WEAK CONVERGENCE OF SUMS OF MOVING AVERAGES IN THE
ALPHA-STABLE DOMAIN OF (U) NORTH CAROLINA UNIV AT
CHAPEL HILL DEPT OF STATISTICS F AVRAM JUN 87 TR-191

UNCLASSIFIED AFOSR-TR-87-1087 F49620-85-C-0144

F/G 12/3

NL
Weak convergence of sums of moving averages in the \(\alpha\)-stable domain of attraction

Skorohod has shown that the convergence of sums of i.i.d. random variables to
an \(\alpha\)-stable Levy process, with \(0<\alpha<2\), holds in the weak \(J_1\) sense. We show that for
sums of moving averages with at least 2 non-zero coefficients, weak \(J_1\) convergence
cannot hold, however, if the moving average coefficients are positive, weak \(M_1\)
convergence usually does hold.
WEAK CONVERGENCE OF SUMS OF MOVING AVERAGES IN THE α-STABLE DOMAIN OF ATTRACTION

by

Florin Avram

and

Murad Taqqu

Technical Report No. 191

June 1987
Weak Convergence of Sums of Moving

Averages in the α-Stable Domain of Attraction

by

Florin Avram
Department of Mathematics
Purdue University
West Lafayette, IN 47907

and

Murad Taqqu
Department of Mathematics
Boston University
Boston, MA 02215

Abstract

Skorohod has shown that the convergence of sums of i.i.d. random variables to an α-stable Levy process, with $0 < \alpha < 2$, holds in the weak J_1 sense. We show that for sums of moving averages with at least 2 non-zero coefficients, weak J_1 convergence cannot hold, however, if the moving average coefficients are positive, weak M_1 convergence usually does hold.

Key words and phrases: α-stable, weak Skorohod convergence, moving averages, bisection method.

A.M.S. 1980 Subject Classifications: Primary, 60F17; Secondary, 60J30.

This research supported by the Air Force Office of Scientific Research Contract No. F49620 85C 0144.
Introduction

The investigation of functional limit theorems for processes with paths in $D[0,1)$ (functions continuous to the right and with left limits to the left) was started by Skorohod (1956). In that paper, Skorohod introduced four topologies in $D[0,1)$, called J_1, J_2, M_1, M_2.

The four topologies differ in the way converging sequences of functions f_n (deterministic functions) are required to approach their limit f in the neighborhood of a jump of f. We indicate now roughly what these ways of approaching a jump are.

In the case of the J_1 topology, f_n have to have one jump only (which will approximate in location and height the jump of f).

\[\begin{array}{c}
\text{In the case of the } J_1 \text{ topology, } f_n \text{ have to have one jump only (which will approximate in location and height the jump of } f). \\
\text{ }}
\end{array} \]

In the case of the M_2 topology, f_n are allowed to jump several times through intermediary values falling roughly in between the left and right limits of f.

\[\begin{array}{c}
\text{In the case of the } M_2 \text{ topology, } f_n \text{ are allowed to jump several times through intermediary values falling roughly in between the left and right limits of } f. \\
\text{ }}
\end{array} \]

In the case of the M_1 topology, several jumps are allowed, but they have to go roughly in the same direction, like stairs (which get "compressed" into a single jump of f).
\[\text{J}_1 \text{ convergence is thus appropriate only when one jump of the limit comes out of a single jump in } f_n. \] This turned out to be the case for the normalized sums of i.i.d. random variables in the D(\(\alpha\))-domain of attraction, with 0 < \(\alpha\) < 2; in this case, as shown by Skorohod (1957), weak J\(_1\) convergence holds.

We will show, however, that in the case of normalized sums of moving averages of i.i.d's in D(\(\alpha\)), with at least two non zero coefficients, weak J\(_1\) convergence does not hold (with only one non zero coefficient it does hold, by Skorohod's result). The reason is that in this case, one jump of the limit comes out of "stairs" with at least two steps. If we assume also \(c_i \geq 0\), then we can prove, however, that weak M\(_1\) convergence holds (since the steps will go then in the same direction).
1. Statement of Results:

We now introduce some notation and state the main results:

Let X_i be an i.i.d. sequence belonging to $D(\alpha)$, $0 < \alpha < 2$. We assume also $EX_i = 0$ when $1 < \alpha < 2$.

Let $c_i, i \in \mathbb{Z}$, be a sequence such that there exists $\nu, \nu < \alpha$, so that

\[\sum_i |c_i|^\nu < \infty. \] (1.1)

(1.1) ensures that the moving averages:

\[Y_m = \sum_{i=-\infty}^{\infty} c_{m-i} X_i \] (1.2)

are well defined in L^ν sense (and in fact also in a.s. sense, cf. Kawata (1972), Theorems 12.11.2, 12.10.4).

Let a_n be constants such that

\[\sum_{i=1}^{[nt]} X_i / a_n \xrightarrow{f.d.d.} X_{\alpha}(t), \] (1.3)

where $X_{\alpha}(t)$ is a Levy α-stable process, and $\xrightarrow{f.d.d.}$ denotes convergence of the finite-dimensional distributions.

In the sequel, we assume also that ν in 1.1 satisfies $\nu < \alpha$. In this case, Davis and Resnick (1984), and Aastrauskas (1983) have shown that the normalized sums of Y_i are attracted to a Levy α-stable process as well, namely:

Theorem 1 (Davis and Resnick (1984), Theorem 4.1, Aastrauskas (1983), Theorem 11: When $\sum |c_i| < \infty$, \n
\[\sum_{i=1}^{[nt]} Y_i / a_n \xrightarrow{f.d.d.} (\sum c_i) X_{\alpha}(t) \] (1.4)
holds, where \(a_n \) and \(X_n(t) \) are the same as in the case of independent summands (1.3).

Can the f.d.d. convergence in (1.4) be replaced by weak convergence in \(D[0,1) \) with respect to one of the Skorohod topologies? We show that weak \(J_1 \) convergence can not hold, if the moving coverage has at least 2 non zero coefficients.

Theorem 2: Suppose that \(c_0 \neq 0 \) and \(c_{i_0} \neq 0 \) for some \(i_0 \neq 0 \). Suppose also \(c_i = 0 \) for \(i < 0 \) and \(i > K \), for some finite \(K \). Then, convergence in (1.4) does not hold in \(w(J_1) \) sense.

