ASYMPTOTIC NORMALITY OF POLY-T DENSITIES WITH BAYESIAN
APPLICATIONS (U) DEWITT WALLACE RESEARCH LAB NEW YORK
G Y WONG 81 OCT 87 ONR-87-1 N00014-85-K-0485
UNCLASSIFIED
Research Report ONR-87-1

ASYMPTOTIC NORMALITY OF POLY-T DENSITIES
WITH BAYESIAN APPLICATIONS

George Y. Wong
Division of Biostatistics
Memorial Sloan-Kettering Cancer Center
New York, New York 10021

October, 1987

Prepared under contract NO. N00014-85-K-0485, NR 150-536
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.
Asymptotic Normality of Poly-t Densities With Bayesian Applications

George Y. Wong

technical report

From 9/1/85 to 8/1/87

1987 October 1

A poly-t density is a density which is proportional to a product of at least two t-like factors, each of which is of the form \((x - \mu)^{\alpha} \frac{1}{\Gamma(\alpha/2)} (1 + \frac{(x - \mu)^2}{\theta})^{-\alpha/2} \) where \(\alpha \) is a positive number, \(\mu \) is an arbitrary location vector and \(\theta \) is a symmetric semi-positive definite scale matrix. In general, \(\mu \) is a function of \(d \). Such a density arises, for example, in the Bayesian analysis of a linear model with a normal error term, independent normal priors on the linear parameters and inverted-gamma priors on the variance components. A theorem about the asymptotic normality of the density as a subset of the individual \(d \)'s tend to infinity is proved under very general conditions. A corollary specifically related to the Bayesian linear model is also given. Detailed results are illustrated in the familiar Bayesian multiple linear regression model with two variance components. The Tiao-Zellner expansion for approximating the particular poly-t form involving two proper multivariate t factors is extended to the case of two arbitrary t-like factors.
ASYMPTOTIC NORMALITY OF POLY-T DENSITIES
WITH BAYESIAN APPLICATIONS

GEORGE Y. WONG
DIVISION OF BIOSTATISTICS
MEMORIAL SLOAN-KETTERING CANCER CENTER
NEW YORK, NY 10021

Key Words and Phrases: poly-t density; asymptotic normality; generalized Tiao-Zellner expansion; Bayesian linear model; posterior inference of linear parameters.

ABSTRACT

A poly-t density is a density which is proportional to a product of at least two t-like factors, each of which is of the form \(1 + (x - u)^T M (x-u)\)^{-d/2} where \(d\) is a positive number, \(u\) is an arbitrary location vector and \(M\) is a symmetric semi-positive definite scale matrix. In general, \(M\) is a function of \(d\). Such a density arises, for example, in the Bayesian analysis of a linear model with a normal error term, independent normal priors on the linear parameters and inverted-gamma priors on the variance components. A theorem about the asymptotic normality of the density as a subset of the individual \(d\)'s tend to infinity is proved under very general conditions. A corollary specifically related to the Bayesian linear model is also given. Detailed results are illustrated in the familiar Bayesian multiple linear regression model with two variance components. The Tiao-Zellner expansion for approximating the particular poly-t form involving two proper multivariate t factors is extended to the case of two arbitrary t-like factors.
A p-dimensional random vector \(\mathbf{X} \) is said to have a poly-t distribution if its density is proportional to a product of \(L \geq 2 \) "t-like" factors, or

\[
f(\mathbf{x} | d_1, ..., d_L) \propto \prod_{k=1}^{L} \{1 + (\mathbf{x} - \mu_k)^T \Sigma_k (\mathbf{x} - \mu_k)\}^{-d_k/2}
\]

where \(d_k > 0 \), \(\mu_k \) is a px1 location vector and \(\Sigma_k(d_k) \) is a pxp symmetric semi-positive definite scale matrix, \(k = 1, ..., L \). To ensure that the right-hand side of (1), which we denote by \(g(\mathbf{x} | d_1, ..., d_L) \), is normalizable, we must require that \(d_1 + ... + d_L > p \) and \(\Sigma_1(d_1) + ... + \Sigma_L(d_L) \) be positive definite (Dickey 1986). The normalizing constant \(\int g(\mathbf{x} | d_1, ..., d_L) d\mathbf{x} \), however, cannot be expressed in a simple closed form. When \(L \) is smaller than \(p \), Dickey showed that the normalizing constant can be expressed in an \((L-1)\)-fold integral.

