DEPLOY: AN AIRLIFT DEPLOYMENT SCHEDULER FOR REAL-TIME CRISIS ACTION PLANNING (U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. R N FOSTER

UNCLASSIFIED MAR 88 AFIT/GST/ENS/88M-4 F/G 15/5 NL
DEPLOY
AN ARLIFT DEPLOYMENT SCHEDULER
FOR REAL-TIME CRISIS ACTION PLANNING
THESIS
R. Mike Foster
Major, USAF

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

88330064
DEPLOY
AN AIRLIFT DEPLOYMENT SCHEDULER
FOR REAL-TIME CRISIS ACTION PLANNING

THESIS

R. Mike Foster
Major, USAF

Approved for public release; distribution unlimited
DEPLOY
AN AIRLIFT DEPLOYMENT SCHEDULER
FOR REAL-TIME CRISIS ACTION PLANNING

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Operations Research

R. Mike Foster, B.A., B.S.
Major, USAF

March 1988

Approved for public release; distribution unlimited
The purpose of this research was to develop a methodology for automating the planning of aircraft deployments from the United States to Europe. The immediate need is the deployment planning of C-130s, but the methodology, with modification, can be applied to other deploying aircraft such as fighters and tankers.

The DEPLOY program reduces deployment planning time and provides a means to store plans for future use or modification.

I would like to thank my faculty advisor, Lt Col Thomas Schuppe, for his guidance and patience. I would also like to thank my reader, Lt Col John Valusek, and my friend, Capt Joe Miller, for their suggestions and criticisms.

I would like to express my deepest appreciation for the patience and understanding of my wife, Mary. Finally, I would like to say a special thank you to my daughter, Julie, for letting me use 'our computer' for this thesis.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Problem Definition</td>
<td>2</td>
</tr>
<tr>
<td>Research Objective</td>
<td>3</td>
</tr>
<tr>
<td>Scope</td>
<td>3</td>
</tr>
<tr>
<td>Overview of Thesis</td>
<td>4</td>
</tr>
<tr>
<td>II. Literature Review</td>
<td>5</td>
</tr>
<tr>
<td>Theses</td>
<td>5</td>
</tr>
<tr>
<td>Software</td>
<td>8</td>
</tr>
<tr>
<td>Summary</td>
<td>9</td>
</tr>
<tr>
<td>III. Methodology</td>
<td>10</td>
</tr>
<tr>
<td>Overview</td>
<td>10</td>
</tr>
<tr>
<td>Assumptions and Limitations</td>
<td>13</td>
</tr>
<tr>
<td>Solution Technique</td>
<td>14</td>
</tr>
<tr>
<td>Program Description</td>
<td>16</td>
</tr>
<tr>
<td>IV. Results</td>
<td>22</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>22</td>
</tr>
<tr>
<td>Summary</td>
<td>33</td>
</tr>
<tr>
<td>V. Conclusions and Recommendations</td>
<td>34</td>
</tr>
<tr>
<td>Appendix B: Program Variables</td>
<td>55</td>
</tr>
<tr>
<td>Appendix C: Program Listing</td>
<td>59</td>
</tr>
<tr>
<td>Bibliography</td>
<td>115</td>
</tr>
<tr>
<td>Vita</td>
<td>116</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Closure For Goose Bay</td>
<td>24</td>
</tr>
<tr>
<td>4-2</td>
<td>Closure For Lajes</td>
<td>26</td>
</tr>
<tr>
<td>4-3</td>
<td>Closure For Goose Bay, MOG = 2</td>
<td>31</td>
</tr>
<tr>
<td>4-4</td>
<td>Closure For Lajes, MOG = 2</td>
<td>32</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Treatment Combinations</td>
<td>23</td>
</tr>
<tr>
<td>4-2</td>
<td>Goose Bay Raw Data</td>
<td>23</td>
</tr>
<tr>
<td>4-3</td>
<td>Lajes Raw Data</td>
<td>25</td>
</tr>
<tr>
<td>4-4</td>
<td>Goose Bay, MOG = 2</td>
<td>29</td>
</tr>
<tr>
<td>4-5</td>
<td>Lajes, MOG = 2</td>
<td>30</td>
</tr>
</tbody>
</table>
AFIT/GST/ENS/88M-4

Abstract

Preparation for a war in Europe would include the deployment of C-130 tactical airlift aircraft from their home bases in the United States to beddown locations in Europe. Methods currently used to plan such deployments would require as long as two days to provide a complete deconflicted deployment schedule.

The purpose of this study was to automate the deployment planning process. A review of literature concentrated on recent theses which studied airlift problems and existing deployment planning software.

An interactive program was written, based on the concept of using departure time from refueling choke points as the mechanism for regulating aircraft flow. A deployment flow plan for all active duty C-130s stationed in the U.S. can be completed, using this program, in approximately one hour.
Military Airlift Command (MAC) is tasked with the worldwide airlift of United States military forces in support of national security objectives as defined by the National Command Authority. This tasking includes both strategic (between theaters) and tactical (within theater) airlift of forces. The strategic airlifters include the C-5 Galaxy, the C-141 Starlifter and the KC-10 Extender. These aircraft are assigned to active duty, Air Force Reserve and Air National Guard units located throughout the continental United States (CONUS). The Civil Reserve Air Fleet would also be made available to MAC for the airlift of troops and bulk cargo. The aircraft currently used for tactical airlift is the Lockheed C-130 Hercules. Active duty C-130s are permanently stationed in Europe, Japan, the Phillipines, Alaska and the CONUS. Two-thirds of MAC's C-130s are assigned to Air Force Reserve and Air National Guard units stationed in the CONUS.

In a European contingency, strategic airlifters will shuttle between Aerial Ports of Embarkation (APOEs) in the
CONUS and Aerial Ports of Debarkation (APODs) throughout Europe carrying troops, ammunition, trucks, tanks, food and other expendable supplies. C-130s will deploy from their home bases to theater beddown locations from which they will conduct theater airlift operations. They will deploy with maintenance personnel and War Reserve Spares Kits, thus having a limited degree of self sufficiency. Operating out of the beddown locations, they will haul material and personnel from the APODs and seaports located well behind the lines to airstrips and drop zones near the battle.

Deployments of MAC aircraft are planned by Hq MAC/XOSP located at Scott AFB, Illinois. The strategic airlift deployments, or flow plans, are planned with the aid of MAC's Flow Generator program, FLOGEN. FLOGEN is used during deliberate planning and contingencies to schedule strategic airlift flows to meet cargo and passenger requirements. FLOGEN runs on a Honeywell 6000 computer and is capable of processing up to 12,000 missions (10). FLOGEN uses a cargo requirement-driven algorithm, which makes it unsuitable for the deployment of a C-130 unit.

PROBLEM DEFINITION

C-130 deployments are currently planned by hand. It has been estimated that a full scale deployment of active
duty. Reserve and National Guard C-130s to beddown locations in Europe would take MAC/XOSP two days to schedule (12).

RESEARCH OBJECTIVE

The objective of this research is to develop a methodology for automating the deployment planning of C-130 aircraft from CONUS bases to beddown locations. The methodology should be useable for deliberate planning, real time crisis action planning and validating the feasibility of existing plans.

SCOPE

To meet the requirements of Hq MAC/XOSP, the methodology must be:

1) Responsive in real time, during the Course of Action Development phase of the crisis action system;

2) Useable on microcomputers they now possess (Z-150 or Z-248); and

3) Modifiable for use in other areas.

Input parameters would include unit and home station, the number of aircraft assigned to the unit, beddown location, routing, choke point(s), arrival/departure interval at choke point, movement priority by unit, and maximum number of aircraft allowable on the ground at enroute bases.
Output should include a printed schedule of aircraft movement, fuel requirements at all airfields involved, and the date and time each unit completes its deployment (unit closure) (8).

OVERVIEW of THESIS

Chapter II is a review of literature and software which address areas closely related to the research objective. Chapter III details the methodology used and the resulting program, DEPLOY. Chapter IV gives a demonstration of DEPLOY in an experiment to compare closure times of various deployment options. The conclusions and recommendations of this thesis are presented in chapter V.
II. LITERATURE REVIEW

The literature review for this research was concentrated in two areas: recent thesis efforts which used simulation to study airlift problems, and software currently available for deployment planning.

THESES

Several recent theses have examined various aspects of airlift planning.

Hill and Donnelly studied the limitations to deploying C-130s from the CONUS to Europe during a major contingency. They built a simulation model to analyze the interactions between the intertheater airlift flow and the deploying C-130s as they transit enroute facilities along the transatlantic routes (7:4). They also used integer programming techniques to develop improved routing plans.

The deployment scenario was modeled with a network of eleven airfields using SLAM (Simulation Language for Alternative Modeling) and FORTRAN. The simulation output was used to conduct an experiment with four factors: 1) time of first launch from home station, 2) interval between launches, 3) route of flight, and 4) number of fuel trucks at enroute bases. The response variables observed were closure time (time from initiation of deployment to arrival
of last deploying aircraft at its destination) for the C-130s and enroute departure reliability for the strategic airlifters (7:42-43).

Hill and Donnelly concluded that resource limitations at enroute bases would not be a constraint to the rapid deployment of C-130s. They further found that...

... closure time of the C-130s can be reduced with the use of optimized routing plans. Additionally, more rapid generation of the C-130s would appear to allow significantly reduced closure times (7:ii).

They observed interaction between time of first launch from home station and route of flight. This led them to suggest that a decrease of both closure time and enroute congestion might be achieved by sending some of the earlier generating squadrons via longer but less congested routes, leaving the shorter routes for the later squadrons.

In addition to his thesis work with Donnelly, Hill modeled the deployment of C-130s to Europe using network programming software on a Z-248 computer. By looking at thirty-minute time periods, he was able to model a maximum of ten hours of the deployment before exceeding the software's capabilities. Hill concluded that a simulation using network programming techniques should be done on a minicomputer (6).

Cuda examined ramp space congestion during airlift operations at a single APOD during deployment and
transhipment of forces (4). APOD operations were modeled using SLAM, with C-5 and C-141 aircraft delivering a stream of cargo to be picked up by C-130s for forward delivery. Daily cargo delivery rates were set at 500, 1000, and 1500 tons, with the number of strategic and tactical aircraft unconstrained. Parking levels were calculated deterministically using standard onload and offload ground times.

By allocating parking space to tactical aircraft, tactical operations were unaffected over all combinations of arrival rate and parking space.

Cuda noted that while there was a strong relationship between strategic aircraft parking utilization and cargo diversions (as high as fifty percent cargo diverted), the diversion of C-130 aircraft did not begin until the parking utilization rate reached sixty-five percent (4:99-101).

Bowers used a SLAM model to analyze the performance of the Alaskan airlift system during wartime conditions. He found that the

... number of aircraft and number of aircrews most directly affect system performance under 'average' operating conditions. To a lesser extent, length of crew day, season, and weather can exert significant influences on system operation. Factors such as physical limitations at airfields and materials handling equipment were found to have relatively small effects... (4:115)
He discovered the optimal ratio of aircrews to aircraft to be approximately 1.6, excluding aircrews utilized for ground duties, compared to a peacetime ratio of 1.5.

Software

Abreu and Pritchard developed the Force Closure Analysis Program (F-CAP), "a tool for operational planners that automates the determination of the air transportation requirement and the closure time for a specified unit (1:1)". F-CAP consists of two interactive programs usable on IBM PC or compatible computers. The Force Closure Simulation considers port constraints and airland/airdrop operations in verifying the feasibility of operational plans involving multiple APOEs and APODs. The Lift Asset Estimator calculates the number of airlift aircraft needed and computes tradeoffs between different types of aircraft. Like MAC's FLOGEN program, F-CAP is driven by cargo movement requirements. This makes F-CAP unuseable for planning beddown deployments.

The MAC Planner's Tool Kit (MPT) was developed by Maj. Brian Jones (8). MPT emulates the MAC FLOGEN program by reading the time phased force deployment requirements and accessing a database of 4400 airfields, producing a mission schedule. Written in Foxbase with Microsoft QuickBASIC subroutines, MPT may be used on a Z-248 or compatible
Microcomputer. MPT produces a single mission schedule at a time, requiring manual deconfliction of missions.

Flogen (not MAC's FLOGEN) was written to automate the flow planning of a MAC strategic airlift Operational Readiness Inspection (ORI) scenario involving a single onload base, an offload base, and return to home station (3). A mission schedule and mission flow chart are produced. Flogen was written in BASIC for use on the Z-100 microcomputer using the CPM operating system.

Fragbuster was also written for the planning of strategic airlift ORIs, using as many as five different types of aircraft and transiting up to four bases (5). Output includes a mission schedule, mission flow chart, air operation order, and messages capable of AUTODIN transmission to the MAC AIMS database. Fragbuster was written in BASIC for use on the Z-100 and Z-150 microcomputers.

SUMMARY

The literature reviewed addressed several problems of both strategic and tactical airlift of cargo and troops. The only research dealing specifically with the deployment of C-130 aircraft to beddown locations in Europe was Hill's work with NETSID.
III. METHODOLOGY

OVERVIEW

The ideal CONUS-Europe C-130 deployment scenario would allow all aircraft to depart individual home bases and fly directly to their separate beddown locations, each aircraft proceeding via a different route. The elapsed time from initiation of the deployment to force closure (arrival of last deploying aircraft at its destination) would equal the flight time of the aircraft whose home station was the greatest distance from its beddown location.

The real world places several restrictions upon this scenario. Aircraft are based together and each base has limited maintenance, refueling, taxiway, runway and air traffic control resources. This forces some interval of time between departures. The factors which cause the sharing of home bases also encourage the sharing of beddown bases, requiring an interval between arrivals.

The distance between home base and destination requires at least one enroute stop for fuel. If each home base / beddown base pair had an exclusive enroute fuel stop, the home base departure interval would provide spacing for arrivals at the fuel stop. However, the limited number of airfields that can serve as enroute refueling stops dictates that these be shared by aircraft from different CONUS bases.
Arrivals at these shared airfields must be sequenced to avoid a traffic jam and the resulting slowdown of deploying aircraft.

Only three airfields are geographically positioned to serve as refueling stops in a CONUS - Europe deployment: Goose Bay in Labrador, Lajes in the Azores, and Keflavik in Iceland. Keflavik and Lajes are far enough from CONUS C-130 bases that most aircraft using these bases must make an additional refueling stop at a base in the eastern U.S. or Canada. These enroute refueling bases become a critical factor in a deployment of C-130s to Europe. Because of the volume of traffic transiting these bases, they become potential choke points in the deployment flow.

Deployment time can be minimized by using all available refueling bases and distributing the deploying aircraft among them as equally as operational considerations will allow. Each set of deployment routings which share a common enroute refueling stop could be planned as a separate deployment 'package', with the refueling airfield serving as the regulating parameter for that package.

Because the choke point is the only enroute stop common to all aircraft in a deployment package, the flow of aircraft must be regulated at that base. C-130s converging on the choke point will be flying at approximately the same airspeed and will spend approximately the same time on the
ground at enroute stops. If aircraft make stops at one or more intermediate airfields before and/or after the choke point, they will be sequenced through those bases in the same order and with the same minimum spacing as at the choke point.

An effective measure of an enroute airfield's ability to handle aircraft is the sustained rate at which transient aircraft can be launched. This launch rate is a function of the number of runways (usually one), the amount of parking space allocated to transient aircraft, maintenance and refueling capability, how broken aircraft will be repaired and resequenced into the flow, and the command, control and communications network supporting the coordination of all resources. The launch rate will be inversely proportional to the minimum interval between aircraft departures. A short interval would indicate efficient operation at the choke point and reduced closure time for forces transiting that base. The interval between departing aircraft at the choke point would be a good control parameter for the deployment flow.
ASSUMPTIONS AND LIMITATIONS

The following assumptions were made:

1. For the specific deployment contingency, the route of flight from home station to beddown location has been determined for each CONUS C-130 squadron.

2. The planner has determined choke points for various deployment routes by analyzing historical deployment exercise data and surveys of airfield capabilities.

3. Stage crews will be prepositioned at enroute airfields before deploying aircraft arrive, allowing aircraft to continue movement toward the beddown locations without waiting for crews to rest.

4. MAC has surveyed airfields worldwide and assessed the aircraft handling capacity at each airfield for two categories of aircraft: wide-body (C-5, KC-10, DC-10, Boeing 747) and narrow-body (C-141, C-130, C-135, C-9, Boeing 707 and 727, McDonnell-Douglas DC-8 and DC-9 and smaller aircraft). This airfield capacity is a function of ramp space, refueling capability, fire fighting resources, and all other characteristics of the airfield which affect air operations. In a contingency or exercise a portion of the total airfield capacity will be allocated to the deploying aircraft. The remainder would be reserved for deploying fighters or tankers. For this thesis MOG (Maximum On
Ground) is defined as the portion of that airfield's total aircraft handling capacity which has been allocated to MAC for the deployment. A separate MOG will be allocated for narrow and wide aircraft.

5. The planner has determined the CONTROL INTERVAL, the time between aircraft departing the choke point. Some aircraft arriving at the choke point will require maintenance that cannot be completed during their planned ground time. The control interval must include enough slack time to reinsert these aircraft into the traffic flow without disrupting the deployment schedule.

6. To preserve the unclassified nature of this thesis, beddown airfields used in all runs of DEPLOY were chosen without knowledge of actual plans. Home stations of USAF C-130 squadrons are unclassified and published each year in Air Force Magazine.

SOLUION TECHNIQUE

DEPLOY, an interactive program, was written based on the concept of using departure times from the choke point as the mechanism for regulating the deployment flow. The choke point takeoff time of each deploying aircraft is the aircraft's CONTROL TIME. The planner enters the date and time at which the choke point can begin a sustained aircraft launch rate and the control interval between aircraft
departures from the choke point. A series of menus leads the planner through the development of the deployment flow plan.

Arrival time at the choke point for the first deploying aircraft is calculated by subtracting that aircraft's choke point ground time from the control time. Flight and ground times for legs into the choke point are subtracted from this arrival time to develop a schedule for the first part of the mission. The schedule is completed by adding flight and ground times for legs flown after the choke point to the control time. The control time for each aircraft is determined by adding the control interval to the control time of the previous aircraft.

As each aircraft's schedule is built, the actual number of aircraft on the ground at the choke point is checked. If an arriving aircraft would exceed MOG, its arrival at the choke point is delayed until a slot is available. This delay will be reflected in that aircraft's arrivals at and departures from all bases transited prior to the choke point.

BASIC was chosen in order to make it possible to incorporate the program into a flow planning package which HQ MAC/XOSP plans to develop (8). A program user's manual is presented
in Appendix A and a listing of the program is found in Appendix C. Appendix B contains a list of variables and diagrams of the arrays used in DEPLOY.

PROGRAM DESCRIPTION

The program begins by reading two data files, SQUADS.DAT and BASES.DAT. SQUADS.DAT contains records for each of thirty-nine active duty, Air Force Reserve and Air National Guard squadrons stationed in the CONUS (12). Each record contains six fields:

1 - Squadron identifier
2 - Type, i.e. USAF, Reserve or Air National Guard
3 - Type of aircraft with which the unit is equipped (C-130A/B/E or C-130H)
4 - Number of aircraft assigned
5 - Home station
6 - Available Date (day after being alerted that squadron will be ready to deploy).

BASES.DAT contains records for seventy airfields. Each record has the following fields:

1 - Name of airfield
2 - ICAO (International Civil Aeronautical Organization) identifier
3 - Latitude
4 - Longitude
5 - MOG for narrow-bodied aircraft
6 - MOG for wide-bodied aircraft

The remainder of the program is menu-driven, requiring the planner to make inputs with the keyboard. A menu is displayed, offering the planner six options: build a new deployment plan, change the plan currently in the computer's memory, retrieve a plan from disk storage, save a plan on a disk, process the plan (to produce a schedule, closure and fuel requirements), add a squadron to (or change data in) the SQUADS.DAT data file, and add an airfield to the BASES.DAT data file.

To build a deployment flow plan the planner must enter types of aircraft, number of deploying aircraft from each squadron, enroute ground times, routes of flight, average wind effect (wind factor) along each route and the first departure time from the choke point.

Characteristics of five types of aircraft (C-130A/B/E, C-130H, C-141, C-5, KC-10) have been coded into the program and the planner is given the option of adding up to four more. Aircraft parameters are aircraft identifier, body type (wide or narrow), and block speed (average speed for a leg). Because block speed is based on time to accelerate to cruise speed, the total time spent at cruise speed, and time to decelerate for approach and landing, block speed will vary as a function of leg length. The block speeds coded
into DEPLOY -re based on leg length of three thousand miles. The planner is able to change ground times from those in AFP 76-2 if desired.

