AN INVESTIGATION OF CLASSICAL DYNAMIC SCALING TECHNIQUES APPLIED TO AN OLEO-PNEUMATIC LANDING GEAR STRUT

Archie B. Clark III, Captain, USAF
Mechanical Branch
Vehicle Equipment Division

February 1987

Final Report for Period October 1983 - July 1985

Approved for Public Release; Distribution Unlimited.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

ARCHIE B. CLARK, III, C. pt, USAF
Project Engineer
Special Projects Group
Mechanical Branch

AIVARS V. PETERSONS
Chief, Mechanical Branch
Vehicle Equipment Division

FOR THE COMMANDER

RICHARD E. COLCLOUGH, JR.
Chief
Vehicle Equipment Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/FLEMB W-PAB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on specific document.
A program was conducted to investigate the technical feasibility and practicality of using dynamic scale modeling techniques to design, fabricate, and test a scale model of an aircraft landing gear strut and tire. Dynamic scaling laws were developed and used to design a one-third model of an A-37 Nose Landing Gear/strut and tire. The A-37 NLG strut and the model gear were tested under dynamically similar conditions of weight, speed, and forcing function on a circular track, Dynamic Test Machine at the Mobility Development Laboratory, Wright-Patterson AFB OH. Comparison of time history data, recorded during each phase of testing, indicated good correlation of the dynamic response of the model gear, in relation to the scaling laws and the A-37 NLG dynamic response. Presented in the report is the development and analytical verification of the scaling laws, test data and comparisons, conclusions, and recommendations.
SUMMARY

The objective of this program was to assess the feasibility and practicality of applying dynamic scale modeling techniques and principles to design, fabricate, and test scale models of landing gear struts and tires.

This report describes the requirements which led to the conception of this program; the development, and analytical verification of a model law; and the application of the model law to design a functional scale model of an A-37 Nose Landing Gear (NLG) strut and tire. The fabrication of the model landing gear strut and subsequent testing of the model gear, and an A-37 NLG at the Mobility Development Laboratory (MDL) is also documented in this report. Also presented are the results of test data analysis, conclusions, and recommendations.

The dynamically scaled model landing gear strut was designed and fabricated by the Cleveland Pneumatic Company (CPC), on a cost sharing basis with AFWAL/FIEMB. A dynamically scaled model A-37 NLG tire was designed and fabricated by Precision Measurement Company, Ann Arbor MI, under contract to AFWAL/FIEMB. An analytical model of a single oleo-pneumatic landing gear strut, tire, and ground surface features, was developed with the assistance of the Mechanical Subsystems Group (AFWAL/FIEMA). This computerized model was very useful in the analytical verification of the model law, and aided in the development of a test plan for the model gear and A-37 NLG struts. All testing was conducted In-House in the MDL, with technical support provided by the Systems Research Laboratories (SRL), Dayton OH. Data reduction and analysis was accomplished within the Special Projects Group.
FOREWORD

This report documents an in-house effort conducted by personnel of the Mechanical Branch (FIEM), Vehicle Equipment Division, Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio, under Project 2402, "Mechanical Systems for Advanced Military Vehicles," Task Number 24020146, "Aircraft Mobility Systems Models." This report covers work performed from October 1983 to July 1985, by Capt Archie B. Clark, III (AFWAL/FIEMB), the Project Engineer. This report was released by the author in June 1986.

The author wishes to express appreciation to Dr Arnold Mayer for his assistance and support during the program, Greer McClain of the Mechanical Branch for his technical support, Peter C. Vorum and William K. Smith, also of the Mechanical Branch, and Diane O'Connell, for her clerical support in preparing this Technical Report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>DYNAMIC SCALING PRINCIPLES</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1. Formulation of a Model Law</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2. General Comments on Relaxations and Simplifications</td>
<td>20</td>
</tr>
<tr>
<td>III</td>
<td>SUBSYSTEM SCALING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Air Spring Scaling and Associated Scaling Effects</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2. Analysis and Scaling of a Constant Area Hydraulic Damping Orifice</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>3. Frictional Effects</td>
<td>39</td>
</tr>
<tr>
<td>IV</td>
<td>ANALYTICAL VALIDATION OF THE MODEL LAW</td>
<td>45</td>
</tr>
<tr>
<td>V</td>
<td>DESIGN FEATURES OF THE SCALE MODEL STRUT</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>1. General Design Parameters</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>2. Frictional Characteristics</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>3. Orifice Design</td>
<td>71</td>
</tr>
<tr>
<td>VI</td>
<td>THE SCALE MODEL WHEEL AND TIRE</td>
<td>76</td>
</tr>
<tr>
<td>VII</td>
<td>THE TEST PROGRAM</td>
<td>81</td>
</tr>
<tr>
<td>VIII</td>
<td>RESULTS</td>
<td>92</td>
</tr>
<tr>
<td>IX</td>
<td>CONCLUSIONS</td>
<td>121</td>
</tr>
<tr>
<td>X</td>
<td>RECOMMENDATIONS</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A - SPLIT RING SEAL DESIGN</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B - ANALYTICAL FRICTION MODEL</td>
<td>135</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1. Bomb Damaged Runway</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2. F-16 HAVE BOUNCE Test</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3. F-16 AGILE Test Arrangement</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5. A-37 NLG and One-Third Scale Model Gear</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6. Oleo-Pneumatic Strut Force Diagram</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7. Shock Strut Components</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>8. Pneumatic Air Spring</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>9. Polytropic Curves - Effect on Dynamic Similarity of Decreasing Scale Factor at Small Gauge Pressure</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>10. Polytropic Curves - Effect on Dynamic Similarity of Decreasing Scale Factor at Larger Gauge Pressure</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>11. Polytropic Curves - Effect on Dynamic Similarity of Scaling the Gauge Pressure Component at the Static Equilibrium Position</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>12. Typical Unmetered Damping Orifice</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>14. Bearing/Seal Configuration of -37 NLG Strut</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>15. Split Ring Orifice Seal</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>16. LANSIM Strut/Tire Model</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>17. Ground Feature Dimensions</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>18. Model Gear (Sim. #2) vs. A-37 NLG (Sim. #1)</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>19. Model Gear (Sim. #2) vs. A-37 NLG (Sim. #1)</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>20. Model Gear (Sim. #2) vs. A-37 NLG (Sim. #1)</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>21. Model Gear (Sim. #2) vs. A-37 NLG (Sim. #1)</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>22. Model Gear (Sim. #2) vs. A-37 NLG (Sim. #1)</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>23.</td>
<td>Model Gear (Sim. #3) vs. A-37 NLG (Sim. #1)</td>
<td>58</td>
</tr>
<tr>
<td>24.</td>
<td>Model Gear (Sim. #3) vs. A-37 NLG (Sim. #1)</td>
<td>59</td>
</tr>
<tr>
<td>25.</td>
<td>Model Gear (Sim. #3) vs. A-37 NLG (Sim. #1)</td>
<td>60</td>
</tr>
<tr>
<td>26.</td>
<td>Model Gear (Sim. #4) vs. A-37 NLG (Sim. #1)</td>
<td>61</td>
</tr>
<tr>
<td>27.</td>
<td>Model Gear (Sim. #4) vs. A-37 NLG (Sim. #1)</td>
<td>62</td>
</tr>
<tr>
<td>28.</td>
<td>Model Gear (Sim. #4) vs. A-37 NLG (Sim. #1)</td>
<td>63</td>
</tr>
<tr>
<td>29.</td>
<td>Model Gear (Sim. #4) vs. A-37 NLG (Sim. #1)</td>
<td>64</td>
</tr>
<tr>
<td>30.</td>
<td>Polytropic Curves for Analytical Simulations</td>
<td>65</td>
</tr>
<tr>
<td>31.</td>
<td>Model Gear Strut Seal Design Details</td>
<td>70</td>
</tr>
<tr>
<td>32.</td>
<td>Split Ring Seal Design Parameters</td>
<td>72</td>
</tr>
<tr>
<td>33.</td>
<td>A-37 NLG and Model Gear Damping Orifice Design Details</td>
<td>73</td>
</tr>
<tr>
<td>34.</td>
<td>Model Gear Components</td>
<td>74</td>
</tr>
<tr>
<td>35.</td>
<td>A-37 NLG and Model Gear Damping Orifices</td>
<td>75</td>
</tr>
<tr>
<td>36.</td>
<td>Comparison of A-37 NLG Tire and Model Tire Load-Deflection Curves</td>
<td>77</td>
</tr>
<tr>
<td>37.</td>
<td>Model Tire Cross-Section</td>
<td>79</td>
</tr>
<tr>
<td>38.</td>
<td>Model Wheel Components</td>
<td>80</td>
</tr>
<tr>
<td>39.</td>
<td>Dynamic Test Machine (DTM)</td>
<td>84</td>
</tr>
<tr>
<td>40.</td>
<td>A-37 NLG Test (Back View)</td>
<td>87</td>
</tr>
<tr>
<td>41.</td>
<td>A-37 NLG Test (Side View)</td>
<td>88</td>
</tr>
<tr>
<td>42.</td>
<td>Model Gear Test (Back View)</td>
<td>89</td>
</tr>
<tr>
<td>43.</td>
<td>Model Gear Test (Side View)</td>
<td>90</td>
</tr>
<tr>
<td>44.</td>
<td>Model Gear on Cosine Obstacle</td>
<td>91</td>
</tr>
<tr>
<td>45.</td>
<td>A-37 NLG Dynamic Response vs. Model Gear Dynamic Response (High Friction Model Gear Orifice Seal)</td>
<td>93</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS
(continued)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.</td>
<td>Cylindrical Conformity of a Split Ring Seal</td>
</tr>
<tr>
<td>47.</td>
<td>Model Gear (Phase IIa) vs. A-37 NLG (Phase I)</td>
</tr>
<tr>
<td>48.</td>
<td>Model Gear (Phase IIa) vs. A-37 NLG (Phase I)</td>
</tr>
<tr>
<td>49.</td>
<td>Model Gear (Phase IIa) vs. A-37 NLG (Phase I)</td>
</tr>
<tr>
<td>50.</td>
<td>Model Gear (Phase IIa) vs. A-37 NLG (Phase I)</td>
</tr>
<tr>
<td>51.</td>
<td>Model Gear (Phase IIa) vs. A-37 NLG (Phase I)</td>
</tr>
<tr>
<td>52.</td>
<td>Model Gear (Phase IIa) vs. A-37 NLG (Phase I)</td>
</tr>
<tr>
<td>53.</td>
<td>Polytropic Curves 1 - Model Gear vs. A-37 NLG</td>
</tr>
<tr>
<td>54.</td>
<td>Polytropic Curves 2 - Model Gear vs. A-37 NLG</td>
</tr>
<tr>
<td>55.</td>
<td>Polytropic Curves 3 - Model Gear vs. A-37 NLG</td>
</tr>
<tr>
<td>56.</td>
<td>Comparison of A-37 NLG Polytropic Data with the Estimated Isothermal and Adiabatic Polytropic Curves</td>
</tr>
<tr>
<td>57.</td>
<td>Comparison of Model Gear Polytropic Data with the Estimated Isothermal and Adiabatic Polytropic Curves</td>
</tr>
<tr>
<td>58.</td>
<td>Comparison of A-37 NLG Polytropic Curves for Two Different Test Speeds</td>
</tr>
<tr>
<td>59.</td>
<td>Comparison of Model Gear Polytropic Curves for Two Different Test Speeds</td>
</tr>
<tr>
<td>60.</td>
<td>Effective Orifice C_d 1</td>
</tr>
<tr>
<td>61.</td>
<td>Effective Orifice C_d 2</td>
</tr>
<tr>
<td>62.</td>
<td>Effective Orifice C_d 3</td>
</tr>
<tr>
<td>63.</td>
<td>Effective Orifice C_d 4</td>
</tr>
<tr>
<td>64.</td>
<td>Model Gear (Phase IIa) vs. Model Gear (Phase IIb)</td>
</tr>
<tr>
<td>65.</td>
<td>Model Gear (Phase IIa) vs. Model Gear (Phase IIb)</td>
</tr>
<tr>
<td>66.</td>
<td>Model Gear (Phase IIa) vs. Model Gear (Phase IIb)</td>
</tr>
<tr>
<td>67.</td>
<td>Model Gear (Phase IIa) vs. Model Gear (Phase IIb)</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (continued)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>Split Ring Seal Design Parameters</td>
<td>132</td>
</tr>
<tr>
<td>B-1</td>
<td>Variation of O-Ring Friction with Pneumatic Pressure for Different Friction Coefficients (Model Gear Strut Seal)</td>
<td>137</td>
</tr>
<tr>
<td>B-2</td>
<td>Variation of O-Ring Friction with Pneumatic Pressure for Different Friction Coefficients (A-37 NLG Strut Seal)</td>
<td>138</td>
</tr>
<tr>
<td>B-3</td>
<td>Variation of O-Ring Friction with Pneumatic Pressure for Different Cross-Sectional Squeeze (Model Gear Strut Seal)</td>
<td>139</td>
</tr>
<tr>
<td>B-4</td>
<td>A-37 NLG Strut (Frictionless) vs. A-37 NLG Strut (with Friction) (Taxi Speed = 7.0 ft/sec)</td>
<td>143</td>
</tr>
<tr>
<td>B-5</td>
<td>A-37 NLG Strut (Frictionless) vs. A-37 NLG Strut (with Friction) (Taxi Speed = 10.0 ft/sec)</td>
<td>144</td>
</tr>
<tr>
<td>B-6</td>
<td>A-37 NLG Strut (Frictionless) vs. A-37 NLG Strut (with Friction) (Taxi Speed = 20.0 ft/sec)</td>
<td>145</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>83</td>
</tr>
<tr>
<td>B-1</td>
<td>142</td>
</tr>
</tbody>
</table>

