Optimal Recursive Maximum Likelihood Estimation

Lennart Ljung
Linkoping University, Sweden

Sanjoy K. Mitter
Department of Electrical Engineering and Computer Science and Laboratory for Information and Decision Systems, MIT, Cambridge, MA 02139

Jose M.F. Moura
Department of Electrical Engineering, Carnegie Mellon University, Pittsburgh, PA.

Abstract: In this paper we derive stochastic differential equations for recursive maximum-likelihood estimates for the joint filtering-parameter estimation problem.

Keywords: Maximum likelihood estimation; stochastic differential equations; Hamilton-Jacobi Equation; Nonlinear Filtering

1. INTRODUCTION

In this paper we would like to consider the joint states and parameter estimation problem for the following non-linear stochastic differential system:

\[dx(t) = f(x(t),0)dt + g(x(t),0)dw(t), \quad 0 \leq t \leq T \]

with the observation system

\[dy(t) = h(x(t),0)dt + dv(t), \quad 0 \leq t \leq T. \]

In the above, \(w(t) \) and \(v(t) \) are standard independent Brownian motions, \(f, g, h \) are at least three continuously differentiable with bounded derivatives with respect to \(x \in \mathbb{R} \) and \(\theta \in \mathbb{R} \) and \(g(x,0) \neq 0 \) for all \(x \neq 0 \).

In addition we assume

\[E \int_0^T |h(x(t),\theta)|^2 dt < \infty, \]

and the initial state satisfies

Either 1) \(x(0) = x_0 \in \mathbb{R} \)

or 2) \(x(0) = x_0 \), a random variable with density \(p_0(x) \geq C_0(h_0; \mathbb{R}), p_0(x) > 0 \).

Let \(x_\theta(t) \) denote the solution of the stochastic differential equation (1.1) starting at \(x_0 \). Then from a result of Kunita [2], we know that \(x_\theta(t) \) is a \(C^2 \)-diffeomorphism, and the inverse map \(x_\theta^{-1} \) satisfies a backward stochastic differential equation.

Let

\[A(0,t) = \exp \left[\int_0^t h(x(s),\theta)dy(s) - \frac{1}{2} \int_0^t h^2(x(s),0)ds \right] \]

\[= \exp \left[\int_0^t h(x_\theta^{-1}(t),\theta)dy(s) \right] \]

where \(\theta \) denotes a backway stochastic differential (and backward Ito integral respectively).

Let

\[L(\theta,t) = E(L(\theta,t)|x(t) = x), \]

where \(E \) denotes expectation with respect to the path space measure of \(x(\cdot) \).

As a criterion, we choose as an estimate

\[\hat{\theta}(t) = \arg \max L(x,\theta,t), \quad x, \theta \]

which is a maximum likelihood criterion.

2. STOCHASTIC HAMILTON-JACOBI BELLMAN EQUATION FOR \(L(x,\theta,t) \)

Using the work of Fleming-Mitter [1] and the theory of backway stochastic differential equations [cf. Kunita, loc.cit.] one can show that

\[S(x,\theta,t) = -\ln L(x,\theta,t) \]

satisfies the stochastic Bellman Hamilton-Jacobi equation:

\[dS(x,\theta,t) = \sigma(x,\theta) \frac{\partial S}{\partial x} dx dt + \frac{1}{2} \sigma^2(x,\theta) \frac{\partial^2 S}{\partial x^2} dt \]

\[+ h(x,\theta) \frac{\partial S}{\partial \theta} dt - h(x,\theta) dy(t) \]

where

\[\sigma(x,\theta) = \frac{1}{2} \sigma(x,\theta)^2 \]

\[\sigma(x,\theta) = 2\sigma - 2\sigma(x,\theta) \frac{\partial}{\partial x} f(x,\theta) \]

\[= -\ln P^\theta_{x,t} \]

where under our assumptions \(P^\theta_{x,t} \), the density corresponding to the \(x(\cdot) \) process exists and is positive for all \(x,t \).

We now define a recursive maximum likelihood estimate. By applying the Generalized Ito Differential Rule [cf. Kunita, loc.cit.], we get
\[\frac{\partial V}{\partial S} + V^2 \sigma_2(t) + \frac{1}{2} V^2 \sigma(t,t) - V(\theta) d(t,t) = 0 \]

(2.3)

where

\[V = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial \theta} \end{pmatrix}, \quad \xi(t) = \begin{pmatrix} \eta(t) \\ \delta(t) \end{pmatrix} \]

which is obtained from the stationarity condition

\[\frac{\partial V}{\partial S} = 0. \]

(2.4)

In (2.3) all partial derivatives are computed along \(\xi, \eta \), which is obtained from the stationarity condition (2.4).

Assuming \(V^2 \) is invertible, we obtain a maximum likelihood trajectory for \(\xi(t) \) from (2.2), (2.3) and (2.4) and using \(\frac{\partial V}{\partial S} = V dS \).

A rigorous derivation of these results will be presented elsewhere.

REFERENCES

ACKNOWLEDGMENT

This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 85-0227A.
END
Feb.
1988
DTIC