A useful form of density (1) is obtained by letting

\[
d_k = \nu_k + m_k, \quad \Sigma_k(d_k) = \Sigma_k / \nu_k
\]

for some \(\nu_k > 0 \), \(m_k \) such that \(\nu_k + m_k > 0 \), and \(\Sigma_k \) symmetric semi-positive definite. When \(m_k = p \) and \(\Sigma_k \) is positive definite, then the kth t-like factor is proportional to a proper multivariate t density with \(\nu_k \) degrees of freedom. Such a poly-t density form plays an important role in the Bayesian analysis of a general linear model with a normal error term. The Bayesian approach considered here is described as follows: (1) A vague prior is imposed on a subset of the linear parameters; (2) The rest of the parameters are partitioned into different subsets, and an exchangeable normal prior with mean 0 and an unknown variance component is imposed on each subset independently; and (3) The prior variances and the error variance are given independent inverted gamma distributions. It can be shown that the posterior density of the linear parameters is of the above poly-t density form. Details about poly-t posterior
distributions can be found in Dickey (1974), Dreze (1977), Rajagopalan and Broemeling (1983), Broemeling and Abdullah (1984), and Broemeling (1985).

In this article, we are concerned with the asymptotic normality of a poly-t density as some or all of d_1, \ldots, d_L become large. The asymptotic normal density can be used to approximate the poly-t density directly. Also, it can serve as an important sampling distribution for the Monte Carlo evaluation of any probability statement about X, or any moment of X. Despite its usefulness in Bayesian linear modeling, the asymptotic normality of a poly-t density has never been formally established. In Section 2, we prove the normality result for the poly-t density (1) under fairly general conditions. As will be seen there, the proof is much harder than that in the case of a single multivariate t density; the difficulty is mainly due to the fact that the normalizing constant of a poly-t density is in terms of an integral expression.

In Section 3, we illustrate the asymptotic results on a Bayesian linear model with two variance components. There we show that the appropriate asymptotic normal density may be made the leading term in a generalization of the Tiao-Zellner expansion (1964) to approximate the posterior density of the linear parameters.

2. MAIN RESULTS

We show that under some fairly general conditions, the poly-t density (1) converges to a proper multivariate normal density. It follows from a result of Scheffe (1947) that the poly-t variable actually converges in distribution to the multivariate normal variable with the limiting normal density. We also give a corollary on a special form of (1) which is particularly useful in Bayesian linear modeling. For convenience, we write $A>0$ and $A>0$ to mean that the symmetric matrix A is semi-positive definite and positive definite, respectively. Also, we denote the density of a multivariate normal density
with the mean \(\mu \) and covariance matrix \(\Sigma \) by \(f_N(\cdot | \mu, \Sigma) \).

Theorem. For the general poly-t density (1), assume that

1. \(d_k M_k(d_k) \) converges to \(M_k > 0 \) as \(d_k \to \infty \), \(k=1, \ldots, L \), and \(M = M_1 + \ldots + M_L > 0 \), and
2. there exist semi-positive definite matrices \(B_1, \ldots, B_L \) such that

\[
B_1 + \ldots + B_L > 0 \quad \text{and} \quad d_k M_k(d_k) - B_k > 0 \quad \text{for all} \quad d_k \quad \text{sufficiently large.}
\]

Then as \(d_1, \ldots, d_L \) all tend to infinity, \(f(\mathbf{x} | d_1, \ldots, d_L) \) will tend to the limiting density \(f_N(\mathbf{x} | \mu, M^{-1}) \), where \(\mu = M^{-1}(M_1 \mu_1 + \ldots + M_L \mu_L) \).