Remark:
1) The assumption that only finitely many \(c_i \)'s are different from 0 could probably be removed.
2) When only one coefficient \(c_i \) is non zero (when the summands are independent), \(w(J_1) \) convergence does hold, by Skorohod (1957).

However, under some extra assumptions, weak \(M_1 \) convergence holds.

Theorem 3: Suppose that \(c_i \geq 0 \), and that either
a) \(a \leq 1 \)
orb) \(a > 1 \), and (T.C.) holds
then, weak \(M_1 \) convergence holds in (1.4).

Note: (T.C.) is a weak technical condition on the sequence \(c_i \), which could probably be removed, and will be specified below.

As far as \(M_2 \) convergence, we make a

Conjecture: If \(c_i = 0 \) for \(i \leq 0 \), and for every \(K \),

\[
0 \leq \frac{\sum_{i=1}^{K} c_i}{\sum_{i=1}^{\infty} c_i} \leq 1 ,
\]
then weak M_2 convergence in (1.4) holds.

We will give now a heuristic explanation of our results.

First, let us assume Y_i are finite moving averages:

$$Y_i = \sum_{j=0}^{K} c_j X_{i-j}$$

Heuristically, most of the sequence $X_{i,n} = X_i/a_n \approx 0$ (is negligible), except for a sequence of "big values", $X_{i_0,n}, X_{i_1,n}, ..., X_{i_k,n}$, which are spread apart:

$$i_0 \ll i_1 \ll ... \ll i_k \ll ...$$

It follows that most of $Y_{i,n} = Y_i/a_n$ are also negligible; however, a big value $X_{i_0,n}$ produces $K+1$ big values in the sequence $Y_{i,n}$:

$$Y_{i_{0,n}} \approx c_0 X_{i_{0,n}}$$

$$Y_{i_{0+1,n}} \approx c_1 X_{i_{0,n}}$$

$$Y_{i_{0+k,n}} \approx c_k X_{i_{0,n}}$$

Thus, the $Y_{i,n}$ sequence increases by "stairs", covering $K/n \to 0$ on the x axis, and thus converging to a single jump in the limit. From the heuristics given in the Introduction, we see that:

If the stairs have at least two steps, we can't have J_1 convergence (Theorem 2).

If the stairs go the same direction, we have M_1 convergence (Theorem 3).

If the stairs fall in between the lowest level and the highest one, we might have M_2 convergence (Conjecture).
Additional Remarks:

1. Some conditions on the c_i are necessary, if we are to get any weak Skorohod convergence at all. Indeed, consider the example:

$$c_0 = 1, \quad c_1 = -1, \quad c_k = 0 \text{ for } k \neq 0, 1.$$

Here,

$$\frac{1}{a_n} \sum_{i=1}^{[nt]} Y_i = \frac{X([nt]) - X_0}{a_n} \text{ f.d.d.}}$$

but f.d.d. convergence cannot be replaced by weak convergence in any of the four topologies, because, as is widely known,

$$\sup_{0 \leq t \leq 1} X_{[nt]}/a_n \text{ converges in distribution to a non-zero limit,}$$

and $\sup_{0 \leq t \leq 1}$ is a continuous functional in all the four Skorohod topologies.

2. On the other hand, if we make the strong assumptions $c_i \geq 0, X_i \geq 0$, (these assumptions are compatible with $\alpha < 1$), then since $\frac{1}{a_n} \sum_{i=1}^{[nt]} Y_i/a_n$ has monotone path, weak M_1 convergence holds automatically. Thus, in this case, with no work, we get weak convergence in M_1 sense.

We describe now the condition (T.C.) of Theorem 3 (which is necessary only for $\alpha > 1$). For $\alpha' > 1 \geq \nu$, let:

$$(1.5) \quad s(\alpha', c.) = (\sum_{i=1}^{\nu} |c_i|^\alpha')^{\alpha' - \nu}$$

Note that if $\nu = 1$, then $s(\alpha', c.) = (\sum_{i=1}^{\nu} |c_i|)^{\alpha'}$.

Let

$$(1.6a) \quad c_i > m = \begin{cases} c_i & \text{for } |i| > m \\ 0 & \text{otherwise} \end{cases}$$
\[(1.6b) \quad c_i^{\leq m} = c_i - c_i^{> m}\]

The condition on c_i is:

\[(T.C.) \quad \lim_{n \to \infty} s(a-n, c_i^{> n}) (\ln n)^{1+\eta} n\]

for some $\eta > 0$ small enough.

\[(T.C.)\] is satisfied in lots of cases of interest, like for example when $s(a-\eta, c_i^{> n})$ is dominated by a regularly varying sequence with strictly negative exponent. We will show in fact:

Lemma 1:

a) If there exists $\nu < 1$ as required (i.e., satisfying $\sum |c_i|^\nu < \infty$, $\nu < a$), and c_i is a monotone sequence, then (T.C.) holds.

b) If $\sum |c_i| < \infty$, but $\sum |c_i|^\nu' = \infty$, $\forall \nu' < 1$, then (T.C.) might not hold, even if c_i is a monotone sequence.

The paper is organized as follows: in Section 2 we state the main steps leading to the proof of Theorem 3, and prove Theorem 3. All the other proofs are contained in Section 3.

2. Proof of Theorem 3: Let:

\[(2.1) \quad J(x_1, x_2, x_3) = \min \{|x_2 - x_1|, |x_3 - x_2|\}\]

\[(2.2) \quad M(x_1, x_2, x_3) = \text{the distance from } x_2 \text{ to } [x_1, x_3] = \begin{cases} 0 & \text{if } x_2 \notin [x_1, x_3] \\ J(x_1, x_2, x_3) & \text{otherwise} \end{cases}\]

Let now H stand for either J or M, and introduce
the oscillation of a function $Z(t)$ by:

$$ \omega^H_\varepsilon(Z) = \sup_{0 \leq t-a \leq \varepsilon/2} H(Z(a),Z(t),Z(b)) \quad 0 \leq b-t \leq \varepsilon/2 $$

For a definition of the Skorohod topologies, and their analysis, see Skorohod (1956).

