TESTING EXPERIMENTAL COMPOUNDS
AGAINST LEISHMANIASIS IN LAB ANIMAL MODELS

DOCUMENT IDENTIFICATION
SEPT 1984

This document has been approved
for public release and sale. The
distribution is unlimited.™

DISTRIBUTION STATEMENT

DTIC ELECTED
OCT 1 4 1987

DATE ACCESSIONED

DATE RETURNED

A-1

DISTRIBUTION STAMP

DATE RECEIVED IN DTIC

REGISTERED OR CERTIFIED NO.

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC
Testing Experimental Compounds Against Leishmaniasis in Laboratory Animal Model Systems

ANNUAL SUMMARY REPORT
Jan S. Keithly, Ph.D.

SEPTEMBER 1984

Supported by
U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND

Fort Detrick
Frederick, Maryland 21701-5012

Contract No. DAMD 17-83-C-3039
Cornell University Medical College
New York, New York 10021

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
Title: Testing Experimental Compounds Against Leishmaniasis in Experimental Laboratory Animal Models

Authors: Jan S. Keithly, Ph.D.

Performing Organization: Cornell University Medical College, 1300 York Avenue, New York, New York 10021

Controlled by: U.S. Army Medical Research and Development, Fort Detrick, Frederick, Maryland 21701

Report Date: September 1984

Number of Pages: 45

Abstract:

Pentostam Dose Responses for *L.* donovani, *L.* m. mexicana, and *L.* b. guyanensis have been determined in BALB/c mice using amastigotes (A), primary culture promastigotes (PCP), and subcultured promastigotes (SP). In each test system, PCP are more resistant to treatment than are A or SP. This is biologically significant, since PCP are equivalent to the infective stage from sandflies. The Effective Dose (ED) for PCP in each secondary test system are:

- *L.* donovani: Amastigote (ED), Promastigote (ED)
- *L.* m. mexicana: Primary culture promastigote (ED), Trypanothione
- *L.* b. guyanensis: Pentostam Dose Response (ED), Drug delivery

Keywords:

- Leishmania donovani
- Amastigote
- Pentostam
- *L.* m. mexicana
- Primary culture promastigote
- Trypanothione
- *L.* b. guyanensis
- Pentostam Dose Response
- Drug delivery
- BALB/c mouse
- Combination Chemotherapy
- α-difluoromethylornithine (DFMO)

Distribution Statement: Approved for public release; distribution unlimited.
<table>
<thead>
<tr>
<th>Leishmania subspecies</th>
<th>Cell Type</th>
<th>ED 90 PCP</th>
<th>ED 90 A</th>
<th>ED 50 PCP</th>
<th>ED 50 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>mexicana</td>
<td></td>
<td>1090</td>
<td>521</td>
<td>290</td>
<td>150</td>
</tr>
<tr>
<td>braziliensis guyanensis</td>
<td></td>
<td>90</td>
<td>25</td>
<td>21</td>
<td>07</td>
</tr>
<tr>
<td>donovani archibaldi</td>
<td></td>
<td>61</td>
<td>11</td>
<td>06</td>
<td>01</td>
</tr>
</tbody>
</table>

These data also show that Pentostam causes improvement and parasitological cures in WRAIR primary (hamster), secondary (BALB/c), and tertiary (owl monkey) test systems at doses and regimes equivalent to those used to treat humans. The validity of each of these models in drug screening to predict the outcome in human infections is established.

Cutaneous infections caused by L. m. mexicana are 3 to 7x more difficult to treat than are L. donovani or cutaneous L. b. guyanensis infections. This appears to be a problem in drug delivery both to tissue site and to parasite. Priority for mode of action of Pentostam and to development of novel carriers for delivery to amastigotes in cutaneous lesions is recommended.

Pentostam powder (BJ 58563) furnished by WRAIR is no longer available. A solution from the Centers for Disease Control has been substituted. This presents some special problems for current data evaluation.

B. Experimental WRAIR Compounds
Seven of 10 WRAIR 1984 compounds suppress L. donovani 79 to 94% at the MTD, MTD/2, and MTD/4. It is highly probable they will be competitive with Pentostam. The remaining three compounds are variously toxic. It is too early to determine whether these three will be competitive with Pentostam.