Proof. Without any loss of generality, we prove the theorem for the case \(L=2 \). To show that \(f(\mathbf{x} | d_1, d_2) \) converges to \(f_N(\mathbf{x} | \mu, M^{-1}) \) as \(d_1, d_2 \to \infty \), it suffices to show that (i) \(g(\mathbf{x} | d_1, d_2) \) tends to a limit \(g(x) \) proportional to \(f_N(\mathbf{x} | \mu, M^{-1}) \), and (ii) \(\int g(\mathbf{x} | d_1, d_2) \, dx \to \int g(x) \, dx \), as \(d_1, d_2 \to \infty \).

To prove (i), we make use of assumption (1) and obtain

\[
g(\mathbf{x} | d_1, d_2) = \prod_{k=1}^{2} \{1 + Q_k/d_k + o(1/d_k)\}^{-d_k/2},
\]

where \(Q_k = (x-\mu_k)^T M_k^{-1} (x-\mu_k), k=1,2 \). It follows that \(g(\mathbf{x} | d_1, d_2) \) tends to

\[
g(x) = \exp \{ - (\mu_1-\mu_2)^T M_1^{-1} M_2 (\mu_1-\mu_2)/2 \} \times \exp \{ - (x-\mu)^T M(x-\mu)/2 \},
\]

which is proportional to \(f_N(\mathbf{x} | \mu, M^{-1}) \).

To prove (ii), we show that for \(d_1 \) and \(d_2 \) sufficiently large, \(g(\mathbf{x} | d_1, d_2) \) is dominated by an integrable function \(h(\mathbf{x} | d_1, d_2) \), which monotonically decreases to an integrable function \(h(x) \); moreover, \(\int h(\mathbf{x} | d_1, d_2) \, dx \) also decreases monotonically to \(\int h(x) \, dx \). Then using a generalization of the Lebesque Dominated Convergence Theorem (see, for example, Royden, p.89), we conclude that the limit of \(\int g(\mathbf{x} | d_1, d_2) \, dx \) is \(g(x) \).

We now make use of assumption (2) to prove the above claims. First, it is an immediate consequence of the assumption that for sufficiently large \(d_1 \) and \(d_2 \),

\[
g(\mathbf{x} | d_1, d_2) \leq h(\mathbf{x} | d_1, d_2) = \prod_{k=1}^{2} \{1 + (x-\mu_k)^T B_k (x-\mu_k)/d_k\}^{-d_k/2}.
\]
Also, it can be directly verified that as \(d_1, d_2 \to \infty \), \(h(x|d_1, d_2) \) monotonically decreases to an integrable function

\[
h(x) = \exp \left\{ - (u_1 - u_2) ^T B_1 (B_1 + B_2)^{-1} B_2 (u_1 - u_2) / 2 \right\} \\
\times \exp \left\{ - (x - \bar{u}) ^T (B_1 + B_2) (x - \bar{u}) / 2 \right\},
\]

where \(\bar{u} = (B_1 + B_2)^{-1} (B_1 u_1 + B_2 u_2) \). To establish the integrability of \(h(x|d_1, d_2) \), let \(m = \min(d_1, d_2) \). Then the monotonicity of the function implies that

\[
h(x|d_1, d_2) \leq \prod_{k=1}^{2} \left\{ 1 + (x - \bar{u}_k) ^T B_k (x - \bar{u}_k) / m \right\}^{-m/2}
\]

\[
\leq \left\{ 1 + (x - \bar{u}) ^T (B_1 + B_2) (x - \bar{u}) / m \right\}^{-m/2}.
\]

For sufficiently large \(d_1 \) and \(d_2 \), the t-like factor on the right-hand side, denoted by \(h_m(x) \), is proportional to a multivariate t density with \(m-p \) degrees of freedom, mean \(\bar{u} \) and scale matrix \(B_1 + B_2 \); therefore, \(h(x|d_1, d_2) \) is integrable. Let \(m \) be fixed. Define \(\Phi(x|d_1, d_2) = h_m(x) - h(x|d_1, d_2) \), for \(d_1, d_2 > m \). Applying the Monotone Convergence Theorem to this sequence of functions together with the fact that \(h_m(x) \) is integrable, we conclude that

\[\int h(x|d_1, d_2) \, dx \text{ tends to } \int h(x) \, dx. \]

This completes the proof.

