AVAILABILITY EQUATIONS FOR REDUNDANT SYSTEMS, BOTH SINGLE AND MULTIPLE REPAIR CAPABILITY

Jo Sato, Capt, USAF

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TM-87-11 has been reviewed and is approved for publication.

APPROVED:

ANTHONY J. FEDUCCIA, Chief
Systems Reliability & Engineering Division
Directorate of Reliability & Compatibility

APPROVED:

JOHN J. BART, Technical Director
Directorate of Reliability & Compatibility

FOR THE COMMANDER:

JOHN A. RITZ
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBET) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notice on a specific document requires that it be returned.
11. TITLE (Include Security Classification)
AVAILABILITY EQUATIONS FOR REDUNDANT SYSTEMS, BOTH SINGLE AND MULTIPLE REPAIR CAPABILITY

12. PERSONAL AUTHOR(S)
Jo Saco, Capt., USAF

13a. TYPE OF REPORT
In-House

13b. TIME COVERED
FROM Aug 87 TO Sep 87

14. DATE OF REPORT (Year, Month, Day)
October 1987

15. PAGE COUNT
24

16. SUPPLEMENTARY NOTATION
N/A

18. SUBJECT TERMS (Continue on reverse if necessary and identity by block number)

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>04</td>
<td></td>
<td>Availability Single Repair Redundant Systems Multiple Repair</td>
</tr>
</tbody>
</table>

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This memo documents derivations of availability equations for redundant systems not readily available in current literature.
Reliability papers, technical reports, and textbooks almost universally document the derivation of availability equations for two unit full-on parallel redundant systems with the assumption of "multiple repair" crews or facilities. Multiple repair is the case where there are as many repair crews available as there are possible units to fail. Some reliability literature also derive the availability equations for two-unit standby redundant systems with the multiple repair assumption. Literature is scarce, however, for two unit full-on and standby parallel systems with single repair capability (i.e. only one repair crew is available and hence, failed units can only be repaired one at a time); it is virtually nonexistent with respect to models of systems made up of more than two redundant units.

This paper documents the derivation of availability models for two unit and three unit full-on and standby parallel systems with single repair capabilities. Also included are derivations for three unit full-on and standby systems with single and multiple repair capability. In all cases, each unit will be assumed to have a failure rate λ and a repair rate μ.

Case 1: The system consists of two units both fully operational whenever possible and has single repair capability. The system is capable of performing its mission when only one unit is operational. There are three possible states for the system to be in at any given time:
State 2 - both units operating
1 - one of the units has failed, other unit operating
0 - both units have failed.

Using a Markovian approach and letting $P_2(t)$, $P_1(t)$, and $P_0(t)$ represent the probability of being in states 2, 1, and 0 respectively at time t yields:

\[
\begin{align*}
P_2(t+\Delta t) &= P_2(t) \times (1-2\lambda \Delta t) + P_1(t) \times \mu \Delta t \\
P_1(t+\Delta t) &= P_2(t) \times (2\lambda \Delta t) + P_1(t) \times (1-(\mu+\lambda) \Delta t) + P_0(t) \times \mu \Delta t \\
P_0(t+\Delta t) &= P_1(t) \times (\Delta t) + P_0(t) \times (1-\mu \Delta t)
\end{align*}
\]

Expanding and rearranging terms using the definition of a derivative:

\[
\begin{align*}
\dot{P}_2(t) &= -2\lambda P_2(t) + \mu P_1(t) \\
\dot{P}_1(t) &= 2\lambda P_2(t) - (\lambda + \mu) P_1(t) + \mu P_0(t) \\
\dot{P}_0(t) &= \lambda P_1(t) - \mu P_0(t)
\end{align*}
\]

Taking Laplace transforms and realizing that:

$P_2(0) = 1, P_1(0) = 0 = P_0(0)$ Assume all units operative at $t=0$
\[(S+2\lambda) \ P_2(S) - \mu \ P_1(S) = 1\]

\[2\lambda \ P_2(S) - (S+\lambda+\mu) \ P_1(S) + \mu \ P_0(S) = 0\]

\[- \lambda \ P_1(S) + (S+\mu) \ P_0(S) = 0\]

Solving these simultaneous equations for \(P_0\) results in:

\[
P_0(S) = \frac{2\lambda^2}{S(S+3\lambda+2\mu + (2\lambda^2 + 2\lambda + \mu^2)}
\]

The denominator must first be factored and then partial fraction expansion accomplished to put the equation in a form to find the inverse Laplace transform.