For 6 of 7 drugs active against L. donovani, Pentostam Indices of 4.3 to 84.0 occur against L. b. guyanensis when measured as % suppression from controls. None of these drugs suppressed lesions from original size. All drugs were delivered orally as per change in protocol by 1983 COTR. We think the lack of efficacy against cutaneous lesions of 1984 drugs is a problem in drug delivery. Therefore, we are testing these 7 drugs subcutaneously as per standard protocol. One drug (BG 56256) given orally for 3 weeks in cutaneous infections is toxic, whereas the same total dose in L. donovani for one week is not. These data suggest drug accumulation and metabolism by infected tissue macrophages be explored.

C. Combination Chemotherapy of DFMO + Pentostam
Previously we had reported a synergistic effect of the polyamine inhibitor DFMO and the antineoplastic glycopeptide Bleomycin against L. donovani in mice. This was the first time in 30 years a new drug competitive with Pentostam showed efficacy against leishmaniasis. Here we report suppression of L. b. guyanensis infections in BALB/c mice by 5% DFMO alone and with 2% DFMO in combination with Pentostam after one week of treatment. The real question is whether this combination which affects essential metabolic pathways will be as synergistic as DFMO + Bleomycin, in which DNA is the ultimate target. These data suggest combination chemotherapy of DFMO with DNA intercalators and inhibitors of leishmania pathways, i.e., allopurinol, pentamidine, is a promising alternative to antimonial therapy.

D. Evaluation of L. braziliensis braziliensis
During the past two years we have shown that L. b. braziliensis M2904 and a recent human isolate have special requirements for growth and transformation in vitro. We have established experimental infections in BALB/cByJ mice in order to study properties of virulence. Because of the projected revisions in this contract for testing topical creams in hamsters against L. m. mexicana and L. b. panamensis infections, additional studies on L. b. braziliensis will (cont.)
be carried out under separate funding. If promising compounds are identified under DAMD 17-83-C-3039, the Principal Investigator will test them against *L. b. braziliensis* at the request of COTR.
FOREWORD

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

In conducting the research described in this report, the investigators adhered to the "Guide for Care and Use of Laboratory Animals", prepared by the Committees on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (DHEW Publication No. (NIH) 78-23, Revised 1978).
SUMMARY

A. Pentostam Dose Response

Pentostam Dose Responses for *L. donovani*, *L. m. mexicana*, and *L. b. guyanensis* have been determined in BALB/c mice using amastigotes (A), primary culture promastigotes (PCP), and subcultured promastigotes (SP). In each test system, PCP are more resistant to treatment than are A or SP. This is biologically significant, since PCP are equivalent to the infective stage from sandflies. The Effective Dose (ED) for PCP in each secondary test system are:

<table>
<thead>
<tr>
<th>Leishmania subspecies</th>
<th>Cell Type</th>
<th>ED 90</th>
<th>ED 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PCP</td>
<td>A</td>
</tr>
<tr>
<td>mexicana mexicana</td>
<td></td>
<td>1090</td>
<td>521</td>
</tr>
<tr>
<td>braziliensis guyanensis</td>
<td></td>
<td>90</td>
<td>25</td>
</tr>
<tr>
<td>donovani archibaldi</td>
<td></td>
<td>61</td>
<td>11</td>
</tr>
</tbody>
</table>

These data also show that Pentostam causes improvement and parasitological cures in WRAIR primary (hamster), secondary (BALB/c), and tertiary (owl monkey) test systems at doses and regimes equivalent to those used to treat humans. The validity of each of these models in drug screening to predict the outcome in human infections is established.

Cutaneous infections caused by *L. m. mexicana* are 3 to 7x more difficult to treat than are *L. donovani* or cutaneous *L. b. guyanensis* infections. This appears to be a problem in drug delivery both to tissue site and to parasite. Priority for mode of action of Pentostam and to development of novel carriers for delivery to amastigotes in cutaneous lesions is recommended.

Pentostam powder (BJ 58563) furnished by WRAIR is no longer available. A solution from the Centers for Disease Control has been substituted. This presents some special problems for current data evaluation.

B. Experimental WRAIR Compounds

Seven of 10 WRAIR 1994 compounds suppress *L. donovani* 79 to 94% at the MTD, MTD/2, and MTD/4. It is highly probable they will be competitive with Pentostam. The remaining three compounds are variously toxic. It is too early to determine whether these three will be competitive with Pentostam.
For 6 of 7 drugs active against *L. donovani*, Pentostam indices of 4.3 to 84.0 occur against *L. b. guyanensis* when measured as % suppression from controls. None of these drugs suppressed lesions from original size. All drugs were delivered orally as per change in protocol by 1983 COTR. We think the lack of efficacy against cutaneous lesions of 1984 drugs is a problem in drug delivery. Therefore, we are testing these 7 drugs subcutaneously as per standard protocol. One drug (BG 56256) given orally for 3 weeks in cutaneous infections is toxic, whereas the same total dose in *L. donovani* for one week is not. These data suggest drug accumulation and metabolism by infected tissue macrophages be explored.