1. The Model Law (Dynamic Scale Factors)
2. LANSIM Inputs (Strut Model)
3. LANSIM Inputs (Tire Model)
4. Measured A-37 NLG Parameters and Target Model Gear Design Parameters
5. Individual Strut Components
6. Target and Actual Test Conditions (Estimated)
7. Dynamic Test Machine (DTM) Specifications and Features
LIST OF ACRONYMS AND SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
</tr>
<tr>
<td>a</td>
<td>Acceleration</td>
</tr>
<tr>
<td>AFWAL</td>
<td>Air Force Wright Aeronautical Laboratories</td>
</tr>
<tr>
<td>AGILE</td>
<td>Aircraft Ground Induced Loads Excitation</td>
</tr>
<tr>
<td>BDR</td>
<td>Bomb Damage Repair</td>
</tr>
<tr>
<td>c</td>
<td>Viscous Damping Coefficient</td>
</tr>
<tr>
<td>c</td>
<td>Dimensionless Viscous Damping Coefficient</td>
</tr>
<tr>
<td>C_d</td>
<td>Orifice Discharge Coefficient</td>
</tr>
<tr>
<td>C_1</td>
<td>Empirical O-Ring Seal Constant</td>
</tr>
<tr>
<td>d</td>
<td>Orifice Throat Diameter</td>
</tr>
<tr>
<td>D_m</td>
<td>O-Ring Seal Mean Diameter</td>
</tr>
<tr>
<td>DTM</td>
<td>Dynamic Test Machine</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
</tr>
<tr>
<td>G</td>
<td>Uninstalled Gap Width of a Split Ring Seal</td>
</tr>
<tr>
<td>S_c</td>
<td>A Constant that Relates Force, Mass, Length and Time</td>
</tr>
<tr>
<td>k</td>
<td>Stiffness Coefficient</td>
</tr>
<tr>
<td>K_1</td>
<td>Empirical O-Ring Seal Constant</td>
</tr>
<tr>
<td>K_2</td>
<td>Empirical Seal Constant</td>
</tr>
<tr>
<td>L_a</td>
<td>Moment Arm from Top Bearing Centerline to Axle Centerline</td>
</tr>
<tr>
<td>L_s</td>
<td>Moment Arm from Bottom Strut Seal/Bearing Centerline to Axle Centerline (Fully Extended Strut)</td>
</tr>
<tr>
<td>LGDF</td>
<td>Landing Gear Development Facility</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>MDL</td>
<td>Mobility Development Laboratory</td>
</tr>
<tr>
<td>N</td>
<td>Polytropic Exponent</td>
</tr>
<tr>
<td>NLG</td>
<td>Nose Landing Gear</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND SYMBOLS
(continued)

P Pressure

Re Reynolds Number

s Stroke

\dot{s} Stroke Rate

S Cross-sectional Squeeze of an O-Ring Seal (Percent)

t Time

\hat{t} Dimensionless Time

V Volume

V_0 Reference Pneumatic Volume

v Horizontal Velocity

w Orifice Seal Width

x Vertical Displacement

\dot{x} First Time Derivative of x

\ddot{x} Second Time Derivative of x

\frac{x}{x} Dimensionless Vertical Displacement

\beta Ratio of Orifice Throat Diameter to the Approach Diameter

\lambda Scaling Factor

\mu Absolute Viscosity of a Fluid

\nu Friction Coefficient

p Mass Density

\omega Frequency

SUBSCRIPTS

A Area

a Ambient
LIST OF ACRONYMS AND SYMBOLS

(continued)

F Force
G Gauge
m Mass
o Original (Full-Scale) System
P Pressure
p Pneumatic
s Scaled System
t Time
V Volume
v Velocity
x Displacement or Some Linear Dimension
SECTION I

BACKGROUND

Current emphasis in the development of advanced landing gear technology is focused on improving the capabilities of tactical and transport aircraft to operate from bomb damaged runways and contingency launch surfaces. The requirement for increased flexibility in aircraft ground operations is based on concern over the critical dependency of present aircraft on smooth, paved runways and taxiways.

A successful enemy airstrike against a forward NATO airbase would result in extensive damage to paved launch surfaces. An example of bomb inflicted damage is shown in Fig. 1. Such damage would clearly eliminate the possibility of launching an immediate counter strike; thus, airpower would be effectively neutralized, until time consuming runway repairs could be completed.

Techniques have been developed to temporarily restore a section of runway for resumption of aircraft launch operations, following an attack. Craters are repaired by backfilling them with debris and other stockpiled aggregate, and then covering the damaged area with Bomb Damage Repair (BDR) mats (Ref. 5). This matting is designed to support the weight of an aircraft as it traverses the damaged area during takeoff or recovery. However, the mats are not flush with the rest of the runway surface, and can induce severe dynamic loads into an airframe and landing gear strut. The capability of a particular aircraft to operate over a rough runway surface generally depends on the gross weight and weapons configuration of the aircraft, and mat spacing on the runway, if there are multiple repairs. The type of operation being conducted (i.e. landing, takeoff, or rejected takeoff) is also a critical factor that must be considered. Currently, there are several full-scale test methods used to establish
the limits of various existing aircraft to operate in a rough field environment. HAVE BOUNCE is a test program initiated to measure dynamic loads induced in fighter and transport aircraft, during taxi and takeoff operations over BDR mats. Fig. 2 is a photograph of an F-16 HAVE BOUNCE test run. This test method involves substantial expense and support, since an operational aircraft must be instrumented and tested.

Aircraft Ground Induced Loads Excitation (AGILE) is another full-scale test method which also involves instrumentation and testing of an actual aircraft. In this technique, a mechanical shaker platform is placed beneath each landing gear tire. A digital controller is used to induce a pre-programmed forcing function into each tire (via the shakers) to simulate a particular type of surface roughness e.g., a BDR mat. Fig. 3 shows an F-16 in place on the AGILE test fixture.

A similar technique is used in development and evaluation of improved landing gear struts and tires capable of dissipating the high loads associated with rough field operations. At the Landing Gear Development Facility (LGDF), Wright-Patterson AFB, Ohio, single struts are mounted to a large test fixture which, like AGILE testing, simulates a particular ground loading condition via a digitally controlled shaker platform placed beneath the tire. Aircraft weight is simulated with a dead load, which is constrained to move in the vertical direction only. Fig. 4 shows an F-15 main gear strut and tire in the test fixture.

AGILE testing of an aircraft, and single strut tests at the LGDF, offer the advantages of obtaining valuable dynamic performance data more economically than HAVE BOUNCE tests, since engine and pilot time are not required. Also, data acquisition and reduction is facilitated in a fully equipped laboratory.
where test conditions can be easily and quickly varied with a minimum of down
time between tests. However, there are also disadvantages with these test
methods. It is difficult or too costly to properly simulate rolling, braking,
tire envelopment, strut drag loads, and aerodynamic damping effects. Also,
with each of the test methods discussed, extreme test conditions must be
avoided to prevent possible over-stressing of test hardware, even though such
conditions may be realistically expected in an actual post attack scenario.
Another problem with these full-scale test methods is the difficulty and cost
associated with obtaining production hardware for test purposes.

Analytical models are also used to predict landing gear and aircraft
structural dynamic response; however, they must be validated with experimental
data whenever possible. The required data is presently obtained from full-
scale prototype tests, provided that resources are available to conduct such
test programs.

Testing dynamically scaled models of aircraft landing gear struts and
tires is an attractive alternative to full-scale prototype testing. The use of
scale models in engineering practice is well documented as an efficient and
cost effective method of satisfying many data requirements. The most common
example is the use of scale wind tunnel models to obtain aerodynamic data for
a new aircraft or missile design. This is clearly a more economical and practi-
cal approach than a full-scale prototype test program. Also, data can be
acquired more safely, and for a much broader range of conditions than full-
scale testing. It may be possible to realize the same benefits by applying a
similar approach in the area of landing gear development and evaluation.
The objective of a scale model test program is usually to predict the characteristics of a full-scale design; however, there is no known precedent for the use of scale landing gear models to satisfy performance data requirements. Therefore, this program was initiated to assess the technical and practical feasibilities of designing and fabricating a dynamically scaled model of an existing landing gear strut and tire. Successful development of this test approach could potentially result in significant reductions in the costs of developing advanced landing gear hardware.

The scope of this initial program was limited to the most rudimentary type of aircraft shock strut available. The development and verification of dynamic scaling techniques for a simple strut configuration was considered as prerequisite to scaling of a more complex landing gear strut. An A-37 NLG strut and tire was selected as the "full-scale" representative for this program. This particular strut was chosen primarily because it was available at no cost, and its size and weight were within the capabilities of the test fixture at the MDL. Also, it met program requirements for simplicity of design. A photograph of the A-37 NLG strut, and a one-third scale model of this strut, is shown in Fig. 5.

In general, the A-37 NLG strut is a typical example of oleo-pneumatic landing gear struts used on practically every aircraft in the USAF inventory, although it is not as complex as most struts. However, despite the simple design and function of the A-37 NLG, the physical laws and processes which govern its dynamic behavior are the same for any other oleo-pneumatic strut, regardless of complexity. Thus, the analysis which follows in the next section can be perceived in context of any landing gear strut.
FIGURE 5. A-37 NLG and One-Third Scale Model Gear
SECTION II
DYNAMIC SCALING PRINCIPLES

1. FORMULATION OF THE MODEL LAW

The design of a dynamically scaled model of any physical system is based on a corresponding full-scale system design, and a model law. Proper formulation of an appropriate model law requires careful analysis of the physical laws and processes which govern the dynamic behavior of the system. An accurately scaled model requires that all dominant factors in the original system be identified, scaled according to the model law, and incorporated into the model system design. If this is successfully accomplished, then the two physical systems are dynamically similar, and it is possible to predict the full-scale behavior by observing the model behavior to a similar set of conditions, and applying the model law to scale the results. Mathematically, dynamic similarity requires two conditions: 1) The governing equations and boundary conditions that describe each physical system must have the same form, and 2) the coefficients in the normalized equations must be identical.

The model law consists of a set of scaling factors which dictate the relationships that must exist between scaled and full-scale system parameters, for dynamic similarity. A scaling factor, represented by \(\lambda \), is specifically defined as the ratio of a model parameter to the same parameter in the original system e.g.,

\[
\lambda_m = \frac{m_s}{m_o}
\]

Here, \(\lambda_m \) is the scaling factor for mass where the subscript "s" denotes the scaled parameter.
parameter in the scaled system, and the subscript "o" denotes a corresponding parameter in the original full-scale system. Scaling factors are similarly defined for all other pertinent quantities.

The scaling factors which make up a model law are best expressed in terms of a single common scaling factor. This scaling factor is the "independent variable" which is selected at the discretion of the model designer. All other scaling factors are determined according to this one raised to some power, i.e.:

\[
\lambda_F = \lambda^a \quad \text{(Force)}
\]
\[
\lambda_m = \lambda^b \quad \text{(Mass)}
\]
\[
\lambda_v = \lambda^c \quad \text{(Velocity)}
\]

etc. Thus, the model designer is free to choose the desired relationship for one physical parameter, represented by \(\lambda_v \) and all other scaling factors are based on that selection. Commonly accepted practice is to define the model law in terms of the scaling factor, \(\lambda_x \). This allows the designer to select the desired geometric relationship between the scaled and original systems.

The exponents \(a, b, c, \ldots \) etc. are determined by combining system parameters into nondimensional groups called Pi numbers. The power relationships are then determined by equating the Pi numbers, and applying the above definition of a scaling factor. There are several approaches which are commonly used to develop the required Pi numbers, including the Buckingham Pi Theorem (also called dimensional analysis), the Equation Method, and the Law Method. Selection of an approach that is best suited for a particular scaling problem depends on the scope and objectives of a scale model test program. The Buckingham Pi Theorem is most appropriate for problems in which little is known about the relative effects of certain parameters on the dynamic behavior of a system. The objectives of model testing in this case would be to quantify
these effects, rather than attempting to predict the performance of another
dynamically similar system.

Successful application of the theorem requires identification of all
system parameters which may have some possible physical significance in the
behavior of the system. Writing governing equations is not a part of this
technique. The theorem is applied, which results in the generation of several
nondimensional groups (the Pi numbers). Model tests are then conducted to
establish an empirical relationship between the various Pi numbers. Analysis
of test results yields information concerning which parameters are dominant,
and which are insignificant, for the conditions of the tests. With this infor-
mation, it may be possible to either create an analytical model, which includes
all of the observed effects, or to design a scale model, which can accurately
duplicate full-scale system performance. The latter approach would be pursued
if the analytical situation was too complex, or to obtain more detailed empir-
ical data to "fine tune" an analytical model.

The Buckingham Pi Theorem is a valid approach to obtaining valuable
empirical data, provided that all dominant system parameters are identified
before it is applied. If some important parameter is not included, then the
test results will be incomplete, or possibly, even meaningless. Thus, care,
combined with some experience, is required to optimize the benefits gained from
this method. A complete explanation of how to use the Buckingham Pi Theorem is
provided in Ref. 4.

The Equation Method and the Law Method are more appropriate for the
development of a model law. The governing laws and physical processes must
already be well defined in order to write equations which account for all of
the dominant effects in the system. An advantage of this approach is that any
model law developed, is easily verified by substituting scaled parameters into the governing equations.

A combination of the Equation Method and the Law Method was used to form the required model law for an oleo-pneumatic landing gear strut, since the equations of motion are straightforward, and the physical processes are well defined. The Pi numbers were extracted directly from the normalized equations and other applicable physical laws. The scaling factors were then obtained by equating Pi numbers, and applying the definition of a scaling factor.

Solution of the equations of motion is not necessary for development of the Pi numbers, therefore, they are not developed here in complete detail. Only the general form of the equations is used in the ensuing analysis. The terms in the equation represent the major effects which contribute to the dynamic response of a landing gear strut. Assumptions made in the analysis are as follows:

1. The components of the strut are rigid, i.e., material deformation caused by dynamic loading was not considered, nor was there any attempt at scaling this effect;

2. Only vertical dynamics of the strut are accounted for. Other possible modes of oscillation, such as fore-aft, torsional, wheel shimmy, etc., were not considered;

3. The components of the strut were lumped together into two representative weights. Scaling the weight of each individual component was not considered. All components which comprise the sprung weight (weight supported by the air spring) were lumped together, and unsprung weight components were similarly lumped together.