Here we will need only a corollary of his Theorem 3.2.1:

Proposition 1: (Skorohod (1956)): Let $Z_n(t)$ be processes in $D[0,1]$ whose finite dimensional distributions converge to those of a process $Z(t)$. Let H stand for either J or M. Then, weak H_1 convergence holds iff for every $\varepsilon > 0$.

$$ \lim_{\varepsilon \to 0} \lim_{n \to \infty} P(\omega^H_\varepsilon(Z_n) > \varepsilon) = 0 $$

Theorem 3 will be established by showing that in the case $H = M$, (2.4) holds. This is accomplished by considering first the case of finite moving averages, and, in the case of infinite moving averages, by truncation.

Let:

$$ Z_n(t) = \left[nt \right] \sum_{i=1}^{[nt]} Y_i/a_n $$

By using the technique of Billingsley applied to the case of the M-topology (see Avram and Taqqu (1986)), it is enough to establish estimates uniform in n for:

$$ M_n(a,t,b) = M(Z_n(a),Z_n(t),Z_n(b)) $$
Proposition 2: If $c_i > 0$, and $c_i = 0$ when $i > K$, for some finite K, then, for $n > 0$ and small enough, and for n satisfying:

$$n^{\frac{1}{1+n}} > K,$$

(2.7)

there exist a constant L independent of n, so that:

a)

$$P\{ M_n(a,t,b) > \epsilon \} \leq L e^{-2(a+\eta)(b-a)^{1+2\eta}}$$

(2.8)

b) Furthermore, there exists a constant k independent of n so that

$$P\{ w^M_n(z_n) > \epsilon \} \leq L k e^{-2(a+\eta)d^2n}$$

(2.9)

Convention: Here and from now on, a "constant" will mean a quantity which might depend on the distribution of the sequence z_n, and on a and η, but not on i, ϵ, a, b or n.

Note: 1) Part b) is an immediate corollary of Part a) and Theorem 1 of Avram and Taqqu (1986).

2) As a corollary of Skorohod's proposition, Theorem 1 and Proposition 2, it follows that Theorem 3 holds when Y_i are finite moving averages.

In the general case, we will decompose Y_i. We use the following notation:

Let K_n be a sequence converging to ∞,

$$c_i^{\leq K_n} = \begin{cases} c_i & \text{if } |i| \leq K_n \\ 0 & \text{otherwise} \end{cases}$$

(2.10a)

and

$$c_i^{> K_n} = c_i - c_i^{\leq K_n} = \begin{cases} 0 & \text{if } |i| \leq K_n \\ c_i & \text{if } |i| > K_n. \end{cases}$$

(2.10b)

We let $Y_{i,n}^{\leq K_n}, Y_{i,n}^{> K_n}$ be the moving averages with
coefficients $c_i^{<K_n}, c_i^{>K_n}$ respectively, and their sums up to $[nt]$ will be $Z_n^{<K_n}(t), Z_n^{>K_n}(t)$.

$Z_n^{<K_n}$ are sums of finite moving averages, to which Proposition 2 applies, while $Z_n^{>K_n}$ are sums of moving averages with "small" coefficients. They will be handled by the use of the following:

Proposition 3: Let Z_n be defined as in 2.5, with Y_i defined as in (1.2), but with sequences of coefficients $c_i^{(n)}$ replacing the fixed sequence c_i. For $n > 0$ small enough, there exist then constants L', k', independent of n, such that:

a)
\[
P\left\{ |Z_n(t_2) - Z_n(t_1)| > \varepsilon \right\} \leq L'e^{-(\alpha + \gamma)(t_2-t_1)}s(\alpha-\gamma,c.(n)),
\]
where
\[
s(\alpha,c.): = \begin{cases}
\sum_i |c_i|^\alpha & \text{if } \alpha \leq 1 \\
(\sum_i |c_i|^\tau)(\sum_i |c_i|^\tau')^{-\tau'} & \text{if } \alpha > 1 \geq \tau
\end{cases}
\]

b) \[
P \left\{ \sup_{0\leq t \leq 1} |Z_n(t)| > \varepsilon \right\} \leq \begin{cases}
L'k'e^{-(\alpha + \gamma)s(\alpha - \gamma,c.(n))} & \text{if } \alpha \leq 1 \\
L'k'e^{-(\alpha + \gamma)(\ln n)^{1+\alpha + \gamma}s(\alpha - \gamma,c.(n))} & \text{if } \alpha > 1.
\end{cases}
\]

Proof of Theorem 3: We look for a sequence K_n small enough [satisfying (2.7)] so that Proposition 2 can be applied to the process $Z_n^{<K_n}$, but big enough so that the estimate of
\[P \left\{ \sup_{0 \leq t \leq 1} \left| Z_n^t \right| > K_n \right\} \text{ given in Proposition 3b), namely} \]
\[
(2.13) \quad e_n = \begin{cases}
\frac{\sup_{0 \leq t \leq 1} \left| Z_n^t \right|}{s(\alpha-\eta,c. \ln K_n)} & \text{if } \alpha \leq 1 \\
(\ln \eta)^{1+\alpha+\eta} s(\alpha-\eta,c. \ln K_n) & \text{if } \alpha > 1
\end{cases}
\]
tends to 0, as \(n \to \infty \). An adequate sequence is \(K_n = n^{1/6} \).

This \(K_n \) satisfies (2.7) since for \(n \) small enough \(n^{1/6} < \eta(1/2-\eta)/1+\alpha-\eta \). When \(\alpha \leq 1 \) \(e_n \) tends to 0, since \(K_n \to \infty \). On the other hand, if \(\alpha > 1 \), by assumption (T.C.) of Theorem 3,

\[
(2.14) \quad \lim_{n \to \infty} s(\alpha-\eta,c. \ln K_n)1+\alpha+\eta = 0
\]

and thus the estimate \(e_n \) tends to 0. Now it remains only to note that if \(w_0^M(Z_n^\eta) \leq \frac{\epsilon}{2} \), and \(\sup_{0 \leq t \leq 1} \left| Z_n^t \right| \leq \frac{\epsilon}{2} \),

then \(w_0^M(Z_n^\eta) \leq \epsilon \).

