryland 21401

1

Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112

Dr. William Tolles
Superintendent
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000

1

Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 91232
END DATE FILMED 5-88 DTIC