4. Aerodynamic damping terms were neglected.

Development of the governing equations of motion was based on an
analysis of the forces acting on a frictionless strut as it oscillates. These forces are depicted in Fig. 6. The pneumatic force, F_a, is generated by compression of an air spring, and hydraulic damping represented by F_h, results as fluid is forced through a small orifice. Since the component weights are lumped together into two representative weights, the motion of the strut can be described by two coupled differential equations of the general form:

$$m \ddot{x} + c \dot{x} + k x = F(t)$$

Normalization of this equation can be accomplished by defining a nondimensional displacement \bar{x}, and a nondimensional time \bar{t} as:

$$\bar{x} = \frac{x k}{F}$$

and

$$\bar{t} = t \left(\frac{k}{m} \right)$$

The ratio k/F can be interpreted as a displacement of a spring having a stiffness k, and subjected to a force F. Also, the ratio $(k/M)^{1/2}$ can be construed as a natural frequency of the system. Normalization of equation (1) is accomplished by substituting appropriate derivatives of \bar{x} and \bar{t}, with the following results:

$$\ddot{\bar{x}} + \bar{c} \dot{\bar{x}} + \bar{x} = f(\bar{t})$$

where

$$\bar{c} = \frac{c^2 g_c}{k m}$$
FIGURE 6. Oleo-Pneumatic Strut Force Diagram
Thus, three Pi numbers: $\bar{x}, \bar{t},$ and \bar{c} have resulted from this simple analysis of the forces acting on a landing gear strut.

The first condition required for dynamic similarity is similitude, i.e., the model and full-scale system are both governed by the same physical laws. The above analysis is considered valid for any system which is represented by Fig. 6, including the model and full-scale systems, thus, similitude is an inherent assumption. Recalling that dynamic similarity also requires an invariance of Pi numbers, then

\[\frac{\bar{x}}{x_0} = \frac{\bar{t}}{t_0} = \frac{\bar{c}}{c_0} \quad (6) \]

Substituting in the respective expressions for $\bar{x}, \bar{t},$ and \bar{c} yields

\[\frac{\bar{x} \cdot k}{F} = \frac{x \cdot k}{F_0} \quad (9) \]
\[\frac{\bar{t} \cdot k}{m} = \frac{t \cdot k}{m_0} \quad (10) \]
\[\frac{\bar{c} \cdot k}{k \cdot m} = \frac{c \cdot k}{k \cdot m_0} \quad (11) \]

Applying the definition of a scaling factor to these expressions results in the following:

\[\lambda_x \lambda_k = \lambda_F \quad (12) \]
\[\lambda_t \lambda_k = \lambda_m \quad (13) \]
\[\lambda_k \lambda_m = \lambda_c^2 \quad (14) \]

16
These expressions are useful in that they describe the interrelationship that must be maintained between several of the important system scaling factors to satisfy the conditions for dynamic similarity, however, the key to completing the model law formulation is to establish the relationship between the primary scaling factors of the system.

Primary scaling factors represent the parameters of a system that are expressed in terms of a fundamental unit of measurement (length, mass, temperature, electric current, or luminous intensity). All other scaling factors are secondary i.e., they can be determined by multiplying or dividing two or more primary scaling factors. As an example, an area scaling factor can be obtained directly from the scaling factor λ_x, since geometric scaling has been indirectly specified as linear. Area is the product of two dimensions (e.g. length and width) thus,

$$\lambda_A = \frac{A_s}{A_c} = \frac{\lambda_x \cdot \lambda_x \cdot w}{\lambda_x \cdot w} = \lambda_x^2$$

In this case, the primary scaling factor, λ_x is used to determine the secondary scaling factor, λ_A.

The fundamental parameters for a dynamic system such as a landing gear strut are easily identified as mass, length, and time. A relationship between the primary scaling factors λ_x and λ_t can be determined from expressions (12) and (13) by first relating λ_m and λ_F. This relationship is established by considering the fundamental law of motion,

$$F = ma$$
A Pi number is formed by combining all parameters together on the right side, or,

$$\pi = \frac{ma}{F}$$ \hspace{1cm} (15)

Dynamic similarity requires identical Pi numbers, therefore,

$$\left(\frac{ma}{F}\right)_s = \left(\frac{ma}{F}\right)_0$$ \hspace{1cm} (16)

and, by applying the scaling factor definition,

$$\lambda_m \lambda_a = \lambda_F$$ \hspace{1cm} (17)

The model law must provide for dynamic similarity in the same linear acceleration field (gravity), thus, an assumption is made that

$$\lambda_a = 1$$

which yields

$$\lambda_m = \lambda_F$$ \hspace{1cm} (18)

combining (12), (13), and (18) gives the desired relationship between two primary scaling factors:

$$\lambda_x = \lambda_t^2$$ \hspace{1cm} (19)

An additional relationship is required to complete the basic model law formulation. λ_m or λ_F must be expressed in terms of either λ_x or λ_t.

Another Pi number can be formed by considering mass as a product of density and volume or,

$$m = \rho V$$

As usual, a Pi number is formed, and equated, to satisfy dynamic similarity.

The results upon application of the scaling factor definition is

$$\lambda_\rho \lambda_V = \lambda_m$$ \hspace{1cm} (20)

It is convenient here to set $\lambda_\rho = 1$, from which it follows that

$$\lambda_V = \lambda_m$$
But volume is expressed dimensionally as the product of three linear dimensions therefore,

$$\lambda_m = \lambda_x^3$$ (21)

The required relationships between primary scaling factors have now been established, and are summarized in terms of λ_x as follows:

$$\lambda_m = \lambda_x^3$$ (22)

$$\lambda_F = \lambda_x^3$$ (23)

$$\lambda_t = \lambda_x^{\frac{1}{2}}$$ (24)

This represents one possible formulation of a model law. It can easily be verified by substituting scaled parameters into the original equations of motion, and simplifying. The resulting equation is identical to the original equation, which satisfies both conditions of dynamic similarity. (Theoretically, any power relationship of λ_m and λ_F with λ_x will satisfy the model law, provided that λ_m and λ_F both have identical power relationships with λ_x. This is true, since both conditions of dynamic similarity are satisfied under this criteria.)

All applicable secondary scaling factors can now be determined through appropriate combinations of the above primary scaling factors. As an example, the scaling factor for velocity is easily obtained by combining the dimension and time scaling factors, i.e.,

$$\lambda_v = \frac{v_s}{v_0}$$

$$= \frac{x_s}{t_s} \cdot \frac{t_0}{x_0}$$

$$= \frac{\lambda_x \cdot x_0 \cdot t_0}{\lambda_x \cdot t_0 \cdot x_0} = \lambda_x^{\frac{1}{2}}$$
The complete model law is summarized in Table (1). This particular formulation corresponds to the Froude Model Law, which has been proven as useful in scaling of other dynamic systems. (The Froude Law derives its name from the Froude Number, which is defined as the ratio of inertial and gravitational forces. This Pi number was originally formulated by a Naval architect, William Froude, who discovered the importance of this parameter in flows with free surface effects.)

2. GENERAL COMMENTS ON RELAXATIONS AND SIMPLIFICATIONS

In the last section, it was shown that two conditions must be satisfied for complete dynamic similarity. They are repeated here for emphasis:

1. Similitude is required i.e., both physical systems must be governed by the same laws and processes. In the case of a landing gear strut, the original and scale model system must each have an air spring, a hydraulic damper, frictional effects, and a tire. Each can be described with the same normalized equations of motion and initial conditions;

2. Also required is an equivalence of applicable Pi numbers, i.e., the nondimensional coefficients in the normalized equations of motion must be identical.

Any deviation in the value of an important Pi number between two dynamically similar systems, will cause a corresponding departure from similarity. It can generally be expected that the result will be some loss of accuracy in predicting the dynamic response of one system, based on observations of the other.

The model designer is often forced to compromise some quantitative accuracy, in favor of increasing the practicality of fabricating a functional
<table>
<thead>
<tr>
<th>FULL-SCALE PARAMETERS</th>
<th>SCALE FACTOR</th>
<th>MODEL PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>m (Mass)</td>
<td>λ^3</td>
<td>$\lambda^9 m$</td>
</tr>
<tr>
<td>F (Force)*</td>
<td>λ^3</td>
<td>$\lambda^3 F$</td>
</tr>
<tr>
<td>X (Length)*</td>
<td>λ</td>
<td>λX</td>
</tr>
<tr>
<td>t (Time)*</td>
<td>$\lambda^{1/2}$</td>
<td>$\lambda^{1/2} t$</td>
</tr>
<tr>
<td>a (Acceleration)</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>v (Velocity)</td>
<td>$\lambda^{1/2}$</td>
<td>$\lambda^{1/2} v$</td>
</tr>
<tr>
<td>A (Area)</td>
<td>λ^2</td>
<td>$\lambda^2 A$</td>
</tr>
<tr>
<td>V (Volume)</td>
<td>λ^3</td>
<td>$\lambda^3 V$</td>
</tr>
<tr>
<td>P (Pressure)</td>
<td>λ</td>
<td>λP</td>
</tr>
</tbody>
</table>

TABLE 1. The Model Law (Dynamic Scale Factors)

*Primary scaling factor
model, because, in most realistic cases, it is either not physically possible to scale some effect, or it is not practical to do so. Usually, a model law can be formulated in such a way that the necessity of scaling some non-scalable constant (i.e., gravity) is eliminated. Practicality considerations are best illustrated by example: Complete dynamic similarity of a landing gear strut would theoretically call for proper scaling of component structural deformations, however, this would require fabrication of the model using a material with physical properties that satisfy the model law. In all likelihood, such a material would not exist in nature, or would be too costly to manufacture. This apparent dilemma is circumvented by neglecting structural deformation as a small effect, when compared to the relatively large vertical displacements which occur during strut actuation. Thus, material strain is neglected as a "weak" effect, as compared to vertical displacement, which is the dominant effect. This involves some deviation from the model law however, the model design problem is greatly simplified.

The technique of identifying and separating the strong effects from the weak effects is called relaxation. This is considered as a very important factor in scale model design, since in most practical applications, it is not realistic to expect that all parameters can be scaled and incorporated into the model with complete fidelity. Relaxation techniques are commonly referred to in dynamic scaling literature as an art, since there are no well defined procedures which are universally applicable to any scaling problem. Relaxation must be ultimately based on engineering judgement, and experience in scaling of a particular type of dynamic system.
SECTION III
SUBSYSTEM SCALING

The physical processes that govern the dynamic response of a landing gear strut (the air spring, hydraulic damping orifice, friction and tire characteristics) must be scaled according to the model law developed in the preceding section, and incorporated as accurately as possible or practical, into the scale model design. This section is intended to provide an understanding of the approach used to scale the individual subsystems of the A-37 NLG strut for this particular program. The basic subsystems of an oleo-pneumatic strut are depicted in Fig. 7.

1. AIR SPRING SCALING AND ASSOCIATED SCALING EFFECTS

An air spring can be represented very simply as a piston-cylinder arrangement (Ref. Fig. 8). An external force \(F_e \), acting on the piston, compresses the gas inside the cylinder from \(s_0 \) until an equal and opposite force is generated at \(s_1 \). The magnitude of the pressure force increases exponentially between the reference and end state, according to the relation

\[
\frac{P_{g}(s) + P_a}{P_{g0} + P_a} = \left(\frac{V_0}{V(s)}\right)^N
\]

where

- \(P_{g}(s) \): Pneumatic pressure at stroke \(s \),
- \(P_{g0} \): Reference pressure (gauge),
- \(V_0 \): Reference volume,
FIGURE 7. Shock Strut Components
FIGURE 8. Pneumatic Air Spring
$V(s)$: Volume at stroke s,

s: Stroke position

N: Polytropic gas exponent

P_a: Ambient pressure

This relation is derived from the Second Law of Thermodynamics for an isentropic process. The value of the polytropic exponent, N, defines the actual process which occurs during compression or rarefaction of the enclosed gas, since there are no real processes that are isentropic. Its value generally ranges from 1.0 for an isothermal (constant temperature) process, to 1.4 for an adiabatic (zero net heat transfer) process. Thus, the polytropic exponent is used to define the heat transfer characteristics of the air spring, and its value generally depends on the rate of compression or rarefaction, and on the type of gas used.

The physical process governed by equation (25) must be properly incorporated into the model strut design to obtain dynamically similar pneumatic force characteristics. Mathematically, the task is easily accomplished by applying the appropriate scaling factors from the model law, to each of the parameters, which results in the following scaled parameters:

$$
egin{align*}
P_{gs}(s) &= \lambda_p P_{g0}(s) \\
P_{g0_s} &= \lambda_p P_{g0_o} \\
V_{0_s} &= \lambda_v V_{0_o} \\
V_{s}(s) &= \lambda_v V_{0}(s) \\
s_s &= \lambda_x s_o \\
P_{as} &= \lambda_p P_{a_o}
\end{align*}
$$
These values clearly satisfy the conditions for dynamic similarity, however, there is an apparent problem with ambient pressure scaling. Proper scaling of ambient pressure is required to satisfy the model law for dynamically similar pneumatic loads, however, this cannot realistically be accomplished for model tests. Only the gauge component of the total pressure can be scaled properly.

The nonsimilar effects of unscaled ambient pressure on the static pneumatic force vs. stroke characteristics of the model gear strut can be analyzed by reformulating equation (25) as follows:

\[
\left(\frac{P(s)}{P_a} + \frac{P_a}{P_a} \right) / \left(\frac{P_0}{P_a} + \frac{P_a}{P_a} \right) = \left(\frac{V_0}{V(s)} \right)^N
\]

(26)

\(P_a \): Actual ambient pressure,

\(P_a' \): Ambient pressure component required to satisfy conditions for dynamic similarity.