Thus

\[
P \left\{ w_0^M(Z_n^\eta) > \epsilon \right\} \leq P \left\{ w_0^M(Z_n^\eta) > \frac{\epsilon}{2} \right\} + P \left\{ \sup_{0 \leq t \leq 1} \left| Z_n^t \right| > \frac{\epsilon}{2} \right\}
\]

\[
\leq L_k(\frac{\epsilon}{2})^{-2(\alpha+\eta)} \delta^{2n} + L_k'(\frac{\epsilon}{2})^{-(\alpha+\eta)} \epsilon_n
\]

(by Propositions 2, 3).

Hence,

\[
\lim_{\epsilon \to 0} \lim_{n \to \infty} P \left\{ w_0^M(Z_n^\eta) > \epsilon \right\} \leq \lim_{\epsilon \to 0} L_k(\frac{\epsilon}{2})^{-2(\alpha+\eta)} \epsilon^{-2n} = 0
\]

Hence, by Theorem 1 and the Proposition of Skorohod (1956),

Theorem 3 holds.
3. **AUXILIARY RESULTS AND PROOFS**

Proof of Theorem 2. Assume for convenience that $c_0 > 0$ and $|c_1| > c_0$. Let

$$ A_{n,\epsilon} = \left\{ k, k \epsilon (1-K, \ldots, n+K) \text{ such that } X_{k,n} > \frac{\epsilon}{c_0} \right\} $$

$$ A_{n,\epsilon}^{(1)} = \left\{ k_1, k_2 \epsilon (1-K, \ldots, n+K), k_1 \neq k_2 \text{ such that: } \right\} $$

$$ X_{k_1,n} > \frac{\epsilon}{c_0}, |X_{k_2,n}| > \frac{\epsilon}{c_0} \text{ and } |k_1 - k_2| \leq K $$

We have $A_{n,\epsilon}^{(1)} \subseteq A_{n,\epsilon}$. On one hand, $\forall \epsilon, \lim_{n \to \infty} P(A_{n,\epsilon}) \neq 0$.

(It is well known that $w - \lim_{n \to \infty} \max_{1 \leq k \leq n} X_{k,n} \neq 0$, in fact the limiting distribution of $X_{k,n}$ is known.) On the other hand, since k_1 can take at most $n+2K$ values, k_2 can take at most K values (or conversely), we have

$$ P(\epsilon) \leq 2(n+2K) \frac{\epsilon}{c_0} P\left\{ |X_{k,n}| > \frac{\epsilon}{2} \right\} \cdot P\left\{ |X_{k,n}| > \frac{\epsilon}{c_0} \right\} $$

This tends to 0 as $n \to \infty$ because $X_{k,n} = X_k/a_n$ and from the definition of a_n, one has

$$ P\left\{ |X_{k,n}| > \frac{\epsilon}{n} \right\} = O\left(\frac{1}{n}\right), \forall a. $$

Therefore

(3.1) $$ \lim_{n \to \infty} P(A_{n,\epsilon}^{(1)} \subseteq A_{n,\epsilon}) = 0.$$

Note, now, that

$$ (A_{n,\epsilon}^{(1)} \subseteq A_{n,\epsilon}) \text{ implies that } \left\{ w_1/n, n(Z_1) > \epsilon/2 \right\}. $$

Indeed, let i_ϵ be such that

$$ X_{i_\epsilon} = \max_{1 \leq i \leq n} X_i. $$

On $A_{n,\epsilon}^{(1)}$ we have

$$ Y_{i_\epsilon,n} = c_0 X_{i_\epsilon,n} + \sum_{j=1}^{K} c_j X_{i_\epsilon-j,n} > \frac{\epsilon}{2}. $$
since
\[c_0 X_{1*},n > \epsilon, \]
and
\[\left| \sum_{j=1}^{k} c_j X_{1*}-j,n \right| \leq \frac{\epsilon}{2} \left(\sum_{j=1}^{K} |c_j| \right) \leq \frac{\epsilon}{2}. \]

Similarly, on \(A_{n*} - A^{(1)}_n \) we have:
\[|Y_{1*+1},n| = \left| c_1 X_{1*}-1,n + \sum_{j=1}^{K} c_j X_{1*+1-j},n \right| \]
\[> \frac{|c_1|}{c_0} c_0 X_{1*},n - \frac{\epsilon}{2} > \frac{\epsilon}{2} \]
and thus:
\[A_{n*} - A^{(1)}_n \] implies that \(\{|Y_{1*},n| > \frac{\epsilon}{2}, |Y_{1*+1},n| > \frac{\epsilon}{2}\} \)
which in turn implies \(\{w^J_{1/n,n}(Z_n) > \frac{\epsilon}{2}\} \).
It follows from (3.1), then, that
\[\lim_{n \to \infty} P \{ w^J_{1/n,n}(Z_n) > \frac{\epsilon}{2} \} > 0, \]
and thus we cannot have
\[\lim_{\delta \to 0} \lim_{n \to \infty} P \{ w^J_{6,n}(Z_n) > \frac{\epsilon}{2} \} = 0, \]
which is necessary for \(J_1 \) convergence.

Remark: If in the preceding proof all the \(c_i \) are non-negative, then \(Y_{1*},n > \frac{\epsilon}{2}, Y_{1*+1},n > \frac{\epsilon}{2}; \) though the two consecutive changes of \(Z_n \) are big in absolute value, they "go" in the same direction and thus produce zero oscillation.

From now on, we will assume w.l.o.g. that \(\{ c_i \leq 1 \}
(and thus \(\{ c_i \leq 1, \) and \(c_i < 1 \).

Proof of Lemma 1: Choose \(\epsilon > 0 \) so that: \(\cdots \cdot 1 \leq \epsilon \cdot \cdot \cdot \cdot \)
then,
Thus, $s(\alpha - \eta, c.^{\geq n})$ is bounded by a negative power of n, and (T.C.) is satisfied.

b) Consider the following counter example:

$$c_i = \frac{1}{|1| (\ell n |1|)^{1+\rho}}$$

Here,

$$\sum_{i} c_i = \frac{1}{(\ell n)^{\rho}}$$

Thus, $\sum_{i} c_i^\eta < \infty$, but $\sum_{i} c_i^{1-\eta} = \infty$, $\forall \eta > 0$.

