THE ε FUNCTION

BY

J.D.A. WALKER AND R.K. SCHARNHORST

REPORT FM-9

JANUARY, 1986

PREPARED UNDER FINANCIAL SUPPORT OF THE

U.S. AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

CONTRACT F49620-85-C-0108

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Department of Mechanical Engineering & Mechanics
Lehigh University, Bethlehem, PA 18015
This report is a compendium of properties of a mathematical function (the Ξ function) which arises in the modeling of turbulent boundary-layer flows near solid walls. The Ξ function is formally defined as a triple integral which cannot be easily expressed in terms of elementary or known special functions. Thus series and asymptotic expansions are developed here as well as a table of integrals (most of which are indefinitely). The function and its derivative are tabulated correct to ten significant figures. A FORTRAN function routine for the calculation of $\Xi(x)$ and $\Xi'(x)$ is also given.
THE ε FUNCTION

by

J.D.A. Walker and R.K. Scharnhorst

Department of Mechanical Engineering and Mechanics

Lehigh University, Bethlehem, PA

Technical Report FM-9

January 1986

Distribution of this Document is Unlimited
ACKNOWLEDGEMENTS

The authors wish to thank the Air Force Office of Scientific Research for providing financial support for this study under Contract Nos. F49620-78-0071 and F49620-85-C-0108. The present compendium of properties was developed in the course of work aimed at the development of turbulence models for the transport of momentum in the wall layer of a turbulent boundary layer. The contract monitors during the period over which this study evolved were Major Michael S. Francis and Dr. James McMichael; the authors wish to express their appreciation to these individuals for their encouragement during the course of the work.
ABSTRACT

This report is a compendium of properties of a mathematical function (the Ξ function) which arises in the modeling of turbulent boundary-layer flows near solid walls. The Ξ function is formally defined as a triple integral which cannot be easily expressed in terms of elementary or known special functions. Thus series and asymptotic expansions are developed here as well as a table of integrals (most of which are indefinite). The Ξ function and its derivative are tabulated correct to ten significant figures. A FORTRAN function routine for the calculation of $\Xi(x)$ and $\Xi'(x)$ is also given.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>GLOSSARY OF FUNCTIONS AND NOTATION</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. GENERAL PROPERTIES</td>
<td>5</td>
</tr>
<tr>
<td>3. INTEGRALS</td>
<td>10</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>19</td>
</tr>
<tr>
<td>APPENDIX A: THE FUNCTION ERFEI(X)</td>
<td>20</td>
</tr>
<tr>
<td>APPENDIX B: FORTRAN FUNCTION ROUTINE AND TABULATED VALUES OF (\xi(x)) AND (\xi'(x))</td>
<td>24</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>$E_1(x)$</td>
<td>Exponential integral</td>
</tr>
<tr>
<td>$\text{erf}(x)$</td>
<td>Error function</td>
</tr>
<tr>
<td>$\text{erfc}(x)$</td>
<td>Complementary error function</td>
</tr>
<tr>
<td>$\text{erf}e(x)$</td>
<td>Function discussed in Appendix A</td>
</tr>
<tr>
<td>$F(x)$</td>
<td>Dawson's integral</td>
</tr>
<tr>
<td>G</td>
<td>Catalan's constant</td>
</tr>
<tr>
<td>(_\binom{j}{i})</td>
<td>Binomial coefficient</td>
</tr>
<tr>
<td>$(2j+1)!!$</td>
<td>Double factorial</td>
</tr>
<tr>
<td>$(2j)!!$</td>
<td>Double factorial</td>
</tr>
<tr>
<td>γ</td>
<td>Euler's constant</td>
</tr>
<tr>
<td>$\gamma(a,x)$</td>
<td>Incomplete gamma function</td>
</tr>
<tr>
<td>$\Gamma(a)$</td>
<td>Gamma function</td>
</tr>
<tr>
<td>$\Gamma(a,x)$</td>
<td>Incomplete gamma function</td>
</tr>
<tr>
<td>$\psi(p)$</td>
<td>Psi function</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Graphs of $\xi(x)$ and $\xi'(x)$ on a linear x-scale.</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Graphs of $\xi(x)$ and $\xi'(x)$ on a logarithmic x-scale.</td>
<td>9</td>
</tr>
<tr>
<td>Figure A.1.</td>
<td>The function $\text{erfei}(x)$</td>
<td>22</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.1.</td>
<td>Tabulated values of $\text{erfei}(x)$.</td>
<td>23</td>
</tr>
<tr>
<td>Table B.1.</td>
<td>FORTRAN function routine for the numerical evaluation of $\xi(x)$ and $\xi'(x)$.</td>
<td>26</td>
</tr>
<tr>
<td>Table B.2.</td>
<td>Tabulated values of $\xi(x)$ and $\xi'(x)$.</td>
<td>27</td>
</tr>
</tbody>
</table>
1. Introduction

The diffusion equation

\[\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial y^2}, \quad (1.1) \]

arises in a wide variety of applications in engineering including fluid mechanics and heat and mass transfer. In many situations, the relevant solution of equation (1.1) is a function of the similarity variable,

\[n = \frac{y}{2\sqrt{t}}, \quad (1.2) \]

When the solution of equation (1.1) is required for \(y \) (or \(n \)) in the semi-infinite range \(0 < y < \infty \), a boundary condition is normally known at \(y=0 \) as well as some particular type of asymptotic behavior as \(y \to \infty \). Specific types of asymptotic conditions which can occur might include the following situations:

i) \(u \) must approach zero or a constant exponentially, viz.

\[u \to A_0, \quad \text{as} \quad y \to \infty, \quad (1.3) \]

where \(A_0 \) is a constant (or zero);

ii) \(u \) must approach zero or a constant algebraically, viz.

\[u \to A_1 + A_2 f(t) n^{-\alpha} \quad \text{as} \quad n \to \infty, \quad (1.4) \]

where \(f(t) \) is a function of \(t \), \(A_1 \) and \(A_2 \) are constants and \(\alpha > 0 \); and

iii) \(u \) must become large algebraically for large \(y \), viz.

\[u \to A_3 g(t) n^\beta + \ldots \quad \text{as} \quad n \to \infty, \quad (1.5) \]

where \(g(t) \) is a function of \(t \), \(A_3 \) is a constant and \(\beta > 0 \).
For the types of asymptotic conditions described by equations (1.3), (1.4) and (1.5), the solution to equation (1.1) can often be written in terms of parabolic cylinder functions or alternatively in terms of repeated integrals of the error function (Abramowitz and Stegun, 1964).