The planner enters the route of flight for each deploying unit. Although most C-130s deploying from the CONUS to beddown bases in Europe will require no more than two refueling stops, as many as four enroute stops may be planned, allowing a great deal of flexibility. For each flight leg the planner enters the average headwind/tailwind in nautical miles per hour.

Wind factor (effective headwind or tailwind), is entered for each leg to be flown. This is added to the aircraft's block speed to get ground speed. The great circle length of each flight leg is then computed using the following equations:

\[D = \arccos\left(\sin L_1 \sin L_2 + \cos L_1 \cos L_2 \cos D_{Lo}\right) \] (1)

where

\[L_1 = \text{latitude of point of departure in radians} \]
\[L_2 = \text{latitude of destination in radians} \]
\[D_{Lo} = \text{difference of longitude in radians of the points of departure and destination} (2:1258) \]
Distance in nautical miles = (3439.77)(D) \hspace{1cm} (2)

where 3439.77 is the mean radius of the earth in nautical miles (2:1117). The distance is divided by ground speed to determine the time of flight for each leg.

Mission 'templates' must be built by matching each deploying unit with a route of flight. The mission template is used to assign a ground time to each enroute stop based on whether the aircraft will onload or offload cargo, perform an engine-running offload, or refuel and depart. These ground times are in accordance with Air Force Pamphlet 76-2. A mission number may be assigned to each mission template.

The planner designates which airfield will be the choke point and the time and date at which the choke point can begin supporting the deployment flow. The planner may also change MOG at the choke point. A reduction in MOG would be necessary if maintenance or refueling capability were reduced because of an accident or enemy action. MOG might be increased if more of the airfield's total capacity were allocated to the deployment.

From the processing menu the planner selects the squadrons to deploy and the number of aircraft from each squadron. A squadron having sixteen C-130s may be deployed as a single unit or broken into smaller units of one or more
aircraft. The order of flow through the choke point will be determined by each squadron's Available Date. Units having the same Available Date will flow in the order they were selected by the planner.

A sequencing algorithm separates the deploying aircraft at the choke point by inserting the control interval between choke point departures. The resulting deployment schedule is then adjusted to insure that MOG at the choke point has not been exceeded. If the number of C-130s on the ground is greater than the MOG for narrow aircraft, arriving C-130s can use unfilled slots for wide aircraft (wide aircraft cannot use narrow slots). In the event all slots are filled, the next inbound aircraft will be scheduled to arrive when a slot is given up by a departing aircraft.

The resulting schedule may be tailored to a specific contingency by using four utility program modules provided. The utilities allow an individual mission or a series of missions to be moved to a time earlier or later than scheduled, flight and ground times to be changed, and missions to be repositioned in the flow plan.

The program provides three types of output: a schedule, a closure summary and a fuel requirement summary. The schedule may be obtained for all or any part of the deploying force. It can be viewed on the screen or ported to a printer. The closure summary is a list of deploying
squadrons or parts of squadrons in order of flow through the choke point. Date and time are given for the departure of the first aircraft from home station and the arrival of the last aircraft at beddown base for each deploying unit. The fuel requirement summary shows fuel for the deployment that will be required at each origin and enroute airfield.

A more detailed description of the program is found in the User's Manual in Appendix A.
IV. RESULTS

To demonstrate a potential use of DEPLOY, an experiment was conducted to compare closure times of various deployment scenarios. In the experiment, each active duty CONUS squadron deployed sixteen aircraft to a fictitious beddown location in Europe. Goose Bay Air Base, Labrador was used as the enroute refueling stop, or choke point.

EXPERIMENTAL DESIGN

The experimental factors chosen were choke point departure interval (INT) and sequencing of squadrons (SEQ). INT was tried at fifteen, thirty and forty-five minutes. SEQ was varied at three levels: squadrons closest to the choke point deploying first (CLS), squadrons furthest from the choke point deploying first (FAR), and alternating close and distant squadrons (ALT). The experimental design is shown in Table 4-1.
Table 4-1 TREATMENT COMBINATIONS

<table>
<thead>
<tr>
<th>SEQ</th>
<th>CLS</th>
<th>ALT</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>INT 30 min</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>45 min</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The results of the experiment are shown in Table 4-2.

Table 4-2 GOOSE BAY RAW DATA

(minutes to close)

<table>
<thead>
<tr>
<th>SEQ</th>
<th>CLS</th>
<th>ALT</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>2800</td>
<td>2810</td>
<td>2890</td>
</tr>
<tr>
<td>INT 30 min</td>
<td>4705</td>
<td>4715</td>
<td>4795</td>
</tr>
<tr>
<td>45 min</td>
<td>6610</td>
<td>6620</td>
<td>6700</td>
</tr>
</tbody>
</table>

SAS (12) was used to plot the dependent variable CLOSURE TIME as a function of INT and SEQ. The response surface which resulted is shown in Figure 4-1.
The experiment was repeated with Lajes Air Base, Azores, as the choke point. The results of that experiment are shown in the Table 4-3 and on the response surface in Figure 4-2.

Table 4-3 LAJES RAW DATA

(minutes to close)

<table>
<thead>
<tr>
<th>SEQ</th>
<th>CLS</th>
<th>ALT</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>2860</td>
<td>3045</td>
<td>3120</td>
</tr>
<tr>
<td>INT 30 min</td>
<td>4765</td>
<td>4945</td>
<td>5025</td>
</tr>
<tr>
<td>45 min</td>
<td>6670</td>
<td>6855</td>
<td>6930</td>
</tr>
</tbody>
</table>

The response surfaces indicate that closure time is very sensitive to changes in choke point departure interval. This is to be expected since each minute added to the interval would increase closure time by \(\text{[the number of deploying aircraft - 1]} \) minutes.

An unexpected inference from the response surfaces is closure's relative lack of sensitivity to the sequencing of squadrons through the choke point. A C-130 flying from Dyess AFB, Texas, to Goose Bay, Labrador, would have a no-wind flying time of seven hours and twenty-five minutes,
Figure 4-2 Closure For Lajes
while a C-130 departing Pope AFB, North Carolina, for Goose Bay would fly for four hours and forty-five minutes. If a squadron stationed at Pope AFB were to deploy immediately after a Dyess squadron, the first Pope aircraft would depart Pope after the last Dyess aircraft had been airborne for two hours and forty minutes \((7 + 25 - 4 + 45) \), plus the Goose Bay departure interval. If the sequence were reversed, the first Dyess C-130 could take off for Goose Bay two hours and forty minutes \(\text{minus the choke point departure interval} \) BEFORE the last aircraft departed Pope. While this makes it appear as if a sizeable reduction in closure time would result from scheduling the squadrons in order of their proximity to the choke point, the reduction is small when compared to the total time required to close the deployment.

The response surface for a deployment via Lajes shows the same sensitivity to choke point departure interval as the deployment via Goose Bay. A slightly increased sensitivity to squadron sequencing is due to the longer time that C-130s must fly in order to reach Lajes.

In both experiments MOG was intentionally set at a large value so it would not be a limiting factor. Limiting MOG can be determined by the equation:

\[
\text{MOG} = \frac{OT}{\text{INT}}
\]

(3)
where

\[\text{GT} = \text{planned ground time} \]

\[\text{INT} = \text{planned departure interval} \]

As long as the MOG is greater than or equal to \((\text{GT/INT})\) the aircraft will flow smoothly, one departing every INT minutes. When MOG is less than \((\text{GT/INT})\) the aircraft will flow from the choke point in surges. During the surges aircraft will depart the choke point every INT minutes. Between the surge periods the choke point will be operating at a slower pace, with aircraft departing at intervals greater than INT minutes. When MOG is exactly \((\text{GT/INT})\) the choke point will operate at continuous rate with no departure surges and all aircraft departing at INT minute intervals.

Both experiments were repeated with the MOG at each choke point set equal to two. At departure intervals of fifteen and thirty minutes, flow surges occurred since:

\[\frac{\text{GT}}{\text{INT}} = \frac{90}{15} = 6 > \text{MOG} \] (4)

for INT = 15 minutes and

\[\frac{\text{GT}}{\text{INT}} = \frac{90}{30} = 3 > \text{MOG} \] (5)

for INT = 30 minutes.
During these surges, aircraft are departing the choke point at INT minute intervals.

At departure intervals of forty-five minutes there was a smooth flow of aircraft, due to:

\[
GT / INT = 90 / 45 = 2 = MOG
\]

(6)

The results of the experiments are shown in Tables 4-4 and 4-5 and Figures 4-3 and 4-4.

Table 4-4 GOOSE BAY, MOG = 2

(minutes to close)

<table>
<thead>
<tr>
<th>SEQ</th>
<th>CLS</th>
<th>ALT</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 min</td>
<td>6520</td>
<td>6525</td>
<td>6600</td>
</tr>
<tr>
<td>INT</td>
<td>6535</td>
<td>6540</td>
<td>6615</td>
</tr>
<tr>
<td>45 min</td>
<td>6550</td>
<td>6555</td>
<td>6645</td>
</tr>
</tbody>
</table>
The response surfaces in Figures 4-3 and 4-4 are relatively flat and show an increased closure time when compared to the surfaces in which MOG was not a factor. This occurs because the slower periods between surges are adding to closure time without moving aircraft. The overall effect of MOG restricting the flow is the increase in closure time and the reduced sensitivity of the flow to choke point departure interval.
SUMMARY

While the experiments themselves are interesting, the usefulness of DEPLOY is demonstrated by the fact that the thirty-six C-130 deployments generated for the experimental data, each containing one hundred twenty-eight aircraft, were scheduled in less than three hours. Manually planning a single deployment of all CONUS-based active duty squadrons would take several hours. When this planning time is multiplied by the thirty-six deployments used in the experiment, the advantage of using an interactive tool like DEPLOY becomes apparent.
V. CONCLUSIONS AND RECOMMENDATIONS

The objective of this research was to develop a methodology for automating deployment planning of C-130 aircraft from CONUS bases to beddown locations. This was accomplished by means of an interactive program which runs on a Zenith Z-248 (IBM AT compatible) microcomputer. The DEPLOY program reduces the time required to plan a deployment of all CONUS-based C-130s from an estimated two days to less than two hours. Deployment flow plans may be saved on disk and retrieved for later use or modification. Output includes a schedule for each aircraft, closure for each deploying unit, and fuel required at each airfield involved in the deployment plan.

While DEPLOY is a marked improvement over the current manual method of deployment flow planning, improvements could be made to increase its usefulness. Suggestions for several improvements are noted below.

1. Add a program module to select the optimal routing for each squadron. Routings which were determined during peacetime deliberate planning sessions may prove unusable as the political and military situations change.

2. Add a module which determines the choke point, given the airfields used for enroute refueling.
3. Modify the wind factor subroutine to calculate wind factors from winds entered by the planner. This would save the planner the step of calculating the wind factors manually.

4. Add logic which would limit the flow of aircraft through an airfield to that which could be supported by fuel supplies at that airfield.

5. Add logic to prevent the planner from building a mission template with a route segment exceeding an aircraft's maximum range. This must currently be checked by the planner and could be overlooked.

6. The number of routes is currently limited to twenty, as is the number of mission templates. The program should be modified to allow the planner to set these limits to match his needs and the memory available in his computer. The use of dynamic arrays in QuickBASIC will make this an easy modification.

7. DEPLOY uses block speed based on a flight leg length of three thousand miles. A look-up table could be added to cover a range of leg lengths.

8. Investigate the possibility of modifying DEPLOY for planning fighter deployments. This is another beddown deployment problem which will occur at the onset of a crisis, when time is at a premium.
DEPLOY

USER'S MANUAL

DEPLOY is a tool for planning the deployment of aircraft from their home stations to their theater beddown locations. Although intended primarily for C-130s, the program also contains parameters for C-141, C-5 and KC-10 aircraft. It was written for use on a Z-248 microcomputer with 512 kilobytes of RAM and either a hard disk drive or one floppy disk drive. The source language is Microsoft QuickBASIC 4.0.

The program disk must contain four files:
- DEPLOY.EXE - the executable program
- BASRUN40.EXE - the BASIC runtime module
- BASES.DAT - the airfield data file containing the name, ICAO identifier in capital letters, latitude and longitude in degrees and tenths of a degree, narrow and wide MOG of each airfield. Bases may be added using the ADD AIRFIELD TO DATABASE option of the MAIN MENU explained later in this manual or with a text editor such as edlin.com.
- SQUADS.DAT - the squadron data file containing the squadron identifier, type (1=active, 2=Res, 3=ANG), type acft, number of acft, home base (ICAO), beddown base (ICAO),
day available (0, 1, 2, etc) and beddown deadline (day 1, 2, etc) for each squadron. Changes and additions may be made using the CHANGE SQUADRON DATA option of the MAIN MENU explained below.

The program is initiated by typing [DEPLOY] [return]. After the base and data files are read, the main menu will appear.

MAIN MENU

1 CREATE A NEW FLOW PLAN
2 CHANGE CURRENT FLOW PLAN
3 LOAD FILE
4 SAVE FILE
5 CHANGE SQUADRON DATA
6 ADD AIRFIELD TO DATABASE
7 FLOW MENU
8 END

ENTER REQUEST ?

1. CREATE A NEW FLOW PLAN

2. CHANGE CURRENT FLOW PLAN

Selection of either of the first two menu items will present the INPUT CHECKLIST. Item 1 clears memory, allowing a new
plan to be entered while Item 2 allows changes to be made to an existing flow plan.

3. LOAD FILE
Used to load a flow plan file previously saved on disk.
* See note below.

4. SAVE FILE
Saves a flow plan file on disk. The file must be given a filename prefix in accordance with the MS-DOS convention. The .DAT suffix will be added by DEPLOY. A flow plan containing one hundred fifty missions will take approximately 100 kb of disk space. * See note below.

* note: Files may be saved to and loaded from any disk drive, however, only the files on the program (logged) drive will be shown on the screen.

5. CHANGE SQUADRON DATA
Up to five squadrons may be added to the SQUADS.DAT data file each time DEPLOY is run. Five parameters are tracked for each squadron and may be changed in the CHANGE SQUADRON DATA routine:

- TYPE SQUADRON - active duty, Reserve or ANG.

- TYPE ACFT ASSIGNED - C-130A/B/E, C-130H, C-141, C-5, KC-10, any others added by the user in the ACFT TYPES option of the INPUT CHECKLIST.
- PAA - the number of airframes assigned to the squadron.

- HOME BASE - the squadron's home station

- AVAILABLE - the day the squadron will be available for deployment (0, 1, 2, etc; day 0 being the day the planner is alerted to flow plan).

5. ADD AIRFIELD TO DATABASE

Each time DEPLOY is run, five airfields may be added to the BASE*.DAT database. Six characteristics of each airfield are tracked:

- ICAO identifier

- Name of airfield

- Latitude in degrees and tenths of a degree. Northern latitude is entered as a positive number, Southern latitude as a negative number.

- Longitude in degrees and tenths. Enter Western longitude as a positive number, Eastern longitude as negative.

- Narrow MOG

- Wide MOG
DEPLOY may be terminated by selecting the END option of the MAIN MENU. The opportunity is offered to save any changes that were made to the squadron or airfield data.

INPUT CHECKLIST (completed (**))

() 1 AIRCRAFT TYPES

() 2 GROUND TIMES

() 3 FLIGHT ROUTINGS

() 4 ROUTE WIND FACTORS

() 5 MISSION TEMPLATES

() 6 CONTROL BASE, TIME, DATE

7 REVIEW AIRFIELDS

8 CHECK FLYING TIMES

9 RETURN TO MAIN MENU

ENTER REQUEST ?

1 - AIRCRAFT TYPES

Allows up to four additional types of aircraft to be added.
Aircraft designator, body type (wide/narrow), block speed
and average fuel consumed (1000s of pounds/hour) are the required entries. The screen below appears when item 1 is selected:

PROGRAM CONTAINS PARAMETERS FOR THESE AIRCRAFT

<table>
<thead>
<tr>
<th>C-130A/B/E</th>
<th>C-130H</th>
<th>C-141</th>
<th>C-5</th>
<th>KC-10</th>
</tr>
</thead>
</table>

'ENTER' TO CONTINUE, 'A' TO ADD AIRCRAFT ?

2 - GROUND TIMES

Allows review or modification of the aircraft ground times (engine running offload, upload, download, enroute stop) specified in AFP 76-2. Called automatically if an aircraft type was added. Option 2 gives the following screen:

<table>
<thead>
<tr>
<th></th>
<th>ERO</th>
<th>DNLOAD</th>
<th>UPLOAD</th>
<th>EN ROUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C130</td>
<td>00+30</td>
<td>01+30</td>
<td>01+30</td>
</tr>
<tr>
<td>2</td>
<td>C130H</td>
<td>00+30</td>
<td>01+30</td>
<td>01+30</td>
</tr>
<tr>
<td>3</td>
<td>C141</td>
<td>00+45</td>
<td>02+15</td>
<td>02+15</td>
</tr>
<tr>
<td>4</td>
<td>C5</td>
<td>01+00</td>
<td>03+15</td>
<td>03+45</td>
</tr>
<tr>
<td>5</td>
<td>KC10</td>
<td>00+00</td>
<td>03+00</td>
<td>05+00</td>
</tr>
</tbody>
</table>

'C' TO CHANGE ONE OR MORE GROUND TIMES, 'ENTER' TO RETURN TO MENU ?

3 - FLIGHT ROUTINGS

Used to enter the route of flight for deployment. Twenty routes are permitted, each having up to five legs. ICAO
Identifiers for each base on the route are entered in CAPITAL LETTERS. Bases not in the BASE#.DAT file will be rejected. Selecting option 3 presents the screen below:

ENTER ICAOS OF ROUTE OF FLIGHT (RETURN AFTER EACH ICAO)
1 KPOB LPLA EGUN

ENTER THE NUMBER OF ROUTING TO CHANGE (ENTER TO END)?

4 - ROUTE WIND FACTORS

Used to enter or change the wind factor (effective tail wind) in knots for each leg entered in FLIGHT ROUTINGS. Head winds are entered as negative numbers. The distance in nautical miles between the departure and arrival base of each leg is computed from the latitude and longitude of the bases. The distance and wind factor of each leg are saved and used with the block true airspeed of each type aircraft to compute leg flying time. Called automatically if one or more flight routes were entered. The wind factors (in knots) are changed on this screen:

FROM TO WF
1 KPOB TO LPLA = 15
2 LPLA TO EGUN = ?

ENTER NEW WIND FACTOR FOR THIS LEG. 'ENTER' IF NO CHANGE
5 - MISSION TEMPLATES

A squadron is entered and matched with a routing. You are given the option of a quick turn at each enroute stop or designating an upload, download, or engine running offload (ERO). The ground times will be those entered or accepted in the GROUND TIMES option described above. A seven-digit mission number may be entered. The takeoff sequence (by base of origin) and Julian day of mission origin are automatically added to enable identification of individual missions. Twenty mission templates are permitted.

MISSION PLANS

1 C130 KPOB LPLA EGUN 40TAS *QKTRN*
2 C130 KPOB KLIZ LPLA EGUN 39TAS *QKTRN*

ENTER TEMPLATE TO CHANGE. HIT ENTER TO END ?

6 - CHOKE POINT, TIME, DATE

The ICAO identifier of the choke point is entered. The MOG for narrow and wide aircraft is printed on the screen with the option of changing them. When DEPLOY is ended there will be an opportunity to save these changes in the BASE.DAT file. The desired time and date of the first
takeoff from the choke point are entered, followed by the
interval between takeoffs from the choke point, as shown
below:

DEPARTURES ARE REGULATED FROM THE CHOKE POINT

ENTER ICAO OF CHOKE POINT

NARROW MOG 16 'ENTER' IF OK, 'C' TO CHANGE

WIDE MOG 2 'ENTER' IF OK, 'C' TO CHANGE

ENTER FIRST TAKEOFF TIME FROM CYYR (HHMM)

ENTER DATE (DDMMYY) OF T.O.

ENTER INTERVAL BETWEEN CYYR TAKEOFFS (IN MINUTES)

- REVIEW AIRFIELDS

Allows viewing of all airfields and ICAO identifiers in the
BASES DAT file. This is provided as a memory aid and a
means to print a listing (shift-Prt Sc).