For scale model tests, the following condition is required to satisfy the model law:

\[P_a' = P_{a_s} = \lambda_p P_{a_o} \]

Hypothetically, if it is somehow possible to obtain this value (perhaps by conducting model tests inside a vacuum chamber), then equation (26) reduces to equation (25), which satisfies the conditions for dynamic similarity. However, it is not realistic or economically feasible to reduce ambient pressure to the required level. The model gear must be tested in nonsimilar ambient pressure conditions, which requires that

\[P_{a_s} = P_{a_o} \]
With these parameters, equation (26) reduces to

\[
\left(\frac{P_g(s)}{P_a} + \frac{1}{\lambda_p} \right) \left/ \left(\frac{P_0}{P_a} + \frac{1}{\lambda_p} \right) \right. = \left(\frac{V_0}{V(s)} \right)^N
\]

(27)

This equation contains a "nonsimilar term," \(1/\lambda_p\). Thus, the degree of nonsimilarity depends on the pressure scaling factor, \(\lambda_p\). It is also apparent from equation (27), that the nonsimilar effects are reduced at higher strut pressures, for a given scaling factor. If the gauge component, \(P_g\), is very large, then the contribution of \(P_a\) becomes insignificant i.e.,

\[
\frac{P_g(s)}{P_a} \rightarrow P_g(s)
\]

Also, if the scale factor \(\lambda_p\) is not excessively small, then

\[
\frac{P_g(s)}{P_a} + \frac{1}{\lambda_p} + P_g(s)
\]

The nonsimilar effects on the static pressure-stroke characteristics of an air spring, caused by an unscaled ambient pressure, are shown graphically in Fig. 9, 10, and 11. Fig. 9 shows a large departure from similarity for small scaling factors and small gauge pressures. Fig. 10 shows the same trends, but the nonsimilar effects are smaller, since the gauge component is much larger than the ambient pressure. Fig. 11 shows the nonsimilar effects that occur if the reference state is taken at the static equilibrium condition.

Another approach to the air spring scaling problem is to insure that the natural frequency of the full-scale air spring-mass system is scaled properly, rather than applying the model law directly to scale \(V_0\) and \(P_g\), as was done in the preceding analysis of the static case.
FIGURE 9. Polytropic Curves - Effect on Dynamic Similarity of Decreasing Scale Factor at Small Gauge Pressure

$N=1.1 \quad F_0/P_a = 2.0$

<table>
<thead>
<tr>
<th>CURVE</th>
<th>λ_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>1.00 (BASELINE)</td>
</tr>
</tbody>
</table>
FIGURE 10. Polytropic Curves - Effect on Dynamic Similarity of Decreasing Scale Factor at Larger Guage Pressure

N=1.1 $P_0/P_a=20.0$

<table>
<thead>
<tr>
<th>CURVE</th>
<th>λ_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.10</td>
</tr>
<tr>
<td>2</td>
<td>.25</td>
</tr>
<tr>
<td>3</td>
<td>.50</td>
</tr>
<tr>
<td>4</td>
<td>1.00 (BASELINE)</td>
</tr>
</tbody>
</table>
FIGURE 11. Polytrpic Curves – Effect on Dynamic Similarity
of Scaling the Gauge Pressure at the Static Equilibrium
Position

\[\text{PRESSURE RATIO } \frac{P(s)}{P_0} \]

\[\text{VOLUME RATIO } \frac{V_0}{V(s)} \]

\[N = 1.1 \quad P_0/P_a = 20.0 \]

<table>
<thead>
<tr>
<th>CURVE</th>
<th>(\lambda_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>1.00 (BASELINE)</td>
</tr>
</tbody>
</table>
The natural frequency of an air spring-mass system is given by

\[
\omega_N = \frac{1}{2\pi} \left[\frac{A_P g N \left(\frac{p_{g_0}}{p_{g_0}} + \frac{p_a}{p_{g_0}} \right)}{V_0 \frac{g_0}{p_{g_0}}} \right]^{\frac{1}{2}}
\]

(28)

where \(\omega_N \): Natural frequency,
\(g \): Gravitational acceleration,
and \(P_{g_0} = W_s/A_p \),

where \(W_s \): Sprung weight.
\(A_p \): Pneumatic Area

A Pi number is formed by combining all terms in equation (28) on the right side, which yields

\[
\pi = \frac{A_P g N \left(\frac{p_{g_0}}{p_{g_0}} + \frac{p_a}{p_{g_0}} \right)}{V_0 \omega_N^2}
\]

(29)

Equating Pi numbers for the model and original system, to satisfy dynamic similarity, and applying the scaling factor definition yields

\[
\lambda_N \lambda_A \left[\frac{p_{g_0}}{p_{g_0}} + \frac{p_a}{p_{g_0}} \right] = \lambda_P \lambda_V \lambda_\omega
\]

(30)

Making appropriate substitutions from the model law for \(\lambda_A, \lambda_P, \) and \(\lambda_\omega \) and then solving for \(\lambda_V \) gives

\[
\lambda_V = \lambda_N \lambda \left[\frac{p_{g_0}}{p_{g_0}} + \frac{p_a}{p_{g_0}} \right] \]

(31)

In terms of full-scale pressures (realizing that ambient pressure is nonscalable), then

\[
\lambda_V = \lambda_N^2 \lambda \left(\frac{\lambda_p}{p_{g_0}} + \frac{p_a}{p_{g_0}} \right)
\]

(32)
This is a modified scale factor for the pneumatic volume at the static equilibrium position, which insures proper natural frequency scaling. All other parameters are scaled according to the previously defined scaling factors. If the polytropic exponent is known for each system, then λ_N can be determined. If it is assumed that the polytropic exponent for each system is the same, then $\lambda_N = 1$.

Each of the air spring scaling methods discussed in this section was evaluated analytically to determine the affects on the dynamic response of the model gear strut. Results of this evaluation are presented in Section IV.

2. ANALYSIS AND SCALING OF A CONSTANT AREA HYDRAULIC DAMPING ORIFICE

Most aircraft landing gear struts are equipped with a metered orifice, which is designed to optimize the hydraulic damping characteristics for typical landing conditions. For this program however, a constant area orifice was used, since the added complexity of a metered orifice was considered unwarranted and unnecessary for satisfying stated program objectives. Also, fabrication of a metering pin for the model gear posed a difficult machining problem.

A typical round edge constant area orifice cross section is shown in Fig. 12. During strut compression, hydraulic fluid is forced through the orifice, which results in a pressure force. The magnitude of this force is governed by the equation:

$$F_h = \frac{\rho A_h \dot{s}^2}{2 C_d A_t^2 C_c} \quad (33)$$

where F_h: Hydraulic force
FIGURE 12. Typical Unmetered Damping Orifice
Fluid density
Ah: Hydraulic area
At: Orifice throat area
Cd: Discharge coefficient
i: Stroke rate

This equation is derived by applying the Bernoulli and continuity equations across the orifice, and defining an additional term, the discharge coefficient Cd, to account for boundary layer development and streamline curvature effects, which exist in any real flow. The value of Cd is determined empirically, and is generally dependent on the geometric configuration of the orifice and the expected flow regime, as defined by the Reynolds Number. Typical variation of Cd vs. Re for various geometric configurations of round edge flow nozzle type orifices is shown in Fig. 13. It should be noted that the data in this figure is from steady flow experiments with fully developed flow upstream of the orifice entrance, standardized approach conditions, and constant fluid properties (Ref. 4, 12). Only limited data of this type was available for landing gear damping orifices, and was confined to estimated discharge coefficients for a narrow range of flow conditions (Ref. 10). Also, information concerning reverse flow discharge coefficients was not found. Specific details concerning orifice entrance geometry were not included with the data.

The design of the scaled model gear orifice and a modified full-scale orifice was based on available flow nozzle data (represented by Fig. 13). This was considered to be a rational approach, in view of the lack of available landing gear orifice design data.

In principle, scaled damping characteristics are obtained easily enough by applying the model law to equation (33), which yields the following
FIGURE 13. Steady Flow Characteristics For a Long Radius Flow Nozzle (Ref. 4, p. 431)
scaled parameters:

\[F_h, = \lambda_f F_h \]
\[A_{h_s} = \lambda_a A_{h_o} \]
\[A_{t_s} = \lambda_a A_{t_o} \]
\[\hat{s}_s = \lambda_v \hat{s}_o \]
\[\rho_s = \rho_o \]
\[C_{d_s} = C_{d_o} \]

It is evident from Fig. 13 that two requirements must be satisfied in order to achieve identical flow characteristics for two orifices:

1. Geometric similarity, i.e.:
 \[\beta_s = \beta_o \] (34)

2. Flow similarity, i.e.:
 \[R_{e_s} = R_{e_o} \]

or,

\[\left(\frac{\rho v d}{\mu} \right)_s = \left(\frac{\rho v d}{\mu} \right)_o \] (35)

The first condition is easily satisfied, and is consistent with the model law, however, the second condition is difficult to satisfy in actual practice.

Applying the scaling factor definition to (35) yields

\[\lambda_p \lambda_v \lambda_d \lambda_\mu = \lambda_\mu \] (36)

which reduces to

\[\lambda_\mu = \lambda_{x_s}^{1.5}\]

Thus, complete flow similarity for all possible flow regimes is achievable only if the model is tested with a fluid that has properties which satisfy the model law i.e.,

\[\rho_s = \rho_o \] (37)
and
\[\mu_s = \lambda_x^{1.5} \mu_0 \] \hspace{1cm} (38)

An alternative is to maintain flow similarity by modifying the geometric configuration of the model gear orifice, and testing with the full-scale fluid. Thus, from (36), and setting \(\lambda_{\mu} = 1 \),
\[\lambda_d = \lambda_x^{1/2} \]

However, this is inconsistent with the rest of the model law, since it would require an orifice throat diameter which is larger than full-scale. The result would be highly nonsimilar hydraulic pressure forces, therefore, this approach is not valid.

It has been shown that both of the orifice scaling approaches described above violate some aspect of the model law. Thus, the actual design of the model orifice was based on the approach that was least likely to cause significant deviation from similarity. Pressure forces are dominant over viscous effects in most flow regimes encountered in a landing gear strut, therefore, the model orifice was designed such that geometric similarity was maintained i.e., the throat diameter was sized according to
\[d_s = \lambda_x \cdot d_0 \]

Also, the geometric configuration of the full scale and model orifices was designed such that
\[\beta_s = \beta_0 \]

so that the high Reynolds Number flow characteristics of each orifice would be the same. A fluid with properties that satisfy conditions specified in the relations (37) and (38) was not available for model tests. However, tests were planned to assess the effect of fluid properties on the orifice damping charac-
teristics. These tests, and the results, are discussed in Section VII and VIII.

3. FRICTIONAL EFFECTS

Friction loads generated in a landing gear strut result from contact of internal seal and bearing surfaces, with the strut piston and cylinder walls. The seal/bearing configuration of a typical single chamber oleo-pneumatic shock strut is shown in Fig. 14. The sources of friction for this configuration are: the top bearing surface, which is in contact with the cylinder wall; the bottom seal/bearing surface, which is in contact with the outer piston wall; and the orifice seal, which contacts the inside piston wall. In general, the magnitude of the friction force depends on the magnitude of the force normal to the load bearing surface, and the coefficient of friction between the two contacting surfaces. The normal force generated at the top bearing surface and the bottom seal surface, is caused by horizontal loading conditions at the axle of the landing gear strut. The resulting frictional force, which opposes the relative motion of the strut components, is governed by the equation

\[
F_f = \left[\eta_T \left(\frac{L_a}{L_s + s} - 1 \right) + \eta_B \left(\frac{L_a}{L_s + s} \right) \right] F_d
\]

where

- \(\eta_T \): Top bearing friction coefficient,
- \(\eta_B \): Bottom seal/bearing friction coefficient,
- \(F_f \): Total friction force caused by horizontal axle loads,
- \(F_d \): Net horizontal load acting on the axle,
- \(L_s \): Bearing separation at zero stroke,
FIGURE 14. Bearing/Seal Configuration of the A-37 NLG Strut
FIGURE 15. Split Ring Orifice Seal
L_a: Moment arm from center of top bearing to the axle center,
s: Moment arm from bottom seal/bearing center to the axle center.

There is an additional frictional effect at the bottom strut seal. This seal, which is typically composed of an elastometric material, must be compressed radially during assembly of the piston and cylinder components. This radial force is required prevent leakage when the strut is initially charged with pressure. The force required to compress the seal during assembly depends on seal design, spring rate, and how much radial squeeze is necessary to permit assembly of mating parts. Also, the radial force of this seal against the mating surface increases proportionally with internal strut pressure, causing a corresponding increase in seal friction. Further analysis of the many types of seals used in landing gear strut design is beyond the scope of this report. More information on various seal designs and applications can be found in Ref. 6 and 11.

The orifice seal is also a source of friction inside a landing gear strut. This seal is generally designed to be pressure energized i.e., sealing integrity is initiated and maintained by a pressure drop across the seal (see Fig. 15). The radial force required to install this type of seal is minimal, thus, the only substantial radial force component is due to the pressure drop or,

$$F_f = V_o \cdot F_n$$

where

$$F_n = \Delta P A_o$$
\[\Delta P: \] Pressure drop across seal,
\[A_0: \] Face area of orifice seal,
\[\nu_0: \] Friction Coefficient,
\[F_n: \] Seal normal force.

Dynamically similar frictional loads are obtained, as usual, by scaling the physical parameters in the governing equations. For example, parameters in equation (39) are scaled according to the model law which yields:

\[
\begin{align*}
F_d &= \lambda F_d_0 \\
F_f &= \lambda F_f_0 \\
L_a &= \lambda L_a_0 \\
L_s &= \lambda L_s_0 \\
s &= \lambda s_0 \\
\nu_T &= \nu_T_0 \\
\nu_B &= \nu_B_0
\end{align*}
\]

The model law is similarly applied to other frictional parameters, which yields the target values for the model gear design.