C. Combination Chemotherapy of DFMO + Pentostam

Previously we had reported a synergistic effect of the polyamine inhibitor DFMO and the antineoplastic glycopeptide Bleomycin against *L. donovani* in mice. This was the first time in 30 years a new drug competitive with Pentostam showed efficacy against leishmaniasis. Here we report suppression of *L. b. guyanensis* infections in BALB/c mice by 5% DFMO alone and with 2% DFMO in combination with Pentostam after one week of treatment. The real question is whether this combination which affects essential metabolic pathways will be as synergistic as DFMO + Bleomycin, in which DNA is the ultimate target. These data suggest combination chemotherapy of DFMO with DNA intercalators and inhibitors of leishmania pathways, i.e. allopurinol, pentamidine, is a promising alternative to antimonials therapy.

D. Evaluation of *L. braziliensis* braziliensis

During the past two years we have shown that *L. b. braziliensis* M2904 and a recent human isolate have special requirements for growth and transformation in vitro. We have established experimental infections in BALB/cByJ mice in order to study properties of virulence. Because of the projected revisions in this contract for testing topical creams in hamsters against *L. m. mexicana* and *L. b. panamensis* infections, additional studies on *L. b. braziliensis* will be carried out under separate funding. If promising compounds are identified under DAMD 17-83-C-3039, the Principal Investigator will test them against *L. b. braziliensis* at the request of COTR.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Documentation</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Foreward</td>
<td>2</td>
</tr>
<tr>
<td>Summary</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>Index of Tables</td>
<td>6</td>
</tr>
<tr>
<td>Index of Figures</td>
<td>8</td>
</tr>
<tr>
<td>I. Objective</td>
<td>9</td>
</tr>
<tr>
<td>II. Background</td>
<td>10</td>
</tr>
<tr>
<td>A. Incidence</td>
<td>11</td>
</tr>
<tr>
<td>B. Chemotherapy</td>
<td>12</td>
</tr>
<tr>
<td>1. Antimonials</td>
<td>12-13</td>
</tr>
<tr>
<td>2. Heavy metals, cationic drugs, and enzyme inhibitors</td>
<td>13-14</td>
</tr>
<tr>
<td>3. Polyamine inhibitors</td>
<td>14</td>
</tr>
<tr>
<td>4. Imidazoles and azoles</td>
<td>14-15</td>
</tr>
<tr>
<td>III. Results</td>
<td>15</td>
</tr>
<tr>
<td>A. Pentostam Dose Response</td>
<td>15-17</td>
</tr>
<tr>
<td>1. Leishmania donovani Test System</td>
<td>15-17</td>
</tr>
<tr>
<td>2. L. mexicana mexicana Test System</td>
<td>15-17</td>
</tr>
<tr>
<td>3. L. braziliensis guyanensis Test System</td>
<td>15-17</td>
</tr>
<tr>
<td>B. Experimental WRAIR Compounds</td>
<td>17-19</td>
</tr>
<tr>
<td>1. L. donovani Test System</td>
<td>17-19</td>
</tr>
<tr>
<td>2. L. m. mexicana</td>
<td>17-19</td>
</tr>
<tr>
<td>3. L. b. guyanensis</td>
<td>17-19</td>
</tr>
<tr>
<td>C. Combination Chemotherapy of DFMO + Pentostam</td>
<td>19-20</td>
</tr>
<tr>
<td>1. L. donovani Test System</td>
<td>19-20</td>
</tr>
<tr>
<td>2. L. m. mexicana</td>
<td>19-20</td>
</tr>
<tr>
<td>3. L. b. guyanensis</td>
<td>19-20</td>
</tr>
<tr>
<td>D. Evaluation of L. b. braziliensis Test System</td>
<td>20-21</td>
</tr>
<tr>
<td>IV. Discussion and Conclusions</td>
<td>21-27</td>
</tr>
<tr>
<td>A. Pentostam Dose Response</td>
<td>21-24</td>
</tr>
<tr>
<td>1. Visceral Test System</td>
<td>21-24</td>
</tr>
<tr>
<td>2. Cutaneous and Mucocutnaeous Test System</td>
<td>21-24</td>
</tr>
</tbody>
</table>
IV. B. Experimental WRAIR Compounds
 C. Combination Chemotherapy of DFMO + Pentostam 25-26
 D. Leishmania braziliensis braziliensis Test System 27

V. Literature Cited 28-33
VI. Tables and Figures 34-44
VII. Distribution List 45

Appendix I
Appendix II
INDEX OF TABLES

Table 1A. Suppression by Pentostam of L. m. mexicana amastigote (A) and primary culture promastigote (PCP) infections in BALB/c mice. 34
1B. Suppression by Pentostam of L. m. mexicana: subcultured promastigotes.