A rather different type of asymptotic condition for large y arises in the study of velocity and temperature profiles in the near-wall region of turbulent boundary-layer flows (Black, 1968; Scharnhorst, Walker and Abbott, 1977; Scharnhorst, 1978; Weigand, 1978; Walker, Scharnhorst and Weigand, 1986); here a solution of the diffusion equation is required whose time-average over a finite interval of time is logarithmic for large y. It is in this context that the Ξ function arises.

The details of the turbulence model discussed by Walker, Scharnhorst and Weigand (1986) are complex and will not be discussed here. However an essential feature of the analysis is that a solution of equation (1.1) is required subject to the asymptotic boundary condition,

$$u = B \ln y + C \text{ as } y \to \infty,$$

where B and C are known constants. The solution of equation (1.1) satisfying,

$$u(0,t) = A,$$

where A is constant, is given by,
\[
\dot{u} = \left[C + \frac{B}{2} \{ 2 \ln(2) - \gamma + \ln(t) \} \right] \text{erf}(\eta) + A \text{erf}^c(\eta)
\]
\[+ \frac{4B}{\sqrt{\pi}} \Xi(\eta). \]

(1.8)

Here \(\gamma \) is Euler's constant and the \(\Xi \) function is formally defined as the triple integral,

\[
\Xi(\eta) = \int_0^\eta \int_0^\xi \int_0^\zeta e^{-s^2} e^{-t^2} dt \, ds \, d\xi.
\]

(1.9)

The function defined by equation (1.9) cannot be easily expressed in terms of elementary or known special functions. Consequently because the function appears in velocity and temperature profile representations of the flow in the near wall region of turbulent boundary layers (Walker, Scharnhorst and Weigand, 1986), it is worthwhile to develop a compendium of useful properties of this function and this is the purpose of this report.

The plan of the report is as follows. In section 2, a number of general properties of the \(\Xi \) function are given and \(\Xi(x) \) and its derivative \(\Xi'(x) \) are plotted in figures 1 and 2 respectively. The notation is generally consistent with Abramowitz and Stegun (1964) and is defined in a separate section on page iv; generally \(x \) is used to denote a real variable and \(a \) denotes a positive real constant. In section 3, a number of indefinite and definite integrals are listed; for the indefinite integrals, the constants of integration have been omitted. In three of the integrals given in section 3, a new function arises which has been denoted by \(\text{erfei}(x) \); some properties of this
function are given in Appendix A. Finally a FORTRAN program for
the evaluation of ξ and ξ' is given in Appendix B as well as tabu-
lated values of these functions correct to ten significant figures.
2. GENERAL PROPERTIES

2.1 Definitions

\[\Xi(t) = \int_{0}^{\infty} e^{-t^2} \int_{0}^{\infty} e^{-\xi^2} \int_{0}^{\infty} e^{-t^2} dt d\xi d\xi, \]
\((2.1) \)

\[\Xi(t) = \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} e^{-t^2} \int_{0}^{\infty} e^{-\xi^2} e^{\xi} \xi d\xi d\xi, \]
\((2.2) \)

\[\Xi'(t) = e^{-t^2} \int_{0}^{\infty} e^{\xi} \xi d\xi d\xi, \]
\((2.3) \)

\[\Xi'(t) = \sqrt{\frac{\pi}{2}} e^{-t^2} \int_{0}^{\infty} e^{\xi} \xi d\xi, \]
\((2.4) \)

2.2 Differential Equation

\[\Xi'' + 2t\Xi' = \sqrt{\frac{\pi}{2}} e^{\xi} \xi, \quad \Xi(0) = \Xi'(0) = 0. \]
\((2.5) \)

2.3 Integral Representation

\[\Xi(a) = -\frac{1}{2\sqrt{\pi}} \int_{0}^{\infty} e^{-p^2/4} \sin(\frac{px}{\xi}) \left[\ln(p) + \frac{1}{p} \right] dp. \]
\((2.6) \)

2.4 Symmetry Relations

\[\Xi(-x) = -\Xi(x), \]
\((2.7) \)

\[\Xi'(-x) = \Xi'(x). \]
\((2.8) \)
2.5 Series Expansions

\[\Xi(x) = e^{-x^2 / 4} \sum_{j=1}^{\infty} \frac{2^j d_j}{(2j + 1)!!} x^{2j+1}, \quad |x| < \infty. \quad (2.9) \]

Here \(d_j = \gamma + \psi(j + 1) = \frac{j}{2} k^{-1}. \)

\[\Xi'(x) = e^{-x^2 / 4} \sum_{j=1}^{\infty} \frac{2^j}{j(2j - 1)!!} x^{2j}, \quad |x| < \infty, \quad (2.10) \]

\[\Xi(x) = \frac{1}{2} \sum_{j=1}^{\infty} \frac{(-1)^{j+1} c_j}{(2j + 1)j!} x^{2j+1}, \quad |x| < \infty, \quad (2.11) \]

\[\Xi'(x) = \frac{1}{2} \sum_{j=1}^{\infty} \frac{(-1)^{j+1} c_j x^{2j}}{j!}, \quad |x| < \infty. \quad (2.12) \]

In (2.11) and (2.12), \(c_j = \ln(2) + \frac{\gamma}{2} + \frac{1}{2} \psi(j + 1/2) = \sum_{i=1}^{j} (2i-1)^{-1}. \)