We point out that if only the elements of a subset of \(d_1, \ldots, d_L \) tend to infinity, then the theorem will apply to the product of the corresponding t-like factors while the remaining factors will stay put.

We now consider a special form of the poly-t density (1) with scale matrix

\[M_k(d_k) = w_k(d_k) N_k \quad (3) \]

for some positive function \(w_k \) and semi-positive definite matrix \(N_k \). The following corollary concerns the asymptotic behavior of such a poly-t density.

Corollary For the particular poly-t density with \(M_k(d_k) \) of the form (3), \(k=1, \ldots, L \), assume that \(d_k w_k(d_k) + c_k > 0 \) as \(d_k \to \infty \), \(k=1, \ldots, L \) and \(M = M_1 + \ldots + M_L > 0 \),
where $M_k = c_k N_k$ is the limit of $d_k M_k(d_k)$. Then $f(x_1, \ldots, x_L) = f_N(x_1, \mu, M^{-1})$ as $d_1, \ldots, d_L \to \infty$.

Proof. We need to check that the two assumptions of the theorem hold for this particular form of poly-t density. Assumption (1) is obviously satisfied. For assumption (2), we take $B_k = \varepsilon_k M_k$ for some appropriately chosen positive number ε_k. Clearly, $B_1 + \ldots + B_L = \varepsilon_1 M_1 + \ldots + \varepsilon_L M_L > 0$. We must choose ε_k such that $d_k M_k(d_k) - B_k = [d_k w_k(d_k) - \varepsilon_k c_k] N_k > 0$ for d_k sufficiently large. Since $d_k w_k(d_k) \to c_k$ as $d_k \to \infty$, it follows that for d_k large enough, $d_k w_k(d_k) > c_k - n_k > 0$ where n_k is an arbitrary positive number. Therefore, we can choose $\varepsilon_k = (c_k - n_k)/c_k$. This completes the proof.

An example of a poly-t density with scale matrices of the specific form (3) is when d_k and $M_k(d_k)$ are given by (2). Here we may choose $w_k(d_k) = 1/(dk - m_k)$, and $N_k = M_k$. Note that the M_k matrix in (2) is the limit of $d_k M_k(d_k)$ since $c_k = 1$.

3. **APPLICATION TO BAYESIAN LINEAR MODELING**

The results of the previous section are now applied to a multiple regression model with an exchangeable normal prior on the regression coefficients and independent inverted gamma priors on the variance components. The sampling model is represented by

$$y = X\beta + \varepsilon,$$

$$\varepsilon \sim N(0, \sigma^2 I_n),$$

where y is an $n \times 1$ vector of observations, X is an $n \times p$ fixed design matrix in correlation form, and I_n is the $n \times n$ identity matrix. The prior specification is given by
\(\beta \sim N(\mathbf{1}_p, \sigma^2 \mathbf{I}_p), \)
\[\nu \lambda / \sigma^2 \sim \chi^2_{\nu}, \nu \beta \mathbf{1}_p / \sigma^2 \sim \chi^2_{\nu}, \]
where \(\mathbf{1}_p \) is a \(p \times 1 \) vector of ones, and the \(\lambda \)'s and \(\nu \)'s are hyperparameters that determine the prior means and variances of the variance components. For example \(E(\sigma^2) = \nu \lambda / (\nu - 2) \), and \(V(\sigma^2) = 2 \nu \lambda^2 / (\nu - 2)^2 (\nu - 4) \).