- CHECK FLYING TIMES

Used to view flying times of all routes for each aircraft
type. If it appears that realistic times have been
exceeded, the routing may be changed in the FLIGHT ROUTINGS
routine. Called automatically if a routing has been entered
in FLIGHT ROUTINGS or if WIND FACTORS were entered/changed. Flight times are presented for each leg in the format shown below for C130s:

`-> C130 <-
KPOB 9+10 LPLA 5+15 EGUN
KPOB 3+15 KLIZ 6+50 LPLA 5+15`

As each item on the INPUT CHECKLIST is selected, the checklist box () to the left of the item will be filled (**), whether or not any data is entered. In addition, the () boxes of all affected items will be cleared. This only clears the checklist () boxes, not the data entered when those checklist items were selected. If item 9 - RETURN TO MAIN MENU - is selected while any checklist boxes are empty, an 'INCOMPLETE ----->' warning will be printed to the left of the () box. A second attempt to return to MAIN MENU will be successful, as the program assumes you have selected that option intentionally.

If the INPUT CHECKLIST is entered via the CHANGE CURRENT FLOW PLAN option, all checklist boxes will be filled (**)) when the checklist first appears.

After the INPUT CHECKLIST has been completed. The user should return to the MAIN MENU and save the 'raw' data. This will save time later on if a way is found to bypass the 'foolproofing' mechanisms and crash the program.
After saving the data select item 7, FLOW MENU. If the INPUT CHECKLIST was not completed, a message will appear, directing either a return to the INPUT MENU or the loading of a flow plan from disk.

FLOW MENU

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FLOW AND MOG</td>
</tr>
<tr>
<td>2</td>
<td>SLIDE MISSIONS</td>
</tr>
<tr>
<td>3</td>
<td>CHANGE MISSIONS</td>
</tr>
<tr>
<td>4</td>
<td>MISSION SCHEDULE</td>
</tr>
<tr>
<td>5</td>
<td>FUEL REQUIRED</td>
</tr>
<tr>
<td>6</td>
<td>FORCE CLOSURE</td>
</tr>
<tr>
<td>7</td>
<td>MAIN MENU</td>
</tr>
</tbody>
</table>

ENTER CHOICE ?

The FLOW MENU is divided into two sections. The first three options build the flow plan.

1 - FLOW AND MOG

Missions are selected from the mission templates. As a template is selected, the total number of aircraft available to deploy is displayed on the screen. As each desired template is entered, the squadron's available aircraft are depleted by the number deployed. The aircraft will flow
through the choke point in the order the templates are selected, with the following exception: squadrons will be sorted by available date. Two squadrons having the same available date will flow in the order selected.

When the last desired template has been entered and 'ENTER' selected, DEPLOY will sort the templates by available date and break them into individual missions. These missions will depart the choke point at the interval entered in the INPUT CHECKLIST (item 6).

If the number of aircraft on the ground at the choke point exceeds MOG for that body type (wide/narrow), further arrivals will be delayed until an aircraft departs. Wide-body aircraft may use only wide slots. Narrow aircraft may use wide slots once they have filled all narrow slots.

2 - SLIDE MISSIONS

Allows an individual mission or a series of missions to move to an earlier or later time. Two cautions must be observed when sliding missions: 1) beware of moving them 'on top' of other missions. 2) move missions no more than twenty-one days from the original scheduled time.
3 - CHANGE MISSIONS
This option presents the CHANGES MISSIONS menu.

CHANGE MISSIONS

1 MISSION NUMBERS
2 CHANGE GROUND TIMES (REFLOW)
3 CHANGE FLIGHT TIMES (REFLOW)
4 REPOSITION IN THE FLOW (REFLOW)
5 LINK / UNLINK MISSIONS
6 RETURN TO FLOW MENU

ENTER CHOICE ?

> 1 MISSION NUMBERS enables you to change the
seven-character prefix or the eighth and ninth 'sequence'
digits of the mission number.

> 2 CHANGE GROUND TIMES allows the ground time
at any enroute base to be changed from the time specified in
the INPUT CHECKLIST.

> 3 CHANGE FLIGHT TIMES allows the flight time
of any leg to be changed from that computed by DEPLOY.

> 4 REPOSITION IN THE FLOW lets a mission be
moved anywhere in the flow. Also allows two missions to be
swapped.
5 LINK / UNLINK MISSIONS permits a mission which terminates at a base to be linked to a mission originating at that base, provided the same type aircraft is used on both missions.

Options four through six are the output options.

4 - MISSION SCHEDULE

Prints a schedule of all or part of the flow plan to the screen or printer. Data on individual missions is printed in the format shown below.

```plaintext
FLOW SEQUENCE * 1 CYYR DEPARTURE TIME 15 JAN 1200
ACFT C130 39 TAS MISSION * PEN0602010015

ARRIVE GNDTME DEPART FLTTM LEG
15 JAN 1030 1+30 CYYR 15 JAN 1200 7+30 2
15 JAN 1930 EGUN
```

The two-line schedule header shows that this is the first mission in the flow (sequence # 1) and departs the choke point (CYYR) at 1200 on 15 JAN. The mission will be flown by a C-130(A, B, or E) from the 39th TAS as mission number PEN0602010015. The eighth and ninth characters of the mission number (01) indicate this is the first departure from the base under the mission prefix PEN0602. The mission originates on the 015 Julian day, as shown by the last three characters of the mission number.
The body of the schedule gives the planned itinerary and is read as follows:

Leg 1: Depart Pope AFB at 0545 on 15 JAN, arrive Goose Bay at 1030 on 15 JAN after a 4+45 flight. Ground time at Goose Bay is 1+30.

Leg 2: Depart Goose Bay at 1200 on 15 JAN, arrive Mildenhall 1930 15 Jan after flying for 7+30.

No ground time is specified at Mildenhall since the mission terminates there.

The leg numbers in the right-hand column are referenced when making changes to flight and ground times as described previously under the CHANGE MISSIONS option.

5 - FUEL REQUIRED
Depicts the fuel required by the flow plan at each base and total fuel required, in one thousand pound units. The total number of flying hours for the plan is also given. This information is printed only on the screen. A hard copy may be made by typing [shift-Prt Sc].

6 - FORCE CLOSURE
Shows, by squadron, when the first aircraft departs home station and when the last aircraft arrives at the beddown base. Also prints only to the screen. Type [shift-Prt Sc] for hard copy.
RECOMMENDED TECHNIQUE

1. Determine which squadrons to deploy and the number of aircraft from each squadron.

2. Determine the route of flight for each squadron. Divide the routings into groups which share one or more legs. From the appropriate meteorological charts (or by calling the weather shop), get the wind factors for all flight legs.

3. Review the aircraft handling capabilities of the bases in the common route segments. The airfield most likely to become a choke point should be designated the control base. Based on the control base's current resources and those that can be airlifted to supplement them, determine the maximum launch frequency the choke point can realistically support and the time the base will be able to support the flow.

Example: C-130 squadrons A, B and C are deploying from Elmendorf, Niagara Falls and Pittsburg, respectively. They will each refuel at Goose Bay then go their separate ways to beddown bases. Squadrons D departs Pope for Lajes, Torrejon and beddown at Aviano. Squadron E departs Dyess for Pope, Lajes and beddown at Torrejon.

Squadrons A, B and C share the refueling stop at Goose Bay and should be grouped together in one flow plan with Goose Bay as the control base. An ALCE team is enroute to...
Goose Bay and will be able to launch a mission every thirty minutes, beginning at 1300 on 2 JUN.

Squadrons D and E share the route segments from Pope to Lajes and from Lajes to Torrejon and should be grouped in a second flow plan. Lajes will be designated the control base, with missions departing every forty-five minutes.

4. Initiate the DEPLOY program. When the MAIN MENU appears, select menu item 1, CREATE A NEW FLOW PLAN. The example above deploys only C-130 squadrons. Since the C-130 is one of the aircraft types whose parameters are in the DEPLOY code, there is no reason to select item 1 of the INPUT CHECKLIST. If the plan calls for standard ground times at enroute stops, it will not be necessary to select item 2.

5. Select the FLIGHT ROUTINGS option and enter the routes determined earlier. For this example, routings may be entered for both flow plans (five total). Completion of that option will send you to the WIND FACTORS routine and request the wind factor for each leg.

6. CHECK FLYING TIMES (item eight) to insure they do not exceed the capability of the deploying aircraft. If you find a leg that is questionable, return to FLIGHT ROUTINGS and reroute the mission.
7. Select the MISSION TEMPLATES option and assign each squadron a route of flight and mission number.

8. Select item six and enter CYYR, the ICAO identifier of the choke point for the first flow. The narrow MOG (from the BASES.DAT file) at CYYR will appear and you can update it if required. You will then be offered a chance to change the wide MOG at CYYR. Enter the time (1300) and date (2 JUN) of CYYR's first departure and the time between departures (45 minutes).

9. RETURN TO MAIN MENU. If you did not select the first two items, you will get a warning flag to the left of item one. Reselect RETURN TO MAIN MENU and you will be allowed to return.

10. Save the information using the SAVE FILE option.

11. Select FLOW MENU and FLOW & MOG the data you have entered. When the mission templates appear, enter the templates for the first flow and the number of aircraft for each squadron.

12. When the FLOW MENU reappears select item four and get a MISSION SCHEDULE from the printer. If it becomes necessary to change ground or flight times, use the CHANGE MISSIONS option. This option will also allow missions to be moved around in the flow.
13. Adjustments may be made with the SLIDE MISSIONS option. If any of the (REFLOW) options are selected from the CHANGE MISSIONS menu, the sliding of missions will be erased and the missions will reflect the control times on the original printed schedule.

14. When you are satisfied with the flow plan, get a final MISSION SCHEDULE and make copies of the FORCE CLOSURE and FUEL REQUIRED (using the [shift-Prt Sc] keys).
I. VARIABLES

AFLDS number of airfields read from data file
JCB number corresponding to choke point
JDLA julian day of first choke point departure
JFI flow interval in minutes from choke point
MAXACFT max number of different acft types (1-9)
MAXADDSQ max number of additions to squad$.dat file
 [5 per each run of DEPLOY]
MAXAFLD max number of airfields (50)
MAXBSE max number of bases in a routing [6]
MAXHOPS max number of hops in a routing [5]
MAXLEGS 5 * maxmsns (5-2500)
MAXMSNS max number of missions in one plan (1-500)
MAXPLANs max number of mission templates [20]
MAXRTES max number of planned flight routes [20]
NSQUAD number of squadrons read from data file
NUMACFT number of acft types used in plan
NUMMSNS total number of missions in the flow plan

VARIABLES USED THROUGHOUT PROGRAM TO REFER TO IMST ARRAY:

I. JET = 1 type acft
ICTM = 2 mission control time
IFSTLG = 3 first leg of mission
ILSTLG = 7 last
IFSTBSE = 8 base of origin
ILSTBSE = 13 destination base
IPRE = 14 mission time before choke point
ICBGND = 15 ground time at choke point
IPST = 16 mission time after choke point
ILKTO = 17 which mission this one is linked to (follows)
ILKFRM = 18 " " " " from (precedes)
ISQD = 19 squadron flying this mission
IMSTTOP = 19 number of columns in IMST array
II. ARRAYS (dimensions)

MISSION ARRAYS

IMST (maxmsna + maxplans, imsttop)

<table>
<thead>
<tr>
<th>IFSTLG-</th>
<th>IFSTBSE-</th>
<th>IPOST ILKT0 ILKFRM ISQD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IJET</td>
<td>ICTM</td>
<td>ILSTLG</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3-7</td>
</tr>
<tr>
<td>8-13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>ACFT</td>
<td>CTRL</td>
<td>LEG</td>
</tr>
<tr>
<td>TYPE</td>
<td>TIME</td>
<td>PTRS</td>
</tr>
<tr>
<td>LEGNTE</td>
<td>BASES</td>
<td>PRE-C.Pt. TIME</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>POST-C.Pt. TIME</td>
<td>MSN MSN</td>
<td>LNKD LNKD SQUAD</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SMST (maxmsna + maxplans)

MISSION NUMBER

LEGS (maxlegs, 7)

<table>
<thead>
<tr>
<th>IMST BACK PTR</th>
<th>DEPT TIME</th>
<th>DEPT BASE</th>
<th>FLT TIME</th>
<th>DEST GND BASE</th>
<th>DEST GND TIME</th>
<th>DEST FNCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
AIRFIELD ARRAYS

AFLD\((\text{aflds}, 4)\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LONG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NARROW MOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIDE MOG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAFLD\((\text{aflds}, 2)\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FUEL\((\text{aflds})\)

- FUEL REQUIRED FOR PLAN

ROUTES\((\text{maxrtes, maxbse})\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2-5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN BASE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENROUTE BASES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEST BASE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GND TIMES\((\text{maxacft, maxbse})\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERO TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNLD TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPLD TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUICK TURN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACFT\((\text{maxacft, 3})\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK SPEED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACFT SIZE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUEL/HOUR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SJETS\((\text{maxacft})\)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACFT ID</td>
<td></td>
</tr>
</tbody>
</table>

57
<table>
<thead>
<tr>
<th>DEPT BASE</th>
<th>ARRIVAL BASE</th>
<th>WIND FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIGIN BASE</th>
<th>ENROUTE BASES</th>
<th>DEST BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-5</td>
<td>6</td>
</tr>
</tbody>
</table>

DIST \((\text{maxrtes}, \text{maxhops}, 2) \)

<table>
<thead>
<tr>
<th>DEPT BASE</th>
<th>ARRIVAL BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

FLTTIME \((\text{maxrtes}, \text{maxbse}, \text{numacft}) \)

<table>
<thead>
<tr>
<th>FLIGHT TIME</th>
<th>for each leg in ROUTES array</th>
</tr>
</thead>
</table>

ISQUAD \((\text{nsquad} + 5, 7) \)

<table>
<thead>
<tr>
<th>SQDRN ID</th>
<th>ACT. RES.</th>
<th>TYPE ACFT</th>
<th>PAA</th>
<th>HOME BASE</th>
<th>DAY AVLBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
CLS : LOCATE 10, 20
PRINT 'LOADING SQUADRON AND AIRFIELD DATA'
OPTION BASE 1
DEFINT I-W, P, T: DEFSTR S, Z
'DYNAMIC

MAXMSNS = 300
MAXPLANS = 20
MAXACFT = 9
MAXRTES = 20
MAXADDSQ = 5

' variables for IMST array
ISUM = 0 : DISKFLG = 0 : PATCH = 0
IJET = 1 : ICTM = 2 : IFSTLG = 3 : ILSTLG = 7
IFSTBSE = 8 : ILSTBSE = 13: IPRE = 14
ICBGND = 15: IPOST = 16: ILKFRM = 17: ILKTO = 18
ISQD = 19: IMSTTOP = 19

MAXHOPS = ILSTBSE - IFSTBSE: MAXBSE = MAXHOPS + 1
MAXLEGS = MAXMSNS * MAXHOPS
MAXWF = MAXRTES * MAXHOPS

DIM IMST(MAXMSNS + MAXPLANS, IMSTTOP), SMST(MAXMSNS + MAXPLANS)
DIM LEGS(MAXLEGS, 7), ACFT(MAXACFT, 3)
DIM NDATES(12), NDAYS(12), SNOTE(MAXPLANS)
DIM JARAY(10, 2), JARAY(10, 2)
DIM ROUTES(MAXRTES, MAXBSE), WF(MAXRTES * MAXHOPS, 3)
DIM DIST(MAXRTES, MAXHOPS, 2), SERVICE(3)
DIM SJETS(MAXACFT), GNDTIMES(MAXACFT, 6)
DIM SELEC(10), NSQDPLY(MAXPLANS, 2)
DIM FLTTIME(MAXRTES, MAXHOPS + 1, MAXACFT)

ICHGSQ = 0

SDOT10 = '............': SDOT9 = '............'
ZMONTH = 'JANFEBMARAPRMayJUNJULAUGSEPCTNOVDEC'

DATA 31,28,31,30,31,30,31,31,30,31,30,31
FOR I = 1 TO 12
 READ NDAYS(I)
 NDATES(I) = ISUM
 ISUM = ISUM + NDAYS(I)
NEXT I

SERVICE(1) = 'ACTIVE ': SERVICE(2) = 'RESERVE': SERVICE(3) = 'ANG'

59
' read airfield database BASE#.DAT

OPEN 'I', 2, 'BASE#.DAT'
INPUT #2, AFLDS
MXAFLD = AFLDS + 5
DIM AFLD(AFLDS + 5, 4), SAFLD(AFLDS + 5, 2)
DIM FUEL(AFLDS)
FOR I = 1 TO AFLDS
 INPUT #2, SAFLD(I, 1) ' base
 INPUT #2, SAFLD(I, 2) ' icao
 INPUT #2, LAT#
 AFLD(I, 1) = VAL(LAT#) ' latitude
 INPUT #2, LONG#
 AFLD(I, 2) = VAL(LONG#) ' longitude
 INPUT #2, NMOGS
 AFLD(I, 3) = VAL(NMOGS) ' narrow mog
 INPUT #2, WMOGS
 AFLD(I, 4) = VAL(WMOGS) ' wide mog
NEXT I
CLOSE #2

' read squadron database SQUAD#.DAT

OPEN 'I', 2, 'SQUAD#.DAT'
INPUT #2, NSQUAD
DIM ISQUAD(NSQUAD + 5, 7)
DIM FLOWTEMP(NSQUAD)
FOR I = 1 TO NSQUAD
 INPUT $2, SDAT
 ISQUAD(I, 1) = VAL(SDAT) ' squadron
 INPUT $2, SDAT
 ISQUAD(I, 2) = VAL(SDAT) ' 1-usaf, 2-afres, 3-ang
 INPUT $2, SDAT
 ISQUAD(I, 3) = VAL(SDAT) ' type acft 1-C130ABE 2-C130H
 INPUT $2, SDAT
 ISQUAD(I, 4) = VAL(SDAT) ' paa
 INPUT $2, SDAT
 FOR J = 1 TO AFLDS
 IF SAFLD(J, 2) = SDAT THEN ISQUAD(I, 5) = J:EXIT FOR
 NEXT J
 INPUT $2, ISQUAD(I, 6) ' first available day (1,2,3,...)
 INPUT $2, ISQUAD(I, 7) ' in place nit day (1,2,3,...)
NEXT I
CLOSE #2
NUMACFT = 5
Sjets(1) = 'C130'; Sjets(2) = 'C130H'
Sjets(3) = 'C141'; Sjets(4) = 'C5'; Sjets(5) = 'KC10'
ACFT(1, 1) = 270; ACFT(2, 1) = 285; ACFT(3, 1) = 400
ACFT(4, 1) = 420; ACFT(5, 1) = 460
ACFT(1, 3) = 5; ACFT(2, 3) = 5; ACFT(3, 3) = 13
ACFT(4, 3) = 25; ACFT(5, 3) = 20
GNTIMES(1, 1) = 30; GNTIMES(1, 2) = 90; GNTIMES(1, 3) = 90
GNTIMES(1, 4) = 90; ACFT(1, 2) = 0
GNTIMES(2, 1) = 30; GNTIMES(2, 2) = 90; GNTIMES(2, 3) = 90
GNTIMES(2, 4) = 90; ACFT(2, 2) = 0
GNTIMES(3, 1) = 45; GNTIMES(3, 2) = 135; GNTIMES(3, 3) = 135
GNTIMES(3, 4) = 135; ACFT(3, 2) = 0
GNTIMES(4, 1) = 75; GNTIMES(4, 2) = 195; GNTIMES(4, 3) = 225
GNTIMES(4, 4) = 135; ACFT(4, 2) = 1
GNTIMES(5, 1) = 0; GNTIMES(5, 2) = 180; GNTIMES(5, 3) = 300
GNTIMES(5, 4) = 90; ACFT(5, 2) = 1

500 CLS: PRINT SPC(23); STRING(37, '_'): PRINT
PRINT SPC(36): 'MAIN MENU': PRINT
PRINT SPC(23): STRING(37, '_'): PRINT
PRINT SPC(23): '1': SDOT10; 'CREATE A NEW FLOW PLAN': PRINT
PRINT SPC(23): '2': SDOT10; 'CHANGE CURRENT FLOW PLAN': PRINT
PRINT SPC(23): '3': SDOT10; 'LOAD FILE': PRINT
PRINT SPC(23): '4': SDOT10; 'SAVE FILE': PRINT
PRINT SPC(23): '5': SDOT10; 'CHANGE SQUADRON DATA': PRINT
PRINT SPC(23): '6': SDOT10; 'ADD AIRFIELD TO DATA BASE': PRINT
PRINT SPC(23): '7': SDOT10; SDOT10; 'FLOW MENU': PRINT
PRINT SPC(23): '8': SDOT10; 'END': PRINT
LOCATE 23, 32: INPUT 'ENTER REQUEST ': IANSW
CLS
IF IANSW < 1 OR IANSW > 8 THEN 500
700 IF IANSW = 8 THEN 61000
ON IANSW GO TO 710, 760, 4360, 5650, 60000, 62000, 20510, 700
GOTO 500
called from main menu