This yields:

\[
P_0(S) = \frac{2\lambda^2}{S(S-S_1)(S-S_2)} \quad \text{where} \quad S_1, S_2 = \frac{1}{2} \left[-(3\lambda+2\mu) \pm \sqrt{\lambda^2 + 4\lambda\mu} \right]
\]

and are the roots of \(S^2+S(3\lambda+2\mu)+(2\lambda^2+2\lambda\mu+\mu^2)\)

\[
= 2\lambda^2 \left[\frac{1}{S_1 S_2 S} - \frac{1}{S_1(S_2-S_1)(S-S_1)} + \frac{1}{S_2(S_2-S_1)(S-S_2)} \right]
\]
Finding the inverse transform yields:

\[p_0(t) = 2\lambda^2 \left[\frac{1}{S_1S_2} - \frac{S_1t}{S_1(S_2-S_1)} + \frac{S_2t}{S_2(S_2-S_1)} \right] \]

\[= 2\lambda^2 \left[\frac{(S_2-S_1) - S_2e^{S_1t} + S_1e^{S_2t}}{S_1S_2(S_2-S_1)} \right] \]

So availability then is:

\[A = 1 - p_0(t) = \frac{S_1S_2(S_2-S_1) - 2\lambda^2 \left[(S_2-S_1) - S_2e^{S_1t} + S_1e^{S_2t} \right]}{S_1S_2(S_2-S_1)} \]

\[= \frac{S_1S_2 - 2\lambda^2}{S_1S_2} + \frac{2\lambda^2 \left[S_2e^{S_1t} - S_1e^{S_2t} \right]}{S_1S_2(S_2-S_1)} \]

\[= \frac{2\lambda \mu + \mu^2}{2\lambda^2 + 2\mu + \mu^2} + \frac{2\lambda^2 \left[S_2e^{S_1t} - S_1e^{S_2t} \right]}{S_1S_2(S_2-S_1)} \]
Case 2: The system consists of two units with one unit operating and one in a standby state and has single repair capability. When a failure occurs, perfect switching is assumed to connect the standby unit and system operation is not affected. The standby unit is assumed to have a failure rate equal to 0, the operating unit is assumed to have a failure rate equal to \(\lambda \). A unit under repair is assumed to have a repair rate = \(\mu \). The three possible states are the same as in Case 1.

Equations of state:

\[
P_2(t+\Delta t) = P_2(t) (1-\lambda \Delta t) + P_1(t) \mu \Delta t
\]

\[
P_1(t+\Delta t) = P_2(t) \lambda \Delta t + P_1(t) (1-(\lambda+\mu) \Delta t) + P_0(t) \mu \Delta t
\]

\[
P_0(t+\Delta t) = P_1(t) \lambda \Delta t + P_0(t) (1-\mu \Delta t)
\]

\[
\dot{P}_2(t) = -P_2(t) + \mu P_1(t)
\]

\[
\dot{P}_1(t) = P_2(t) - (\lambda+\mu) P_1(t) + \mu P_0(t)
\]

\[
\dot{P}_0(t) = P_1(t) - \mu P_0(t)
\]
Taking Laplace transforms:

\[(S+\lambda) P_2(S) - \mu P_1(S) = 1\]

\[\therefore P_2(S) = \frac{(S+\lambda+\mu) P_1(S) + \mu P_0(S)}{(S+\lambda) P_2(S) - \mu P_1(S) + (S+\mu) P_0(S)} = 0\]

Solution for \(P_0(S)\) after solving the above equation set simultaneously:

\[
P_0(S) = \frac{\lambda^2}{S(S-S_1)(S-S_2)} \quad \text{where} \quad S_1, S_2 = -(\lambda+\mu) \pm \sqrt{\lambda\mu}
\]

These are the roots of \(S^2+S(2\lambda+2\mu)+(\lambda^2+\lambda\mu+\mu^2)\)

Having the denominator factored enables partial fraction expansion and hence finding the inverse transform.