2.6 Asymptotic expansions

\[\Xi(x) \sim \frac{\sqrt{\pi}}{4} \left[\ln(x) + \frac{\gamma}{2} - \frac{1}{2} \sum_{j=1}^{\infty} \frac{(2j - 1)!!}{j2^j x^j} \right], \quad x \to \infty \quad (2.13) \]

\[\Xi'(x) \sim \frac{\sqrt{\pi}}{4} \sum_{j=0}^{\infty} \frac{(2j - 1)!!}{2^j x^{2j+1}}, \quad x \to \infty. \quad (2.14) \]

2.7 Expression as a series of incomplete gamma functions

\[\Xi(x) = \frac{\sqrt{\pi}}{8} \sum_{j=1}^{\infty} \frac{1}{j^2 (j + 1/2)} \gamma(j + 1/2, x^2). \quad (2.15) \]

\[\text{for negative argument the double factorial is defined to be identically equal to one.} \]
2.8 Relation to Dawson's Integral

\[\Xi'(x) = \sqrt{\frac{n}{2}} e^{x^2} \int_{0}^{x} e^{-t^2} F(t) dt. \] \tag{2.16}

2.9 Maximum of \(\Xi'(x) \)

\[\Xi'(1.379005630\ldots) = 0.3048918974\ldots, \] \tag{2.17}

\[\Xi(1.379005630\ldots) = 0.2257293172\ldots. \] \tag{2.18}
Figure 1. Graphs of $\Xi(x)$ and $\Xi'(x)$ on a linear x-scale.
Figure 2. Graphs of $\Xi(x)$ and $\Xi'(x)$ on a logarithmic x-scale.
3. INTEGRALS

3.1 Combination of Ξ and Ξ' with Powers

1. \[\int \Xi(ax)dx = x\Xi(ax) + \frac{1}{2a} \Xi'(ax) - \frac{\sqrt{\pi}}{4} x e^{\frac{1}{2a} x^2} - \frac{1}{4a} e^{-\frac{1}{2a} x^2}, \]

2. \[\int x\Xi(ax)dx = \frac{(2ax^2 - 1)}{4a^2} \Xi(ax) + \frac{x}{4a} \Xi'(ax) - \frac{\sqrt{\pi}}{32a^2} (2a^2 x^2 - 1) e^{\frac{1}{2a} x^2} - \frac{x}{16a} e^{-\frac{1}{2a} x^2}, \]

3. \[\int x^n\Xi(ax)dx = p_1(a,x) \Xi(ax) + p_2(a,x) \Xi'(ax) + p_3(a,x) e^{\frac{1}{2a} x^2} + p_4(a,x) e^{-\frac{1}{2a} x^2}, \]

In 3.1 3 for n a positive even integer, viz. $n = 2k$ with $k = 0, 1, 2, ...$:

\[p_1 = \frac{x^{2k+1}}{2(2k+1)} \]
\[p_2 = \frac{k!}{2(2k+1)a^{2k+1}} \sum_{j=0}^{k} \frac{1}{j!} (ax)^{2j} \]
\[p_3 = -\frac{\sqrt{\pi} k!}{4(2k+1)a^{2k}} \sum_{j=0}^{k} \frac{a^{2j}}{(2j+1)j!} x^{2j+1}, \]
\[p_4 = -\frac{k!}{4(2k+1)a^{2k+1}} \sum_{j=0}^{k} \frac{1}{j!} (ax)^{2j} (c_{k+1} - c_j), \]

where c_j is defined in (2.12) for $j \geq 1$ and $c_0 = 0$. In 3.1 3 for n a positive odd integer, viz. $n = 2k + 1$ with $k = 0, 1, 2, 3, ...$:
\[p_1 = \frac{1}{2(k + 1)} \left[x^{2k+2} - \frac{(2k + 1)!!}{2k+1 a^{2k+2}} \right], \]

\[p_2 = \frac{(2k + 1)!!}{2^{k+2} a^{2k+2}(k+1)} \sum_{j=0}^{k} \frac{2^j}{(2j + 1)!!} (ax)^{2j+1}, \]

\[p_3 = -\frac{\sqrt{\pi}}{2^{k+4} a^{2k+2}(k+1)} \left[\sum_{j=0}^{k} \frac{2^j}{(j+1)(2j + 1)!!} (ax)^{2j+2} \right], \]

\[p_4 = -\frac{(2k + 1)!!}{2^{k+4} a^{2k+2}(k+1)} \sum_{j=0}^{k} \frac{2^j}{(2j + 1)!!} (ax)^{2j+1}(d_{k+1} - d_j), \]

where \(d_j \) is defined in (2.9) for \(j \geq 1 \) and here \(d_0 = 0 \).

4. \[\int x^2 \Xi'(ax)dx = -\frac{1}{2a^2} \Xi'(ax) + \frac{\sqrt{\pi}}{4a} x\sigma_6(ax) + \frac{1}{4a^2} e^{-a^2 x^2}, \]

5. \[\int x^n \Xi'(ax)dx = \frac{x^n}{a} \Xi(ax) - \frac{n}{a} \int x^{n-1} \Xi(ax)dx, \]

for \(n \) integer and \(n \geq 1 \).

6. \[\int_0^\infty \frac{x^j}{t} \frac{dt}{t} = \frac{1}{4} \sum_{j=1}^{\infty} \frac{(-1)^j c_j}{j!} (ax)^{2j}, \quad |ax| < \infty, \]

where \(c_j \) is defined in (2.12).