Therefore, a large value of \(\nu \) reflects a strong prior certainty the \(\lambda \) is a correct guess of \(\sigma^2 \). Additionally, we assume that prior knowledge about \(\nu \) is vague.

In the special case of the one-way random effects model with a block diagonal matrix \(X = \text{diag}(1_{n_1}, \ldots, 1_{n_p}) \), where \(n_i \) is the sample size of the \(i \)th group, Hill (1965, 1977, 1980) presented exact and approximate posterior inference of \(\sigma^2_\beta \) and \(\sigma^2 \). His results can be used to obtain the posterior moments of the group means \(\beta \). Lindley and Smith (1972) estimated the parameters of the above general model using a computationally simple posterior joint modal approach. None of these authors, however, discussed the approximation of the posterior density of \(\beta \), which we denote by \(f(\beta | y) \). In the following, we show how the results of Section 2 may be used to approximate this density.

From Lindley and Smith, the posterior density of \(\beta \) is
\[
f(\beta | y) \propto (1 + \beta^T H \beta / \nu \lambda \beta)^{-1/2} \times \left(1 + (\hat{\beta} - \beta)^T X^T X (\hat{\beta} - \beta) / (\nu \lambda + n s^2) \right)^{-1/2},
\]
where \(H = \mathbf{1}_p - (1/p) \mathbf{1}_p \mathbf{1}_p^T \), \(\hat{\beta} \) is a least squares estimate of \(\beta \) and \(s^2 \) is the residual mean square. The posterior density of \(\beta \) is a poly-t density of the special form (2) with
\[
\nu_1 = \nu \beta, \nu_2 = \nu + n s^2 / \lambda, \\
m_1 = p - 1, m_2 = n - n s^2 / \lambda, \\
m_1 = H / \nu \lambda, M_2 = X^TX / \lambda.
\]
When there is prior near certainty concerning σ_B^2 and σ_w^2 so that both v_B and v are large, a simple application of the corollary shows that $f(\hat{\beta}^T X)$ is approximately normal with mean μ and covariance matrix Σ given by

$$\mu = \left(H/\lambda_B + X^T X/\lambda \right)^{-1} X^T y,$$

$$\Sigma = \left(H/\lambda_B + X^T X/\lambda \right)^{-1}.$$

When there is a considerable amount of uncertainty concerning the prior value λ_B (or λ) so that v_B (or v) is not assigned a large value, the normal approximation may be improved upon by using a generalization of the Tiao-Zellner expansion. An alternative was proposed by Dickey (1967) using an expansion based on Appell's polynomials (1880) in the univariate case ($p=1$); however, the multivariate version has not been studied. The original Tiao-Zellner expansion is designed for a special case of a poly-t density with $L=2$ proper multivariate t factors with mean μ_k, scale matrix M_k and v_k degrees of freedom, $k=1,2$. In the expansion, the poly-t density is approximated by a density in the form of $f_N(x; M, N^{-1})$, where $\mu = M^{-1}(M_1 \mu_1 + M_2 \mu_2)$ and $M = M_1 + M_2$, multiplied by a double infinite series in the inverse powers of v_1 and v_2.

When most of the probability mass is concentrated in the intersection of two ellipsoids $\{ x: (x-\mu_k)^T M_k (x-\mu_k) \leq v_k \}, k=1,2$, the expansion will yield reasonable approximation with only a few terms in the series expansion.

The Tiao-Zellner expansion may be generalized to the case of a poly-t density of the form (2). Lindley (1971) mentioned the use of this expansion in the case of the one-way model. However, he did not specify the limiting normal density. Also, the degrees of freedom v_1 and v_2 were not correctly stated. We now sketch the essential steps in the generalization using $f(\hat{\beta}^T X)$ in (4) as an example.