The Inverse transform of the above results in:

\[
P_0(t) = \lambda^2 \frac{S_2-S_1 - S_2 e^{S_1 t} + S_1 e^{S_2 t}}{S_1 S_2(S_2-S_1)}
\]
Availability:

\[A(t) = 1 - P_0(t) = \frac{\mu + \mu^2}{\lambda^2 + \lambda \mu + \mu^2} + \frac{\sqrt{2} \left[s_2 e^{s_1 t} - s_1 e^{s_2 t} \right]}{s_1 s_2 (s_2 - s_1)} \]

For three unit systems, there are 4 possible states:

3 - all units operable
2 - 2 units operable, 1 unit failed
1 - 1 unit operable, 2 units failed
0 - all units failed

Case 3: Three different three unit systems will be investigated.
Three unit full-on parallel operation with single repair.

State Equations:

\[P_3(t+\Delta t) = P_3(t)(1-3\lambda \Delta t) + P_2(t)\mu \Delta t \]

\[P_2(t+\Delta t) = P_3(t) 3\lambda \Delta t + P_2(t)(1-(2+\mu)\Delta t) + P_1(t)\mu \Delta t \]

\[P_1(t+\Delta t) = P_2(t) 2\lambda \Delta t + P_1(t)(1-(\lambda+\mu)\Delta t) + P_0(t)\mu \Delta t \]

\[P_0(t+\Delta t) = P_1(t) \lambda \Delta t + P_0(t)(1-\mu \Delta t) \]
\[\begin{align*}
\dot{P}_3(t) &= -3\lambda P_3(t) + \mu P_2(t) \\
\dot{P}_2(t) &= 3\lambda P_3(t) - (2\lambda + \mu) P_2(t) + \mu P_1(t) \\
\dot{P}_1(t) &= 2\lambda P_2(t) - (\lambda + \mu) P_1(t) + \mu P_0(t) \\
\dot{P}_0(t) &= \mu P_1(t) - \mu P_0(t)
\end{align*} \]

Taking Laplace Transforms:

\[\begin{align*}
(S+3\lambda) P_3(S) - \mu P_2(S) &= 1 \\
3\lambda P_3(S) - (S+2\lambda + \mu) P_2(S) + \mu P_1(S) &= 0 \\
2\lambda P_2(S) - (S+\lambda + \mu) P_1(S) + \mu P_0(S) &= 0 \\
\mu P_1(S) - (S+\mu) P_0(S) &= 0
\end{align*} \]

Simultaneous Solution of the above for \(P_0(S) \) results in:

\[P_0(S) = \frac{-6\lambda^3}{S(S-S_1)(S-S_2)(S-S_3)} \quad \text{where } S_1, S_2, S_3 \text{ are roots of } \]

\[S^3 + S^2(6\lambda + 3\mu) + S(11\lambda^2 + 9\mu + 3\mu^2) + (6\lambda^3 + 3\mu^2 + \mu^3 + 6\lambda^2 \mu) \]
To find values for $S_1, S_2,$ and S_3 note the cubic equation is of the form:

$$S^3 + ps^2 + qs + r = 0$$

Where:

$$p = 6\lambda + 3\mu$$

$$q = 11\lambda^2 + 9\lambda\mu + 3\mu^2$$

$$r = 6\lambda^3 + 6\lambda^2\mu + 3\lambda\mu^2 + \mu^3$$

Substituting $(x - p/3)$ for S reduces the equation to:

$$x^3 + ax + b = 0$$

Where:

$$a = \frac{1}{3}(3q-p^2)$$

$$b = \frac{1}{27}(2p^3 - 9pq + 27r)$$

Since $\frac{b^2 + a^3}{4 \times 27} < 0$ there are 3 distinct real roots.