7. \[\int_0^\infty \Xi'(ax) \frac{dx}{x} = \frac{\pi^2}{16}, \]

8. \[\int_0^\infty \Xi(ax) \frac{dt}{t} = \frac{1}{2} \sum_{j=1}^{\infty} \frac{(-1)^j c_j}{(2j + 1)^2 j!} (ax)^{2j+1}, \quad |ax| < \infty, \]
where \(c_j \) is defined in (2.12),

9. \[
\int \Xi(ax) \frac{dx}{x^2} = -\frac{1}{x} \Xi(ax) + a \int \Xi'(ax) \frac{dx}{x},
\]

10. \[
\int \Xi(ax) \frac{dx}{x^3} = \left[a^2 + \frac{1}{2x^2} \right] \Xi(ax) - \frac{a}{2x} \Xi'(ax)
\]
\[
+ \frac{\sqrt{\pi}}{4} a^2 \text{erf}(ax),
\]

where the function \(\text{erf}(x) \) is discussed in Appendix A.

11. \[
\int \Xi'(ax) \frac{dx}{x^2} = -\frac{1}{x} \Xi'(ax) - 2a\Xi(ax) + \frac{\sqrt{\pi}}{2} a \text{erf}(ax),
\]

12. \[
\int \Xi'(ax) \frac{dx}{x^n} = -\frac{1}{n-1} \left[\frac{1}{x^{n-1}} \Xi'(ax) + \frac{\sqrt{\pi}}{2(n-2)x^{n-2}} \text{erf}(ax)
\]
\[
+ \frac{a^{n-1}}{2(n-2)} \Gamma\left(\frac{3-n}{2}, a^2x^2\right) + 2a^2 \int \Xi'(ax) \frac{dx}{x^{n-2}} \right],
\]

for \(n \geq 3 \). In 3.1-12, for \(n \) an even integer, viz. \(n = 2k+2 \) with \(k = 1,2,3... \)

\[
\Gamma\left(\frac{3-n}{2}, a^2x^2\right) = \frac{(-1)^k}{\Gamma\left(2k+1, \frac{2}{2}\right)} \left[e^{-a^2x^2} \sum_{i=1}^{k} \frac{(-1)^i \Gamma\left(\frac{2i-1}{2}\right)}{(ax)^{2i-1}} + \pi \text{erfc}(ax) \right],
\]

while for \(n \), an odd integer, viz. \(n = 2k+1 \) with \(k = 1,2,3,... \)

\[
\Gamma\left(\frac{3-n}{2}, a^2x^2\right) = \frac{(-1)^{k-1}}{(k-1)!} \left[e^{-a^2x^2} \sum_{i=1}^{k-1} \frac{(-1)^i \Gamma\left(i\right)}{(ax)^{2i}} + E_1(a^2x^2) \right].
\]

13. \[
\int \Xi(ax) \frac{dx}{x^n} = -\frac{1}{(n-1)} \left[\frac{\Xi(ax)}{x^{n-1}} - a \int \Xi'(ax) \frac{dx}{x^{n-1}} \right], \quad n \geq 2,
\]

\[\text{t} \quad \text{for } k = 1 \text{ the summation term is identically zero.} \]
3.2 Combinations of Ξ and Ξ' with Exponentials and Powers

1. $\int_{0}^{\infty} e^{-t^2} \Xi'(t) dt = \frac{1}{2} \sum_{j=1}^{\infty} \frac{a_j}{(2j + 1)} x^{2j+1}, \quad x, < \infty.$

Here

$$a_j = \frac{(-1)^{j+1}}{j!} \sum_{i=1}^{j} \binom{j}{i} c_i,$$

where c_i is defined in (2.12).

2. $\int_{0}^{\infty} e^{-x^2} \Xi'(ax) dx = \frac{1}{8} \sqrt{\frac{\pi}{a^2 + 1}} \ln(a^2 + 1),$

3. $\int x e^{-x^2} \Xi'(x) dx = -\frac{4}{e} x^2 \Xi'(x) + \frac{\pi}{32} e \Xi^2(x),$

4. $\int x^2 e^{-x^2} \Xi'(x) dx = \frac{x}{4} e^{-x^2} \Xi'(x) - \frac{\sqrt{\pi}}{16} e^{-x^2} e \Xi^2(x) + \frac{\sqrt{2\pi}}{32} e \Xi^2(\sqrt{2x})$

$$+ \frac{1}{4} \int e^{-x^2} \Xi'(x) dx,$$

5. $\int x^3 e^{-x^2} \Xi'(x) dx = -\frac{1}{8} (2x^2 + 1) e^{-x^2} \Xi'(x) + \frac{\pi}{32} e \Xi^2(x)$

$$- \frac{\sqrt{\pi}}{16} x e^{-x^2} e \Xi^2(x) - \frac{1}{32} e^{-2x^2},$$

6. $\int x^n e^{-x^2} \Xi'(x) dx = -\frac{x^{n-1}}{4} e^{-x^2} \Xi'(x) + \frac{\sqrt{\pi}}{8} \int x^{n-1} e^{-x^2} e \Xi^2(x) dx$

$$+ \frac{(n-1)}{4} \int x^{n-2} e^{-x^2} \Xi'(x) dx.$$

For the evaluation of the second term on the right side of equation 3.2 the following reduction formulae are useful:
\[
\int x^{n-1} e^{-x^2} \varepsilon(x) \, dx = -\frac{x^{n-2}}{2} e^{-x^2} \varepsilon(x) + \frac{1}{\sqrt{\pi}} \int x^{n-2} e^{-2x^2} \, dx \\
+ \frac{(n-2)}{2} \int x^{n-3} e^{-x^2} \varepsilon(x) \, dx,
\]

\[
\int x^{n-1} e^{-2x^2} \, dx = -\frac{x^{n-2}}{4} e^{-2x^2} + \frac{(n-2)}{4} \int x^{n-3} e^{-2x^2} \, dx,
\]

7. \[
\int_0^x e^{-t^2} \Xi(t) \, dt = \sum_{j=1}^{\infty} b_j x^{2j+2},
\]

where

\[
b_j = \frac{(-1)^{j+1}}{4(3j+1)!} \sum_{i=1}^{j} \binom{j}{i} \frac{c_i}{2i+1},
\]

and \(c_i\) is defined in (2.12).