Actually obtaining the required values of all physical parameters which affect the frictional characteristics of a functional model involves detailed consideration of many aspects of component design and fabrication. Factors which may affect frictional properties of the strut include: seal/bearing type and materials, surface finish of mating parts, fabrication tolerances which could affect seal radial compressive force, lubrication conditions, etc. Precise information of the full-scale design would have to be available in order to properly represent the frictional parameters in the model strut.
It is apparent that precise friction scaling is potentially the most difficult aspect of model strut design, since so many factors are involved. The problem is compounded by the fact that, in general, full-scale system frictional characteristics would be unknown. They could, at best, be estimated based on detailed information concerning the design factors identified above.

One possible approach to simplifying the friction scaling problem would entail the use of analytical methods to estimate how frictional characteristics would affect the dynamic response of a strut, for anticipated loading conditions. If friction is predicted to be small in relation to other quantities, (such as hydraulic, pneumatic, and inertial effects) then requirements for dynamically similar friction could be relaxed. In this case, a minimum friction design would be pursued, rather than attempting to achieve the precise characteristics. This would greatly simplify the model design approach. As friction becomes more dominant, the requirement for better friction scaling is more of a consideration. In this case, an analytical method could also be used to establish an acceptable variation range of frictional properties, which could simplify model design and fabrication.

Friction control methods used in this particular program are discussed in Section V.
SECTION IV

ANALYTICAL VALIDATION OF THE MODEL LAW

The model law developed in Section II was evaluated analytically with a computerized model of a single oleo-pneumatic shock strut and tire. The computer program, called LANSIM, was developed by the Mechanical Subsystems Group (AFWAL/FIEMA) of the Air Force Wright Aeronautical Laboratories. It computes the vertical dynamic response of a single landing gear strut, by a time-step numerical integration of the governing equations of motion, using a fourth order Runge-Kutta method. A simple diagram of the tire-strut model used is depicted in Fig. 16. Pneumatic and hydraulic forces were calculated for each time-step according to equations (25) and (33) respectively. The tire force computations per time-step were based on calculated deflections of each radial element, in proximity to a user defined, two-dimensional ground obstacle model. Total horizontal and vertical force components were summed together at the axle.

The following assumptions were made in the development of LANSIM:

1. Taxi speed of the landing gear strut was constant throughout all simulations;

2. Aerodynamic damping was not modeled;

3. Only vertical dynamic response of the strut was modeled. Other possible modes of vibration were not included;

4. All strut components were modeled as rigid i.e., material strain was not considered;

5. Rolling, braking and tire envelopment effects were not modeled;
FIGURE 16. LANSIM Strut/Tire Model
6. Stroking friction was not included in these initial simulations. (An adequate friction model was not developed and incorporated into the model until late in this program. Simulations with friction are discussed in Appendix B);

7. A constant area orifice was modeled. The discharge coefficient was not varied with Reynolds Number; a constant value was used for forward and reverse flows. Viscous forces were not modeled;

8. The polytropic exponent was constant for all pneumatic force calculations.

Verification of the model law was accomplished by making a direct comparison of time history data from independent simulations of the full-scale A-37 NLG, and a dynamically scaled model of this strut. The full-scale A-37 NLG was simulated first to establish a data baseline for later comparisons with model gear simulation results. All strut parameters and other simulation parameters were scaled according to the model law developed in Section II, for corresponding model gear simulations.

The model gear strut and tire parameters were calculated from the model law, and corresponding full-scale A-37 NLG parameters, using a scaling factor of one-third, i.e.,

\[\lambda_x = 1/3 \]

There were a total of four separate simulations conducted. The first simulation was of the full-scale A-37 NLG; the second was of an "exact" scale model of this strut (including properly scaled ambient pressure); and the third simulation was of the model gear for nonscaled ambient pressure conditions. Simulation #4 was similar to Simulation #3 in that the ambient pressure component was not scaled. However, the pneumatic volume at the static equilibrium position for simulation #4 was calculated according to equation (12), to insure proper natural frequency scaling of the air spring. The static stroke position
for this case was determined by scaling the corresponding full-scale static
stroke position, according to \(\lambda_x \). Input parameters for each simulation are
listed in Tables 2 and 3. The forcing function for all simulations was a
sequence of two 1-cosine bumps placed end to end. The dimensions of the bumps
are shown in Fig. 17.

Each simulation was repeated for two "taxi" speeds, over the 1-cosine
bumps. These speeds are also listed in Table 2. The model gear speeds were
determined by scaling the full-scale speeds in Simulation #1, according to \(v \).

Model gear simulation results were scaled up by applying the appropriate
scaling factors to each output parameter. Time history data for each model
gear simulation was then plotted against corresponding baseline data from the
full-scale gear simulation. All simulation data is located at the end of this
section, due to the amount of data presented.

Data from simulation #2 is presented in Fig. 18 through 21. Scaled up
results are identical to full-scale gear simulation results for this case in
which all input parameters were scaled correctly according to the model law,
(including the ambient pressure component of the air spring.)

Data from simulation #3 is presented in Fig. 22 through 25. All input
parameters for this simulation were scaled as in Simulation #2, with the excep-
tion of the ambient pressure. The full-scale value was used. All parameters
clearly show some deviation of peak values during bump traversal, as well as a
phase shift during the free response after clearing the bumps.

Data from Simulation #4 is presented in Fig. 26 through 29. All input
parameters for this simulation were scaled as in the previous model gear runs,
with the exception of the ambient pressure component which was full-scale, and
<table>
<thead>
<tr>
<th>INPUT PARAMETERS</th>
<th>SIMULATION #1</th>
<th>SIMULATION #2</th>
<th>SIMULATION #3</th>
<th>SIMULATION #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{sp} (lb)</td>
<td>660.00</td>
<td>24.44</td>
<td>24.44</td>
<td>24.44</td>
</tr>
<tr>
<td>m_u (lb)</td>
<td>44.00</td>
<td>1.63</td>
<td>1.63</td>
<td>1.63</td>
</tr>
<tr>
<td>V_0 (in)</td>
<td>19.29</td>
<td>0.715</td>
<td>0.715</td>
<td>0.731</td>
</tr>
<tr>
<td>A_p (in)</td>
<td>2.71</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>N</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>P_0 (psig)</td>
<td>18.45</td>
<td>6.15</td>
<td>6.15</td>
<td>-0.99</td>
</tr>
<tr>
<td>P_a (psia)</td>
<td>14.70</td>
<td>4.90</td>
<td>14.70</td>
<td>14.70</td>
</tr>
<tr>
<td>A_h (in)</td>
<td>2.09</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>A_o (in)</td>
<td>0.02</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>C_d</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>C_d</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>v (FPS)</td>
<td>7.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>5.77</td>
<td>5.77</td>
<td>5.77</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>11.40</td>
<td>11.40</td>
<td>11.40</td>
</tr>
</tbody>
</table>

TABLE 2. LANSIM Inputs (Strut Model)
<table>
<thead>
<tr>
<th>F_c (lb)</th>
<th>δ (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0</td>
<td>0.10</td>
</tr>
<tr>
<td>425.0</td>
<td>0.30</td>
</tr>
<tr>
<td>860.0</td>
<td>0.50</td>
</tr>
<tr>
<td>1462.0</td>
<td>0.75</td>
</tr>
<tr>
<td>2200.0</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Tire Free Radius: 8.0 in
Section Height: 3.4 in

<table>
<thead>
<tr>
<th>F_c (lb)</th>
<th>δ (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.70</td>
<td>0.033</td>
</tr>
<tr>
<td>15.74</td>
<td>0.10</td>
</tr>
<tr>
<td>31.85</td>
<td>0.167</td>
</tr>
<tr>
<td>54.15</td>
<td>0.250</td>
</tr>
<tr>
<td>81.48</td>
<td>0.333</td>
</tr>
</tbody>
</table>

Tire Free Radius: 2.667 in
Section Height: 1.133 in

TABLE 3. LANSIN Inputs (Tire Model)
PHASE I: 6.0 3.0 1.5
PHASE II: 2.0 1.0 0.5

FIGURE 17. Ground Feature Dimensions
the static equilibrium pneumatic volume, which was scaled according to equation (32). Very good agreement was obtained for all output parameters.

Fig. 30 shows the difference in the static pneumatic force-stroke characteristics for each simulation. Note that all stroke values are referenced to the static equilibrium strut position.

In summary, the analytical simulations proved the basic validity of the model law as formulated in Section II. It was shown that good results are possible, despite the unscaled ambient pressure, if the volume at the static equilibrium position is scaled according to Equation (32).

(An additional fact concerning the computer runs was noted. On the average, the model gear simulations required 30 to 40 percent less CPU time than corresponding full-scale A-37 NLG simulations, and yielded equivalent results. Thus, from a computational point-of-view, scale model simulations were considerably more efficient than full-scale simulations.)
FIGURE 18. Model Gear (Sim. #2) 5.7 Ft/s vs. A-37 NLG (Sim. #1) 10.0 Ft/s
FIGURE 19. Model Gear (Sim. #2) vs. A-37 NLG

TAXI SPEED LEGEND

5.7 Ft/s

10.0 Ft/s
FIGURE 20. Model Gear (Sim. #2) vs. A-37 NLG (Sim. #1)

<table>
<thead>
<tr>
<th>TAXI SPEED</th>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5 Ft/s</td>
<td>11.5 Ft/s</td>
</tr>
<tr>
<td>20.0 Ft/s</td>
<td>20.0 Ft/s</td>
</tr>
</tbody>
</table>
FIGURE 21. Model Gear (Sim. #2) vs. A-37 NLG (Sim. #1)

TAXI SPEED

LEGEND

11.5 Ft/s

20.0 Ft/s
FIGURE 22. Model Gear (Sim. #3) 5.7 Ft/s
vs.
A-37 NLG (Sim. #1) 10.0 Ft/s

LEGEND
FIGURE 23. Model Gear (Sim. #3) vs. A-37 NLG (Sim. #1)

<table>
<thead>
<tr>
<th>TAXI SPEED</th>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7 Ft/s</td>
<td></td>
</tr>
<tr>
<td>10.0 Ft/s</td>
<td>.......</td>
</tr>
</tbody>
</table>
FIGURE 24. Model Gear (Sim. #3) 11.5 Ft/s
vs.
A-37 NLG (Sim. #1) 20.0 Ft/s
FIGURE 25. Model Gear (Sim. #3) 11.5 Ft/s

vs.

A-37 NLG (Sim. #1) 20.0 Ft/s
FIGURE 26. Model Gear (Sim. #4) 5.7 Ft/s vs. A-37 NLG (Sim. #1) 10.0 Ft/s
FIGURE 27. Model Gear (Sim. #4) \(5.7 \text{ ft/s}\) vs.

A-37 NLG (Sim. #1) \(10.0 \text{ ft/s}\)

TAXI SPEED LEGEND

\(5.7 \text{ ft/s}\) __________

\(10.0 \text{ ft/s}\) __________
FIGURE 28. Model Gear (Sim. #4) 11.5 Ft/s

vs.

A-37 NLG (Sim. #1) 20.0 Ft/s

LEGEND
FIGURE 29. Model Gear (Sim. #4) 11.5 Ft/s vs. A-37 NLG (Sim. #1) 20.0 Ft/s
Figure 30. Polytropic Curves for the Analytical Simulations
SECTION V

THE SCALE MODEL STRUT

The computerized analysis of the preceding section was sufficient to validate the model law from a theoretical point-of-view, however, the results were subject to the idealized assumptions inherent in the analytical model. An empirical approach to investigate the feasibility and practicality of using the developed scaling techniques in a realistic hardware application, was the primary objective of the overall program. This phase involved design, fabrication, testing, and evaluation of a one-third dynamically scaled model of the A-37 NLG strut.

1. GENERAL DESIGN PARAMETERS

The model gear design parameters were calculated by applying the scaling factors to corresponding full-scale strut parameters. The A-37 NLG strut parameters were obtained from measurements made of individual components of the disassembled strut. This method was used because detailed fabrication drawings of the strut were not available. Results of the measurements, and target values for model gear design parameters, are presented in Table 4. Table 5 lists the strut components which were lumped together into representative sprung and unsprung weights. The weights of the instrumentation devices were also included.

The relatively small A-37 NLG unsprung weight, and the large degree of weight scaling required to satisfy the model law (based on the chosen scaling factor $\lambda_w = 1/27$), yielded an unsprung weight for the model gear which was difficult to obtain. The dimensions of the model gear strut components re-
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>A-37 NLG</th>
<th>SCALE FACTOR</th>
<th>MODEL GEAR PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{sp} (lb) :</td>
<td>660.00</td>
<td>1/27</td>
<td>24.44</td>
</tr>
<tr>
<td>M_u (lb) :</td>
<td>44.00</td>
<td>1/27</td>
<td>1.63</td>
</tr>
<tr>
<td>V (in) :</td>
<td>42.90 (Dry)</td>
<td>1/27</td>
<td>1.59</td>
</tr>
<tr>
<td>A_p (in) :</td>
<td>2.71</td>
<td>1/9</td>
<td>0.30</td>
</tr>
<tr>
<td>A_h (in) :</td>
<td>2.09</td>
<td>1/9</td>
<td>0.25</td>
</tr>
<tr>
<td>S_{max} (in) :</td>
<td>7.25</td>
<td>1/3</td>
<td>2.42</td>
</tr>
<tr>
<td>L_a (in) :</td>
<td>24.19</td>
<td>1/3</td>
<td>8.06</td>
</tr>
<tr>
<td>L_s (in) :</td>
<td>4.88</td>
<td>1/3</td>
<td>1.63</td>
</tr>
</tbody>
</table>

TABLE 4. Measured A-37 NLG Parameters and Target Model Gear Design Parameters

67
<table>
<thead>
<tr>
<th>SPRUNG WEIGHT</th>
<th>UNSPRUNG WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dead Weight Supported by Gear</td>
<td>- Piston</td>
</tr>
<tr>
<td>- Cylinder</td>
<td>- Fork</td>
</tr>
<tr>
<td>- Orifice Support Tube</td>
<td>- Axle Assembly</td>
</tr>
<tr>
<td>- Orifice</td>
<td>- Wheel</td>
</tr>
<tr>
<td>- Lower Bearing/Seal Block</td>
<td>- Tire</td>
</tr>
<tr>
<td>- Trunion</td>
<td>- Pressure Transducer</td>
</tr>
<tr>
<td>- Displacement Pot.</td>
<td></td>
</tr>
<tr>
<td>- Accelerometer</td>
<td></td>
</tr>
<tr>
<td>- Pressure Transducer</td>
<td></td>
</tr>
<tr>
<td>- Heave Post</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5. Individual Strut Components
quired to ensure structural integrity for expected loading conditions, led to an unsprung weight figure that exceeded the value required to maintain dynamic similarity. This problem was circumvented by increasing the unsprung weight of the full-scale A-37 NLG enough to compensate for the excessive weight of the model unsprung components. This was accomplished by adding circular lead disks to the A-37 NLG strut axle (these weights are visible in Fig. 40 on page).