Determine the value of the θ in the expression $\cos \theta = -b \div 2 \sqrt{\frac{-a^3}{27}}$

The roots x_1, x_2, x_3 will have the values: $x_1 = 2 \frac{\sqrt{-a}}{3} \cos \frac{\theta}{3}$
\[x_2 = 2 \sqrt{\frac{-a}{3}} \cos \left[\frac{\alpha + 2\pi}{3} \right] \]

\[x_3 = 2 \sqrt{\frac{-a}{3}} \cos \left[\frac{\alpha + 4\pi}{3} \right] \]

\(S_1, S_2, S_3 \) are then calculated from:

\[S_1 = x_1 - \frac{d}{3} \]

\[S_2 = x_2 - \frac{d}{3} \]

\[S_3 = x_3 - \frac{d}{3} \]

The inverse transform for \(P_0 \) is:

\[P_0(t) = 6\lambda^3 \times \]

\[
\begin{bmatrix}
(S_1-S_3)(S_1-S_2)(S_2-S_3)-S_2S_3(S_2-S_3)e^{S_1t} + S_1S_3(S_1-S_3)e^{S_2t} - S_1S_2(S_1-S_2)e^{S_3t} \\
S_1S_2S_3(S_1-S_3)(S_1-S_2)(S_2-S_3)
\end{bmatrix}
\]
Availability:

\[A(t) = 1 - P_0(t) \]

\[= \frac{\mu^3 + 3\lambda u^2 + 6\lambda^2 u}{\mu^3 + 3\lambda u^2 + 6\lambda^2 u + 6\lambda^3} \]

\[6\lambda^3 \left[S_2 S_3 (S_2 - S_3) e^{S_1 t} - S_1 S_3 (S_1 - S_3) e^{S_2 t} + S_1 S_2 (S_1 - S_2) e^{S_3 t} \right] \]

\[= \frac{S_1 S_2 S_3 (S_1 - S_3) (S_1 - S_2) (S_2 - S_3)}{S_1 S_2 S_3 (S_2 - S_3) (S_1 - S_3) (S_1 - S_2)} \]

Case 4: Three unit full-on parallel operation with multiple repair.

State equations:

\[P_3(t + \Delta t) = P_3(t) (1 - 3\lambda \Delta t) + P_2(t) \mu \Delta t \]

\[P_2(t + \Delta t) = P_3(t) 3\lambda \Delta t + P_2(t) (1 - (2\lambda + \mu) \Delta t) + P_1(t) 2\mu \Delta t \]

\[P_1(t + \Delta t) = P_2(t) 2\lambda \Delta t + P_1(t) (1 - (\lambda + 2\mu) \Delta t) + P_0(t) 3\mu \Delta t \]
\[P_0(t + \Delta t) = P_1(t) \lambda \Delta t + P_0(t)(1 - 3\mu \Delta t) \]

\[\dot{P}_3(t) = -3 \lambda P_3(t) + \mu P_2(t) \]

\[\dot{P}_2(t) = 3 \lambda P_3(t) - (2 \lambda + \mu) P_2(t) + 2 \mu P_1(t) \]

\[\dot{P}_1(t) = 2 \lambda P_2(t) - (\lambda + 2 \mu) P_1(t) + 3 \mu P_0(t) \]

\[\dot{P}_0(t) = \lambda P_1(t) - 3 \mu P_0(t) \]

Taking Laplace Transforms:

\[(S + 3\lambda) P_3(S) - \mu P_2(S) = 1 \]

\[3\lambda P_3(S) - (S + 2\lambda + \mu) P_2(S) + 2 \mu P_1(S) = 0 \]

\[2 \lambda P_2(S) - (S + \lambda + 2 \mu) P_1(S) + 3 \mu P_0(S) = 0 \]

\[\lambda P_1(S) - (S + 3 \mu) P_0(S) = 0 \]
Simultaneous Solution of the above for \(P_0(S) \):

\[
P_0(S) = \frac{-6\lambda^3}{S(S-S_1)(S-S_2)(S-S_3)}
\]

Where \(S_1, S_2, S_3 \) are roots of \(S^3 + S^2 (6\lambda+6\mu)+S(11(\lambda+\mu)^2)+6(\lambda+\mu)^3 \)

\[
S_1 = -(\lambda + \mu) \\
S_2 = -2(\lambda + \mu) \\
S_3 = -3(\lambda + \mu)
\]

The Inverse transform is the same as for Case 3 except for the values of \(S_1, S_2, \) and \(S_3 \). Availability then is:

\[
A(t) = 1 - P_0(t) = \mu^3 + 3\lambda\mu^2 + 3\lambda^2\mu + \\
\frac{6\lambda^3}{(\lambda+\mu)^3} [S_2S_3(S_2-S_3)e^{S_1t} - S_1S_3(S_1-S_3)e^{S_2t} + S_1S_2(S_1-S_2)e^{S_3t}] \]

\[
S_1S_2S_3(S_1-S_3)(S_1-S_2)(S_2-S_3)
\]
Derivations for the standby parallel system single or multiple repair are found in the same manner as above.