Then, if $\alpha - \eta > 1$, we have:

$$s(\alpha - \eta, c.^{\geq n}) = \left(\sum_{i} c_i \right)^{\alpha - \eta} = O\left(\frac{1}{(\ell n)^{\rho}} \right).$$

To satisfy (T.C.), we have to find, then, $n > 0$, such that $\rho(\alpha - \eta) > 1 + \alpha + \eta$; that is, $\frac{\eta}{\rho} + \gamma < 2 \alpha - (1 + \gamma)$.

This is possible iff $\rho \alpha - (1 + \alpha) > 0$, i.e., iff

$$\rho > 1 + \frac{1}{\alpha}.$$ Since $\rho \leq 1 + \frac{1}{\alpha}$, (T.C.) cannot be satisfied.

We turn now to some auxiliary results. The first is a classical result, often used when dealing with r.v.'s in $D(\eta)$.

Lemma 2: Let $X_i, n = X_i/a_n$, where X_i is an i.i.d. sequence in $D(\eta)$, where either: $0 < i \leq 1$, or $1 < i < 2$ and $E X_i = 0$, and where a_n are the normalization constants in the C.L.T. Let $|b_i, n| < 1$, $n, i = 1, 2, \ldots$.
and let \(\varepsilon > 0 \). Then, if \(n > 0 \) is small enough, there exists a constant \(M \) depending on the distribution of \(X_1 \), but not on \(m \) or \(\varepsilon \), such that

\[
P \left(\sup_{1 \leq k \leq m} \left| \sum_{i=1}^{k} b_i, n X_i, n \right| > \varepsilon \right) \leq M \frac{\varepsilon}{n} \sum_{i=1}^{m} |b_i, n|^\alpha \cdot \varepsilon^{-\alpha},
\]

for all \(m \), even \(m = \infty \).

Proof of Lemma 2. If \(\alpha < 1 \), we let

\[
X_{i,n} = \begin{cases} 1 & (|X_{i,n}| \leq 1) \\ X_{i,n} & (|X_{i,n}| > 1) \end{cases}
\]

Let \(\eta > 0 \) be such that \(\alpha - \eta > 0 \), \(\alpha + \eta < 1 \), and consider

\[
P \left(\sup_{1 \leq k \leq m} \left| \sum_{i=1}^{k} b_i, n X_i, n \right| > \varepsilon \right) \leq \left(\frac{\varepsilon}{2} \right)^{-\eta} E \left(\frac{\varepsilon}{2} \right)^{-\eta} E \left(\frac{\varepsilon}{2} \right)^{-\eta} \leq \frac{\varepsilon}{2} \sum \frac{\varepsilon}{2} \left| b_i, n \right| \left| X_{i,n} \right| \alpha - \eta.
\]

Similarly,

\[
P \left(\sup_{1 \leq k \leq m} \left| \sum_{i=1}^{k} b_i, n X_i, n \right| > \varepsilon \right) \leq \left(\frac{\varepsilon}{2} \right)^{-\eta} E \left(\frac{\varepsilon}{2} \right)^{-\eta} E \left(\frac{\varepsilon}{2} \right)^{-\eta} \leq \frac{\varepsilon}{2} \sum \frac{\varepsilon}{2} \left| b_i, n \right| \left| X_{i,n} \right| \alpha + \eta.
\]

Let

\[
M' = \sup \left\{ \frac{n E |X_{i,n}|^{\alpha - \eta}}{n E |X_{i,n}|^{\alpha + \eta}} \right\} \sup \left\{ \frac{n E |X_{i,n}|^{\alpha + \eta}}{n E |X_{i,n}|^{\alpha - \eta}} \right\}.
\]

Since \(M' \leq \infty \) [see Austrauskas (1983), Lemma 1], we see that (3.3), (3.4) imply (3.2), with \(M = 2^{1+\alpha} n M' \), whether \(m \) is finite or not.
When $\alpha > 1$, let η be such that $\alpha - \eta \geq 1$, and let

\begin{equation}
X_{i,n} = X_{i,n} - E X_{i,n} \tag{3.5}
\end{equation}

Thus, $E(X_{i,n}) = 0$, and since $E X_{i,n} = 0$, we have $E(X_{i,n}) = 0$ also.

We will show that (3.3), (3.4) hold again, with $X_{i,n}, X_{i,n}^\zeta$ replacing $X_{i,n}, X_{i,n}^\zeta$. Note first that $\sum_{i=1}^k b_{i,n} X_{i,n}^\zeta$ and $\sum_{i=1}^k b_{i,n} X_{i,n}^\zeta$ are martingales (as k varies).

Using the maximal inequality:

$$P(\sup_{1 \leq k \leq m} |S_n| \geq \lambda) \leq \lambda^{-p} E|S_m|^p,$$

which holds for $p \geq 1$, and S_n a martingale [see Shiryaev (1979), page 464], and the Bahr-Essen inequality (Lemma 1 of the previous chapter), we have:

\begin{equation}
P(\sup_{1 \leq k \leq m} \left| \sum_{i=1}^k b_{i,n} X_{i,n}^\zeta \right| \geq \frac{\xi}{2}) \leq \frac{\xi - (\alpha - \eta) \sum_{i=1}^m b_{i,n} X_{i,n}^\zeta}{\xi - (\alpha - \eta) \sum_{i=1}^m b_{i,n} X_{i,n}^\zeta}, \tag{3.3'}
\end{equation}

and, similarly,
\[(3.4') \quad P \left(\sup_{1 \leq k \leq m} \sum_{i=1}^{k} b_{i,n} \bar{X}_{i,n}^{\xi} \right) \geq \xi \]

\[\geq \frac{\xi - (a+\eta)}{2} \sum_{i=1}^{m} b_{i,n} \left(\alpha + \eta \right) \bar{X}_{i,n}^{\xi} \alpha + \eta. \]

Since, by Jensen's inequality,

\[E|X_{i,n}|^{\xi} - E|X_{i,n}|^{\alpha+\eta} \leq 2^{\alpha+\eta - 1}(E|X_{i,n}|^{\alpha+\eta} + E|X_{i,n}|^{\alpha+\eta}) \]

\[\leq 2^{\alpha+\eta} E|X_{i,n}|^{\xi} \alpha + \eta, \]

and similarly,

\[E|X_{i,n}|^{\alpha-\eta} \leq 2^{\alpha-\eta} E|X_{i,n}|^{\alpha-\eta}, \]

we see that:

\[M'' = \sup_n (nE|\bar{X}_{i,n}|^{\alpha+\eta}) \leq \sup_n (nE|\bar{X}_{i,n}|^{\alpha-\eta}) < 2^{\alpha+\eta} M' < \infty \]

and hence (3.3'), (3.4') imply again (3.2).