8. \[
\int_0^{\infty} e^{-t^2} \Xi(t) \, dt = \frac{G}{8} - \frac{\pi}{32} \ln(2),
\]

where \(G\) is Catalan’s constant.

9. \[
\int xe^{-x^2} \Xi(x) \, dx = -\frac{e^{-x^2}}{2} \Xi(x) + \frac{1}{2} \int e^{-x^2} \Xi'(x) \, dx,
\]

10. \[
\int x^n e^{-x^2} \Xi(x) \, dx = -\frac{x^{n-1}}{2} e^{-x^2} \Xi(x) + \frac{1}{2} \int x^{n-1} e^{-x^2} \Xi'(x) \, dx \\
+ \frac{(n-1)}{2} \int x^{n-2} e^{-x^2} \Xi(x) \, dx.
\]

For the evaluation of the second term on the right side of 3.2 10 see 3.2 6.

-14-
11. \[\int_0^\infty \frac{e^{-t^2} \Xi'(t)}{t} \ dt = \frac{1}{4} \sum_{j=1}^{\infty} \frac{a_j}{j} x^{2j}, \quad |x| < \infty, \]

where \(a_j \) is defined in 3.2 1.

12. \[\int_0^\infty e^{-t^2} \Xi'(at) \ dt \frac{dt}{t} = \frac{\pi}{4} \cot(a)[\pi - \cot(a)], \quad -\infty < a < \infty, \]

13. \[\int_0^\infty e^{-t^2} \Xi'(t) \ dt \frac{dt}{t^2} = -\frac{1}{x} \Xi'(x) - 4 \int_0^\infty e^{-t^2} \Xi'(t) dt + \frac{\pi}{8} \frac{\text{erf}^2(x)}{x} \]

\[+ \frac{\pi}{8} \int_0^\infty \text{erf}^2(t) \ dt \frac{dt}{t^2}, \]

14. \[\int_0^\infty e^{-t^2} \Xi'(t) \ dt \frac{dt}{t^3} = \frac{\sqrt{\pi}}{2} \ln(1 + \sqrt{2}) - \frac{\sqrt{2\pi}}{4} \ln(2), \]

15. \[\int_x^\infty e^{-t^2} \Xi'(t) \ dt \frac{dt}{t^n} = \frac{e^{-x^2}}{(n-1)x^{n-1}} \Xi'(x) - \frac{4}{(n-1)} \int_x^\infty e^{-t^2} \Xi'(t) \ dt \frac{dt}{t^{n-2}} \]

\[+ \frac{\sqrt{\pi}}{2(n-1)} \int_x^\infty e^{-t^2} \text{erf}(t) \ dt \frac{dt}{t^{n-1}}, \]

for \(n > 2. \)

16. \[\int_0^\infty e^{-t^2} \Xi(t) \ dt \frac{dt}{t} = \sum_{j=1}^{\infty} \frac{2(j+1)}{2j+1} b_j x^{2j+1}, \quad |x| < \infty, \]

where \(b_j \) is defined in 3.2 7.

17. \[\int_0^\infty e^{-t^2} \Xi(t) \ dt \frac{dt}{t} = 0.047128 94918, \]

-15-
\[18. \int e^{-x^2} \, \Xi(x) \, \frac{dx}{x^n} = -\frac{e^{-x^2}}{(n-1)x^{n-1}} \Xi(x) - \frac{2}{(n-1)} \int e^{-x^2} \, \Xi(x) \, \frac{dx}{x^{n-2}} + \frac{1}{(n-1)} \int e^{-x^2} \, \Xi'(x) \, \frac{dx}{x^{n-1}}, \]

for \(n \geq 2. \)

3.3 Combinations of \(\Xi \) and \(\Xi' \) with the Error function and Powers

1. \[\int \text{er}^2(\xi) \Xi'(x) \, dx = \text{er}^2(\xi) \Xi(x) - \frac{2}{\sqrt{\pi}} \int e^{-x^2} \Xi(x) \, dx, \]

2. \[\int \text{er}^2(\xi) \Xi(x) \, dx = \left[x \text{er}^2(\xi) + \frac{e^{-x^2}}{\sqrt{\pi}} \Xi(x) + \frac{1}{2} \text{er}^2(\xi) \Xi'(x) \right] \]

\[-\frac{2}{\sqrt{\pi}} \int e^{-t^2} \Xi'(t) \, dt \]

\[-\frac{\sqrt{\pi}}{4} \left[x \text{er}^2(\xi) + \frac{2}{\sqrt{\pi}} e^{-x^2} \text{er}^2(\xi) - \frac{2}{\sqrt{\pi}} \text{er}^2(\sqrt{2}\xi) \right], \]

3. \[\int x \text{er}^2(\xi) \Xi'(x) \, dx = -\frac{1}{2} \text{er}^2(\xi) \Xi'(x) + \frac{1}{\sqrt{\pi}} \int e^{-t^2} \Xi'(t) \, dt \]

\[+\frac{\sqrt{\pi}}{4} x \text{er}^2(\xi) + \frac{1}{2} e^{-x^2} \text{er}^2(\xi) - \frac{\sqrt{\pi}}{4} \text{er}^2(\sqrt{2}\xi), \]

4. \[\int x \text{er}^2(\xi) \Xi(x) \, dx = \left[\frac{(2x^2-1)}{4} \text{er}^2(\xi) + \frac{1}{2\sqrt{\pi}} xe^{-x^2} \right] \Xi(x) \]

\[+\frac{1}{4} \left[x \text{er}^2(\xi) + \frac{e^{-x^2}}{\sqrt{\pi}} \right] \Xi'(x) - \frac{\sqrt{\pi}}{16} x^2 \text{er}^2(\xi) \]

\[-\frac{1}{8} xe^{-x^2} \text{er}^2(\xi) - \frac{1}{16\sqrt{\pi}} e^{-2x^2}, \]

-16-
5. \[\int x^n e^{\delta}(x) \Xi'(x) dx = x^n e^{\delta}(x) \Xi(x) - \frac{2}{\sqrt{\pi}} \int x^n e^{-x^2} \Xi(x) dx \]
\[- n \int x^{n-1} e^{\delta}(x) \Xi(x) dx. \]

For evaluation of the second term on the right side of 3.3 5 see 3.2 10.