Let v_k and m_k be as defined in (5), $Q_1 = \hat{\beta}^T H \hat{\beta}/\lambda_B$, and $Q_2 = (\hat{\beta} - \hat{\beta})^T X^T X (\hat{\beta} - \hat{\beta})/\lambda$. Following Tiao and Zellner, we obtain for the first factor
\[(1+\frac{Q_1}{v_1})(v_1+m_1)/2 = \exp(-Q_1/2) \exp[Q_1/2-(v_1+m_1)/2] \log(1+Q_1/v_1)].\]

This is of the same form as that obtained in (3.2) of Tiao and Zellner except that we replace \(p\) there by \(m_1\). Therefore, the functional forms of the polynomials \(p_i = p_i(Q_1)\) in the expansion

\[(1+\frac{Q_1}{v_1})(v_1+m_1)/2 = \exp(-Q_1/2) \sum_{j=0}^{\infty} p_i v_1^{-1}\]

are of the same forms as those given in Tiao and Zellner except that the constant \(p\) is replaced by \(m_1\) (for instance, \(p_1 = (Q_1-m_1)Q_1/4\)). Similarly, for the second factor,

\[(1+\frac{Q_2}{v_2})(v_2+m_2)/2 = \exp(-Q_2/2) \sum_{j=0}^{\infty} q_j v_2^{-j}\]

where the constant \(p\) which appears in the polynomials \(q_j = q_j(Q_2)\) in Tiao and Zellner is now replaced by \(m_2\).

Following the rest of the derivation of Tiao and Zellner, we obtain the generalized expansion

\[f(E;X) = f_N(E;u,M^{-1}) \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} d_{ij} v_1^{-i} v_2^{-j},\]

where the leading normal term is the one guaranteed by the corollary, and the \(d_{ij}\)'s are polynomials in \(p_i\) and \(q_j\) given in (3.9) of Tiao and Zellner. The coefficients which appear in the polynomial \(d_{ij}\), namely \(b_{rs} = E\{p_r(Q_1)q_s(Q_2)\}\) for \(r \leq i, s \leq j\), also have to be modified accordingly. The modification essentially consists of the following steps: (1) Change the constant \(p\) in \(p_r(Q_1)\) given in Tiao and Zellner to \(m_1\); (2) Change the constant \(p\) in \(q_s(Q_2)\) given in Tiao and Zellner to \(m_2\), and (3) Use the bivariate moment-cumulant inversion formulas as given by Cook (1951) to express \(b_{rs}\) in terms of the mixed cumulants of \(Q_1\) and \(Q_2\). Expressions for these cumulants are derived in Tiao and Zellner. Following these four steps, the coefficients \(b_{rs}\) can be evaluated.
in a straightforward manner. We omit the details here.

In the case of a product of two t-like factors of the form (2), it is also feasible to approximate the density by direct one-dimensional numerical integration. Dickey (1968) showed that integration can be facilitated if the scale matrices are simultaneously diagonalized first (more details are presented in Box and Tiao (1973, chapter 9)). The generalized Tiao-Zellner expansion offers a simple approximation alternative in terms of familiar multivariate normal calculations. When there are many such t-like factors, such as in the posterior analysis of a general mixed linear model with many variance components, it will be virtually impossible to approximate the density by high-dimensional numerical integration. The generalized expansion, however, can be extended to the case of many t-like factors in a straightforward manner. Obviously, the computational complexity will increase rapidly as the number of t-like factors increases.

ACKNOWLEDGEMENTS

Preparation of this article was supported by the office of Naval Research Contract No. N00014-85-K-0485.
BIBLIOGRAPHY

Appell, P. (1880). Développement in série entière de $(1+a x)^{1/x}$. Archiv der Mathematik und Physik, 65, 171-175.