When \(\alpha = 1 \), we use a "mixed" proof: We define \(\bar{X}_{i,n}, \bar{X}_{i,n}^{\alpha} \) as in (3.5). (This time, it is not necessary that \(E \bar{X}_{i,n} = 0 \)). Then, we majorate \(\sup_{1 \leq k \leq m} \sum_{i=1}^{k} b_{i,n} \bar{X}_{i,n}^{\xi} \) by \(\sup_{1 \leq k \leq m} \sum_{i=1}^{k} b_{i,n} \bar{X}_{i,n}^{\alpha} \), like in the case \(\alpha < 1 \), and apply to \(P \left(\sup_{1 \leq k \leq m} \sum_{i=1}^{k} b_{i,n} \bar{X}_{i,n}^{\xi} \right) > \xi \) the maximal inequality, as in the case \(\alpha > 1 \).
The case \(m = \infty \) follows trivially by letting \(m \to \infty \)
in \((3.3'),(3.4')\).

By Lemma 2,

\[
P(\| \sum_{i=1}^{n-j} c_{i-j} x_i \| > \varepsilon) = P(\| \sum_{i=1}^{n-j} c_i x_i \| > \varepsilon)
\leq \frac{M}{n} \varepsilon^{-(\alpha+n)} D_n^{(\alpha-n)}(c.),
\]

where

\[
D_n^{(\alpha-n)}(c.) = \sum_{j=1}^{n-j} c_{i-j} |\alpha-n|
\]

We show now that this quantity grows at most linearly in \(n \), when \(\nu \leq 1 \).

Lemma 3: If \(\nu \leq 1 \), then, for every \(\alpha \geq \nu \) we have:

\[
D_n^{(\alpha)}(c.) \leq ns(\alpha,c.)
\]

Proof of Lemma 3

a) If \(\alpha \leq 1 \),

\[
D_n^{(\alpha)}(c.) = \sum_{i=1}^{n-1} c_i |\alpha|
\leq n \sum_{j=1}^{\infty} c_j |\alpha|
\leq n (\sum_{j=1}^{\infty} c_j) |\alpha|
= ns(\alpha,c.).
\]

If \(\alpha > 1 \),

\[
D_n^{(\alpha)}(c.) = \sum_{i=1}^{n-1} c_i |\alpha|
\leq (\sum_{j=1}^{\infty} c_j) |\alpha|
\leq (\sum_{j=1}^{\infty} c_j)^{\alpha-\nu} (\sum_{i=1}^{\infty} c_i)^{\nu}
\leq (n \sum_{j=1}^{\infty} c_j) |\alpha| = ns(\alpha,c.).
\]
Proof of Proposition 3:

a) \[P\{ |Z_n(t_2) - Z_n(t_1)| > \epsilon \} = P\{ \sum_{j=\lfloor nt_1 \rfloor}^{\lfloor nt_2 \rfloor} X_j, n \leq \epsilon \sum_{i=\lfloor nt_1 \rfloor}^{\lfloor nt_2 \rfloor} c_i(n) \} \]

\[\leq \frac{M}{n} \epsilon^{-(\alpha+n)} (\lfloor nt_2 \rfloor - \lfloor nt_1 \rfloor) c(n) \quad \text{(By Lemma 2)} \]

\[\leq M \epsilon^{-(\alpha+n)} s(\alpha-n, c(n)) \frac{[nt_2] - [nt_1]}{n} \quad \text{(By Lemma 3)} \]

\[\leq 2M \epsilon^{-(\alpha+n)} s(\alpha-n, c(n)) (t_2 - t_1) \]

b) In the case \(\alpha \leq 1 \), we can take absolute values:

\[P\{ \sup_{0 \leq t \leq 1} |Z_n(t)| > \epsilon \} \leq P\{ \sum_{i=1}^{n-1} a_n \leq \epsilon \} \]

\[\leq M \epsilon^{-(\alpha+n)} n^a(n) c(n) \quad \text{(By Lemma 2)} \]

\[\leq M \epsilon^{-(\alpha+n)} s(\alpha-n, c(n)) \quad \text{(By Lemma 3)} \]

When \(\alpha > 1 \), it follows from part a) that

\[P\{ J_n(t_1, t_2) > \epsilon \} \quad \text{(See 2.6)} \]

\[\leq P\{ |Z_n(t) - Z_n(t_1)| > \epsilon \} \]

\[\leq M \epsilon^{-(\alpha+n)} (t_2 - t_1) s(\alpha-n, c(n)) \]

By the classical bisection method used for example in Billingsley (1968), Ex. 12.5 (see also Avram and Taqqu (1986), Proposition la), if we let:

\[J_n(t_1, t_2) = \sup_{t \in [t_1, t_2]} J_n(t_1, t_2) \]

then

\[P\{ J_n(t_1, t_2) > \epsilon \} \leq L \epsilon^{-(\alpha+n)} (t_2 - t_1) s(\alpha-n, c(n))(\ln n)^{1+\epsilon}, \]

and since

\[P\{ \sup_{0 \leq t \leq 1} Z_n(t) > \epsilon \} \leq P\{ Z_n(1) > \frac{\epsilon}{2} \} + P\{ J_n(0, 1) > \frac{\epsilon}{2} \}, \]

the result follows.
Proof of Proposition 2a. We assume w.l.o.g. \(\sum c_i \leq 1 \).