3.4 Combinations of \(\Xi \) and \(\Xi' \) with Logarithms and Powers

1. \[\int_0^x \ln(t) \Xi'(t) dt = \ln(x) \Xi(x) - \int_0^x \frac{\Xi(t)}{t} dt, \]

2. \[\int_0^x \ln(t) \Xi(t) dt = \left[x \Xi(x) + \frac{1}{2} \Xi'(x) - \frac{\sqrt{\pi}}{4} x e^{\delta}(x) - \frac{e^{-x^2}}{4} + \frac{1}{8} \right]. \]

\[\left[\ln(x) - 1 \right] + \frac{\sqrt{\pi}}{4} x e^{\delta}(x) + \frac{1}{4} \left[e^{-x^2} - 1 \right] - \frac{1}{8} \Xi_1(x^2) \]
\[- \frac{1}{4} \ln(x) - \frac{\gamma}{8} - \frac{1}{2} \int_0^x \Xi'(t) \frac{dt}{t}, \]

3. \[\int_0^x t \ln(t) \Xi'(t) dt = - \left[\frac{1}{2} \Xi'(x) - \frac{\sqrt{\pi}}{4} x e^{\delta}(x) - \frac{e^{-x^2}}{4} + \frac{1}{4} \right] \ln(x) \]
\[+ \frac{1}{2} \int_0^x \Xi'(t) \frac{dt}{t} - \frac{\sqrt{\pi}}{4} x e^{\delta}(x) - \frac{1}{4} \left(e^{-x^2} - 1 \right) \]
\[+ \frac{1}{8} \left[\Xi_1(x^2) + 2 \ln(x) + \gamma \right], \]

4. \[\int_0^x t \ln(t) \Xi(t) dt = \left[\frac{(2x^2-1)}{4} \Xi(x) + \frac{x}{4} \Xi'(x) - \frac{\sqrt{\pi}}{32} (2x^2 - 1) e^{\delta}(x) \right. \]
\[- \frac{x}{16} e^{-x^2} \right] \cdot \left[\ln(x) - \frac{1}{2} \right] - \frac{1}{4} \Xi(x) + \frac{1}{4} \int_0^x \Xi(t) \frac{dt}{t} \]
\[+ \frac{\sqrt{\pi}}{32} \left[x^2 e^{\delta}(x) + \frac{1}{\sqrt{\pi}} x e^{-x^2} + \frac{1}{2} e^{\delta}(x) - \Xi_1 e_i(x) \right] . \]
3.5 Miscellaneous Integrals

1. \[\int_0^x e^{2at} \text{er}_6(at) \, dt = \frac{2}{\sqrt{\pi}} e^{2ax^2} \Xi'(ax), \]

2. \[\int_0^x e^{t^2} \text{er}_6^2(t) \, dt = \frac{2}{\sqrt{\pi}} e^{x^2} \text{er}_6(x) \Xi'(x) - \frac{4}{\sqrt{\pi}} \Xi(x), \]

3. \[\int_0^x e^{t^2} \text{er}_6^3(t) \, dt = \frac{2}{\sqrt{\pi}} e^{x^2} \text{er}_6^2(x) \Xi'(x) - \frac{8}{\sqrt{\pi}} \text{er}_6(x) \Xi(x) \]
\[+ \frac{16}{\sqrt{\pi}} \int_0^x e^{-t^2} \Xi(t) \, dt, \]

4. \[\int_0^x e^{t^2} \text{er}_6\text{er}_c^2(t) \text{er}_c(t) \, dt = \frac{2}{\sqrt{\pi}} \text{er}_6\text{er}_c^2(x) e^{x^2} \Xi'(x) + \frac{8}{\sqrt{\pi}} \text{er}_6\text{er}_c(x) \Xi(x) \]
\[+ \frac{16}{\sqrt{\pi}} \int_0^x e^{-t^2} \Xi(t) \, dt, \]

5. \[\int_0^x e^{t^2} \text{er}_6\text{er}_c(\sqrt{2}t) \text{er}_c(t) \, dt = \frac{2}{\sqrt{\pi}} \text{er}_6\text{er}_c(\sqrt{2}x) e^{x^2} \Xi'(x) \]
\[+ \frac{4\sqrt{2}}{\pi} \int_0^x e^{-t^2} \Xi'(t) \, dt. \]
REFERENCES

APPENDIX A: THE FUNCTION ERFEI(x)

In integrals 3.1 10, 3.1 11 and 3.4 4, the function defined by equation (A.1) arises. In this Appendix, some useful properties of this function are given; the function is plotted in figure A.1 and tabulated in table A.1

A.1 Definition

\[\text{erfei}(x) = \int_0^x \frac{\text{erfi}(t)}{t} \, dt. \]

A.2 Integral Representation

\[\text{erfei}(x) = -\frac{2}{\sqrt{\pi}} x \int_0^1 e^{-x^2 t^2} \text{erf}(t) \, dt, \quad |x| < \infty. \]

A.3 Symmetry Relation

\[\text{erfei}(-x) = -\text{erfei}(x). \]

A.4 Series Expansion

\[\text{erfei}(x) = \frac{2}{\sqrt{\pi}} \sum_{j=0}^{\infty} \frac{(-1)^j}{(2j + 1)^{j+1}} x^{2j+1}, \quad |x| < \infty. \]