710 LOCATE 10, 30: PRINT 'CLEARING ARRAYS . . .'
FOR II = 1 TO 7: SELEC(II) = '': NEXT II
LSTCHNC = 0: NUMACFT = 5: ICHBSE = 0
FOR I = 1 TO MAXMSNS + MAXPLANS
 SMST(I) = ''
 FOR II = 1 TO IMSTTOP
 I.MST(I, II) = 0
 NEXT II
NEXT I

FOR I = 1 TO MAXLEGS
 FOR II = 1 TO 7
 LEGS(I, II) = 0
 NEXT II
NEXT I

FOR I = 6 TO MAXACFT
 SJETS(I) = ''
 FOR II = 1 TO 3
 ACFT(I, II) = 0
 NEXT II
 FOR III = 1 TO 6
 GNDTIMES(I, III) = 0
 NEXT III
NEXT I

FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXBSE
 ROUTES(I, J) = 0
 NEXT J
 FOR II = 1 TO MAXHOPS
 FOR J = 1 TO 2
 DIST(I, II, J) = 0
 NEXT J
 FOR J = 1 TO MAXACFT
 FLTTIME(I, II, J) = 0
 NEXT J
 NEXT II
NEXT I

FOR I = 1 TO MAXRTES * MAXHOPS
 FOR II = 1 TO 3
 WF(I, II) = 0
 NEXT II
NEXT I

FOR I = 1 TO MAXPLANS
 SNOTE(I) = ''
NEXT I
GOTO 800

760 FOR II = 1 TO 6: SELEC(II) = "**": NEXT II

800 CLS: LOCATE 1, 25: PRINT "INPUT CHECKLIST (COMPLETED (**))"
PRINT: PRINT
PRINT SPC(30); '1 AIRCRAFT TYPES': PRINT
PRINT SPC(30); '2 GROUND TIMES': PRINT
PRINT SPC(30); '3 FLIGHT ROUTINGS': PRINT
PRINT SPC(30); '4 ROUTE WIND FACTORS': PRINT
PRINT SPC(30); '5 MISSION TEMPLATES': PRINT
PRINT SPC(30); '6 CHOOSE POINT, TIME, DATE': PRINT
PRINT SPC(30); '7 REVIEW AIRFIELDS': PRINT
PRINT SPC(30); '8 CHECK FLYING TIMES': PRINT
PRINT SPC(30); '9 RETURN TO MAIN MENU'

Y = 4
FOR I = 1 TO 6
 LOCATE Y, 25: PRINT "(\%; SELEC(I); \")"
 Y = Y + 2
NEXT I

900 LOCATE 23, 35: INPUT 'ENTER REQUEST ': IANSW
IF IANSW < 1 OR IANSW > 9 THEN 800
IF IANSW < 9 THEN LSTCHNC = 0: GOTO 1000
IF LOADFLG = 1 THEN 1060
DUMBFLG = 0: DISKFLG = 0

FOR I = 1 TO 6
 IF SELEC(I) <> "**" THEN DUMBFLG = I: EXIT FOR
NEXT I

IF DUMBFLG = 0 OR LSTCHNC = 1 THEN 1060
Y = (DUMBFLG * 2): LOCATE Y + 2, 1
PRINT 'INCOMPLETE -----------': LSTCHNC = 1: GOTO 900

1000 SELEC(IANSW) = "**"

1040 ON IANSW GOSUB 1530, 1860, 2390, 5301, 3020, 1110, 4970, 5500
GOTO 800

1060 RETURN ' TO 650
JCB choke point called from input menu

1110 CLS: JCB = 0
PRINT SPC(15); 'DEPARTURES ARE REGULATED FROM CHOKE POINT'
PRINT:
PRINT SPC(8); 'ENTER ICAO OF CHOKE POINT':
INPUT SANSW
FOR I = 1 TO AFLDS
 IF SAFLD(I, 2) = SANSW THEN JCB = I
NEXT I
IF JCB < 1 OR JCB > AFLDS THEN BEEP: GOTO 1110
PRINT:
PRINT SPC(8); 'NARROW MOO': AFLD(JCB, 3)
LOCATE 6, 28
INPUT ''ENTER' IF OK, 'C' TO CHANGE ': SANSW1
IF SANSW1 = 'C' OR SANSW1 = '*' THEN
 ICHBSE = 1
 PRINT SPC(28); 'ENTER NARROW MOO AT': SAFLD(JCB, 2):'
 INPUT AFLD(JCB, 3)
END IF
PRINT:
PRINT SPC(8); 'WIDE MOO': AFLD(JCB, 4)
LOCATE 8, 28
INPUT ''ENTER' IF OK, 'C' TO CHANGE ': SANSW1
IF SANSW1 = 'C' OR SANSW1 = '*' THEN
 ICHBSE = 1
 PRINT SPC(28); 'ENTER WIDE MOO AT': SAFLD(JCB, 2):'
 INPUT AFLD(JCB, 4)
END IF

64
JLAT first takeoff time from choke point

PRINT PRINT SFC(8);
PRINT 'ENTER FIRST T.O. TIME FROM ';
PRINT SAFLD(JCB, 2); " (HHMM) "
INPUT SANSW
IF LEN(SANSW) <> 4 THEN BEEP: GOTO 1210
IF VAL(LEFTS(SANSW, 2)) > 24 OR VAL(RIGHTS(SANSW, 2)) > 59 THEN
 BEEP: GOTO 1210
END IF
SHR = LEFTS(SANSW, 2): IHR = VAL(SHR) * 60
SMN = RIGHTS(SANSW, 2): IMN = VAL(SMN)
ITP = IHR + IMN
JLAT = ITP

PRINT PRINT SFC(8):
PRINT 'ENTER DATE (DDMMYY) OF T.O. '; SDATE
IF LEN(SDATE) <> 6 THEN BEEP: GOTO 1300
IF VAL(LEFTS(SDATE, 2)) > 31 OR VAL(MIDS(SDATE, 3, 2)) > 12 THEN
 BEEP: GOTO 1300
END IF
SDTE = SDATE
' calendar -> julian

IDY = VAL(LEFTS(SDATE, 2))
IMO = VAL(MIDS(SDATE, 3, 2)): IYR = VAL(RIGHTS(SDATE, 2))
IF IYR MOD 4 = 0 THEN LEAP = 1 ELSE LEAP = 0
IF IYR MOD 4 = 1 THEN LSTLEAP = 1 ELSE LSTLEAP = 0
JDLA = NDATES(IMO) + IDY: IF JDLA > 60 THEN JDLA = JDLA + LEAP

JFI choke point takeoff interval

PRINT PRINT SFC(8):
PRINT 'ENTER INTERVAL BETWEEN '; SAFLD(JCB, 2);
PRINT ' TAKEOFFS (IN MINUTES) '
INPUT JFI

GOSUB 4270: IF SANSW <> 'Y' AND SANSW <> 'y' THEN 1110
RETURN
number and type of acft
called from input menu

CLS : CHNGFLG = 0: LOCATE 6, 10
PRINT SPC(9); 'PROGRAM CONTAINS PARAMETERS FOR THESE AIRCRAFT'
PRINT : PRINT SPC(18); STRING$(45, '_')
LOCATE 10, 10
PRINT 'C130A/B/E C130H C141 C5 KC10'
PRINT SPC(18); STRING$(45, '_')
IF NUMACFT > 5 THEN
 PRINT : PRINT SPC(19);
 FOR I = 6 TO NUMACFT
 PRINT SJETS(I),
 NEXT I
 PRINT : PRINT SPC(18); STRING$(45, '_')
END IF
PRINT : PRINT
IF NUMACFT = 9 THEN
 PRINT SPC(30);
 INPUT ''ENTER TO CONTINUE': SS: GOTO 1840
ELSE
 PRINT SPC(18);
 INPUT ''ENTER TO CONTINUE, 'A' TO ADD AIRCRAFT ': SANSW
END IF
IF SANSW <> 'A' AND SANSW <> 'a' THEN 1840
CLS : CHNGFLG = 1: SELEC(4) = ''
LOCATE 2, 10
PRINT 'ENTER # OF AIRCRAFT TYPES TO BE ADDED (': MAXACFT - NUMACFT:
INPUT ' MAX ': IANSW
IF IANSW = 0 THEN RETURN
IF IANSW > 5 THEN BEEP: GOTO 1680
CLS : PRINT ' ACFT ID WIDE BODY (Y/N)';
PRINT ' BLOCK SPEED FUEL/HOUR (1000 *)'
FOR I = 1 TO IANSW
 PRINT
 PRINT I: ' ' Y = C$RLIN - 1: X = POS(I)
1750 LOCATE Y, X+5: INPUT SANSW: IF SANSW = '' THEN BEEP: GOTO 1750
 SJETS(NUMACFT + I) = LEFT$(SANSW + '', 5)
1770 LOCATE Y, X + 25
 INPUT SANSW
 ITEMP = 0
 IF SANSW <> ''Y'' AND SANSW <> ''N'' THEN ITEMP = 1
 IF ITEMP=1 AND SANSW='Y' AND SANSW='n' THEN BEEP: GOTO 1770
 IF SANSW = ''Y'' THEN
 ACFT(NUMACFT + I, 2) = 1
 ELSE
 ACFT(NUMACFT + I, 2) = 0
 END IF
1775 LOCATE Y, X + 37
 INPUT ITEMP
 IF ITEMP = 0 THEN LOCATE Y, X+37: PRINT ': GOTO 1775
 ACFT(NUMACFT + I, 1) = ITEMP 'block speed
1780 LOCATE Y, X + 55
 INPUT ITEMP
 IF ITEMP = 0 THEN LOCATE Y, X+55: PRINT': GOTO 1780
 ACFT(NUMACFT + I, 3) = ITEMP 'fuel flow
NEXT I
GOSUB 4270: IF SANSW <> ''Y'' AND SANSW <> ''y'' THEN 1680
NUMACFT = NUMACFT + IANSW
IF CHNGFLG = 1 THEN GOSUB 1860
1840 RETURN
ground times

called from input menu

1860 CLS: LOCATE 1, 23
PRINT 'ero DNLOAD UPLOAD EN ROUTE'
PRINT SPC(23); STRING$(36, '-')
Y = 3; X = 13
FOR I = 1 TO NUMACFT
 LOCATE Y, (X - 5)
 PRINT I; " ; LEFT$(SJETS(I) + ' ', 6);" ;
 FOR J = 1 TO 4
 SHR = RIGHT$(INT(GNDTIMES(I, J) / 60) + 100),2+)
 SMIN = RIGHT$(INT(GNDTIMES(I, J) MOD 60) + 100),2)
 SGND = SHR + SMIN
 PRINT SGND;
 NEXT J
 Y = Y + 2
NEXT I
LOCATE Y - 1, 9: PRINT STRING$(50, '_')
LOCATE Y + 1, 15
PRINT 'C' TO CHANGE ONE OR MORE GROUND TIMES.'
LOCATE Y + 2, 19: INPUT 'ENTER TO RETURN TO MENU ': SANSW
IF SANSW <> 'C' AND SANSW <> 'c' THEN 2340
2060 LOCATE Y + 2, 5: PRINT SPC(70); ''
LOCATE Y + 1, 10
INPUT 'ENTER NUMBER OF THE ONE TO CHANGE': IANSW
IF IANSW < 1 OR IANSW > NUMACFT THEN
 BEEP: LOCATE (Y + 1), 1
 PRINT SPC(60); : GOTO 2060
END IF
LOCATE (Y + 1), 10: PRINT SPC(69); : LOCATE (Y + 1), 20
PRINT 'ENTER ALL TIMES USING 4 DIGITS (HHMM)'
PRINT SPC(20); 'OR HIT 'ENTER' TO USE EXISTING TIME'
Y = (2 * IANSW + 1): X = 23
FOR II = 1 TO 4

2160 LOCATE Y, X
 INPUT SANSW
 IF SANSW <> "" THEN 2240
 IHR = INT(GNDTIMES(IANSW, II) / 60) * 60
 IMIN = GNDTIMES(IANSW, II) MOD 60
 SHR = RIGHT$(STR$(IHR), 2)
 SMIN = RIGHT$(STR$(IMIN), 2)
 SANSW = SHR + SMIN: GOTO 2290

2240 IF LEN(SANSW) <> 4 THEN
 LOCATE Y, X: PRINT "": BEEP: GOTO 2160
END IF
 IF VAL(LEFT$(SANSW, 2)) > 24 THEN
 LOCATE Y, X: PRINT "": BEEP: GOTO 2160
END IF
 IF VAL(RIGHT$(SANSW, 2)) > 59 THEN
 LOCATE Y, X: PRINT "": BEEP: GOTO 2160
END IF
 IMIN = VAL(RIGHT$(SANSW, 2))
 IHR = VAL(LEFT$(SANSW, 2)) * 60

2290 GNDTIMES(IANSW, II) = IMIN + IHR
 LOCATE Y, X+1
 PRINT LEFT$(SANSW, 2) + " +" + RIGHT$(SANSW, 2)
 X = X + 10
NEXT II
GOTO 1860

2340 SELEC(2) = "**": RETURN
flight routes
called from input menu

2390 CLS : CHNGFLG = 0: PRINT ':
PRINT 'ENTER ICAOs OF PLANNED ROUTE OF FLIGHT'
Y = 2: X = 10
FOR I = 1 TO MAXRTES
 LOCATE Y, 5
 PRINT I:
 PRINT I:
 IF I < 10 THEN PRINT ' ':
 FOR J = 1 TO MAXBSE
 LOCATE Y, X
 IF ROUTES(I,J) <> 0 THEN PRINT SAFLD ROUTES(I,J), 2)
 X = X + 10
 NEXT J
 Y = Y + 1: X = 10
NEXT I

2520 LOCATE 22, 8
INPUT 'ENTER THE NUMBER OF ROUTING TO CHANGE (ENTER TO END)'; SANSW
IF SANSW <> '' THEN CHNGFLG = 1
IANSW = VAL(SANSW): LOCATE 22, 68; PRINT ''
IF SANSW = '' THEN 2920
IF IANSW < 1 OR IANSW > MAXRTES THEN BEEP: GOTO 2520
LOCATE 22, 8; PRINT SPC(71):
GOSUB 2730 'clear old route
Y = 1 + IANSW: X = 10: LOCATE Y, X - 2; PRINT SPC(60):
 enter icaos
 FOR J = 1 TO MAXBSE
 LOCATE Y, X - 2
 IOK = 0: INPUT ZANSW: IF ZANSW = '' THEN GOSUB 2830: GOTO 2670
 FOR K = 1 TO AFLDS
 IF ZANSW = SAFLD(K, 2) THEN
 ROUTES(Y - 1, INT(X / 10)) = K: IOK = 1: EXIT FOR
 END IF
 NEXT K
 IF IOK = 1 THEN LOCATE Y, X - 2; PRINT ' ', ZANSW
 IF IOK = 0 OR LEN(ZANSW) <> 4 THEN
 BEEP: LOCATE Y, X; PRINT ' ', GOTO 2590
 END IF

2670 X = X + 10
NEXT J
GOSUB 2962 'enter leg into WF array
GOTO 2520
2730 FOR JJ = 1 TO MAXBSE
 ROUTES(IANSW, JJ) = 0
NEXT JJ
RETURN TO 2560

2830 FOR JJ = J TO MAXBSE
 ROUTES(IANSW, JJ) = 0
NEXT JJ
J = MAXBSE
RETURN TO 2600

2920 JSEQ = 0
FOR J1 = 1 TO 10
 IF ROUTES(J1, 1) <> 0 THEN JSEQ = JSEQ + 1 ELSE J1 = 10
NEXT J1
SELEC(4) = '***': GOSUB 2980: IF CHNGFLG = 1 THEN GOSUB 5301
RETURN TO 1040

2962 ' enter leg into WF array
FOR K = 1 TO MAXHOPS
 IF ROUTES(IANSW, K) = 0 OR ROUTES(IANSW, K + 1) = 0 THEN 2972
FOR L = 1 TO MAXWF
 IF ROUTES(IANSW, K) = WF(L, 1) THEN
 IF ROUTES(IANSW, K + 1) = WF(L, 2) THEN EXIT FOR
 END IF
 IF WF(L, 1) = 0 THEN
 WF(L, 1) = ROUTES(IANSW, K)
 WF(L, 2) = ROUTES(IANSW, K + 1)
 EXIT FOR
 END IF
NEXT L
2972 NEXT K
RETURN TO 2685
CLS
FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXHOPS
 DIST(I, J, 1) = 0 'DISTANCE
 DIST(I, J, 2) = 0 'WIND FACTOR
 NEXT J
NEXT I
FOR I = 1 TO MAXRTES
 IF ROUTES(I, J + 1) = 0 THEN EXIT FOR
 RLAT1 = AFLD(ROUTES(I, J), 1)
 RLONG1 = AFLD(ROUTES(I, J), 2)
 RLAT2 = AFLD(ROUTES(I, J + 1), 1)
 RLONG2 = AFLD(ROUTES(I, J + 1), 2)
 GOSUB 30920 'calculate great circle distance
 DIST(I, J, 1) = DIST
NEXT J
NEXT I
RETURN

mission templates IMST(TOP 20)
called from input menu

CLS Y = 3: X = 5
LOCATE 1, 30: PRINT 'MISSION PLANS'
FOR I = (MAXMSNS + 1) TO (MAXMSNS + MAXPLANS)
 LOCATE Y, X
 PRINT I - MAXMSNS
 IF IMST(I, IJET) = 0 THEN
 NUMTEMPS = I - MAXMSNS - 1
 Y = Y + 2
 LOCATE Y, 3
 EXIT FOR
 END IF
 LOCATE Y, (X * 5): PRINT ' SJETS(IMST(I, IJET)):';
 FOR J = IFSTBSE TO ILSTBSE
 IF IMST(I, J) = 0 THEN EXIT FOR
 PRINT SFDL((INT(IMST(I, J) / 100) + 1):2); ' ';
 NEXT J
 PRINT
 LOCATE Y, 55
 PRINT ISQUAD(IMST(I, ISQD), 1): ' TAS ': SNOTE(I - MAXMSNS)
 PRINT
3140 Y = Y + 1
NEXT I
3150 :INPUT 'ENTER TEMPLATE TO CHANGE. HIT ENTER TO END': IANSW1
 IF IANSW1 = 0 THEN RETURN
 IF IANSW1 < 1 OR IANSW1 > MAXPLANS THEN BEEP: GOTO 3160
CLS LOCATE .3, 20 INPUT 'ENTER SQUADRON ': ISQ
see if squadron is in data base

PTR = 0 ' identifies squadron
FOR I = 1 TO NSQUAD
 IF ISQUAD(I, 1) = ISQ THEN PTR = I: EXIT FOR
NEXT I
IF PTR = 0 THEN
 CLS: LOCATE 8, 1
 PRINT 'THE SQUADRON YOU ENTERED IS NOT IN THE DATA BASE'
 PRINT
 PRINT 'TO USE THAT SQUADRON YOU MUST RETURN TO MAIN MENU'
 PRINT
 PRINT 'AND CHANGE THE DATA BASE (MENU ITEM 5)'
 PRINT
 INPUT 'HIT 'ENTER' TO CONTINUE': TEMP
 GOTO 3020
END IF

see if route exists for that squadron

10K = 0
FOR I = 1 TO MAXRTES
 IF ROUTES(I, 1) = 0 THEN EXIT FOR
 IF ROUTES(I, 1) = ISQUAD(PTR, 5) THEN 10K = 1: EXIT FOR
NEXT I
IF 10K = 0 THEN
 CLS: LOCATE 8, 1
 PRINT 'THERE ARE NO ROUTES FOR THE SQUADRON ENTERED'
 PRINT
 PRINT 'TO USE THAT SQUADRON YOU MUST RETURN TO INPUT MENU'
 PRINT
 PRINT 'AND ENTER A ROUTE (MENU ITEM 4)'
 PRINT
 INPUT 'HIT 'ENTER' TO CONTINUE': TEMP
 GOTO 3020
END IF

erase old mission template

FOR I = 1 TO IMSTTOP
 IMST(MAXMSNS + IANSWI, I) = 0
NEXT I
SMST(MAXMSNS + IANSWI) = '
IMST(MAXMSNS + IANSWI, ISQD) = PTR
print routings