2. FRICTIONAL CHARACTERISTICS

A requirement for obtaining precise frictional scaling was not included in the design specifications of the model gear strut. This was primarily due to two considerations: 1) detailed full-scale friction data for the loading conditions which could be expected during the tests was not available for verification of model gear friction, and 2) there was no comprehensive approach for designing the model strut components to yield properly scaled friction. The factors which would have to be included in such an approach were previously identified in Section III.

The approach used in this program was to design a seal/bearing configuration in the model, which was similar to that of the A-37 NLG. An o-ring design was used for the strut seal (Ref. Fig. 7), which is the same type of seal used in the A-37 NLG strut. Details of the model gear o-ring seal design are shown in Fig. 31. The specifications for this design were consistent with standard practice used in the design of a typical reciprocating rod type seal. Also, the top bearing and the orifice seal were of similar designs as those used in the A-37 NLG strut.
PISTON

LOWER SEAL/BEARING

O-RING

CROSS SEC.: .103"
WIDTH
I.D. : .612"
MATERIAL : BUNA-N
HARDNESS : 70 (SHORE)

FIGURE 31. Model Gear Strut Seal
Design Details
The model gear orifice seal was a split ring design. Several of these seals, each with a different uninstalled gap width, were supplied with the model gear as a means of increasing or decreasing stroking friction as required (see Fig. 32). The seals with a larger uninstalled gap width required a larger radial compressive force for installation, which caused a corresponding increase in friction. The seals with the smaller gap widths required less force for installation, which resulted in less friction.

3. ORIFICE DESIGN

The A-37 NLG strut was originally equipped with a metering pin, which tailors damping forces during a landing impact. For purposes of this program, however, the metering pin was removed, and the original orifice was replaced with a fixed area orifice. The throat area was sized according to the estimated annular area of the original metered orifice, at the static equilibrium strut position. The shape of the full-scale and model gear orifices was designed according to the method outlined in Section III. Design details for each orifice are presented in Fig. 33.

Photographs of various full-scale and model gear strut components are presented in Fig. 34 and 35. These photos relate the small physical size of the model gear strut components. The fully assembled model gear strut is shown, in comparison with the full-scale A-37 NLG, in Fig. 5.
D : Installed Diameter
G : Uninstalled Gap Width
t : Minimum Thickness
W : Ring Width

FIGURE 32. Split Ring Seal Design Parameters
FIGURE 33. A-37 NLG and Model Gear Damping Orifice Design Details

<table>
<thead>
<tr>
<th>ORIFICE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-37</td>
<td>.500</td>
<td>.160</td>
<td>.275</td>
<td>.250</td>
<td>.025</td>
</tr>
<tr>
<td>MODEL</td>
<td>.367</td>
<td>.053</td>
<td>.092</td>
<td>.083</td>
<td>.008</td>
</tr>
</tbody>
</table>
SECTION VI
THE SCALE MODEL WHEEL AND TIRE

The availability of the technology to fabricate a scale model tire with the characteristics required to satisfy the model law was a key factor in the conception and successful implementation of the test portion of this program. The techniques for designing and fabricating dynamically scaled model aircraft tires were developed and proven during programs conducted in 1970 and 1981 at the University of Michigan. These techniques are not discussed in this report. Information concerning basic tire scaling techniques are discussed in Ref. 1 and 3.

The specifications for the model tires that were used in this program called for dynamic scaling of the vertical load-deflection characteristics only i.e.,

\[F_T = \lambda_F \cdot F_T \]
\[\delta = \lambda_x \cdot \delta_0 \]

where

- \(F_T \): Vertical tire force
- \(\delta \): Vertical tire deflection
and,

- \(\lambda_F \): 1/27
- \(\lambda_x \): 1/3,

for all points on the load-deflection curve. Scaling of other tire properties including lateral, torsional, and fore-aft stiffness was not specified. Accurate scaling of these properties was considered as beyond the scope of this initial attempt at scaling a landing gear strut. Averaged vertical load-deflection data from static tests of model and full-scale A-37 NLG tires is presented in Fig. 36. The model tire data was scaled up with the appropriate scaling factors for this comparison.
FIGURE 36. Comparison of A-37 NLG Tire and the Model Gear Tire Load-Deflection Curves
Fig. 37 is a photograph of a model tire, which was cut in half to show the tire cross-section, and how the tire interfaced with the model wheel. The tire design included a bead design that is similar to the bead design used in aircraft tires. This is the first time this feature has been used in small scale model tire design.

The components of the model wheel are shown in Fig. 38. The wheel is assembled by placing the model tire over one wheel half, and then bolting the second wheel half in place. Sealing integrity is maintained by the tire bead, which seats against the wheel rim, and an o-ring which prevents pressure loss between the two wheel halves.

The mass of the wheel and tire is included as part of the overall unsprung mass. Individual mass scaling of the tire and wheel, with their respective full-scale A-37 NLG counterparts, was not accomplished for this program. Scaling of other mass properties, such as various wheel/tire moments of inertia, was not attempted.
FIGURE 37. Model Tire Cross-Section
FIGURE 38. Model Wheel Components
A two-phase test program was planned to acquire the data needed for a comprehensive evaluation of the model gear dynamic performance, relative to that of the A-37 NLG, and the model law. The A-37 NLG was tested during Phase I to establish a data baseline for a given set of test parameters. Follow-on tests of the model gear strut were then conducted in Phase IIa and Phase IIb. Scaled conditions for model gear tests were determined from the model law, and corresponding Phase I test conditions. Phase I and II test parameters are presented in Table 6.

Model gear tests were conducted for two different hydraulic fluids to investigate the effect of fluid properties on the hydraulic force characteristics of the model damping orifice. The first series of model tests were run with full-scale hydraulic fluid, i.e., MIL-H-5606 standard fluid. The second model test series was run with a fluid that had essentially the same density as MIL-H-5606. The viscosity of this fluid was considerably less than MIL-H-5606, but it was still approximately 17.6 percent greater than the value required by the model law, for complete flow similarity. Fluid properties for each test phase are summarized in Table 6. All other test conditions were identical to those of the Phase IIa test series. The model gear pneumatic volume was calculated from the equation (42).

All Phase I and Phase II tests were conducted on the Dynamic Test Machine (DTM), at the Mobility Development Laboratory (MDL). The capabilities and basic specifications of the DTM are listed in Table 7. This device (shown in Figure 39) was originally designed for air cushion model testing, but was later
SECTION VII
THE TEST PROGRAM

A two-phase test program was planned to acquire the data needed for a comprehensive evaluation of the model gear dynamic performance, relative to that of the A-37 NLG, and the model law. The A-37 NLG was tested during Phase I to establish a data baseline for a given set of test parameters. Follow-on tests of the model gear strut were then conducted in Phase Ila and Phase IIb. Scaled conditions for model gear tests were determined from the model law, and corresponding Phase I test conditions. Phase I and II test parameters are presented in Table 6.

Model gear tests were conducted for two different hydraulic fluids to investigate the effect of fluid properties on the hydraulic force characteristics of the model damping orifice. The first series of model tests were run with full-scale hydraulic fluid, i.e., MIL-H-5606 standard fluid. The second model test series was run with a fluid that had essentially the same density as MIL-H-5606. The viscosity of this fluid was considerably less than MIL-H-5606, but it was still approximately 17.6 percent greater than the value required by the model law, for complete flow similarity. Fluid properties for each test phase are summarized in Table 6. All other test conditions were identical to those of the Phase Ila test series. The model gear pneumatic volume was calculated from the equation (52).

All Phase I and Phase II tests were conducted on the Dynamic Test Machine (DTM), at the Mobility Development Laboratory (MDL). The capabilities and basic specifications of the DTM are listed in Table 7. This device (shown in Figure 39) was originally designed for air cushion model testing, but was later
<table>
<thead>
<tr>
<th>STRUT PARAMETERS</th>
<th>PHASE I</th>
<th>PHASE II (a)</th>
<th>PHASE II (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TARGET</td>
<td>ACTUAL</td>
<td>TARGET</td>
</tr>
<tr>
<td>(m_{sp}) (lb)</td>
<td>660.00</td>
<td>660.00</td>
<td>24.40</td>
</tr>
<tr>
<td>(m_u) (lb)</td>
<td>44.00</td>
<td>44.00</td>
<td>1.63</td>
</tr>
<tr>
<td>(V_0) (in)</td>
<td>18.50</td>
<td>18.15</td>
<td>0.67</td>
</tr>
<tr>
<td>(P_g) (psig)</td>
<td>12.00</td>
<td>11.30</td>
<td>-3.68</td>
</tr>
<tr>
<td>(P_T) (psig)</td>
<td>85.00</td>
<td>85.00</td>
<td>28.00</td>
</tr>
<tr>
<td>(A_p) (in)</td>
<td>—</td>
<td>2.71</td>
<td>0.301</td>
</tr>
<tr>
<td>(v) (FPS)</td>
<td>7.00</td>
<td>7.00</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>10.00</td>
<td>5.77</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>20.00</td>
<td>11.40</td>
</tr>
</tbody>
</table>

Fluid Type: MIL-H-5606 MIL-H-5606 Base Fluid for MIL-H-5606

* \(\mu \frac{lb-s}{in^2} \): 2.5 \times 10^{-6} \quad 2.5 \times 10^{-6} \quad 9.2 \times 10^{-7}
* \(\rho \frac{lb}{in^3} \): 3.0 \times 10^{-2} \quad 3.0 \times 10^{-2} \quad 3.0 \times 10^{-2}

TABLE 6. Target and Actual Test Conditions (Estimated)

* Estimated nominal fluid properties at 75 F and 1 atm.
<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight Range</td>
<td>20 - 1,000 lbs.</td>
</tr>
<tr>
<td>Max. Speed</td>
<td>70 FPS @ Track Centerline</td>
</tr>
<tr>
<td>Max. Accel./Decel.</td>
<td>8 FPS</td>
</tr>
<tr>
<td>Track Width</td>
<td>6 Ft</td>
</tr>
<tr>
<td>Track Height</td>
<td>1 Ft</td>
</tr>
<tr>
<td>Track Centerline Dia.</td>
<td>83.3 Ft</td>
</tr>
<tr>
<td>Boom Drive System</td>
<td>2 Water filled aircraft tires driven by a manually controlled 60 HP DC electric motor.</td>
</tr>
<tr>
<td>Max. No. of Data Channels</td>
<td>20</td>
</tr>
<tr>
<td>Data Acquisition System</td>
<td>Two VR-3700 B Analog FM Recorders</td>
</tr>
</tbody>
</table>

TABLE 7. Dynamic Test Machine Specifications and Features
modified to add the capability of testing small landing gear struts and aircraft tires.

For Phase I tests, the A-37 NLG strut was attached to the DTM heave post, which allows free vertical motion (see Fig. 40). Fore-aft and other lateral motion is restrained by large roller bearings which are in contact with the heave post. A smaller heave post was used for Phase II tests, since the model gear sprung weight was limited to 24.44 lbs. This heave post, shown in Fig. 42 weighs only five pounds.

The motion of the DTM was manually controlled during all tests. A typical test run consisted of accelerating the DTM to a desired target velocity specified in the test plan, and continuing the test at a constant speed, until three revolutions around the test track were completed. The machine was then accelerated to the next target test velocity. Three passes around the track were planned as a check for repeatability of test data for a given condition.

A full range of data was recorded during all Phase I and Phase II tests to allow for a complete assessment of full-scale and model gear subsystem performance. Instrumentation was installed on each strut to measure sprung mass acceleration, sprung mass displacement, strut stroke, stroke rate, and pneumatic and hydraulic pressure. The installation of the A-37 NLG, with instrumentation, on the DTM, is shown in Fig. 40 and 41. Fig. 42, 43, and 44 show the installation of the instrumented model gear on the DTM. Outputs were routed through a slip ring assembly on the center post of the DTM to a Honeywell VR 3700 B F.M. analog recorder.

All Phase I and Phase II tests were conducted over a series of two cosine bumps placed end to end on a section of the DTM track surface. The bumps were designed to be identical to the bump configuration used in the analytical
simulations (Ref. Fig. 17, Section IV). The bumps used during the model gear tests are visible in Fig. 44.
FIGURE 40. A-37 NLG Test (Back View)
FIGURE 42. Model Gear Test (Back View)
Figure 43. Model Gear Test (Side View)
FIGURE 44. Model Gear on Cosine Obstacle
Displacement and stroke data from initial test runs of the model gear on the DTM is compared in Fig. 45, to corresponding tests of the A-37 NLG conducted at dynamically similar test speeds. Apparent from an analysis of this test data, is an indication that damping in the model gear strut was considerably greater than damping in the A-37 NLG strut. This result was attributed to binding of the model gear strut, which is clearly evident from the lack of free response after it cleared the second cosine bump. Also, there was a change in the static equilibrium stroke position. The A-37 NLG strut did not exhibit this behavior.