Dr. Terry Ackerman
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. James Algina
University of Florida
Gainesville, FL 32605

Dr. Erling B. Andersen
Department of Statistics
Studiestræde 6
1455 Copenhagen
DENMARK

Dr. Eva L. Baker
UCLA Center for the Study of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code N711
Naval Training Systems Center
Orlando, FL 32813

Dr. Bruce Bloxom
Defense Manpower Data Center
550 Camino El Estero, Suite 200
Monterey, CA 93943-3231

Dr. R. Darrell Bock
University of Chicago
NORC
6030 South Ellis
Chicago, IL 60637

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstraat
1120 Brussels, BELGIUM

Dr. Robert Breaux
Code N-095R
Naval Training Systems Center
Orlando, FL 32813

Dr. Robert Brennan
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Dr. Lyle D. Broemeling
ONR Code 1111SP
800 North Quincy Street
Arlington, VA 22217

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

Dr. Robert Carroll
OP 0187
Washington, DC 20370

Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235
Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

Dr. Fritz Drasgow
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Director,
Manpower Support and
Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Dr. Stan Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Hans Crombag
University of Leyden
Education Research Center
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

Dr. Hans Crombag
University of Leyden
Education Research Center
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

Dr. Hans Crombag
University of Leyden
Education Research Center
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

Mr. Timothy Davey
University of Illinois
Educational Psychology
Urbana, IL 61801

Dr. Doug Davis
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

Dr. Dattprasad Divgi
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Hei-Ki Dong
Ball Foundation
800 Roosevelt Road
Building C, Suite 206
Glen Ellyn, IL 60137

Dr. Stephen Dunbar
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Dr. James A. Earles
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. John M. Eddins
University of Illinois
252 Engineering Research Laboratory
103 South Mathews Street
Urbana, IL 61801

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser
Lawrence, KS 66045

Dr. Benjamin A. Fairbank
Performance Metrics, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

Dr. Pat Federico
Code 511
NPRDC
San Diego, CA 92152-6800
Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebigasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Myron Fischl
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Dr. Robert D. Gibbons
University of Illinois-Chicago
P.O. Box 6998
Chicago, IL 69680

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dipl. Pad. Michael W. Habon
Universitat Dusseldorf
Erziehungswissenschaftliches Universitaetsstr. 1
D-4000 Dusseldorf 1
WEST GERMANY

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts at Amherst
Hills House
Amherst, MA 01003

Dr. Delwyn Harnisch
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Institut fur Psychologie
RWTH Aachen
Jaegerstrasse 17/19
D-5100 Aachen
WEST GERMANY

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 90010

Mr. Dick Hoshaw
OP-135
Arlington Annex
Room 2834
Washington, DC 20350
Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. Harold F. O'Neil, Jr.
School of Education - WPH 801
Department of Educational Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031

Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

Office of Naval Research,
Code 1142PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Office of Naval Research,
Code 125
800 N. Quincy Street
Arlington, VA 22217-5000

Assistant for MPT Research,
Development and Studies
OP 01B7
Washington, DC 20370

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Jesse Orlansky
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

Dr. Randolph Park
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Administrative Sciences Department,
Naval Postgraduate School
Monterey, CA 93940

Department of Operations Research,
Naval Postgraduate School
Monterey, CA 93940

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Malcolm Re
AFHRL/MP
Brooks AFB, TX 78235

Dr. Barry Riegelhaupt
HumRRO
1100 South Washington Street
Alexandria, VA 22314

Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152-6800

Lowell Schoer
Psychological & Quantitative Foundations
College of Education
University of Iowa
Iowa City, IA 52242
Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Dan Segall
Navy Personnel R&D Center
San Diego, CA 92152

Dr. W. Steve Sellman
OASD (MRA&L)
2B269 The Pentagon
Washington, DC 20301

Dr. Kazuo Shigemasu
7-9-24 Kugenuma-Kaigan
Fujusawa 251
JAPAN

Dr. William Sims
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. H. Wallace Sinaiko
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Richard E. Snow
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Dr. Judy Spray
ACT
P.O. Box 168
Iowa City, IA 52243

Dr. Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

Maj. Bill Strickland
AF/MPXOA
4E168 Pentagon
Washington, DC 20330

Dr. Hariharan Swaminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

Mr. Brad Symson
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research Laboratory
Urbana, IL 61801

Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820
Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering
Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Kentaro Yamamoto
Computer-based Education
Research Laboratory
University of Illinois
Urbana, IL 61801

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550