3170 CLS : Y = 2: X = 5
JSEQ = 0 : number of routes
CTR = 0 :
CTR2 = 0 :
FOR J = 1 TO MAXRTES
 LOCATE Y, X: PRINT J
 FOR K = 1 TO MAXBSE
 IF ROUTES(J, 1) = 0 THEN ' route empty
 LOCATE Y, X: PRINT ' ': J = MAXRTES: EXIT FOR
 END IF
 IF ROUTES(J, 1) <> ISQUAD(PTR, 5) THEN ' not sq base
 LOCATE Y, X: PRINT ': Y = Y - 1: EXIT FOR
 END IF
 IF ROUTES(J, K) = 0 OR K = MAXBSE THEN
 CTR2 = CTR2 + 1: CTR3 = J: EXIT FOR
 END IF
 LOCATE Y, X * 5: PRINT SAILD(ROUTES(J, K), 2)
 CTR = CTR + 1
 X = X + 7
 NEXT K
 Y = Y + 1: X = 5: JSEQ = JSEQ + 1: PRINT
NEXT J

3340 NEXT K
 Y = Y + 1: X = 5: JSEQ = JSEQ + 1: PRINT
NEXT J
 IF CTR2 = 1 THEN IANSW2 = CTR3: GOTO 3430
3370 LOCATE 23, 10: INPUT 'ENTER DESIRED ROUTING ': IANSW2
 IF IANSW2 = 0 THEN 3370
 IF ROUTES(IANSW2, 1) <> 0 THEN 3400
 LOCATE 23.10: PRINT ': BEEP: GOTO 3370
3400 IF IANSW2 < 0 OR IANSW2 > JSEQ THEN BEEP: GOTO 3370
 IF IANSW2 = 0 THEN 3020
CLS
3430 IMST(IANSW + MAXMSNS, IJET) = ISQUAD(PTR, 3)
SMST(IANSW + MAXMSNS) = '000000'
PRINT
3490 LOCATE 10, 20
 INPUT 'ENTER MISSION # (7 DIGITS MAX) ': SANSW
 IF LEN(SANSW) > 7 THEN LOCATE 11, 10: PRINT SPC(45): BEEP: GOTO 3490
SANSW = SANSW + '000000000000'
SMST(IANSW + MAXMSNS) = LEFT$(SANSW, 12)
3530 I = IANSW + MAXMSNS
ANSW = IANSW2
LOCATE 12, 20
INPUT 'WILL ALL ENROUTE STOPS QUICKTURN (Y/N)' ; SANSW
IF SANSW = 'Y' THEN BEEP: GOTO 3560
IF SANSW = 'N' OR SANSW = 'n' THEN 3670
QFLAG = 1: SNOTE(IANSW) = '* QKTRN *'
FOR J = 1 TO MAXBSE
IF J = MAXBSE THEN 3640
IF ROUTES(ANSW, J + 1) > 0 THEN
IMST(I, J + 7) = (100 * ROUTES(ANSW, J)) + 4: GOTO 3650
END IF
3640 IMST(I, J + 7) = (100 * ROUTES(ANSW, J)) + 6: J = MAXBSE
NEXT J
GOTO 3020 '--------NEXT MISSION
3670 CLS
PRINT: ERO = 1: DOWN LOAD = 2: Upload = 3: QUICK TURN = 4'
Y = 8: X = 29
LOCATE 5, 29: PRINT 'GND'
LOCATE 6, 29: PRINT 'FC T'
WSEQ = 0: Y = 8: X = 41
FOR J = 1 TO MAXBSE '--------PRINT ICAO
IF ROUTES(ANSW, J) = 0 THEN J = MAXBSE: GOTO 3780
IMST(I, 7 + J) = (100 * ROUTES(ANSW, J))
LOCATE Y, X: PRINT SAF LD (ROUTES(ANSW, J), 2)
Y = Y + 2
IF Y < 23 THEN 3780 ELSE PRINT : PRINT : Y = Y - 2
3780 NEXT J
K = ANSW: Y = 8: X1 = 29: X2 = 35: X3 = 48
FOR J = 1 TO MAXBSE
IFCT = 0
IF J = 1 THEN IFCT = 5: GOTO 3890
IF J = MAXBSE THEN IFCT = 6: GOTO 3890
IF ROUTES(K, J + 1) = 0 THEN IFCT = 6: GOTO 3890
3850 LOCATE Y, X1, 1: INPUT SFCT: IF SFCT = '' THEN BEEP: GOTO 3850
IF LEN(SFCT) > 1 THEN
LOCATE Y, X1: PRINT ' '" : BEEP: GOTO 3850
END IF
IFCT = VAL(SFCT)
IF (IFCT < 1) OR (IFCT > 5) THEN
LOCATE Y, X1, 1: PRINT ' '" : BEEP: GOTO 3850
END IF
3890 IMST(I, J + 7) = IMST(I, J + 7) + IFCT
IF IFCT = 6 THEN J = MAXBSE: GOTO 3920
Y = Y + 2
3920 NEXT J
PRINT
GOSUB 4270: IF SANSW <> 'Y' AND SANSW <> 'y' THEN 3670
GOTO 3020
4270 PRINT: PRINT: PRINT SPC(16):
 input 'IS THE ABOVE INFORMATION CORRECT (Y/N)'; SANSW
 IF SANSW = 'Y' OR SANSW = 'N' THEN RETURN
 IF SANSW = 'y' OR SANSW = 'n' THEN RETURN ELSE BEEP: GOTO 4270

; 'read file from disk
; ' called from main menu

4350 CLS : PRINT STRING$(80, '_')
 PRINT : FILES
 PRINT STRING$(80, '_'): PRINT : PRINT
 PRINT 'DON'T FORGET THE DISK DRIVE SPECIFIER, IF NEEDED'
 PRINT : PRINT 'ENTER FILE NAME (WITHOUT SUFFIX) . . . ': PRINT
 INPUT ' OR 'ENTER' TO RETURN TO MENU': DFILE#
 IF DFILE# = '' THEN RETURN
 CLS : PRINT SPC(14): 'LOADING '"; DFILE#; '" FROM DISK..."
 OPEN 'I', 2, DFILE# + '.DAT'
 INPUT #2, NUMACFT
 FOR I = 1 TO AFLDS
 INPUT #2, AFLD(I, 1): INPUT #2, AFLD(I, 2)
 INPUT #2, AFLD(I, 3)
 INPUT #2, AFLD(I, 4): INPUT #2, SAFLD(I, 1)
 INPUT #2, SAFLD(I, 2)
 NEXT I
 FOR I = 1 TO MAXWF
 INPUT #2, WF(I, 1): INPUT #2, WF(I, 2): INPUT #2, WF(I, 3)
 NEXT I
 FOR I = 1 TO MAXRTES
 FOR J = I TO AXBSE
 INPUT #2, ROUTES(I, J)
 NEXT J
 NEXT I
 INPUT #2, NUMMSNS, NUMTEMPS
 FOR I = 1 TO MAXMSNS + MAXPLANS
 FOR J = 1 TO IMSTTOP
 INPUT #2, IMST(I, J)
 NEXT J
 NEXT I
 FOR I = 1 TO MAXLEGS
 FOR J = I TO 7
 INPUT #2, LEGSCI, J)
 NEXT J
 NEXT I
 INPUT #2, SDTE
FOR I = 1 TO NUMACFT
 INPUT #2, ACFT(I, 1), ACFT(I, 2), ACFT(I, 3)
 INPUT #2, SJETS(I)
 FOR J = 1 TO 6: INPUT #2, GNDTIMES(I, J): NEXT J
NEXT I
INPUT #2, JLAT, JDLA, JTC, JCB, JFI, JDOC, LEAP, LSTLEAP
FOR I = 1 TO MAXPLANS
 INPUT #2, SNOTE(I)
NEXT I
FOR I = 1 TO MAXMSNS + MAXPLANS
 INPUT #2, SMST(I)
NEXT I
FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXHOPS
 INPUT #2, DIST(I, J, 1)
 INPUT #2, DIST(I, J, 2)
 NEXT J
NEXT I
FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXHOPS
 FOR K = 1 TO NUMACFT
 INPUT #2, FLTTIME(I, J, K)
 NEXT K
 NEXT J
NEXT I
INPUT #2, NSQDEP, ALPHA, OMEGA
FOR I = 1 TO MAXPLANS
 INPUT #2, NSQDPLY(I, 1), NSQDPLY(I, 2)
NEXT I
CLOSE #2
RETURN
icaos and base names called from input menu

4970 CLS
II = AFLDS MOD 20: JJ = AFLDS \ 20
IF II > 0 THEN II = 1
JJ = JJ + II
CTR = 0
FOR I = 1 TO JJ
CLS: PRINT 'ICA0 NAME'.
PRINT SPC(I); 'NARROW MOG WIDE MOG'
PRINT '----------'; SPC(15);
PRINT '----------
FOR J = 1 TO 20
 IF (J + CTR) > AFLDS THEN EXIT FOR
 PRINT SAFLD(J + CTR, 2),
 PRINT LEFT$(SAFLD(J + CTR, 1) + ' ', 16),
 PRINT AFLD(J + CTR, 3), AFLD(CTR + J, 4)
NEXT J
CTR = CTR + 20
4990 LOCATE 23, 20
INPUT 'C' TO CONTINUE, 'ENTER' TO EXIT': SANSW
IF SANSW <> '" AND SANSW <> 'C' AND SANSW <> 'c' THEN 4990
IF SANSW = '" THEN EXIT FOR
NEXT I
RETURN
wind factors WF(100.3)
called from input menu

5301 CLS: PRINT SPC(30): 'WIND FACTORS'
SHDR = 'FROM' TO WF'
Y = 3: X = 20
LOCATE 1, X + 5: PRINT SHDR: PRINT
FOR I = 1 TO MAXWF
 IF Y MOD 20 = 1 THEN
 Y = 3: X = 20: CLS: LOCATE 1, X + 5: PRINT SHDR
 END IF
 IF WF(I, 1) = 0 THEN 5420
 ' see if entered in opposite direction
 FOR J = 1 TO I - 1
 IF WF(J, 2) = WF(I, 1) AND WF(J, 1) = WF(I, 2) THEN
 WF(I, 3) = -WF(J, 3)
 END IF
 NEXT J
 LOCATE Y, X
 IF I < 10 THEN PRINT ' '
 PRINT I; ' '; SAFLD(WF(I, 1), 2); ' TO ';
 PRINT SAFLD(WF(I, 2), 2); '='; WF(I, 3)
 LOCATE 22, 10
 PRINT 'ENTER NEW WIND FACTOR FOR THIS LEG,' ENTER' IF NO CHANGE'
 LOCATE Y, X + 30: INPUT SWF
 IF SWF = '' THEN 5363
 LOCATE Y, X + 27: PRINT SPC(8);
 WF(I, 3) = VAL(SWF)
5363 LOCATE Y, X
 IF I < 10 THEN PRINT ' '
 PRINT I; ' '; SAFLD(WF(I, 1), 2); ' TO ';
 PRINT SAFLD(WF(I, 2), 2); '='; WF(I, 3)
 Y = Y + 1
5420 NEXT I
5430 CLS: LOCATE 10, 10
 INPUT ''R' TO REVIEW WIND FACTORS, 'ENTER' TO EXIT ''; SANSW
 IF SANSW = 'R' OR SANSW = 'r' THEN 5301
 IF SANSW <> '' THEN 5430
CLS : LOCATE 10, 20
PRINT "CALCULATING GROUNDSPEEDS..."
FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXHOPS
 IF ROUTES(I, J) = 0 THEN EXIT FOR
 FOR K = 1 TO MAXWF
 IF ROUTES(I, J) = WF(K, 1) THEN
 IF ROUTES(I, J + 1) = WF(K, 2) THEN
 DIST(I, J, 2) = WF(K, 3)
 END IF
 END IF
 NEXT K
 NEXT J
NEXT I

build flight time array

FOR I = 1 TO NUMACFT
 FOR J = 1 TO MAXRTES
 FOR K = 1 TO MAXHOPS
 IF DIST(J, K, 1) = 0 THEN EXIT FOR
 "block spd + wind factor"
 GNDSPD = ACFT(I, 1) + DIST(J, K, 2)
 FTEMP = INT(((DIST(J, K, 1) / GNDSPD) * 60) + 4)
 "round up to next 5-min"
 MTEMP = INT(((DIST(J, K, 1) / GNDSPD) * 60) + 4) MOD 5
 FLTTIME(J, K, 1) = FTEMP - MTEMP
 NEXT K
 NEXT J
NEXT I
GOSUB 5500
RETURN
' review flying times
FOR I = 1 TO NUMACFT
 CLS : PRINT '-> '; SJETS(I); '<-': PRINT
 FOR J = 1 TO MAXRTES
 FOR K = 1 TO MAXHOPS
 IF DIST(J, K, I) = 0 THEN EXIT FOR
 ITMP2 = FLTTIME(J, K, I); GOSUB 29770
 PRINT SAFLD(ROUTES(J, K), 2); ': STME2; ': ;
 IF FLTTIME(J, K + 1, I) = 0 THEN
 PRINT SAFLD(ROUTES(J, K + 1), 2);
 EXIT FOR
 END IF
 IF K = MAXHOPS THEN
 PRINT SAFLD(ROUTES(J, K + 1), 2); : EXIT FOR
 END IF
 NEXT K
 PRINT
 NEXT J
 INPUT 'ENTER' TO CONTINUE'; ANSW
NEXT I
RETURN

' save file on disk
' called from main menu

PRINT : PRINT STRING#(80, '_')
PRINT : FILES: PRINT STRING#(80, '_')
PRINT : PRINT 'DON'T FORGET THE DISK DRIVE SPECIFIER, IF NEEDED'
PRINT : PRINT 'ENTER FILE NAME (WITHOUT PREFIX) ...'
PRINT : INPUT 'OR 'ENTER' TO RETURN TO MENU'; DFILE#
IF DFILE# = '' THEN RETURN
CLS : PRINT : PRINT 'SAVING ...'; DFILE#; ''
OPEN 'O', 2, DFILE# + '.DAT'
PRINT #2, NUMACFT
FOR I = 1 TO AFLDS
 PRINT #2, AFLD(I, 1); PRINT #2, AFLD(I, 2); PRINT #2, AFLD(I, 3)
NEXT I
FOR I = 1 TO MAXWF
 PRINT #2, WF(I, 1); PRINT #2, WF(I, 2); PRINT #2, WF(I, 3)
NEXT I
FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXBSE
 PRINT #2, ROUTES(I, J)
 NEXT J
NEXT I
PRINT #2, NUMMSNS, NUMTEMPS
FOR I = 1 TO MAXMSNS + MAXPLANS
 FOR J = 1 TO IMSTTOP
 PRINT #2, IMST(I, J)
 NEXT J
NEXT I
PRINT #2, PKEY
FOR I = 1 TO MAXLEGS
 FOR J = 1 TO 7
 PRINT #2, LEGS(I, J)
 NEXT J
NEXT I
PRINT #2, SDTE
FOR I = 1 TO NUMACFT
 PRINT #2, ACFT(I, 1), ACFT(I, 2), ACFT(I, 3)
 PRINT #2, SJETS(I)
 FOR J = 1 TO 6: PRINT #2, GNDTIMES(I, J): NEXT J
NEXT I
' EXTRA VARIABLE FILE
PRINT #2, JLAT, JDLA, JTC, JCB, JFI, JDOC, LEAP, LSTLEAP
FOR I = 1 TO MAXPLANS
 PRINT #2, SNOTE(I)
NEXT I
FOR I = 1 TO MAXMSNS + MAXPLANS
 PRINT #2, SMST(I)
NEXT I
FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXHOPS
 PRINT #2, DIST(I, J, 1)
 PRINT #2, DIST(I, J, 2)
 NEXT J
NEXT I
FOR I = 1 TO MAXRTES
 FOR J = 1 TO MAXHOPS
 FOR K = 1 TO NUMACFT
 PRINT #2, FLTTIME(I, J, K)
 NEXT K
 NEXT J
NEXT I
PRINT #2, NSQDEP, ALPHA, OMEGA
FOR I = 1 TO MAXPLANS
 PRINT #2, NSQDPLY(I, 1), NSQDPLY(I, 2)
NEXT I
CLOSE #2
CLS
RETURN
11020 FOR I = CTR TO CTR + 19
 IF CTR > MAXWF THEN 11040
 IF WF(I, 1) = 0 THEN I = OTR + 19: GOTO 11040
 PRINT I; ; SAFLD(WF(I, 1), 2); TO ;
 PRINT SAFLD(WF(I, 2), 2); ; = ; WF(I, 3)
11040 NEXT I
11050 LOCATE 22, 10: PRINT SPC(50);
 LOCATE 22, 10
 INPUT 'ENTER NUMBER TO CHANGE,';
 'N' FOR NEXT PAGE, 'ENTER' TO EXIT'; SWF
 IF SWF = 'N' OR SWF = 'n' THEN CLS: CTR = I - 1: GOTO 11020
 IF SWF = '' THEN RETURN
 Y = VAL(SWF) + 1
 LOCATE Y, 25
 INPUT WF(Y - 1, 3)
 GOTO 11050

main menu

20510 CLS 'SPC(24); STRING(27, '_'): PRINT
 IF IMST(MAXMSNS + 1, 1) = 0 THEN
 LOCATE 8, 31: PRINT 'NO MISSION TEMPLATES.'
 LOCATE 10, 19
 PRINT 'YOU MUST COMPLETE INPUT CHECKLIST (item 5)'
 LOCATE 12, 20
 PRINT 'OR LOAD A FLOW PLAN FROM DISK (main menu).'
 LOCATE 14, 33: INPUT 'ENTER TO RETURN'; SS: RETURN
 END IF
 PRINT TAB(34); 'FLOW MENU': PRINT SPC(24); STRING(27, '_'): PRINT
 PRINT TAB(25); '1 '; SDOT10; ' FLOW & MOG': PRINT
 PRINT TAB(25); '2 '; SDOT10; ' SLIDE MISSIONS': PRINT
 PRINT TAB(25); '3 '; SDOT10; ' CHANGE MISSIONS'
 PRINT SPC(24); STRING(27, '_'): PRINT
 PRINT SPC(34); 'OUTPUT': PRINT
 PRINT TAB(25); '4 '; SDOT10; ' MISSION SCHEDULE': PRINT
 PRINT TAB(25); '5 '; SDOT10; ' FUEL REQUIRED': PRINT
 PRINT TAB(25); '6 '; SDOT10; ' FORCE CLOSURE'
 PRINT SPC(24); STRING(27, '_'): PRINT
 PRINT TAB(25); '7'; SDOT10; SDOT10; 'MAIN MENU': PRINT
 PRINT : PRINT SPC(30);
 INPUT 'ENTER CHOICE ': IANSW: CLS
 IF IANSW < 1 OR IANSW > 7 THEN 20510
20640 IF IANSW = 7 THEN RETURN
20650 ON IANSW GOSUB 40000, 23170, 20780, 29110, 20700, 20750, 20650
 GOTO 20510
20700 'compute fuel required

IF IMST(1, 1) = 0 THEN
 LOCATE 10, 20
 INPUT 'NO FLOW PLAN. ENTER TO RETURN'; SS
 RETURN
END IF

FUEL = 0
TOTHRS = 0
FOR I = 1 TO AFLDS
 FUEL(I) = 0
NEXT I

FOR I = 1 TO (NUMMSNS * 5)
 IF LEGS(I, 3) <> 0 THEN
 FUELFLOW = ACFT(IMST(LEGs(I, 1), 1), 3)
 HRS = (LEGs(I, 4) / 60)
 TOTHRS = TOTHRS + HRS
 FUEL(LEGs(I, 3)) = FUEL(LEGs(I, 3)) + (FUELFLOW * HRS)
 FUEL = FUEL + (FUELFLOW * HRS)
 END IF
NEXT I

CLS : CTR = 0
PRINT 'FIGURES REPRESENT THOUSANDS OF POUNDS OF FUEL REQUIRED'
PRINT 'REQUIRED TO SUPPORT THIS DEPLOYMENT PLAN.' :PRINT
PRINT 'CHOKE POINT -); SAFLD(JCB, 2); ' <-': PRINT
PRINT ' BASE FUEL (THOUSAND POUNDS)'
PRINT '----- ----' :PRINT
FOR I = 1 TO AFLDS
 IF FUEL(I) <> 0 THEN
 CTR = CTR + 1
 PRINT ' : SAFLD(I, 2).
 PRINT RIGHTS(' + STR$(INT(FUEL(I))), 6)
 IF CTR MOD 15 = 0 THEN
 LOCATE 23, 1: INPUT 'ENTER TO CONTINUE'; IANSW
 LOCATE 23, 1: PRINT SPC(30); ''
 END IF
 END IF
NEXT I

PRINT ' TOTAL'; INT(FUEL): PRINT
PRINT ' FLYING HOURS'; INT(TOTHRS): PRINT
PRINT ' ENTER TO CONTINUE'; IANSW
RETURN
20750 IF NSQDEP = 0 THEN
 LOCATE 10, 20
 INPUT 'NO FLOW PLAN. ENTER' TO RETURN'; SS
 RETURN
END IF