Expression (2.8) is obvious if \([na] = [nt] \) or \([nb] = [nt] \). Hence, we assume that \([nt] - [na] \geq 1 \), \([nb] - [nt] \geq 1 \), and note, then, that \(b - a \geq \frac{1}{n} \). Let \(t_1 \) be such that \([nt] - [nt_1] \geq 1 \). Then,

\[
Z_n(t) - Z_n(t_1) = \sum_{i=\infty}^{[nt]-1} X_{1, n} \sum_{k=[nt_1]-i+1}^{[nt]+K} c_k =
\]

\[
\sum_{i=[nt_1]-K+1}^{[nt]-1} X_{1, n} \sum_{k=[nt_1]-i+1}^{[nt]+K} c_k
\]

(\(c_i = 0 \) for \(|i| > K \) and thus \(\sum_{i=[nt_1]-K+1}^{[nt]-1} X_{1, n} \sum_{k=[nt_1]-i+1}^{[nt]+K} c_k = 0 \) if \([nt_1]-i+1 \))

Letting now \(S_1(t_1) = \sum_{i=[nt_1]-K+1}^{[nt]-1} X_{1, n} \sum_{k=[nt_1]-i+1}^{[nt]+K} c_k \)

\[
X = (X_{[nt]-K+1, n}, \ldots, X_{[nt]+K, n}),
\]

\[
b_1(t_1) = \left\{ b_1^{(i)}(t_1) \right\}_{i=[nt]-K+1}
\]

with \(b_1^{(i)} \) given by

\[
b_1^{(i)}(t_1) = \sum_{k=[nt_1]-i+1}^{[nt]+K} c_k
\]

we have

\[
Z_n(t) - Z_n(t_1) = S_1(t_1) + b_1(t_1) \cdot X
\]

where the dot denotes a scalar product.
Similarly, if \([nt_2] - [nt] \geq 1\), then

\[
(3.7) \quad Z_n(t_2) - Z_n(t) = \sum_{i=[nt] - K + 1}^{[nt] + K} X_i, n \quad i=[nt] - K + 1 \quad i=[nt] + K + 1
\]

\[
= b_2(t_2) \cdot X + S_2(t_2),
\]

where

\[
S_2(t_2) = \sum_{i=[nt] + K + 1}^{[nt] + K} X_i, n \quad i=[nt] + K + 1
\]

and

\[
b_2(t_2) = \{b_2^{(1)}(t_2)\}_{i=[nt] - K + 1}^{[nt] + K}
\]

with

\[
b_2^{(1)}(t_2) = \sum_{k=[nt] - i + 1}^{[nt] - 1} c_k.
\]

The decompositions (3.6), (3.7) are such that \(X, S_1(t_1)\) and \(S_2(t_2)\) are independent.

Since oscillations of type M are zero when they go in the same direction, we have

\[
P\left\{w^M_{[a, t, b]}(Z_n) \geq \epsilon\right\}
\]

\[
\leq P\left\{\sup_{a \leq t_1 \leq t} S_1(t_1) + b_1(t_1) \cdot X \geq \epsilon, \inf_{t \leq t_2 \leq b} S_2(t_2) + b_2(t_2) \cdot X \leq -\epsilon\right\}
\]

\[
+ P\left\{\inf_{a \leq t_1 \leq b} S_1(t_1) + b_1(t_1) \cdot X \leq -\epsilon, \sup_{t \leq t_2 \leq b} S_2(t_2) + b_2(t_2) \cdot X \geq \epsilon\right\}.
\]
We shall estimate each term separately, and since the proofs are similar, we consider only the first term.

Consider the following events:

\[S_1 = \{ \sup_{a \leq t \leq T} S_1(t_1) \geq \frac{\epsilon}{2} \} \]

\[S_2 = \{ \inf_{t \leq t_2 \leq b} S_2(t_2) \leq -\frac{\epsilon}{2} \} \]

\[X_1 = \{ \sup_{a \leq t_1 \leq t} b_1(t_1) \cdot X \geq \frac{\epsilon}{2} \} \]

\[X_2 = \{ \inf_{t \leq t_2 \leq b} b_2(t_2) \cdot X \leq -\frac{\epsilon}{2} \} \]

\[A_i = \{ |X_{i,n}| \leq \frac{\epsilon}{\delta K} \}, \quad i = [nt] - K + 1, \ldots, [nt] + K \]

\[E = \{ \sup_{a \leq t_1 \leq t} S_1(t_1) + b_1(t_1) \cdot X \geq \epsilon, \inf_{t \leq t_2 \leq b} S_2(t_2) + b_2(t_2) \cdot X \leq -\epsilon \} \]

Then

\[E \in (S_1 \cup X_1) \cap (S_2 \cup X_2) \]

and hence

\[P(E) \leq P(S_1)P(S_2) + P(S_1)P(X_2) + P(S_2)P(X_1) + P(X_1 \cap X_2) \].

We explain now the idea of the proof: each of \(P(S_1) \), \(P(S_2) \), \(P(X_1) \), \(P(X_2) \) ought to be \(\approx O(t_2 - t_1) \), by Proposition 3a, and thus their products will be \(O(t_2 - t_1)^2 \), which enables one to use the "bisection" method (see Billingsley (1968), Theorem 12.1). The only term which may cause difficulties is \(P(X_1 \cap X_2) \). However, we expect all the components of \(X \), except at most 1, to be negligible, and since the coefficients are
non-negative, we cannot have at the same time
\[b_1(t_1) \cdot X > \frac{\epsilon}{2}, \quad b_2(t_2) \cdot X < \frac{-\epsilon}{2}, \]
and so the event \(X_1 \cap X_2 \) should be negligible. (It is possible to see here why \(J_1 \) convergence may not work. If
\[|b_1(t_1) \cdot X| > \frac{\epsilon}{2}, \]
then we can also have \(|b_2(t_2) \cdot X| > \frac{\epsilon}{2} \), and thus if we attempt to compute the probability that the \(J_1 \) oscillation is bigger than \(\epsilon \), we would get that
\[P\{b_1(t_1) \cdot X| > \frac{\epsilon}{2}, \ |b_2(t_2) \cdot X| > \frac{\epsilon}{2} \} \]
is the dominant term, and thus merely \(O(t_2 - t_1) \).

Note, now, that
\[
P(A_i^C) = P\left\{ \left| X_{i,n} \right| > \frac{\epsilon}{8K} \right\} \leq \frac{M[\epsilon]}{n[8K]}^{-(a+\gamma)}
\]
(Apply Lemma 2 with \(b_1,n = 1, m = 1 \).)