Table 2. Effect of Cell Type upon Effective Doses of Pentostam to Suppress Leishmaniasis in BALB/c Mice. 35

Table 3A. Suppression by Pentostam of L. b. guyanensis A and PCP Infections in BALB/c Mice. 36
3B. Suppression by Pentostam of L. b. guyanensis SP Infections in BALB/c Mice.

Table 4A. Suppressive Effect of 1984 WRAIR Drugs upon L. donovani Khartoum in BALB/c Mice. 37
4B. Suppressive Effect of 1984 WRAIR Drugs upon L. donovani Khartoum in BALB/c Mice.

Table 5. Comparison of Activity of 1984 WRAIR Compounds against L. donovani and Plasmodium spp. in Mice. 38

Table 6. Effect of 1984 WRAIR Drugs upon Lesions of L. m. mexicana in BALB/c Mice. 39

Table 7. Effect of DFMO + Pentostam upon L. m. mexicana Infections in BALB/c Mice. 39

Table 8. Effect of DFMO + Pentostam upon L. b. guyanensis Infections in BALB/c Mice.

Table 9. Effect of Medium Conditions upon Transformation and Growth of L. braziliensis braziliensis. 40

Table 10A. Effect of Host Origin and Conditions of Cultivation upon Development of L. b. braziliensis Lesions in Hamsters and BALB/c Mice: Mice. 41
10B. Effect of Host Origin and Conditions of Cultivation upon Development of Lesions: Hamsters.
INDEX OF FIGURES

Figure 1. Pentostam Dose Response: Leishmania donovani 42
Figure 2. Pentostam Dose Response: L. m. mexicana 43
Figure 3. Pentostam Dose Response: L. b. guyanensis 44
I. Objective

To serve as a secondary screen for promising WRAIR experimental compounds against cutaneous, mucocutaneous, and visceral leishmaniasis in BALB/c mice. Specifically to test 10 compounds a year against *Leishmania mexicana mexicana*, *L. braziliensis panamensis* (or *guyanensis*), and *L. donovani* and to test 5 compounds a year against *L. braziliensis braziliensis*.

The original scope of this proposal was modified during its first year (1982-1983) to:

A. Determine the optimum dose and stage of parasite for screening - Parasite Dose Response
B. Determine the Pentostam Dose Response to infection
C. Screen three new WRAIR compounds
D. Optimize the Standing Operating Procedure for each model.

A summary of these results may be found in the 1983 Annual Report.

Following an evaluation of the First Annual Report 1983 in November and a Site Visit in January, 1984, the scope of this proposal was further modified chiefly due to a paucity of promising experimental drugs identified in the hamster primary test system against cutaneous and mucocutaneous leishmaniasis.

Following the Site Visit, it was recommended that:

A. Ten experimental WRAIR compounds be tested in the *Leishmania donovani* BALB/c model;
B. A Pentostam Dose Response (PDR) be completed for each model;
C. Combination chemotherapy using d-difluoromethylornithine (DFMO) + Pentostam against *L. donovani*, *L. m. mexicana*, and *L. b. guyanensis* be started as a new direction; and
D. Basic research on the *L. b. braziliensis* BALB/c test system continue for one year.

In addition, it was decided that new directions for the contract be identified and discussed further with the incoming COTR Major James Lovelace.

At a preliminary meeting in April, the PI presented several new directions for consideration and supporting letters of collaboration (Appendix I). These included: 1) combination of DFMO with known and promising antileishmanial drugs, 2) mode of action of Pentostam in vivo and in vitro and the use of carnitine analogs to inhibit *Leishmania*, 3) use of iron chelators to interfere with heme-iron acquisition by leishmania, and 4) significance of iron siderophores for virulence of *L. b. braziliensis* subspecies. Following a meeting of WRAIR personnel in June or July, the COTR and PI will meet again to finalize the revised scope of DAMD 17-
II. Background

Human leishmaniases are severely debilitating and affect about 20-100 million people (1). Their public health importance was recognized when the WHO Special Program included them among its 6 major diseases, and when the NIH-AID initiated its Collaborative Program for Training in Topical Disease. A recent report estimates 400,000 new cases yearly (2). Cutaneous disease has been a problem among U.S. Army personnel (3), Israeli troops in the Middle East (4), and recently British troops in Guyana (5). In light of events in Central and South America, and the continued interest of the United States in the security of civilians and military in this hemisphere, improving therapy for cutaneous and mucocutaneous leishmaniasis (CL and MCL, respectively) has become critical. Endemic areas of canine and human leishmaniasis probably occur within the United States (6,7).