CTR = 1: PTR = 1
REDIM SCLOSE(NSQDEP, 5)
FOR I = 1 TO NSQDEP
 IZTME = IMST(PTR, ICTM) + LEGS(IMST(PTR, IFSTLG), 2)
 GOSUB 29600
 SCLOSE(I, 1) = RIGHT$("", STR$(ISQUAD(IMST(PTR, ISQD), 1)), 3)
 SCLOSE(I, 2) = SAFLD(INT(IMST(PTR, IFSTBSE) / 100), 2)
 SCLOSE(I, 3) = STME
 PTR = PTR + NSQDPLY(I, 2) - 1
 FOR J = ILSTLG TO IFSTLG STEP -1
 IF IMST(PTR, J) <> 0 THEN
 IZTEMP = LEGS(IMST(PTR, J), 4)
 IZTME = IMST(PTR, ICTM) + LEGS(IMST(PTR, J), 2) + IZTEMP
 GOSUB 29600
 ITEMP = INT(IMST(PTR, J + IFSTBSE - IFSTLG + 1) / 100)
 SCLOSE(I, 4) = SAFLD(ITEMP, 2)
 SCLOSE(I, 5) = STME
 EXIT FOR
 END IF
 NEXT J
 PTR = PTR + 1
NEXT I

CLS: PRINT 'CHOKE POINT ->'; SAFLD(JCB, 2); ' <-'; PRINT
PRINT 'SQD DEPT FIRST TAKEOFF CLOSE'
PRINT '----- -----'
FOR I = 1 TO NSQDEP
 FOR J = 1 TO 5
 PRINT SCLOSE(I, J); ' '
 NEXT J
 PRINT
NEXT I
PRINT: INPUT 'ENTER' TO CONTINUE '; IANSW
RETURN
changes menu
 called from 20650

20780 CLS
 IF IMST(I, 1) = 0 THEN
 LOCATE 10, 15
 INPUT 'NO FLOW PLAN. 'ENTER' TO RETURN TO FLOW MENU ': SS
 RETURN
 END IF

PRINT : PRINT
PRINT TAB(30); 'CHANGE MISSIONS': PRINT : PRINT
PRINT TAB(19); '1'; SDOT10; 'MISSION NUMBERS': PRINT
PRINT TAB(19); '2'; SDOT10; 'CHANGE GROUND TIMES (REFLOW)'
PRINT
PRINT TAB(19); '3'; SDOT10; 'CHANGE FLIGHT TIMES (REFLOW)'
PRINT
PRINT TAB(19); '4'; SDOT10; 'REPOSITION IN THE FLOW (REFLOW)'
PRINT
PRINT TAB(19); '5'; SDOT10; 'LINK / UNLINK MISSIONS': PRINT
PRINT TAB(19); '6'; SDOT10; 'RETURN TO FLOW MENU': PRINT
LOCATE 19, 30: INPUT 'ENTER CHOICE ': ICCD
CLS : IF ICCD > 6 THEN BEEP: GOTO 20780
IF ICCD = 6 THEN RETURN
ON ICCD GOSUB 26610, 23600, 23870, 24080, 27320, 20780
GOTO 20780

21010 FLOWFLAG = 1 ' for mission numbers
PKEY = 0
FOR I = 1 TO NUMMSNS
 J = IFSTBSE: PJMP = 0: PCBFG = 0
 PEBFO = 0: PACCUM = 0: LKFLG = 0
 IF IMST(I, ILKFRM) <> 0 OR IMST(I, ILKTO) <> 0 THEN LKFLG = 1
 IF LKFLG = 0 THEN IMST(I, IPOST) = 0
 IMST(I, IPRE) = 0: IMST(I, ICBGND) = 0
 PKEY = (I - 1) * 5
 LEGS(PKEY, 1) = I: IMST(I, J - 5) = PKEY: PDSEQ = IMST(I, J)
 PTYP = IMST(I, IJET): PDBSE = INT(PDSEQ / 100)

86
IF PDBSE <> JCB THEN 21190
PCBFG = PCBFG + 1
IF PCBFG > 1 THEN 21190
PDFCT = PSEQ - (PDBSE * 100)
IMST(I, JCBGND) = GNDTIMES(PTYP, PDFCT)

21190 LEGS(PKEY, 3) = PDBSE: PSEQ = IMST(I, J + 1)
PABSE = INT(PSEQ / 100)
LEGS(PKEY, 6) = PABSE
PAFCT = PSEQ - PABSE * 100: LEGS(PKEY, 7) = PAFCT
IF LEGS(PKEY, 5) = 0 THEN LEGS(PKEY, 5) = GNDTIMES(PTYP, PAFCT)
FOR II = 1 TO MAXRTES
FOR JJ = 1 TO MAXHOPS
IF ROUTES(II, JJ) = PDBSE AND ROUTES(II, JJ+1) = PABSE THEN
IF LEGS(PKEY, 4) = 0 THEN
LEGS(PKEY, 4) = FLTTIME(II, JJ, PTYP)
END IF
II = MAXRTES
EXIT FOR
END IF
NEXT JJ
NEXT II
IF PCBFG = 1 THEN 21290

PRETM = LEGS(PKEY,4) + LEGS(PKEY,5); LEGS(PKEY,2) = 0 - PRETM
IMST(I, IPRE) = IMST(I, IPRE) + LEGS(PKEY, 2): GOTO 21500

21290 IF PDBSE <> JCB OR PCBFG > 1 THEN 21430

PTMP1 = LEGS(PKEY - PJMP, 2): LEGS(PKEY - PJMP, 2) = IMST(I, IPRE)
PJMP = PJMP + 1
IF PJMP = 0 THEN 21380
PTMP2 = LEGS(PKEY - PJMP, 2)
LEGS(PKEY - PJMP, 2) = IMST(I, IPRE) - PTMP1
PTMP1 = PTMP1 + PTMP2: GOTO 21340

21380 LEGS(PKEY, 2) = 0
IF LKFLG = 0 THEN IMST(I, IPOST) = IMST(I, IPOST) + LEGS(PKEY, 4)
PACCUM = PACCUM + LEGS(PKEY, 4) + LEGS(PKEY, 5)
IF LKFLG = 0 THEN IMST(I, IPOST) = IMST(I, IPOST) + LEGS(PKEY, 5)
GOTO 21500

21430 LEGS(PKEY, 2) = PACCUM
PACCUM = PACCUM + LEGS(PKEY, 4) + LEGS(PKEY, 5)
IF PEBFG = 1 THEN 21500
IF LKFLG = 0 THEN IMST(I, IPOST) = IMST(I, IPOST) + LEGS(PKEY, 4)
store choke point-beddown base time

IF LKFLG=0 THEN IMST(I, IPOST)=IMST(I, IPOST)+ LEGS(PKEY, 5)

21500 J = J + 1: PJMP = PJMP + 1

IF J <> ILSTBSE THEN IF PAFACT <> 0 THEN 21090

end of mission sequence

IF IMST(I, ICTM) = 0 THEN 21560
IF ISLFLG = 1 THEN 21570
21560 IF LKFLG = 0 THEN IMST(I, ICTM) = JLAT
21570 NEXT I

smooth flow missions from choke point

IF ISLFLG = 1 THEN 22320
FOR I = 2 TO NUMMSNS
 IF IMST(I, ILKFRM) <> 0 THEN GOSUB 23030: GOTO 21650
 IMST(I, ICTM) = IMST(I - 1, ICTM) + JFI
21650 NEXT I

adjust flow for mog Programmed by Capt Dean Farwell
for Fragbuster

WMOG = AFLD(JCB, 3): WMOG = AFLD(JCB, 4)
FOR K = 1 TO 9
 JARAY(K, 1) = 0: JARAY(K, 2) = 0
 NARAY(K, 1) = 0: NARAY(K, 2) = 0
NEXT K

IPAD = IMST(1, ICTM) - JLAT
IF IPAD <= 0 THEN 21810
FOR K = 1 TO NUMMSNS
 IMST(K, ICTM) = IMST(K, ICTM) - IPAD
NEXT K
DEPLOY: AN ARLIFT DEPLOYMENT SCHEDULER FOR REAL-TIME
CRISIS ACTION PLANNING (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI R M FOSTER
UNCLASSIFIED MAR 88 AFIT/GST/ENS/88H-4
F/G 15/5 NL
21810 NCTR = 0: JCTR = 0
FOR I = ALPHA TO OMEGA
 IF ACFT(IMST(I, IJET), 2) = 1 THEN 22030
 IF IMST(I, ICTM) - IMST(I, ICBGND) < NARAY(I, 2) THEN 21900
 GOSUB 22750: GOTO 22240
 slided missions
 21900 IF NCTR = NMOG THEN 21920
 GOSUB 22630: GOTO 22240
 21920 IF IMST(I, ICTM) - IMST(I, ICBGND) < JARAY(I, 2) THEN 21940
 GOSUB 22810: GOTO 22240
 21940 IF JCTR = WMOG THEN 21980
 GOSUB 22690: GOTO 22240
 21980 IF NARAY(I, 2) > JARAY(I, 2) THEN 22010
 GOSUB 22870: GOSUB 22750: GOSUB 22600: GOTO 22240
 22010 NEXT J
 22130 IF K = 0 THEN 22170
 GOSUB 22940: GOSUB 22810: GOSUB 22600: GOTO 22240
 22170 IF NARAY(J, 2) < JARAY(J, 2) THEN 22200
 GOSUB 22940: GOSUB 22810: GOSUB 22600: GOTO 22240
 22200 GOSUB 22870
 NARAY(I, 1) = JARAY(K, 1): NARAY(I, 2) = JARAY(K, 2)
 JARAY(K, 1) = I: JARAY(K, 2) = IMST(I, ICTM)
 GOSUB 22380: GOSUB 22500
 22240 NEXT I
GOSUB 27100 mission number sequencing
 22320 RETURN TO 23760, 23980, 24460, 24710, 25290, 25440, 26150, 26320
mogger subroutines

bubble sort JARAY

22380 NN = 0
FOR N = 2 TO JCTR
 IF JARAY(N - 1, 2) <= JARAY(N, 2) THEN 22440
 SWAP JARAY(N - 1, 1), JARAY(N, 1)
 SWAP JARAY(N - 1, 2), JARAY(N, 2)
 NN = 1
NEXT N
IF NN <> 0 THEN 22380
RETURN

bubble sort NARAY

22500 NN = 0
FOR N = 2 TO NCTR
 IF NARAY(N - 1, 2) <= NARAY(N, 2) THEN 22560
 SWAP NARAY(N - 1, 2), NARAY(N, 2)
 SWAP NARAY(N - 1, 1), NARAY(N, 1)
 NN = 1
NEXT N
IF NN <> 0 THEN 22500
RETURN

22600 IF MOGCKFLG = 1 THEN
 LPRINT 'MOG VIOLATION AT MISSION SEQUENCE * '; I: RETURN
END IF
FOR N = I + 1 TO NUMMSNS
 IMST(N, ICTM) = IMST(N, ICTM) + MADD
NEXT N
RETURN

' put into NARAY

22630 NCTR = NCTR + 1
NARAY(NCTR, 1) = I: NARAY(NCTR, 2) = IMST(I, ICTM)
GOSUB 22500: RETURN

' put into JARAY

22690 JCTR = JCTR + 1
JARAY(JCTR, 1) = I: JARAY(JCTR, 2) = IMST(I, ICTM)
GOSUB 22380: RETURN

' put in top of NARAY

22750 IF NCTR = 0 THEN NCTR = 1
NARAY(1, 1) = I: NARAY(1, 2) = IMST(I, ICTM)
GOSUB 22500: RETURN
22810 ' put in top of JARAY
 IF JCTR = 0 THEN JCTR = 1
 JARAY(1, 1) = I: JARAY(1, 2) = IMST(I, ICTM)
 GOSUB 22380: RETURN
22870 ' calculate slide for WARAY
 IF MOGCXFLG = 1 THEN 22920
 MADD = WARAY(1, 2) - (IMST(I, ICTM) - IMST(I, ICBGND))
 IMST(I, ICTM) = WARAY(1, 2) + IMST(I, ICBGND)
22920 RETURN
22940 ' calculate slide for JARAY
 IF MOGCHFLG = 1 THEN 22990
 MADD = JARAY(1, 2) - (IMST(I, ICTM) - IMST(I, ICBGND))
 IMST(I, ICTM) = JARAY(1, 2) + IMST(I, ICBGND)
22990 RETURN
 ' called from 21630
23030 FOR IK = ILSTLG TO IFSTLG STEP -1
 IF IMST(IMST(I, ILKFRM), IK) <> 0 THEN LSTSTP = IK: IK = IFSTLG
 NEXT IK
 CTR1 = IMST(IMST(I, ILKFRM), ICTM)
 CTR2 = IMST(I, ILKFRM)
 CTR2A = LEGS(IMST(CTR2, LSTSTP), 2)
 CTR3 = IMST(I, ILKFRM)
 CTR3A = LEGS(IMST(CTR3, LSTSTP), 4)
 CTR4 = IMST(I, ILKFRM)
 CTR4A = LEGS(IMST(CTR4, LSTSTP), 5)
 CTR5 = LEGS(IMST(I, IFSTLG), 2)
 IMST(I, ICTM) = CTR1 + CTR2A + CTR3A + CTR4A - CTR5
23150 RETURN ' to 21630
23170 CLS
 IF IMST(1, 1) = 0 THEN
 LOCATE 10, 15
 INPUT 'NO FLOW PLAN. ENTER TO RETURN TO FLOW MENU ': SS
 RETURN
 END IF
 LOCATE 10, 15: PRINT 'DO YOU WANT TO SLIDE ONE MISSION (1)'
 LOCATE 12, 15: PRINT 'A CONTINUOUS SERIES OF MISSIONS (2)'
 LOCATE 14, 15
 INPUT 'OR RETURN TO MAIN MENU (3) ': IANSW
 CLS IF IANSW > 3 OR IANSW < 1 THEN BEEP: GOTO 23170
 ON IANSW GOTO 23290, 23490, 23250
23250 RETURN
slide one mission
called from 23240

23290 ISLDRE = 1: GOSUB 23340
IF IMST(IS1, ILKFRM) <> 0 THEN
 BEEP: PRINT 'MSN ': IS1; ' LINKED TO MSN ': IMST(IS1, ILKFRM)
 INPUT 'ENTER TO CONTINUE'; SANSW: GOTO 23450
END IF
IF IMST(IS1, ILKTO) <> 0 THEN
 BEEP: PRINT 'MSN ': IS1; ' LINKED TO MSN ': IMST(IS1, ILKTO)
 INPUT 'ENTER TO CONTINUE'; SANSW: GOTO 23450
END IF
IMST(IS1, ICTM) = NUTIM: GOTO 23170
' called from 23290, 23490

23340 LOCATE 10, 15
 INPUT 'ENTER SEQUENCE # OF FIRST MISSION TO BE MOVED '; IS1
 IF IS1 > MAXMSNS OR IS1 < 1 THEN BEEP: GOTO 23340

23360 LOCATE 12, 15
 INPUT 'ENTER (DDMMYY) OF NEW TAKEOFF FROM CHOKE POINT'; SDATE
 IF LEN(SDATE) <> 6 THEN
 BEEP: LOCATE 12, 63: PRINT SPC(15); : GOTO 23360
 END IF
 GOSUB 29850 ' convert calendar to julian
 IF BADFLG = 1 THEN
 LOCATE 12, 63: PRINT SPC(15); : GOTO 23360
 END IF
 NDY = JULIAN

23400 LOCATE 14, 15
 INPUT 'ENTER NEW TAKEOFF TIME (HHMM) FROM CHOKE POINT'; SNTM
 IF LEN(SNTM) <> 4 THEN
 BEEP: LOCATE 14, 63: PRINT SPC(20); : GOTO 23400
 END IF
 GOSUB 24790 ' time conversion days -> min
 IF BADFLG = 1 THEN
 LOCATE 14, 63: PRINT SPC(20); : GOTO 23400
 END IF
 LOCATE 23, 22: INPUT 'IS THIS INFO CORRECT (Y/N) '; SANSW
 IF SANSW = 'Y' THEN CLS : GOTO 23340

23450 RETURN ' to 23290, 23490
' slide a series of missions
' called from 23240
23490 ISLDFLG = 1: GOSUB 23340
IDEC = NUTIM - IMST(IS1, ICTM)
FOR K = IS1 TO NUMMSNS
IF IMST(K, ILKFRM) <> 0 THEN
 IF IMST(K, ILKFRM) < IS1 THEN
 BEEP: PRINT K; ' LINKED TO '; IMST(K, ILKFRM)
 INPUT 'ENTER TO CONTINUE '; SANSW: GOTO 23540
 END IF
END IF
IMST(K, ICTM) = IMST(K, ICTM) + IDEC
23540 NEXT K
GOTO 23150

' change ground times
' called from changes menu
23600 CLS : LOCATE 10, 20
INPUT 'HOW MANY LEGS TO CHANGE '; NGTLG: PRINT : PRINT
FOR I = 1 TO NGTLG
 CLS : LOCATE 10, 2
 PRINT 'REFER TO PRINTED MISSION SCHEDULE FOR LEG NUMBERS'
 LOCATE 12, 2: PRINT 'LEG NUMBER CONTAINING THE ARRIVAL BASE';
 INPUT 'WHOSE GROUND TIME WILL CHANGE '; LEGN: PRINT : PRINT
 IF LEGN > MAXLEGS OR LEGN < 1 THEN BEEP: GOTO 23650
 IF IMST(LEGS(LEGN, 1), ILXTO) <> 0 THEN GOSUB 23790 ELSE 23720
 IF IMST(LEGS(LEGN, 1), LSTSTP) <> LEGN THEN 23720
 PRINT 'LINKED LEG . . .';
 INPUT 'DO YOU STILL WANT TO CHANGE GND TIME (Y/N) '; SANSW
 IF SANSW <> 'Y' THEN 23750
 IF LEN(SNTM) <> 4 THEN BEEP: GOTO 23720
 NDAY = 0: GOSUB 24830: LEGS(LEGN, 5) = NUTIM
23720 NEXT I
GOSUB 21010: RETURN ' to 900
' called from 23680
23790 FOR IK = ILSTLG TO IFSTLG STEP -1
 IF IMST(LEGS(LEGN, 1), IK) <> 0 THEN LSTSTP = IK: IK = IFSTLG
NEXT IK
RETURN ' to 23680
change flight times
 called from changes menu

23870 CLS
LOCATE 10, 20: INPUT 'HOW MANY LEGS TO CHANGE ': NARLG
Y = 10: X = 20
FOR I = 1 TO NARLG
CLS : LOCATE Y, X
23920 INPUT 'LEG NUMBER YOU WANT TO CHANGE': NLEG: PRINT : PRINT
IF NLEG < 1 OR NLEG > MAXLEGS THEN BEEP: GOTO 23920
23940 LOCATE Y + 2, X: INPUT 'FLY TIME FOR THIS LEG (HHMM) ': SNTM
IF LEN(SNTM) <> 4 THEN
BEEP: LOCATE Y + 2, 49: PRINT SPC(10): : GOTO 23940
END IF
NDAY = 0: GOSUB 24830: LEGS(NLEG, 4) = NUTIM
NEXT I
GOSUB 21010: RETURN 'TO 900

reposition a mission in the flow
called from changes menu

24080 LOCATE 10, 20: PRINT 'ENTER (1) TO SWAP TWO MISSIONS...
LOCATE 12, 20
PRINT '.... (2) TO REPOSITION A MISSION IN THE FLOW
LOCATE 14, 20: INPUT 'OR... (3) TO RETURN TO MENU....': IANSW
IF IANSW < 1 OR IANSW > 3 THEN
BEEP: LOCATE 14, 56: PRINT '': GOTO 24080
END IF
IF IANSW = 3 THEN RETURN 'to 900
ON IANSW GOSUB 24190, 24520
CLS : GOTO 24080