The results are:

Case 5: 3 unit standby with single repair:

\[A(t) = \frac{\mu^3 + \lambda \mu^2 + \lambda^2 \mu}{\mu^3 + \lambda \mu^2 + \lambda^2 \mu + \lambda^3} \]

\[+ \frac{\lambda^3}{S_1 S_2 S_3 (S_1 - S_2) (S_1 - S_3) (S_2 - S_3)} \left[S_2 S_3 (S_2 - S_3) e^{S_1 t} - S_1 S_3 (S_1 - S_3) e^{S_2 t} + S_1 S_2 (S_1 - S_2) e^{S_3 t} \right] \]

Where \(S_1, S_2, S_3 \) are roots of \(S^3 + S^2(3\lambda + 3\mu) + S(3\lambda^2 + 4\lambda \mu + 3\mu^2) + (\lambda^3 + \lambda^2 \mu + \lambda \mu^2 + \mu^3) \)

\[S_1 = -(\lambda + \mu) \]

\[S_2, S_3 = -(\lambda + \mu) \pm \sqrt{2\lambda \mu} \]
Case 6: Three unit standby with multiple repair:

\[A(t) = \frac{6\mu^3 + 6\lambda\mu^2 + 3\lambda^2\mu}{6\mu^3 + 6\lambda\mu^2 + 3\lambda^2\mu + \lambda^3} + \]

\[\lambda^3 \left[\frac{S_2S_3(S_2-S_3)e^{S_1t} - S_1S_3(S_1-S_3)e^{S_2t} + S_1S_2(S_1-S_2)e^{S_3t}}{S_1S_2S_3(S_1-S_2)(S_1-S_3)(S_2-S_3)} \right] \]

Where \(S_1, S_2, S_3 \) are roots of \(S^3 + \beta S^2 + \alpha S + r = 0 \)

To find values for \(S_1, S_2, \) and \(S_3 \) note the cubic equation is of the form:

\[S^3 + \beta S^2 + \alpha S + r = 0 \]

Where: \(\beta = 3\lambda + 6\mu \)

\(\alpha = 3\lambda^2 + 9\lambda\mu + 11\mu^2 \)

\(r = \lambda^3 + 3\lambda^2\mu + 6\lambda\mu^2 + 6\mu^3 \)
Substituting \((x - p/3)\) for \(S\) reduces the equation to:

\[x^3 + ax + b = 0\]

Where: \(a = 1/3 (3q - p^2)\)

\[b = 1/27 (2p^3 - 9pq + 27r)\]

Since \(b^2 + a^3 < 0\) there are 3 distinct real roots.

Determine the value of the \(\theta\) in the expression \(\cos \theta = -b \div 2\sqrt[3]{-a^3/27}\)

The roots \(x_1, x_2, x_3\) will have the values:
\[x_1 = 2 \sqrt[3]{-a/3} \cos \frac{\theta}{3}\]

\[x_2 = 2 \sqrt[3]{-a/3} \cos \left(\frac{\theta}{3} + \frac{2\pi}{3}\right)\]

\[x_3 = 2 \sqrt[3]{-a/3} \cos \left(\frac{\theta}{3} + \frac{4\pi}{3}\right)\]

\(S_1, S_2, S_3\) are then calculated from:

\[S_1 = x_1 - \frac{\theta}{3}\]

\[S_2 = x_2 - \frac{\theta}{3}\]

\[S_3 = x_3 - \frac{\theta}{3}\]
Documentation for the derivation of all the availability equations for redundant systems listed in Section 10 of MIL-HDBK-338, Electronic Reliability Design Handbook, could not be found. The above derivations were accomplished to correct this deficiency and to check the accuracy of those equations.
MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control, Communications and Intelligence (C3I) activities. Technical and engineering support within areas of competence is provided to ESD Program Offices (POs) and other ESD elements to perform effective acquisition of C3I systems. The areas of technical competence include communications, command and control, battle management, information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic, maintainability, and compatibility.