The three drug groups for treating leishmaniasis are the pentavalent antimonials - sodium stibogluconate (Pentostam) and meglumine antimoniate (Glucantime), diamidines - Pentamidine, and the macrolide antibiotics - amphotericin B. Although these are generally effective against visceral leishmaniasis, they vary in efficacy against American cutaneous and mucocutaneous leishmaniasis (8-10).

Strains of *L. donovani* and *L. tropica* resistant to pentavalent antimony and to Formycin B have recently been reported (11,12). Resistance was induced stepwise, a condition likely to occur during treatment when less than optimal dosing is used (13).

Since our last annual report, rational approaches to chemotherapy have 1) provided new lead compounds, 2) stimulated reevaluation of standard drugs, and 3) identified synergistic combinations of new and existing drugs. The incidence of American mucocutaneous leishmaniasis has also increased significantly.

A. Incidence

Since December 1983, our laboratory has been consulted in five human and two canine cases of suspected leishmaniasis. Two of the 5 human cases were isoenzyme typed as *L. b. braziliensis* (Peru), one as *L. b. guyanensis* (Ecuador), and the other two were culture negative (Ecuador, India). All but one of these patients were American. One patient negative for leishmaniasis subsequently died of fulminant histoplasmosis.

The unfortunate fact that 3/5 diagnosed cases were mucocutaneous subspecies illustrates the immediate need for improved therapy against *L. braziliensis* (14-17). Two patients were apparently cured using Pentostam, while one patient unsuccessfully treated with a full course of sodium stibogluconate was
subsequently cured using amphotericin B (H. Pierce-Gardner, FRS, M.D., pers. comm.). Recent cases of *L. m. mexicana* (14) and *L. b. guyanensis* (15-17) in Guyana show that American CL and MCL are no longer exotic diseases, but are health hazards for American professionals and travellers.

L. donovani was successfully cultured from one dog seen by us. Its owners were seen at the International Health Care Service, Cornell, because their 2 small children were thought at risk for *L.d. infantum*. The family declined to be tested or treated (H.W. Murray, M.D., pers. comm.), preferring a "wait and see" approach. Canine leishmaniasis is notoriously difficult to treat (18-19). These imported cases and those within the U.S.A. (5) are of increasing concern for the Centers for Disease Control.

B. Chemotherapy

1. Antimonials

Systemic pentavalent antimonials remain the treatment of choice for all leishmaniasis. Recently, longer regimes and higher doses have improved cure and decreased relapse rates in humans (13, 20). Combination of Pentostam with rifampicin or allopurinol has improved therapy of resistant cutaneous and visceral cases, respectively (21-22), and we have reported potentiation of Pentostam using BCG (Annual Report 2, DAMD 17-80-C-0016).

Previous studies using BCG against cutaneous leishmaniasis were inconclusive. Mice pretreated with BCG were better able to control *L. tropica* infections, as measured by reduction of lesion size and metastasis to viscera (23), but BCG was unable to alter either the course of infection or the immunological response of C3H mice to infection with *L. mexicana* (24).

Unlike the latter authors, we observed a marked decrease in lesion size when BCG was combined with Pentostam. Pentostam is known to accumulate both *in vitro* within phagolysosomes and leishmania (25), and is thought to inhibit phosphofructokinase and pyruvate kinase, two enzymes important for glycolysis (26). In k inetoplastids, these enzymes are compartmentalized into the glycosome (27). Ultrastructural evidence indicates that Pentostam treatment of *L. mexicana* infected hamsters causes these organelles to disappear (28). Therefore, the known specificity of Pentostam for an essential pathway localized in an organelle in leishmania, may account for its efficacy in reducing lesions when combined with BCG. Neither BCG nor levamisole alone altered *L. mexicana* infections (24).