94
swap two missions
called from 24130

24190 CLS : LOCATE 10, 15
24200 INPUT "ENTER FLOW SEQUENCE NUMBERS TO SWAP (X,Y)" : ISWP1, ISWP2
 IF IMST(ISWP1, ILKFROM) <> 0 THEN ILM = ISWP1: GOTO 24250
 IF IMST(ISWP1, ILKTO) <> 0 THEN ILM = ISWP1: GOTO 24250
 IF IMST(ISWP2, ILKFROM) <> 0 THEN ILM = ISWP2: GOTO 24250
 IF IMST(ISWP2, ILKTO) = 0 THEN 24270 ELSE ILM = ISWP2
24250 CLS : BEEP: LOCATE 10, 20
 PRINT ILM; " LINKED MISSION...CAN'T SWAP"
 LOCATE 12, 20: INPUT "ENTER TO CONTINUE......."; SANSW: GOTO 24080
24270 IF ISWP1 > NUMMSNS OR ISWP2 > NUMMSNS THEN 24290
 IF ISWP1 < 1 OR ISWP2 < 1 THEN 24290 ELSE 24300
24290 PRINT 'BAD NUMBER...RETRY': BEEP: GOTO 24200
24300 IF ISWP1 > ISWP2 THEN 24310 ELSE 24350
24310 PRINT 'WRONG ORDER...REENTER': BEEP: GOTO 24200

*** 24350 also called from 24690 ***

24350 SWAP IMST(ISWP1, IJET), IMST(ISWP2, IJET)
 SWAP IMST(ISWP1, ISQD), IMST(ISWP2, ISQD)
 FOR LUPE = IFSTBSE TO ILSTBSE
 SWAP IMST(ISWP1, LUPE), IMST(ISWP2, LUPE)
 NEXT LUPE
 SWAP SMST(ISWP1), SMST(ISWP2)

 GOSUB 50000

 IF MOVFLG = 0 THEN GOSUB 21010 ' reflow
 RETURN ' to 24130, 24690

move a mission
called from 24130

24520 CLS : MOVFLG = 0: LOCATE 10, 20
24530 PRINT 'ENTER TWO SEQUENCE NUMBERS : ': PRINT : PRINT
LOCATE 12, 20
INPUT 'MISSION TO BE PULLED , POSITION TO REINSERT': NUM1, NUM2
IF IMST(NUM1, ILKFRM) <> 0 THEN ILM = NUM1: GOTO 24600
IF IMST(NUM1, ILKTO) <> 0 THEN ILM = NUM1: GOTO 24600
IF IMST(NUM2, ILKFRM) <> 0 THEN ILM = NUM2: GOTO 24600
IF IMST(NUM2, ILKTO) = 0 THEN 24620 ELSE ILM = NUM2
24600 CLS : BEEP: LOCATE 10, 20
PRINT ILM; LINKED MISSION...CAN'T SWAP'
LOCATE 12, 20: INPUT 'ENTER TO CONTINUE......'; SANSW: GOTO 24720
24620 IF NUM1 < 1 OR NUM2 < 1 THEN 24640
IF NUM1 > NUMMSNS OR NUM2 > NUMMSNS THEN 24640 ELSE 24650
24640 IF NUM2 > NUM1 THEN INC = 1 ELSE INC = -1
FOR LUPE3 = NUM1 + INC TO NUM2 STEP INC
 ISWP1 = LUPE3 - INC
 ISWP2 = LUPE3
 MOVFLG = 1: GOSUB 24350
NEXT LUPE3
GOSUB 21010: MOVFLG = 0
24720 RETURN 'TO 4130

' time conversion subroutines
' convert days* hours* minutes to minutes
' called from 23440, 23740, 23960

24790 BADFLG = 0: ITEMP = JDLA
IF NDY - JDLA < 0 AND ABS(NDY - JDLA) > 21 THEN
 NDY = NDY + 365 + LSTLEAP: GOTO 24820
END IF
IF NDY - JDLA > 21 THEN ITEMP = JDLA + 365 + LSTLEAP
24820 NDAY = (NDY - ITEMP) * 1440
24830 NHR = VAL(LEFT$(SNTM, 2)) * 60 'from 23740, 23960
 NMIN = VAL(RIGHT$(SNTM, 2))
IF NHR < 0 OR NHR > 1440 OR NMIN < 0 OR NMIN > 59 THEN
 BADFLG = 1
ELSE
 NUTIM = NMIN + NHR + NDAY
END IF
RETURN 'to 23440, 23740, 23960
mission numbers
called from changes menu

26610 CLS : Y = 8: X = 20
LOCATE Y, X: PRINT 'DO YOU WANT TO . . . '
LOCATE Y + 2, X
PRINT 'CHANGE MISSION PREFIX FOR ONE MISSION (1)'
LOCATE Y + 4, X
PRINT 'OR CHANGE THE SEQUENCING OF MISSION NUMBERS (2)'
LOCATE Y + 6, X
INPUT 'OR RETURN TO CHANGES TO MISSIONS MENU (3)'; IANSW
IF IANSW < 1 OR IANSW > 3 THEN 26610
26650 IF IANSW = 3 THEN RETURN ' to 20900
ON IANSW GOSUB 26680, 26800, 26650: GOTO 26610

26680 CLS : LOCATE 12, 12
INPUT 'FLOW SEQUENCE NUMBER OF MISSION TO CHANGE'; IANSW
IF IANSW < 1 OR IANSW > MAXMSNS + MAXPLANS THEN BEEP: GOTO 26680
CLS : LOCATE 14, 20
PRINT 'YOU ARE CHANGING THE '; SMST(IANSW); ' MISSION'
LOCATE 14, 16
26730 INPUT 'INPUT THE NEW MISSION PREFIX OR 'X' TO CANCEL'; SANSW
IF LEFT$(SANSW, 1) = 'X' THEN 26780
IF LEN$(SANSW) > 12 THEN BEEP: GOTO 26730
SMST(IANSW) = LEFT$(SANSW + '***********', 12)
IF MID$(SANSW, 8, 1) <> '*' THEN NUMCHFLG = 1
26780 RETURN ' to 26660

26800 CLS : LOCATE 10, 20
PRINT 'DO YOU WISH TO RENUMBER BY AIRCRAFT TYPE (1) . . . '
LOCATE 12, 20: PRINT 'BY BASE OF ORIGIN (2) . . . '
26820 LOCATE 14, 20: INPUT 'OR AS A CONTINUOUS FLOW (3)'; IANSW
IF IANSW < 1 OR IANSW > 3 THEN BEEP: GOTO 26820
ON IANSW GOSUB 26870, 27100, 27000
RETURN ' to 6660

26870 FOR I = 1 TO NUMACFT
BCTR = 1
CLS
PRINT 'NOW RENUMBERING ALL '; SGETS(I); ' AIRCRAFT'
INPUT 'ENTER FIRST NUMBER IN SEQUENCE'; BCTR
FOR J = 1 TO NUMMSNS
IF IMST(J, IJET) <> I THEN 26960
MID$(SMST(J), 8, 2) = RIGHT$(STR$(BCTR + 100), 2)
BCTR = BCTR + 1
26960 NEXT J
NEXT I
RETURN ' to 26840

97
' called from 26840

27000 CLS: LOCATE 10, 20
INPUT 'FIRST FLOW SEQUENCE * TO CHANGE'; NUMBR1: PRINT
LOCATE 12, 20: INPUT 'LAST FLOW SEQUENCE * TO CHANGE'; NUMBR2
LOCATE 14, 20: PRINT 'STARTING WITH FLOW SEQUENCE *'; NUMBR1
LOCATE 14, 54: INPUT 'ENTER FIRST *'; NUMBR3
FOR I = NUMBR1 TO NUMBR2
 MID$(SMST(I), 8, 2) = RIGHTS$(STR$(100 + NUMBR3), 2)
 NUMBR3 = NUMBR3 + 1
NEXT I
RETURN ' TO 6840
'
' from 6840
'
27100 REDIM RTEMP(MAXRTES)
FOR I = 1 TO MAXRTES
 TEMP = ROUTES(I, 1) ' origin base
 IF TEMP = 0 THEN I = MAXRTES: EXIT FOR
 FOR J = 1 TO MAXRTES
 IF RTEMP(J) = TEMP THEN EXIT FOR
 IF RTEMP(J) = 0 THEN RTEMP(J) = TEMP: EXIT FOR
 NEXT J
NEXT I
'
FOR I = 1 TO MAXRTES
 IF FLOWFLAG = 1 THEN PTR = 1: GOTO 27150
 IF RTEMP(I) = 0 THEN 27190
 CLS
 PRINT 'FOR MISSIONS ORIGINATING AT'; SAFLD(RTEMP(I), 2); ' '<
 PRINT: INPUT 'ENTER FIRST NUMBER IN SEQUENCE *'; PTR
 27150 FOR J = 1 TO NUMMSNS
 IF INT(IMST(J, IFSTBSE) / 100) <> RTEMP(I) THEN 27180
 STEMPl = STR$(PTR + 100)
 MID$(SMST(J), 8, 2) = RIGHTS$(STEMPl, 2)
 PTR = PTR + 1
 NEXT J
27180 NEXT J
27190 NEXT I
FLOWFLAG = 0
RETURN ' TO 26840
'
link missions
called from changes menu

27320 CLS
LOCATE 10, 15: PRINT "DO YOU WANT TO LINK TWO MISSIONS (1)..."
LOCATE 12, 15: PRINT "UNLINK TWO MISSIONS (2)...."
LOCATE 14, 15
INPUT "...OR RETURN TO MAIN MENU (3)"; IANSW: CLS
IF IANSW > 3 OR IANSW < 1 THEN BEEP: GOTO 27320
ON IANSW GOTO 27420, 27610, 27400
27400 RETURN 'TO 900

27420 PRINT 'ENTER' TO RETURN TO MENU': PRINT
27430 INPUT 'ENTER SEQUENCE # OF FIRST MISSION'; ILPRI: PRINT: PRINT
IF ILPRI = 0 THEN 27320
INPUT 'ENTER SEQUENCE # OF SECOND MISSION'; ILPR2: PRINT: PRINT
IF ILPR2 = 0 THEN 27320
IF ILPRI <= ILPR2 THEN BEEP: PRINT 'WRONG ORDER': GOTO 27430
GOSUB 27780
STEMP1 = SAFLD(LEGS(IMST(ILPRI, LSTSTP), 6), 1)
STEMP2 = SAFLD(LEGS(IMST(ILPR2, IFSTLG), 3), 1)
IF STEMP1 <> STEMP2 THEN BEEP: PRINT 'BASE MISMATCH': GOTO 27430
IF IMST(ILPRI, IJET) <> IMST(ILPR2, IJET) THEN
 BEEP: PRINT 'JET MISMATCH': GOTO 27430
END IF
IMST(ILPRI, ILKTO) = ILPR2: IMST(ILPR2, ILKFRM) = ILPRI
GOSUB 27780

27520 PRINT 'ENTER GROUND TIME AT '; PRINT SAFLD(LEGS(IMST(ILPRI, LSTSTP), 6), 2); ' (HHMM)';
INPUT ZTME: IF LEN(ZTME) <> 4 THEN 27520
GOSUB 27880: NEGT = JTME
ITEMP1 = LEGS(IMST(ILPRI, LSTSTP), 2) + LEGS(IMST(ILPRI, LSTSTP), 4)
ITEMP2 = NEGT - LEGS(IMST(ILPR2, IFSTLG), 2)
IMST(ILPR2, ICTM) = IMST(ILPRI, ICTM) + ITEMP1 + ITEMP2
LEGS(IMST(ILPR2, LSTSTP), 5) = NEGT
GOTO 27320
27610 CLS: PRINT SPC(20); "ENTER TO RETURN TO MENU": PRINT
27620 INPUT 'ENTER SEQUENCE # OF FIRST MISSION': ILPR1: PRINT: PRINT
 IF ILPR1 = 0 THEN 27320
 INPUT 'ENTER SEQUENCE # OF SECOND MISSION': ILPR2
 IF ILPR2 = 0 THEN 27320
 IF IMST(ILPR1, ILKTO) = 0 THEN IF IMST(ILPR2, ILKFRM) = 0 THEN 27740
 IF ILPR1 > ILPR2 THEN BEEP: PRINT 'WRONG ORDER': GOTO 27620
 IF IMST(ILPR1, ILKTO) <> ILPR2 THEN
 BEEP: PRINT 'MISMATCH': GOTO 27620
 END IF
 IF IMST(ILPR2, ILKFRM) <> ILPR1 THEN
 BEEP: PRINT 'MISMATCH': GOTO 27620
 END IF
27730 RETURN
27740 INPUT 'NEITHER MISSION LINKED. ENTER TO CONTINUE': IANSW
 GOTO 27730
 ' called from 27480, 27700, 27510
27780 FOR M = ILSTLG TO IFSTLG STEP -1
 IF IMST(ILPR1, M) <> 0 THEN LSTSTP = M: M = IFSTLG
 NEXT M
 RETURN
 ' convert hrs+min to minutes
 ' called from 27540
27880 IMIN = VAL(RIGHT$(ZTME, 2))
 IHRS = VAL(LEFT$(ZTME, 2)) * 60
 JTME = IMIN + IHRS
 RETURN
 ' called from 5260, 5820, 6140, 6400
27950 FOR IZ = 1 TO 5
 LEGS((IANSW - 1) * 5 + IZ, 4) = 0
 LEGS((IANSW - 1) * 5 + IZ, 5) = 0
 NEXT IZ
 RETURN
screen schedule
\[\text{called from 29120} \]

28610 CLS
'first coke point takeoff
IZTME = JLAT: GOSUB 29600
PRINT : PRINT : PRINT
Y = VAL(MID$(SDTE, 3, 2)) * 3 - 2
STME = LEFT$(SDTE, 2) + ' ' + MID$(ZMONTH, Y, 3)
STME = STME + ' ' + RIGHT$(SDTE, 2) + ' ' + T$
PRINT 'FIRST DEPARTURE TIME \>' ': STME; ' AT '; SAFLD(JCB, 2)
PRINT 'DEPARTURE INTERVAL \>' ': JFI; ' MINUTES'
PRINT 'NUMBER OF MISSIONS \>' ': NUMMSNS: PRINT
28680 INPUT 'ENTER SEQUENCE NUMBER OF FIRST MISSION TO PRINT \>' '; JFIRST
PRINT : IF JFIRST < 1 OR JFIRST > NUMMSNS THEN BEEP: GOTO 28680
28700 INPUT 'ENTER FLOW SEQUENCE NUMBER OF LAST MISSION TO PRINT \>' '; JLAST
PRINT
IF JLAST < JFIRST OR JLAST > NUMMSNS THEN BEEP: GOTO 28700
CLS
FOR I = JFIRST TO JLAST
PRINT
IZTME = IMST(I, ICTM): GOSUB 29600: S1 = STME
IXTME = IMST(I, ICTM) + LEGS(IMST(I, IFSTLG), 2)
IZTME = IXTME: GOSUB 29600' = INT(IXTME / 1440)
MID$(SMST(I), 10, 3) = RIGHT$(STR$(JULIAN + 1000), 3)
28820
28840 PRINT 'FLOW SEQUENCE = '; I; '; SAFLD(JCB, 2);
PRINT 'DEPARTURE TIME '; S1
PRINT 'ACFT '; SJETS(IMST(I, IJET)); '
PRINT 'MISSION # '; SMST(I): PRINT
PRINT 'ARRIVE GNDTM DEPART FLTTM LEG'
FOR J = IFSTLG TO ILSTLG
IF J <> IFSTLG THEN ZFRM = ''; GOTO 28920
IF IMST(I, ILKFRM) <> 0 THEN
 ZFRM = ' CYCLES FROM ' + SMST(IMST(I, ILKFRM))
ELSE
 ZFRM = ''
END IF
IF IMST(I, ILKTO) <> 0 THEN
 ZTO = ' CYCLES TO ' + SMST(IMST(I, ILKTO))
ELSE
 ZTO = ''
END IF
28920 IF IMST(I, J) = 0 THEN J = ILSTLG: GOTO 29020
 ITMP2 = LEGS(IMST(I, J), 4): GOSUB 29770
 IZTME = IMST(I, ICTM) + LEGS(IMST(I, J), 2): GOSUB 29600
 IF J = IFSTLG THEN PRINT SPC(23);
 PRINT SAFLD(LEGS(IMST(I, J), 3), 2); '; STME; ''
 PRINT STME2; '; IMST(I, J)
 ITMP2 = LEGS(IMST(I, J), 5): GOSUB 29770
 IZTME = IZTME + LEGS(IMST(I, J), 4): GOSUB 29600
 PRINT STME + ' + STME2 + ';
 IF IMST(I, J + 1) = 0 OR J = ILSTLG THEN
 PRINT ' '; SAFLD(LEGS(IMST(I, J), 6), 2)
 END IF
29020 NEXT J
PRINT ZTO', LEAP, LSTLEAP
INPUT ' HIT RETURN TO CONTINUE '; SANSW
NEXT I
RETURN ' to 650
' printed mission schedule
' called from flow menu

29110 CLS
IF NUMMSNS = 0 THEN
 LOCATE 8, 31
 PRINT "NO FLOW PLAN."
 PRINT : PRINT SPC(22); "YOU MUST RETURN TO FLOW MENU"
 PRINT : PRINT SPC(17); "AND SELECT MISSIONS TO FLOW (OPTION 1)."
 PRINT : PRINT SPC(25); "HIT 'ENTER' TO CONTINUE"
 LOCATE CSRLIN - 1, 55: INPUT SS
 RETURN
END IF

LOCATE 10, 20: INPUT "DUMP TO SCREEN (1) OR PRINTER (2) "; IANSW
IF IANSW = 1 THEN 28610
IF IANSW > 2 OR IANSW < 1 THEN 29110
LPRINT CHR$(18)
LPRINT STRING$(60, '-'): LPRINT DATE$; TIME$; LPRINT STRING$(60, '-'): LPRINT
PRINT : PRINT "NUMBER OF MISSIONS : "; NUMMSNS: PRINT
29180 INPUT "ENTER SEQUENCE NUMBER OF FIRST MISSION TO PRINT "; JFIRST
 IF JFIRST < 1 OR JFIRST > NUMMSNS THEN BEEP: GOTO 29180
29200 INPUT "ENTER SEQUENCE NUMBER OF LAST MISSION TO PRINT "; JLAST
 IF JLAST < JFIRST OR JLAST > NUMMSNS THEN BEEP: GOTO 29200
FOR I = JFIRST TO JLAST
LPRINT
IZTME = IMST(I, ICTM): GOSUB 29600
IXTME = IMST(I, ICTM) + LEGS(IMST(I, IFSTLG), 2)
IXTME = INT(IXTME / 1440)
MID$(SMST(I), 10, 3) = RIGHT$(STR$(JDLA + IXTME + 1000), 3)
TEMP = VAL(RIGHT$(SMST(I), 3))
IF TEMP (< 365 AND TEMP > 0) THEN 29340
IF TEMP = 0 THEN TEMP = 365 + LSTLEAP: GOTO 29320
TEMP = TEMP - 365 + LSTLEAP
29320 MID$(SMST(I), 10, 3) = RIGHT$(STR$(TEMP + 1000), 3)

29340 LPRINT 'FLOW SEQUENCE * '; I; ' * '; SAFLD(JCB, 2);
LPRINT 'DEPARTURE TIME * '; STME
LPRINT 'ACFT * '; SJETS(IMST(I, IJET)); ' * ';
LPRINT ISQAD(IMST(I, ISQD), 1); ' TAS ';
LPRINT 'MISSION # * '; SMST(I): LPRINT
LPRINT 'ARRIVE GNDTM DEPART FLTTM LEG'

FOR J = IFSTLG TO ILSTLG
 IF J <> IFSTLG THEN ZFRM = ' * ': GOTO 29420
 IF IMST(I, ILKFRM) <> 0 THEN
 ZFRM = ' CYCLES FROM ' + SMST(IMST(I, ILKFRM))
 ELSE
 ZFRM = ' *
 END IF
 IF IMST(I, ILKTO) <> 0 THEN
 ZTO = ' CYCLES TO ' + SMST(IMST(I, ILKTO))
 ELSE
 ZTO = ' *
 END IF
29420 IF IMST(I, J) = 0 THEN J = ILSTLG: GOTO 29520
ITMP2 = LEGS(IMST(I, J), 4): GOSUB 29770
IZTME = IMST(I, ICTM) + LEGS(IMST(I, J), 2): GOSUB 29600
IF J = IFSTLG THEN LPRINT SPC(23);
LPRINT SAFLD(LEGS(IMST(I, J), 3), 2); ' * '; STME; ' * ';
LPRINT STME2; ' * '; IMST(I, J)
ITMP2 = LEGS(IMST(I, J), 5): GOSUB 29770
IZTME = IXTME + LEGS(IMST(I, J), 4): GOSUB 29600
LPRINT STME + ' * ' + STME2 + ' * ';
IF IMST(I, J + 1) = 0 OR J = ILSTLG THEN
 LPRINT '* ': SAFLD(LEGS(IMST(I, J), 6), 2)
LPRINT ZTO
END IF
29520 NEXT J
LPRINT: LPRINT ZTO
NEXT I
RETURN ' to 650
time conversion

called from 28610, 28740, 28950, 28990, 29240, 29450, 29490

29600 LSTFLG = 0
 LTME = IZTME
 KDY = INT(LTME / 1440)
 JULIAN = KDY + JDLA
 IF JULIAN < 0 THEN
 LSTFLG = 1
 JULIAN = JULIAN + 365 + LSTLEAP
 ELSEIF JULIAN > 365 + LEAP THEN
 JULIAN = JULIAN - (365 + LEAP)
 END IF