Quasi-static load-stroke tests of both struts were conducted, following the initial DTM tests. Results of these tests confirmed that there was excessive friction in the model gear strut, which contributed to the nonsimilar dynamic response observed during the dynamic tests. The friction tests were run with the charge ports of each strut open to atmosphere, which prevented pneumatic affects on o-ring seal friction. Also, the load-stroke tests were repeated after first removing the orifice from each strut. A separate evaluation of orifice seal and o-ring friction was made from a comparison of results from both series of load-stroke tests. Upper bearing friction was considered to be negligible, since there were no side loads applied during the tests.

Orifice seal friction in the A-37 NLG strut was approximately one pound, and was essentially constant throughout the entire stroke range of the strut.
FIGURE 45. Model Gear *

vs.
A-37 NLG

TAXI SPEED LEGEND
5.7 Ft/s ------
10.0 Ft/s * * * *

* High Friction Orifice Seal

93
Ideally, dynamic similarity requires a corresponding value of \(\frac{1}{27} \) lbs (\(\lambda_F = \frac{1}{27} \)) in the model gear strut, however, measurements of actual orifice seal friction yielded a value of 1.5 lbs (40 times the required value).

Inspection of the model gear orifice seal indicated that poor seal conformity with the cylindrical sealing surface was the cause of excessive friction. This situation is depicted in Fig. 46b, which shows how binding forces become concentrated at the points of contact between the seal and sealing surface. A secondary consequence of poor seal conformity is a loss of sealing integrity caused by excessive leakage across the seal. These problems are avoided with a properly designed seal, which is shown in Fig. 46a. In this case radial sealing forces are evenly distributed around the periphery of the seal face, and leakage past the seal is minimized. Proper split-ring seal design is briefly covered in Appendix A.

It was decided to replace the original split-ring seal design with an available teflon capped o-ring type seal, which had inherently good cylindrical conformity. Also, the seal groove machined into the orifice plate was modified to minimize radial compression of the o-ring. The surface finish of the metal sealing surface (inside piston wall) was also improved (polished to about four microrinches), to further reduce friction. Another series of load-stroke tests performed on the model gear strut, following completion of the modifications, indicated that orifice seal friction had been reduced by approximately 83 percent. Overall, friction was still greater than the dynamically similar value, but the binding problem was eliminated. (There was no actual attempt at achieving precisely scaled frictional characteristics, however, the affects of stroking friction on the dynamic response of the A-37 NLG strut was evaluated analytically using LANSIM. Although this approach was considered as second
FIGURE 46. Cylindrical Conformity of a Split Ring Seal
best to obtaining dynamically similar friction in the model gear, it did pro-
vide certain valuable insights into the importance of frictional contributions
for this case. The friction model used, and the results of the analysis, are
presented in Appendix B.)

Phase II tests of the model gear on the DTM were repeated after the
friction assessment was finished. Results from this round of testing are
presented at the end of this section. In general, the dynamic response of the
model gear strut was markedly improved over the initial tests run with the high
friction split-ring orifice seal. Qualitatively, both struts exhibited the
same dynamic response. This was true for all test parameters measured for each
strut. Quantitative correlation was also considered as good for the two highest
test speeds, but not good for the slowest test speed. Generally, quantita-
tive correlation improved as the test speed was increased. This point is
discussed further in the next section.

Figure 47 and 48 show time history plots of the model gear (solid curve)
dynamic response against the A-37 NLG (dotted curve) at dynamically similar
test speeds. (The model gear data has been scaled up with the scaling laws for
all data comparisons). Obviously, quantitative agreement was not good at this
speed, primarily due to greater frictional damping in the model gear strut.
The stroke data in Fig. 47 indicates that the model gear was barely stroking at
all compared to the A-37 NLG.

Data for the two highest test speeds is presented in Fig. 49 through 52.
Correlation of model gear results with A-37 NLG results was better for these
conditions, although there was some disparity in peak values of all parameters,
during bump traversal. Free response of each strut after the second bump was
cleared, was similar in that the number of oscillations was the same. However,
there was a difference in the phase of the dynamic response. This is primarily due to a nonsimilarity in the pneumatic force characteristics in the model gear strut, which is evident in the time history plot of this parameter (Ref. Fig. 50 and 52). Fig. 53 through 55 show the polytropic characteristics of each strut during bump traversal for each test speed.

Fig. 56 through 59 are various plots of the actual polytropic curves obtained during the tests of both struts. The test data is compared with theoretical polytropic curves in Fig. 56 and 57. Stroke data in these two plots was referenced to the static equilibrium position corresponding to a polytropic exponent of \(N = 1.1 \). The dynamic polytropic characteristics are, clearly, quite different than the theoretical characteristics assumed in the analytical simulations using LANSIM. In general, the polytropic curve was considerably stiffer during a compression, and less stiff during an extension. The same physical effect was evident in both struts, but was more pronounced in the model gear.

Fig. 58 compares the polytropic curves obtained for the A-37 NLG at the two highest test speeds. Similar data is depicted in Fig. 59 for the model gear strut. The data shows that the polytropic characteristics for the A-37 NLG strut remained fairly consistent for both test speeds, although the curve was slightly softer at the higher test speed of 20 ft/sec i.e., more stroke was used to generate the same pneumatic force. There was more of a difference in the polytropic curves for the model gear strut, at the two different test speeds, as shown in Fig. 59. There was less stroke used at the higher test speed of 11.5 ft/sec, and the overall curve at this speed tended to exhibit more of an isothermal behavior than the same curve produced at 5.7 ft/sec. The
reason for this behavior in the model gear strut was not discernable from the
test data, but a relationship between the polytropic behavior of the curve and
the range of stroke used seemed to be indicated.

Damping orifice characteristics are compared in Fig. 60 through 63. The
orifice discharge coefficient plotted in these figures is an effective value,
calculated from stroke rate and pressure data obtained from the tests. The
following equation was used in these calculations:

\[
C_d = \left[\frac{\rho A_h^2 \dot{s}^2}{2 \Delta P A_t g_c} \right]^{1/2}
\]

where

- \(\rho \): Hydraulic fluid density (used as a constant for all
 calculations)
- \(A_h \): Hydraulic area
- \(\dot{s} \): Measured stroke rate
- \(\Delta P \): Pressure drop across orifice (from pneumatic and hydraulic
 pressure measured during the tests)
- \(A_t \): Throat area of orifice

It should be kept in mind when looking at Fig. 60 through 63, that only represen-
tative data is presented, i.e. data for very low stroke rates, or of
extremely short duration, was omitted from these plots. \(C_d \) data is plotted
against time and relative stroke. Also, the time scales on these plots do not
match the time scales in Fig. 49 through 52. The plots of \(C_d \) vs. time were
included to show the dynamic behavior of the flow characteristics of each
orifice.

In general, the model gear was operating at a smaller discharge coeffi-
cient than the A-37 NLG, which affected the quantitative correlation of hydrau-
llic damping forces. Also evident from the data was a higher value of \(C_d \) for
reverse flow through the orifice (strut extension). This result was noted for all test conditions, and both struts exhibited this behavior.

The data presented in Fig. 62b and 63b for the A-37 NLG strut, shows that the effective C_d was very high at a taxi speed of 20 ft/sec, during the bump traversal. After the gear cleared the obstacle, the orifice C_d returned to a smaller value. The performance of the model gear orifice was fairly consistent at test speeds of 5.7 ft/sec and 11.5 ft/sec. There was not a significant change in the effective C_d at the highest test speed, as is evident from a comparison of Fig. 60a with 62a and also Fig. 61a with 63a.

Model gear tests were also conducted with a different hydraulic fluid, to evaluate the affects of fluid viscosity on overall dynamic response of the strut. The fluid used in this series of tests is the base fluid that is used in the manufacture of standard MIL-H-5606 hydraulic fluid. The properties of each fluid were presented in Table 6. Although the viscosity of the base fluid does not correspond to the value required for complete flow similarity, it was considerably less than that of standard MIL-H-5606. The properties of this fluid were closer to the required properties than any other readily available fluid.

Data from this series of tests is compared with the data obtained from model gear tests conducted with standard MIL-H-5606 fluid (Ref. Fig. 64 through 67). It is evident from these results that improved flow similarity had little impact on overall dynamic response of the model gear strut.
FIGURE 47. Model Gear (Phase IIa) 4.0 Ft/s

VS.

A-37 NLG (Phase I) 7.0 Ft/s
FIGURE 48. Model Gear (Phase IIa) vs. A-37 NLG (Phase I)

<table>
<thead>
<tr>
<th>TAXI SPEED</th>
<th>LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 Ft/s</td>
<td></td>
</tr>
<tr>
<td>7.0 Ft/s</td>
<td>......</td>
</tr>
</tbody>
</table>
FIGURE 49. Model Gear (Phase IIa) 5.7 Ft/s
vs.
A-37 NLG (Phase I) 10.0 Ft/s
FIGURE 50. Model Gear (Phase Ila) 5.7 Ft/s

VS.

A-37 NLG (Phase 1) 10.0 Ft/s

LEGEND

TAXI SPEED

FIGURE 51. Model Gear (Phase IIa) 11.5 Ft/s vs. A-37 NLG (Phase I) 20.0 Ft/s
FIGURE 52. Model Gear (Phase IIa) vs. A-37 NLG (Phase I)

TAXI SPEED

LEGEND

11.5 Ft/s

20.0 Ft/s
PNEUMATIC FORCE (LBF)

RELATIVE STROKE (S/S_{static})

FIGURE 55. Polytropic Curves 3 - Model Gear vs. A-37 NLG
FIGURE 56. Comparison of A-37 NLG Polytropic Data With Isothermal and Isentropic Polytropic Curves
FIGURE 57. Comparison of Model Gear Polytropic Data With Isothermal and Isentropic Polytropic Curves
FIGURE 58. Comparison of A-37 NLG Polytropic Curves For Two Different Test Speeds
FIGURE 59. Comparison of Model Gear Polytropic Curves For Two Different Test Speeds.
FIGURE 60. Effective Orifice C_d

(A) Model Gear (Phase IIa)
5.7 Ft/s

(B) A-37 NLG (Phase I)
10.0 Ft/s
FIGURE 61. Effective Orifice C_d 2

TAXI SPEED

(A) Model Gear (Phase IIa) 5.7 Ft/s
(B) A-37 NLG (Phase I) 10.0 Ft/s
FIGURE 62. Effective Orifice C_d 3

(A) Model Gear (Phase IIa) 11.5 Ft/s
(B) A-37 NLG (Phase I) 20.0 Ft/s
FIGURE 63. Effective Orifice C_d^4

(A) Model Gear (Phase IIa) 11.5 Ft/s

(B) A-37 NLG (Phase I) 20.0 Ft/s
FIGURE 64. Model Gear (Phase IIa) 5.7 Ft/s vs. Model Gear (Phase IIb) 5.7 Ft/s
FIGURE 65. Model Gear (Phase IIa) 5.7 Ft/s

vs.

Model Gear (Phase IIb) 5.7 Ft/s
FIGURE 66. Model Gear (Phase IIa) 11.5 Ft/s vs. Model Gear (Phase IIb) 11.5 Ft/s
FIGURE 67. Model Gear (Phase IIa) 11.5 Ft/s

vs.

Model Gear (Phase IIb) 11.5 Ft/s
SECTION IX
CONCLUSIONS

1. The primary objective of this program was to assess the feasibility and practicality of using dynamic scaling techniques to design, fabricate, and test a model of a simple oleo-pneumatic landing gear strut and tire. The data presented in the preceding section demonstrated that good results were obtained from tests of a small, dynamically scaled model of an A-37 NLG strut and tire, although some nonsimilarities were present. However, despite these nonsimilarities, the dynamic response of the model gear was considered as fully representative of the dynamic response of the full-scale A-37 NLG, at the two highest test speeds. The scaling techniques developed for each of the sub-systems of the strut were considered as generally adequate for application to other landing gear struts, although some refinement in the techniques of scaling the air spring and hydraulic damping orifice may be required to improve quantitative correlation.

2. The time history data presented in the preceding section showed a distinct improvement in correlation of data at increased test speeds. Correlation at the lowest test speed (7.0 ft/sec for the A-37 NLG and 4.0 ft/sec for the model gear) was not good, whereas correlation at the two highest speeds was better. The poor correlation at the slow test speed was caused primarily by nonsimilar seal friction, which was more dominant in the model gear strut than in the A-37 NLG at this test condition. A simple analysis of seal friction effects on the dynamic response of the A-37 NLG strut (see Appendix B) demonstrated that friction is more dominant at slower taxi speeds during obstacle
traversal, and becomes less of a factor at higher speeds. This explains the general improvement in the correlation of test data at the higher test speeds, for this case. Thus, it was possible to obtain good results, despite nonsimilar frictional characteristics in the model gear strut.

3. There were some disparities that existed in the data at the higher test speeds, which were primarily caused by nonsimilarities in the polytropic characteristics. These nonsimilarities are clearly evident in the plots of dynamic pneumatic force vs. stroke data for each strut, presented in Section VIII. This data indicates that the model gear was apparently operating over a broader range of polytropic exponents than the A-37 NLG. The polytropic characteristics of both struts showed a tendency to become softer (more isothermal) at the highest test speed (20.0 ft/sec for the A-37 NLG, and 11.5 ft/sec for the model gear) and stiffer (more adiabatic) at the slower test speed (10.0 ft/sec for the A-37 NLG and 5.7 ft/sec for the model gear). Also evident was a stiffening of the air spring during compression, and softening during extension. These effects were more pronounced in the model gear strut (Ref. Fig. 57). The reasons for this behavior were not readily determined from the available test data, but it may be because of some interaction of the air spring and the hydraulic oil, during strut actuation.