A.5 Asymptotic Expansions

\[\text{erfei}(x) \sim \text{ln}(2x) + \frac{\chi}{2} + \frac{e^{-x^2}}{2\sqrt{\pi} x^3} \left[1 - \frac{2}{x^2} + \frac{23}{4x^4} - \frac{22}{x^6} + \frac{1689}{16x^8} \right. \\
\left. - \frac{4881}{8x^{10}} + \ldots \right], \quad x \to \infty. \]

-20-
A.6 Indefinite Integrals

1. \[\int e^{\text{erf}^e_i(x)} \, dx = x\text{erf}^e_i(x) - x\text{erf}(x) - \frac{1}{\sqrt{\pi}} e^{-x^2}, \]

2. \[\int x^n e^{\text{erf}^e_i(x)} \, dx = \frac{1}{n+1} x^{n+1} e^{\text{erf}^e_i(x)} - \frac{1}{(n+1)^2} x^{n+1} \text{erf}(x) \]
\[+ \frac{1}{(n+1)^2 \sqrt{\pi}} \gamma(1 + \frac{n}{2}, x^2). \]
Figure A.1. The function \(\text{erf}e_{\text{i}}(x) \)
TABLE A.1†

<table>
<thead>
<tr>
<th>x</th>
<th>erf((\text{ei}(x)))</th>
<th>x</th>
<th>erf((\text{ei}(x)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00000 00000</td>
<td>2.00</td>
<td>1.67535 04327</td>
</tr>
<tr>
<td>0.10</td>
<td>0.11271 27665</td>
<td>2.10</td>
<td>1.72395 62837</td>
</tr>
<tr>
<td>0.20</td>
<td>0.22468 00025</td>
<td>2.20</td>
<td>1.77036 53206</td>
</tr>
<tr>
<td>0.30</td>
<td>0.33518 26238</td>
<td>2.30</td>
<td>1.81475 13483</td>
</tr>
<tr>
<td>0.40</td>
<td>0.44355 25900</td>
<td>2.40</td>
<td>1.85727 26708</td>
</tr>
<tr>
<td>0.50</td>
<td>0.54919 39999</td>
<td>2.50</td>
<td>1.89807 27340</td>
</tr>
<tr>
<td>0.60</td>
<td>0.65159 93946</td>
<td>2.60</td>
<td>1.93728 10996</td>
</tr>
<tr>
<td>0.70</td>
<td>0.75036 04607</td>
<td>2.70</td>
<td>1.97501 45953</td>
</tr>
<tr>
<td>0.80</td>
<td>0.84517 28573</td>
<td>2.80</td>
<td>2.01137 85246</td>
</tr>
<tr>
<td>0.90</td>
<td>0.93583 54106</td>
<td>2.90</td>
<td>2.04646 78598</td>
</tr>
<tr>
<td>1.00</td>
<td>1.02224 43601</td>
<td>3.00</td>
<td>2.08036 83701</td>
</tr>
<tr>
<td>1.10</td>
<td>1.10438 36667</td>
<td>3.10</td>
<td>2.11315 76561</td>
</tr>
<tr>
<td>1.20</td>
<td>1.18231 25702</td>
<td>3.20</td>
<td>2.14490 60827</td>
</tr>
<tr>
<td>1.30</td>
<td>1.25615 16257</td>
<td>3.30</td>
<td>2.17567 76063</td>
</tr>
<tr>
<td>1.40</td>
<td>1.32606 83591</td>
<td>3.40</td>
<td>2.20553 05035</td>
</tr>
<tr>
<td>1.50</td>
<td>1.39226 35013</td>
<td>3.50</td>
<td>2.23451 80088</td>
</tr>
<tr>
<td>1.60</td>
<td>1.45495 85267</td>
<td>3.60</td>
<td>2.26268 88709</td>
</tr>
<tr>
<td>1.70</td>
<td>1.51438 49639</td>
<td>3.70</td>
<td>2.29008 78382</td>
</tr>
<tr>
<td>1.80</td>
<td>1.57077 57076</td>
<td>3.80</td>
<td>2.31675 60822</td>
</tr>
<tr>
<td>1.90</td>
<td>1.62435 83548</td>
<td>3.90</td>
<td>2.34273 15672</td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td>4.00</td>
<td>2.36804 93746</td>
</tr>
</tbody>
</table>

†Values of \(\text{erf}(x)\) for \(x > 4\) (correct to ten significant figures) may be obtained by using the first two terms of A.5.
APPENDIX B: FORTRAN FUNCTION ROUTINE AND TABULATED VALUES OF $\Xi(x)$ AND $\Xi'(x)$

In Table B.1, the listing of a function subprogram is given for the numerical evaluation of $\Xi(x)$ and $\Xi'(x)$. The functions $\Xi(x)$ and $\Xi'(x)$ are accessed from the calling program by,

$$Y = XI(X,EPSI,IERR), \quad Y = XIP(X,EPSI,IERR),$$

respectively. In these calling statements

- $X \equiv$ the argument of either $\Xi(x)$ or $\Xi'(x)$,
- $EPSI \equiv$ the assigned tolerance which is dependent of the number of significant figures desired for $\Xi(x)$ or $\Xi'(x)$,
- $IERR \equiv$ an integer variable returned by the function subprogram. ($IERR = 0$ if the tolerance $EPSI$ is met; $IERR = 1$ otherwise.)

The subprogram accepts only zero or positive values of x and returns a zero value if $x < 0$. If the evaluation of $\Xi(x)$ or $\Xi'(x)$ is required for $x < 0$, the calling statement should reflect the appropriate symmetry relation (either (2.7) or (2.8)).

For $x < 5.0$ the routine evaluates $\Xi(x)$ and $\Xi'(x)$ using the power series expansions (2.9) and (2.11) in the DO loops commencing with cards 20 and 29, respectively. The power series in (2.9) and (2.10) are summed until they have converged to the number of significant figures dictated by the assigned value of the tolerance $EPSI$; once convergence occurs control is transferred out of the DO loops to statements 3 or 5, respectively. The DO loops commencing
with cards 20 and 29 are initially set (by card 11) so that at most 100 terms in either power series will be evaluated. If convergence occurs before the DO loops are satisfied, a reliable result has been obtained and IERR = 0 is returned to the calling program. If the DO loops are satisfied, the returned value of \(\Xi(x) \) or \(\Xi'(x) \) may not be reliable to the specified tolerance (EPSI) and IERR = 1 is returned to the calling program.