GOSUB 29980 'IDT,ZMO,ZYR
 LTME = LTME - KDY * 1440
 IHOUR = INT(LTME / 60) + 100
 IMIN = LTME - (IHOUR - 100) * 60 + 100
 T$ = RIGHT$(STR$(IHOUR), 2) + RIGHT$(STR$(IMIN), 2)
 IF T$ = '0000' THEN T$ = '0001'
 STME = ZDATE + ' ' + T$
 RETURN

minutes to hrs+min
called from 28840, 29980, 29430, 29480

29770 IHR = INT(ITMP2 / 60): IMIN = ITMP2 MOD 60
 STME2 = RIGHT$(STR$(IHR), 2) + '+' + RIGHT$(STR$(IMIN + 100), 2)
 IF STME2 = ' 0+00' THEN STME2 = ''
 RETURN

calendar to julian
called from 23390

29850 BADFLG = 0
 IDY = VAL(LEFT$(SDATE, 2))
 IMO = VAL(MIDS(SDATE, 3, 2)): IYR = VAL(RIGHT$(SDATE, 2))
 NYR = VAL(RIGHT$(SDATE, 2))
 IF IDY > 31 OR IMO > 12 OR IDY < 1 OR IMO < 1 THEN
 BADFLG = 1
 RETURN
END IF
 IF IYR MOD 4 = 0 THEN LEAP = 1 ELSE LEAP = 0
 IF IYR MOD 4 = 1 THEN LSTLEAP = 1 ELSE LSTLEAP = 0
 JULIAN = NDATES(IMO) + IDY
 IF NYR < IYR THEN IOFFSET = LSTLEAP ELSE IOFFSET = LEAP
 IF JULIAN > 59 THEN JULIAN = JULIAN + IOFFSET
 RETURN
julian to calendar

called from 29650

29980 JFLG = 0: DTFLG = 0
 IF JULIAN = 60 AND LEAP = 1 THEN ' feb 29
 ZDATE = '29 FEB'
 RETURN
END IF
 IF JULIAN = 366 THEN JFLG = 1
 IF JULIAN > 59 THEN JULIAN = JULIAN - LEAP
 FOR L = 2 TO 12
 IF NDATES(L) = JULIAN THEN
 LL = L
 EXIT FOR
 END IF
 NEXT L
 IF NDATES(L) > JULIAN THEN LL = L: EXIT FOR
 NEXT L
 IF JULIAN >= 334 THEN LL = 13 ' leap december
30040 IF LSTFLG = 1 THEN LSTFLAG = LSTLEAP
 JDY = JULIAN - NDATES(LL - 1) - LSTFLG
 SMO = MID$(ZMONTH, (3 * (LL - 1)) - 2), 3)
 STEMP2 = STR$(JDY + 100)
 ZDATE = RIGHT$(STEMP2, 2) + ' ' + SMO
 IF JULIAN >= 59 THEN JULIAN = JULIAN + LEAP
 RETURN ' to 29650
 ' calculate great circle distance

30920 RAD = 57.2958
 RPI = 3.14159
 RLAT1 = RLAT1 / RAD: RLONG1 = RLONG1 / RAD
 RLAT2 = RLAT2 / RAD: RLONG2 = RLONG2 / RAD
 ACSN1 = SIN(RLAT1) * SIN(RLAT2)
 ACSN2 = COS(RLAT1) * COS(RLAT2) * COS(ABS(RLONG2 - RLONG1))
 ACSN = ACSN1 + ACSN2
 ACSD = 1 - (ACSN ^ 2)
 IF ACSD = 0 THEN DIST = 0: GOTO 30950
 ACOS = (RPI / 2) - (ATN(ACSN / SQR(ACSD)))
 DIST = INT(3439.77 * ACOS)
30950 RETURN
prioritize missions

40000 CLS
LOCATE 10, 20
PRINT 'THIS WILL ERASE THE EXISTING FLOWPLAN.'
LOCATE 12, 20: INPUT ''C' TO CONTINUE, 'ENTER' TO EXIT '; SANSW
IF SANSW <> 'C' AND SANSW <> 'c' THEN RETURN

NSQDEP = 0
FOR I = 1 TO NSQUAD
 FLOWTEMP(I) = ISQUAD(I, 4) ' paa
NEXT I

FOR I = 1 TO MAXPLANS
 NSQDPLY(I, 1) = 0: NSQDPLY(I, 2) = 0
NEXT I

' print templates
FOR II = 1 TO MAXPLANS
 CLS
 FOR I = (MAXMSNS + 1) TO (MAXMSNS + MAXPLANS)
 Q = I - MAXMSNS: Y = Q
 LOCATE Y, 5
 IF IMST(I, IJET) = 0 THEN 40010
 PRINT Q; ' '; : IF Q < 10 THEN PRINT ' ';
 PRINT SJETS(IMST(I, IJET)); ' ';
 SQUADRON=RIGHT*(" "+STR$(ISQUAD(IMST(I,ISQD), 1)), 4)
 PRINT SQUADRON; ' TAS ';
 FOR J = IFSTBSE TO ILSTBSE
 IF IMST(I, J) = 0 OR J = ILSTBSE THEN
 LOCATE Y, 65
 PRINT SNOTE(Q)
 EXIT FOR
 END IF
 PRINT SAFLD(INT(IMST(I, J) / 100), 2); ' ';
 NEXT J
 40010 NEXT I

FOR I = 1 TO MAXPLANS
 IF NSQDPLY(I,1) <> 0 THEN LOCATE NSQDPLY(I,1),1 :PRINT '-->'
NEXT I
LOCATE Y + 2, 15
INPUT 'TEMPLATE YOU WANT TO USE 'RETURN' to continue'; IANSW
IF IANSW = 0 THEN EXIT FOR
IF IANSW > NUMTEMPS THEN BEEP: GOTO 40020

WFLAG = 0
JSQUAD = IMST(MAXMSNS + IANSW, ISQD)
IF FLOWTEMP(JSQUAD) = 0 THEN "sq has no more acft"
LOCATE Y + 1, 20
PRINT SPC(59);"
LOCATE Y + 2, 15
PRINT 'SQUADRON CHosen HAS NO MORE ACFT TO DEPLOY'
LOCATE Y + 3, 20: INPUT '*' ENTER TO CONTINUE *; SS
LOCATE Y + 2, 15: PRINT SPC(50);"
LOCATE Y + 3, 20: PRINT SPC(50);"
LOCATE Y + 2, 15: GOTO 40020
END IF

NSQDPLY(NSQDEP + 1, 1) = IANSW 'which template is chosen
NSQDEP = NSQDEP + 1 'how many templates chosen

TMAX = FLOWTEMP(JSQUAD)
PRINT 'NUMBER OF ACFT FROM THIS SQUADRON':
PRINT '('(1 - ': TMAX; ')"

LOCATE Y + 3, 56: INPUT IANSW2
IF IANSW2 < 0 OR IANSW2 = TMAX THEN
LOCATE Y + 3, 55: PRINT *GOTO 40030
END IF
IF IANSW2 = 0 THEN
NSQDPLY(II, 1) = 0
NSQDEP = NSQDEP - 1
LOCATE Y + 2, 15: PRINT SPC(60);"
LOCATE Y + 3, 10: PRINT SPC(65);"
LOCATE Y + 2, 15: GOTO 40020
ELSE
NSQDPLY(II, 2) = IANSW2 'how many acft deployed
FLOWTEMP(JSQUAD) = FLOWTEMP(JSQUAD) - IANSW2
END IF

NEXT II
CLS: LOCATE 10, 34: PRINT 'STANDBY . . .'
IF NSQDEP = 0 THEN RETURN
sort by lad

FOR I = 1 TO NSQDEP - 1
 FOR J = 1 TO NSQDEP - 1
 ITEMP1 = ISQUAD(IMST(MAXMSNS + NSQDPLY(J, 1), ISQD), 6)
 ITEMP2 = ISQUAD(IMST(MAXMSNS + NSQDPLY(J + 1, 1), ISQD), 6)
 IF ITEMP1 > ITEMP2 THEN
 SWAP NSQDPLY(J, 1), NSQDPLY(J + 1, 1)
 END IF
 NEXT J
 NEXT I

* load missions into IMST array

ALPHA = 0: OMEGA = 0: NUMMSNS = 0
FOR II = 1 TO NSQDEP
 ALPHA = OMEGA + I
 OMEGA = OMEGA + NSQDPLY(II, 2)
 FOR J1 = ALPHA TO OMEGA
 FOR K1 = 1 TO IMSTTOP
 IMST(J1, K1) = IMST(MAXMSNS + NSQDPLY(II, 1), K1)
 NEXT K1
 SMST(J1) = SMST(MAXMSNS + NSQDPLY(II, 1))
 NEXT J1
 NEXT II
 NUMMSNS = OMEGA : ALPHA = 1
GOSUB 50000 ' clear LEGS array
GOSUB 21010 ' flow & mog
RETURN

50000 FOR IJ = 1 TO MAXLEGS
 FOR II = 1 TO 7
 LEGS(IJ, II) = 0
 NEXT II
NEXT IJ
RETURN
60000
' change squadron data

CLS : INUSQ = 0
LOCATE 8, 20
PRINT '1 <- TO CHANGE DATA FOR AN EXISTING SQUADRON'
LOCATE 10, 20: IF MAXADDSQ = 0 THEN 60001
PRINT '2 <- TO ADD A NEW SQUADRON ('; MAXADDSQ; ' MAX ')
LOCATE 12, 17
60001 PRINT 'ENTER' <- TO RETURN TO MAIN MENU'
LOCATE 15, 20: INPUT IANSW
IF IANSW = 2 AND MAXADDSQ = 0 THEN 60000
IF IANSW < 0 OR IANSW > 2 THEN 60000
IF IANSW = 0 THEN RETURN
IF IANSW = 2 THEN
 INUSQ = 1: GOSUB 60010: GOSUB 60020: GOSUB 60030
 GOSUB 60040: GOSUB 60050: GOTO 60005
END IF

60003 CLS : LOCATE 10, 20: INPUT 'ENTER SQUADRO...'; IANSWO
IOK = 0
FOR I = 1 TO NSQUAD
 IF ISQUAD(I, 1) = IANSWO THEN IOK = 1
NEXT I
IF IOK = 0 THEN 60003

60005 CLS : GOSUB 60100
FOR I = 1 TO NSQUAD
 IF ISQUAD(I, 1) = IANSWO THEN
 ISQPTR = I
 LOCATE 6, 13: PRINT ISQUAD(I, 1)
 LOCATE 6, 27: PRINT SAFLD(ISQUAD(I, 5), 2)
 LOCATE 6, 30: PRINT SERVICE(ISQUAD(I, 2))
 LOCATE 6, 35: PRINT SJETS(ISQUAD(I, 3))
 LOCATE 6, 66: PRINT ISQUAD(I, 4)
 LOCATE 13, 29: PRINT ISQUAD(I, 6)
 LOCATE 13, 41: PRINT ISQUAD(I, 7)
END IF
NEXT I
IF INUSQ = 1 THEN 60008
LOCATE 18, 20: PRINT 'ENTER NUMBER OF FIELD TO CHANGE, OR'
60008 LOCATE 20, 20: INPUT 'ENTER' TO CONTINUE': IANSWI
IF INUSQ = 1 OR IANSWI = 0 THEN RETURN
IF IANSWI = 1 OR IANSWI > 7 THEN BEEP: GOTO 60005
ICHGSQ = 1 ' triggers save option when ending
ON IANSWI GOSUB 60010, 60020, 60030, 60040, 60050, 60060, 60070
GOTO 60005
LOCATE 10, 20: INPUT 'ENTER NEW SQUADRON ID'; IANSWO
IF IANSWO = 0 THEN 60010
FOR I = 1 TO NSQUAD
 IF ISQUAD(I, 1) = IANSWO THEN IOK = 1
NEXT I
IF IOK = 1 THEN
 LOCATE 12, 20
 INPUT 'SQUADRON ALREADY EXISTS. ENTER TO CONTINUE'; SS
 GOTO 60010 'to avoid repeating sq
END IF
NSQUAD = NSQUAD + 1
ISQUAD(NSQUAD, 1) = IANSWO
ISQPTR = NSQUAD
ICHGSQ = 1 'triggers save option when ending
MAXADDSQ = MAXADDSQ - 1
RETURN

LOCATE 12, 20
INPUT 'ENTER ICAO IDENTIFIER OF HOME BASE'; SANSW
IOK = 0: SS = ''
FOR I = 1 TO AFLDS
 IF SAFLD(I, 2) = SANSW THEN ISQUAD(ISQPTR, 5) = I: IOK = 1
NEXT I
IF IOK = 0 THEN
 LOCATE 12, 20: PRINT SPC(60): SS
 LOCATE 12, 20
 INPUT 'ICAO NOT IN DATA BASE. ENTER TO CONTINUE'; SS
 LOCATE 12, 20: PRINT SPC(60): SS
 GOTO 60020
END IF
RETURN

CLS : Y = 8
FOR I = 1 TO 3
 LOCATE Y, 20: PRINT I, SERVICE(I)
 Y = Y + 2
NEXT I
LOCATE Y + 2, 20
INPUT 'ENTER NUMBER FOR TYPE SQUADRON'; ISQUAD(ISQPTR, 2)
RETURN

CLS : Y = 1
FOR I = 1 TO NUMACFT
 LOCATE Y, 20: PRINT I, SJETS(I)
 Y = Y + 2
NEXT I
PRINT : PRINT : PRINT SPC(20):
INPUT 'ENTER NUMBER FOR ASSIGNED ACFT'; ISQUAD(ISQPTR, 3)
RETURN
40050 PRINT : PRINT SPC(20);
INPUT 'ENTER NUMBER OF AIRCRAFT AT BASE'; IANSW2
ISQAD(ISQPTR, 4) = IANSW2
RETURN

40060 INPUT 'ENTER DAY SQUADRON IS AVAILABLE (1, 2, 3, etc)'; IANSW3
ISQAD(ISQPTR, 6) = IANSW3
RETURN

40070 INPUT 'ENTER SQUADRON'S DEPLOYMENT DEADLINE (1, 2, 3, etc)'; IANSW4
ISQAD(ISQPTR, 7) = IANSW4
RETURN

50100 CLS : SS = '': PRINT
PRINT 'FIELD --
PRINT ' 1 2 3 4 5'
IF IANSW = 1 THEN LOCATE 2, 12: PRINT SS
PRINT : PRINT SPC(10);
PRINT 'SQUADRON BASE TYPE ACFT PAA'
PRINT SPC(10);
PRINT '------ ---- ---- ---- -----
PRINT LOCATE 9, 1: PRINT 'FIELD --'
LOCATE 9, 30: PRINT ' 6 7'
LOCATE 11, 26: PRINT 'AVAILABLE IN PLACE'
LOCATE 12, 26: PRINT '-------- --------'
RETURN

61000 IF ICHGSQ = 1 THEN
LOCATE 10, 20
INPUT 'SAVE CHANGES MADE TO SQUADRON DATABASE (Y/N) '; SANSW
IF SANSW = 'Y' OR SANSW = 'y' THEN
OPEN 'O', 2, 'SQUAD#.DAT'
PRINT #2, NSQUAD
FOR I = 1 TO NSQUAD
FOR J = 1 TO 7
IF J = 5 THEN
PRINT #2, SAFLD(ISQAD(I, J), 2)
ELSE
PRINT #2, STR$(ISQAD(I, J))
END IF
NEXT J
NEXT I
END IF
END IF
IF ICHBSE = 1 THEN
CLS : LOCATE 10, 20
INPUT 'SAVE CHANGES MADE TO AIRFIELD DATABASE (Y/N) '; SANSW
IF SANSW = 'Y' OR SANSW = 'y' THEN
OPEN 'O', 2, 'BASE#.DAT'
PRINT #2, AFLDS
FOR I = 1 TO AFLDS
 PRINT #2, SAFLD(I, 1)
 PRINT #2, SAFLD(I, 2)
 FOR J = 1 TO 4
 PRINT #2, STR#(AFLD(I, J))
 NEXT J
NEXT I
END IF
END IF
END 'program
add airfield to data base

CLS
IF AFLDS = MXAFLD THEN
 LOCATE 10, 10
 PRINT 'YOU MUST RESTART THE PROGRAM TO ADD MORE AIRFIELDS'
 LOCATE 12, 25: INPUT 'ENTER TO CONTINUE'; SS
 GOTO 62999
END IF
LOCATE 4, 1
PRINT 'ENTER FOR ICAO TO ABORT.'; PRINT
PRINT 'ENTER LAT & LONG IN DEGREES AND TENTHS.'; PRINT
PRINT 'ENTER SOUTH LATITUDE AND EAST LONG AS NEGATIVE'
LOCATE 9, 3
PRINT '__'
LOCATE 11, 3
PRINT 'ICAO NAME LAT LONG NARROW WIDE MOG MOG'
LOCATE 13, 3
PRINT '---- ---- ---- -- ---- --- '
I = AFLDS + 1
LOCATE 12, 1: INPUT STEST
' abort test
IF STEST = '' THEN 62999
' in database test
FOR J = 1 TO AFLDS
 IF SAFLD(J, 2) = STEST THEN
 CLS : LOCATE 10, 20: PRINT 'AIRFIELD ALREADY IN DATA BASE.'
 PRINT SPC(19);: INPUT 'ENTER TO CONTINUE'; SS
 GOTO 62999
 ELSE
 SAFLD(I, 2) = STEST
 END IF
NEXT J
LOCATE 12, 8: INPUT SAFLD(I, 1)
LOCATE 12, 24: INPUT AFLD(I, 1)
LOCATE 12, 32: INPUT AFLD(I, 2)
LOCATE 12, 45: INPUT AFLD(I, 3)
LOCATE 12, 59: INPUT AFLD(I, 4)
GOSUB 4270: IF SANSW = 'N' OR SANSW = 'n' THEN 62000
ICHBSE = 1
AFLDS = I
62999 RETURN
BIBLIOGRAPHY

5. Foster, Capt. Mike; Farwell, Capt. Dean; Barber, 1Lt Doug. 60 Military Airlift Wing, Travis AFB, CA, August 1984.

VITA

Major Mike Foster was born on 2 June 1950 in Bristow, Oklahoma. He graduated from high school in Midwest City, Oklahoma, in 1968 and attended the University of Oklahoma, from which he received the degree of Bachelor of Arts in Anthropology in May 1974. After receiving his commission from the Officer Training School in January, 1975, he attended Undergraduate Navigator Training and F-4 training. He served as a Weapon System Officer in the 512th Tactical Fighter Squadron, Ramstein AB, Federal Republic of Germany. He completed pilot training and received his wings in April, 1979, and was an instructor pilot and flight evaluator in the 323rd Flight Training Wing, Mather AFB, CA from April 1979 until January 1983. In August, 1982, he received the degree of Bachelor of Science in Computer Science from Chapman College. He served as a C-5 aircraft commander in the 60th Military Airlift Wing, Travis AFB, CA, until entering the School of Engineering, Air Force Institute of Technology, in September, 1986.

Permanant address: 4120 Quail Bush Drive

Dayton, Ohio 45424
Title: Deploy: An Airlift Scheduler for Real-Time Crisis Action Planning

Authors: R. Mike Foster, B.A., B.S., Maj, USAF

Type of Report: MS Thesis

Date of Report: 1988 March

Page Count: 123

Subject Terms: Airlift Operations, Deployment, Scheduling

Abstract:

Thesis Advisors: Thomas F. Schuppe, Lt Col, USAF
Instructor of Operations Research

John R. Valusek, Lt Col, USAF
Assistant Professor of Operations Research
Preparation for a war in Europe would include the deployment of C-130 tactical airlift aircraft from their home bases in the United States to beddown locations in Europe. Methods currently used to plan such deployments would require as long as two days to provide a complete deconflicted deployment schedule.

The purpose of this study was to automate the deployment planning process. A review of literature concentrated on recent theses which studied airlift problems and existing deployment planning software.

An interactive program was written, based on the concept of using departure time from refueling choke points as the mechanism for regulating aircraft flow. A deployment flow plan for all active duty C-130s stationed in the U.S can be completed, using this program, in approximately one hour.