4. Plots of the effective discharge coefficient calculated for each strut indicated that there were some differences in the orifice flow characteristics, especially at the highest test speed (20.0 ft/sec for the A-37 NLG, and 11.5 ft/sec for the model gear). Fig. 62b and 63b, presented in the preceding section, show that the A-37 NLG orifice was apparently operating at an extremely high effective C_d, at this test speed, whereas the model gear results
remained consistent with the results obtained at 5.7 ft/sec. The reasons for the high C_d in the A-37 NLG could not be determined from the test data, however, indications suggest that pressures measured in the hydraulic chamber were considerably less than expected, for the stroke rates produced. This result could possibly be due to compressibility effects caused by air entrainment below the orifice, or dissolved air which momentarily comes out of solution. It was noted that the C_d returned to the values obtained at a test speed of 10.0 ft/sec after the A-37 NLG tire cleared the second cosine bump (Ref. Fig. 62b and 63b), i.e., the very high values of C_d were present only during obstacle traversal, under highly transient orifice flow conditions. This would tend to support the conclusion that the effect was a temporary one, possibly linked to dissolved air quickly coming in and out of solution under rapidly changing conditions, which occurred during the forced response of the strut. These effects did not show up in the model gear, possibly because of the small volume of oil inside this strut. Also, actual operating pressures were smaller, which would cause less compressibility effects than in the A-37 NLG strut.

Results obtained from Phase IIb tests, indicated that the effect of better flow similarity on overall orifice performance was minimal for this case. Complete flow similarity was not an important factor in obtaining dynamically similar response in the model gear strut. However, this result does not imply that orifice flow similarity considerations should be omitted from a future model gear design. Flow similarity may be more important, if the chosen model scale is smaller than $1/3$ i.e., 1/10, 1/100, etc. Such an extreme
scaling factor (which would be required for a larger class landing gear strut) could possibly cause more flow similarity related affects on orifice damping characteristics.
SECTION X
RECOMMENDATIONS

The scaling techniques developed during this program were proven as suitable for design, fabrication, and testing of dynamically scaled model landing gear struts and tires. However, it is emphasized that this program was an initial attempt at scaling a relatively simple oleo-pneumatic shock strut and tire. Several areas were identified during the course of the program as requiring further analysis and development, to improve and solidify the scaling techniques for application to any landing gear strut. Thus, the following recommendations are made:

1. A comprehensive approach for predicting the frictional characteristics of a landing gear strut should be developed. It should be based on the aspects of seal and bearing design, which includes such factors as seal type, seal and bearing material, mating part surface finishes, lubrication, and expected loading conditions. Such an approach is required, since measurement of actual friction from full-scale strut testing would be impractical, especially for a large gear.

Proper seal/bearing design for a model gear strut would, in general, be required to accurately simulate the dynamic response of a full-scale strut. The low-speed tests of the A-37 NLG and the model gear struts demonstrated the nonsimilarity that can result if frictional effects are not properly represented. Fortunately, frictional effects were small during forced response of each strut at the two highest test speeds, and good results were obtained. However, this may not necessarily have been the case for a different strut.
method to estimate frictional contributions to overall strut response would be valuable in establishing an acceptable range of variation for frictional characteristics, for a model gear strut design. A suitable seal/bearing design for a model gear could then be chosen without a necessity for measuring friction in a full-scale strut.

2. More analytical and experimental work in the areas of orifice flow and polytropic compression is required to better understand and quantify the interaction of these two subsystems in a single chamber oleo-pneumatic strut. The polytropic compression/rarefaction process should be investigated for a broad range of stroke rates of both short and long duration. Tests should be conducted with and without the presence of hydraulic damping effects. Also, the effect of entrained and dissolved gas on orifice flows should be investigated for MIL-H-5606, and other hydraulic fluids in service. Experimental work should include measurement of the temperature and pressure profile along the orifice entrance and throat. This data would be valuable in determining the variation of fluid properties through the orifice. As a minimum, the temperature history of the hydraulic fluid and the gas charge should be recorded during future landing gear dynamic tests. Better understanding of these phenomena will result in more accurately scaled model landing gear struts, and better designed operational hardware.

3. The scale (physical size) of a model gear should be selected based on considerations of the capacity of the test rig to be used, and the feasibility of obtaining a proper scale model tire of the required size. The size and weight of the model should fall in the mid to upper range of the test rig capacity, if possible. This recommendation is based on some of the difficul-
ties encountered in working with a very small model gear. The model was particularly sensitive to slight errors in setting the pneumatic volume and charge pressure, which affected the stiffness of the air spring. A larger scale model would not have been as sensitive in that respect, and better correlation could have been obtained. Also, the small scale chosen for the model caused difficult limitations on the unsprung weight. The weight required to ensure structural integrity of the model gear components, was greater than the dynamically similar value calculated from the scaling laws. This limitation was relaxed by adding an appropriate amount of dead weight to the A-37 NLG axle. However, the necessity of the weights may have been avoided if the model scale had been larger.

4. The scaling methods developed during this program should be applied to a strut with a metered orifice. This added degree of complexity seems to be the next logical step in validating and refining the scaling techniques. The A-37 NLG is probably the best candidate for baseline full-scale tests with a metered orifice, since procedures and test hardware are already available. The one-third scale model, however, is not appropriate for metered orifice testing because of difficulties associated with fabricating such a small metering pin. A half-scale, or two-thirds scale model of the A-37 NLG would present less of a problem.

5. The developed scaling techniques should also be applied to a larger class of landing gear struts than the A-37 NLG, which is a small capacity strut of fairly simple design. Two potential candidates for a follow-on program are
the F-15 main gear and the C-130 NLG strut, both of which have been tested at the Landing Gear Development Facility (LGDF), Wright-Patterson AFB Ohio.

6. The feasibility of fabricating a scale model tire with the required vertical load-deflection characteristics was demonstrated. These techniques should be extended to other tire properties including lateral, fore-aft, and torsional stiffness. Proper representation of these properties would allow further extension of model gear testing, to include acceleration/deceleration, and side force effects.
REFERENCES

APPENDIX A

SPLIT RING SEAL DESIGN

Good cylindrical conformity of a split-ring seal depends on proper design of its free (uninstalled) shape. Improper design of the uninstalled shape of this type of seal will result in the seal taking on an oval shape when it is installed. This can cause excessive binding friction and loss of sealing integrity, as discussed in Section VIII.

Proper split-ring design is based on a specific mathematical relation (Ref. Fig. A1) which was obtained from Ref. 8:

\[u = \frac{G}{3\pi} \left(1 + \frac{\theta}{2} \sin \theta \right) \] \hspace{1cm} (A-1)

where
- \(u \): Increase in the radius of the uninstalled ring over the radius of the installed (perfect circle) ring,
- \(G \): Uninstalled gap dimension,
- \(\theta \): Angle as indicated in Fig. A1 (radians).

A split-ring seal accurately designed and fabricated according to this relation will attain the desired "perfect circle" shape when it is installed. Proper split-ring design is especially critical for smaller seals, which are particularly sensitive to small deviations from a perfectly cylindrical shape, and imperfections in the sealing surface.

Initial normal force associated with the compression required to install a split-ring seal can be calculated from the following equation:

\[F_n = \frac{\pi D_o W E G}{7.07 D_o \left(\frac{D_o}{t} - 1 \right)} \text{lbf} \] \hspace{1cm} (A-2)

where
- \(E \): Seal material modulus of elasticity (psi),
- \(G \): Uninstalled gap width (in),
\[\theta: \text{Angle (Radians)} \]
\[W: \text{Ring Width} \]
\[G: \text{Uninstalled Gap Width} \]
\[D: \text{Installed Diameter} \]

FIGURE A-1. Split Ring Seal Design Parameters
\(D_0 \): Fitted (installed) seal outer diameter (in),

\(t \): Minimum radial thickness (in).

This equation was obtained from Ref. 11.
APPENDIX B

ANALYTICAL FRICTION MODEL

Analytical simulations were conducted using the computer program LANSIM, to assess the effect of friction on the dynamic response of the A-37 NLG strut. An additional subroutine was incorporated into the computer program to compute the stroking friction per integration time step. The friction model included bearing contributions caused by horizontal loads at the axle, with an additional component at the bottom bearing caused by o-ring seal compression. Orifice seal friction effects were also included. Specifics of the friction model are as follows:

1. **BEARING FRICTION:**

 Equation (39) was used to calculate bearing friction. It is repeated here for easy reference:

 \[
 F_f = \left[v_T \left(\frac{L_a}{L_s + s} - 1 \right) + v_B \left(\frac{L_a}{L_s + s} \right) \right] F_d
 \]
 (39)

 The drag force \(F_d \) was obtained from the radial spring tire model. The friction coefficients \(v_T \) and \(v_B \) were assumed as constant, and were estimated based on bearing/seal materials, surface finishes, and boundary lubrication conditions.

2. **O-RING FRICTION:**

 The o-ring seal exerts additional radial force against the outer piston surface, as a result of the cross-sectional squeeze required to assemble
the mating parts. This force is calculated according to the following equation:

\[F_n = \pi D_m K_1 e^{CS_a} \]

(B-1)

where \(D_m \): Mean diameter of o-ring, \((I.D. + O.D.)/2.0\)

\(K_1 \) & \(C \): Empirical constants determined according to o-ring section width and Shore hardness.

\(S_a \): Percent cross-sectional squeeze of the installed o-ring.

This equation, and values of \(K_1 \) and \(C \) were obtained from Ref. (6).

There is also a dependence of seal normal force on the pressure differential across the seal. In general, this component can be calculated from (Ref. 11):

\[F_{n, P} = K_2 \pi \Delta P D_m w \]

(B-2)

where \(K_2 \) is an empirical constant which depends on the type of seal being used. Also, \(\Delta P \) is the pressure drop across the seal (the difference between internal pneumatic pressure and outside ambient pressure). The value of \(K_2 \) for the simulations conducted was \(K_2 = 1 \). Thus, total o-ring seal friction was calculated according to

\[F_{f, os} = \nu_B \pi D_m (K_1 e^{CS_a} + \Delta P w) \]

(B-3)

This equation is plotted in Fig. B1 and B2 for different values of the friction coefficient, \(\nu_B \). Fig. B1 was based on the model gear o-ring design and all force and pressures were scaled up with the model law. Fig. B2 was based on the A-37 NLG strut o-ring seal. Fig. B3 shows how cross sectional squeeze affects the friction curve.
FIGURE B-1. Variation of O-Ring Friction With Pneumatic Pressure For Different Friction Coefficients (Model Gear)
FIGURE B-2. Variation of O-Ring Friction With Pneumatic Pressure For Different Friction Coefficients (A-37 NLG Seal)
FIGURE B-3. Variation of O-Ring Friction With Pneumatic Pressure For Different Cross-Sectional Squeeze (Model Gear Seal)
3. **ORIFICE SEAL FRICTION:**

Friction caused by the orifice seal was calculated according to

\[F_{f_o} = \pi D_o v_o v_o \Delta P_o \]

where

- \(D_o \): Outer diameter of seal (installed)
- \(v_o \): Width of seal
- \(\Delta P_o \): Pressure drop across the seal
- \(v_o \): Friction coefficient

The pressure drop across the seal, \(\Delta P_o \), was the difference between hydraulic and pneumatic pressure.

Input parameters for the simulations are listed in Table B1. Tire parameters were identical to those listed in Table 3. Results obtained from the simulations with friction were plotted against results obtained from simulations of a frictionless strut. Typical time history plots of sprung mass parameters are presented in Fig. B4 through B6. This data clearly shows how friction affects the dynamic response during obstacle traversal, and during free response after the strut clears the second bump. During forced response, friction has considerably less of an effect at higher taxi speeds, and more of an effect at the lower taxi speed i.e., the strut behaves like a frictionless strut during forced response at higher speeds. The free response is obviously quite different with the additional friction damping. This was the case for each of the simulated taxi speeds.

Similar runs of the model gear, with friction, were not conducted, however, a conclusion concerning model gear behavior was drawn from the simulations of the A-37 NLG, with friction. The simulation results demonstrated that, during obstacle traversal, an improvement in correlation of test data, at
the higher test speeds, could be expected despite nonsimilar friction in the model gear strut.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>No Friction</th>
<th>With Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{sp} (lb)</td>
<td>660.00</td>
<td>660.00</td>
</tr>
<tr>
<td>m_u (lb)</td>
<td>44.00</td>
<td>44.00</td>
</tr>
<tr>
<td>V_0 (in)</td>
<td>18.45</td>
<td>18.45</td>
</tr>
<tr>
<td>A_p (in)</td>
<td>2.71</td>
<td>2.71</td>
</tr>
<tr>
<td>N</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>P_0 (psig)</td>
<td>11.30</td>
<td>11.30</td>
</tr>
<tr>
<td>P_a (psia)</td>
<td>14.70</td>
<td>14.70</td>
</tr>
<tr>
<td>A_h (in)</td>
<td>2.09</td>
<td>2.09</td>
</tr>
<tr>
<td>A_o (in)</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>C_d</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td>C_d</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td>V_T</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>V_B</td>
<td>0.00</td>
<td>0.10</td>
</tr>
<tr>
<td>V_o</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>v (FPS)</td>
<td>7.00</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>20.00</td>
</tr>
</tbody>
</table>

TABLE B-1. LANSIM Inputs (Strut Model)
FIGURE B-4. A-37 NLG Strut (Frictionless)

vs.

A-37 NLG Strut (With Friction)

(Taxi Speed = 7.0 Ft/Sec)
FIGURE B-5. A-37 NLG Strut (Frictionless) vs. A-37 NLG Strut (With Friction) (Taxi Speed = 10.0 Ft/Sec)
FIGURE B-6. A-37 NLG Strut (Frictionless)

vs.

A-37 NLG Strut (With Friction)
(Taxi Speed = 20.0 Ft/Sec)