Next, note that \(\bigcap_{i=1}^{(nt)+K} A_i \subset X_1^C \) since then
\[\bigcap_{i=1}^{1} b_i(t_1) \cdot X \leq \frac{1}{2} b_1(t_1) \cdot X \leq \frac{\epsilon}{8K} \]
Hence \(X_1 \subset \bigcup_{i=1}^{1} (A_i)^C \)
and
\[
(3.8a) \quad P(X_1) \leq 2K P\left\{ \left| X_{i,n} \right| > \frac{\epsilon}{8K} \right\} \leq 2K \cdot \frac{M[\epsilon]}{n[8K]}^{-(a+\gamma)} = \frac{M[\epsilon]}{n[8K]} \cdot \frac{K^{1+\alpha+\gamma}}{n}.
\]
Similarly,
\[
(3.8b) \quad P(X_2) \leq \frac{M'[\epsilon]}{n[8K]} \cdot \frac{K^{1+\alpha+\gamma}}{n}.
\]
We now show that $P(X_1 \cap X_2)$ is small. Note first that

\begin{equation}
\bigcap_{i \neq i_0} A_i \cap A_i^c \cap X_1 \cap X_2 = \phi.
\end{equation}

Indeed, suppose $X_{i_0} > 0$. Then the L.H.S. of (3.9) is contained in $\bigcap_{i \neq i_0} A_i \cap A_i^c \cap X_1$, and if that event is not empty, there is a t_2 such that

\[
\frac{-\varepsilon}{2} > b_2(t_2) \cdot X = \sum_{i=0}^{(i_o)} b_2(t_2)X_{i_0,n} + \sum_{i \neq i_0} b_2(t_2)X_{i,n} > b_2(t_2) \frac{\varepsilon}{8K} - \frac{\varepsilon}{4},
\]

contradicting $b_2(t_2) > 0$. A similar argument holds if $X_{i_0} \leq 0$.

Thus if $X_1 \cap X_2$ occurs, it is not possible that exactly one A_i^c occurs. It is also easy to check that some A_i^c must occur. Therefore, A_i^c must occur for at least two different i's. Hence

\[
P(X_1 \cap X_2) \leq \sum_{i \neq i_1} P[A_i^c \cap A_i^c]_{i_0 \neq i_1}
\leq K^2 (P[A_i^c])^2
\leq K^2 \left(\frac{M(e)}{n^{\beta K}} \right)^{-(\alpha + \eta)} 2
\leq K^2 \left(\frac{\varepsilon}{n^{\beta K}} \right)^{(1+\alpha - \eta)} 2
\]

\begin{equation}
= \frac{M^2 K^2 (1+\alpha - \eta) \varepsilon^{2(\alpha + \eta)}}{n^2}.
\end{equation}
We now turn to \(S_1 \) and \(S_2 \) and show that

\[(3.11a) \quad P(S_1) \leq M \epsilon^{-(\alpha+\eta)}(t-a)\]

and

\[(3.11b) \quad P(S_2) \leq M \epsilon^{-(\alpha+\eta)}(b-t)\]

where \(M \) is again a generic constant.

Let

\[
S_1^m = \max_{[na]-K+1 \leq i \leq [nt]-K} \sum_{i=1}^{[nt]-K} X_{i,n}
\]

\[
S_2^m = \min_{[nt]+K+1 \leq i \leq [nb]+K} \sum_{i=[nt]+K+1}^i X_{i,n}.
\]

Note that

\[(3.12a) \quad S_1(t_1) = \sum_{k=K+1-([nt]-[nt_1])}^{[nt]-K} c_k \sum_{i=[nt_1]-K+1}^{[nt]-K} X_{i,n}
\]

\[
\leq \left[\sum_{k=K}^{[nt]-K} c_k \right] S_1^m \left(S_1 > 0 \right) \leq S_1^m \left(S_1 > 0 \right)
\]

and, similarly,

\[(3.12b) \quad S_2(t_2) = \sum_{k=-K}^{[nt_2]-[nt]-K-1} c_k \sum_{i=[nt]+K+1}^{[nt_2]-K} X_{i,n}
\]

\[
\leq \left[\sum_{k=-K}^{[nt_2]-[nt]-K-1} c_k \right] S_2^m \left(S_2 > 0 \right) \leq S_2^m \left(S_2 > 0 \right)
\]

Applying Lemma 2, with \(b_{1,n} = 1, m = [nt] - [na], \) and \(m = [nb] - [nt], \) respectively, we get
\[
P(\{S_1(t_1) > \epsilon/2\}) \leq P\left[S_1^M > \epsilon/2 \right]
\leq P\left[S_1^M > \epsilon_2 \right]
\leq M\left(\epsilon_2 \right)^-(\alpha+\eta)(nt)-(na)/n
\leq 2M\left(\epsilon_2 \right)^-(\alpha+\eta)(t-a),
\]

and similarly,
\[
P(\{S_2(t_2) < -\epsilon/2\}) \leq 2M\left(\epsilon_2 \right)^-(\alpha+\eta)(b-t).
\]

This establishes (3.11a) and (3.11b).

Putting together (3.8), (3.10), (3.11) and introducing a new constant \(L \), we get
\[
P(E) \leq L \epsilon^{-2(\alpha+\eta)} \left[(b-a)^2 + 2(b-a)K^{1+\alpha+\eta}/n + K^2(1+\alpha+\eta)/n^2 \right].
\]

Now \(1/n < b-a \) (otherwise the oscillations are zero), \(b-a < 1 \) and \(n(1/2-\eta)/(1+\alpha+\eta) > K \). Therefore,
\[
K^{1+\alpha+\eta}/n < 1/\left(n^{1/2+\eta} \right) < (b-a)(1/2+\eta).
\]

Since \(b-a \leq 1 \), we get
\[
P(E) \leq L \epsilon^{-2(\alpha+\eta)} \left[(b-a)^2 + 2(b-a)^{3/2+\eta} + (b-a)^{1+2\eta} \right]
\leq 4L \epsilon^{-2(\alpha+\eta)} (b-a)^{1+2\eta}.
\]
References

END
DATE
FILMED
DEC.
1987