For \(x \geq 5.0 \), the asymptotic expansions (2.13) and (2.14) are used for the evaluation of \(\Xi \) and \(\Xi' \). The sums in (2.13) and (2.14) are evaluated in the DO loops commencing with cards 38 and 46, respectively. Control is transferred out of these DO loops when the last term added to these sums is less than the desired exit tolerance EPSI; again a returned value of IERR = 1 indicates this condition has not been met after 100 terms in the series have been summed.

Computed values of \(\Xi \) and \(\Xi' \) are given in Table B.2; these values were evaluated with EPSI = 10\(^{-12} \) and are correct to ten significant figures (the last digit is rounded off). The CPU time required to produce the entire table was 0.842 seconds on a CDC 6500. The storage required for XI is 171 words. The program was written for a CDC machine; for computers which operate with less precision, XI may easily be modified for double precision if a high degree of accuracy is needed.
Table B.1. FORTRAN function routine for the numerical evaluation of $\Xi(x)$ and $\Xi'(x)$

-26-
TABLE B.2

<table>
<thead>
<tr>
<th>x</th>
<th>Ξ(x)</th>
<th>Ξ'(x)</th>
<th>x</th>
<th>Ξ(x)</th>
<th>Ξ'(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.0000</td>
<td>0.0000</td>
<td>5.00</td>
<td>0.83647</td>
<td>55948</td>
</tr>
<tr>
<td>0.10</td>
<td>(-3)0.1660</td>
<td>18215</td>
<td>(-2)0.49667</td>
<td>94096</td>
<td>5.10</td>
</tr>
<tr>
<td>0.20</td>
<td>(-2)0.1312</td>
<td>31678</td>
<td>(-1)0.19474</td>
<td>75580</td>
<td>5.20</td>
</tr>
<tr>
<td>0.30</td>
<td>(-2)0.43419</td>
<td>16955</td>
<td>(-1)0.42390</td>
<td>90215</td>
<td>5.30</td>
</tr>
<tr>
<td>0.40</td>
<td>(-1)0.10012</td>
<td>91790</td>
<td>(-1)0.71967</td>
<td>91837</td>
<td>5.40</td>
</tr>
<tr>
<td>0.50</td>
<td>(-1)0.18885</td>
<td>34957</td>
<td>0.10603</td>
<td>37513</td>
<td>5.50</td>
</tr>
<tr>
<td>0.60</td>
<td>(-1)0.31290</td>
<td>22308</td>
<td>0.14221</td>
<td>74031</td>
<td>5.60</td>
</tr>
<tr>
<td>0.70</td>
<td>(-1)0.47321</td>
<td>19062</td>
<td>0.17818</td>
<td>00344</td>
<td>5.70</td>
</tr>
<tr>
<td>0.80</td>
<td>(-1)0.66848</td>
<td>42292</td>
<td>0.21182</td>
<td>20008</td>
<td>5.80</td>
</tr>
<tr>
<td>0.90</td>
<td>(-1)0.89550</td>
<td>98227</td>
<td>0.24144</td>
<td>05669</td>
<td>5.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>0.11496</td>
<td>21681</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.10</td>
<td>0.14252</td>
<td>14171</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.20</td>
<td>0.17162</td>
<td>64540</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.30</td>
<td>0.20166</td>
<td>03441</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.40</td>
<td>0.23212</td>
<td>96272</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
<td>0.26249</td>
<td>14660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.60</td>
<td>0.29236</td>
<td>94322</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.70</td>
<td>0.32145</td>
<td>89291</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.80</td>
<td>0.34954</td>
<td>41840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.90</td>
<td>0.37648</td>
<td>92054</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.00</td>
<td>0.40222</td>
<td>51381</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.10</td>
<td>0.42573</td>
<td>67718</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.20</td>
<td>0.45004</td>
<td>56933</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.30</td>
<td>0.47220</td>
<td>38365</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.40</td>
<td>0.49327</td>
<td>70769</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.50</td>
<td>0.51334</td>
<td>00923</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.60</td>
<td>0.53246</td>
<td>98095</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
<td>0.55074</td>
<td>13614</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.80</td>
<td>0.56822</td>
<td>55924</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.90</td>
<td>0.58498</td>
<td>77346</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
<td>0.60108</td>
<td>69077</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.10</td>
<td>0.61657</td>
<td>61587</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.20</td>
<td>0.63150</td>
<td>28204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.30</td>
<td>0.64590</td>
<td>90301</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.40</td>
<td>0.65983</td>
<td>23067</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.50</td>
<td>0.67360</td>
<td>11880</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.60</td>
<td>0.68636</td>
<td>04075</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.70</td>
<td>0.69902</td>
<td>20615</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.80</td>
<td>0.71131</td>
<td>53151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.90</td>
<td>0.72326</td>
<td>20998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.00</td>
<td>0.73488</td>
<td>23379</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.10</td>
<td>0.74619</td>
<td>41927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.20</td>
<td>0.75721</td>
<td>42797</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.30</td>
<td>0.76795</td>
<td>78461</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.40</td>
<td>0.77843</td>
<td>89246</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.50</td>
<td>0.78867</td>
<td>04646</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.60</td>
<td>0.79866</td>
<td>44457</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.70</td>
<td>0.80843</td>
<td>19760</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.80</td>
<td>0.81798</td>
<td>33778</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.90</td>
<td>0.82732</td>
<td>82618</td>
</tr>
</tbody>
</table>

-27-
END
DATE
FILMED
MARCH 1988
DTIC