The reported inability of glucantime combined with glucan to alter the course of experimental infections of *L. mexicana*, *L. braziliensis*, or *L. garnamhii* in C57BL/6 mice is surprising (29). In BALB/c mice, glucantime alone suppresses lesions considerably (JSK and WH Annual Reports, 1982). Lack of potentiation may be
glucan's nonspecific, immunogenic nature (29) or to host difference, but an alternative explanation is lack of immunostimulation at the tissue site. Pretreatment or post-treatment with glucan was able to protect or cure CF1 mice infected with L. donovani (30).

Liposome encapsulation of pentavalent antimonials improves efficacy and reduces toxicity against experimental L. donovani infections (8,31), and liposomes containing lymphokine significantly suppress L.d. chagasi in C57Bl/10 mice (32). Encapsulation of amphotericin B had little or no effect upon L. tropica infections in C57Bl/6 or BALB/c mice (33). The differences in liposome treatment of visceral and cutaneous infections is probably due to difficulty in delivery to tissue sites. Therefore, improving drug delivery to tissue sites in CL and MCL deserves greater consideration.

2. Heavy Metals, Cationic Drugs, and Enzyme Inhibitors

In 1984 platinum complexed to polyglutamic acid (DP-PGA) or DMSO, was reported active against bloodstream trypanosomes in vivo and in vitro (34,35), and toxicity of the heavy metal was reduced. In vivo, DP-PGA binds to the cationic surface of trypanosomes, allowing the slow release of low molecular weight platinum. The metal is then pinocytosed by the parasite (34). The use of carrier macromolecules to reduce toxicity has been employed against T. cruzi (36), and probably has implications for pentavalent antimony treatment of leishmania.

Cationic electron carriers are also active against trypanosomes and leishmania. Their mode of action appears twofold: 1) disruption of plasma membrane microtubules (37,38) and 2) inhibition of the toxic radical scavengers catalase and superoxide dismutase (39-40). The most active of these compounds are phenothiazines, a group of antineuroleptic drugs, and the dyes crystal violet and basic blue 24.

Topical or systemic administration of chlorpromazine clinically improved diffuse human L. tropica and cured experimental T. brucei infections, respectively (41,38). Although the doses of chlorpromazine used here were safe, those necessary to eradicate L. donovani in hamsters are 10x more than that tolerated by patients treated for psychiatric illness (39).

In vitro phenazine methosulfate (PMS), reversibly inhibits both SOD and catalase of L.m. amazonensis (40). Leishmania depend upon these enzymes to destroy toxic superoxide anion (O_2^-) and HO_2 in their cytoplasm. Crystal violet and basic blue 24 can kill leishmania, but addition of SOD or catalase does not reverse this effect (40). Therefore, these cationic carriers may bind membrane phospholipids (42) or intercalate into DNA (26). In Crithidia fasciculata, crystal violet causes genetic mutations by binding cDNA (43).
The selective action of these cationic electron carriers for kinetoplastids is remarkable. Transformation and intracellular multiplication cannot occur because pellicular microtubules are disrupted (38), and intracellular survival is impossible because toxic radicals continue to oxidize the cells (40).

Leishmania also actively synthesize enzymes which alter the environment of the phagolysosome. Amastigotes contain high cysteine proteinase activity (44). This enzyme probably raises phagolysosomal pH and prevents hydrolysis of amastigotes (44). In vitro, antipain and leupeptin inhibit 1) growth of L. m. mexicana promastigotes, 2) transformation of amastigotes to promastigotes, and 3) intracellular replication of amastigotes in both mouse peritoneal and J774 cell line macrophages (45). In vitro, these two enzymes are competitive with pentamidine, but their in vivo activity is unknown.

3. Polyamine Inhibitors

We had mentioned previously (Final Report DAMD 17-80-C-0061, p. 15) the synergistic effect of DFMO/Bleomycin against L. donovani infections in BALB/c mice, and had recommended the testing of other known and promising antileishmanial compounds with it. During the last year, an interesting report shows that DFMO may have an additional benefit for treatment. Highly susceptible C3H mice eliminated Trypanosoma brucei rhodesiense from the blood after treatment with DFMO (46). This was concomitant with the production of antibodies which normally do not appear during infection in C3H mice. If antibodies are important in the control of MCL as recently reported (16,47), chemotherapy using DFMO may not only directly suppress infection but indirectly enhance immune function (50). Therefore, the use of polyamine inhibitors continues to be a promising avenue for chemotherapy.

4. Imidazoles and Azoles

Allopurinol, its riboside, and Formycin B have all been reported active in vitro against leishmaniasis (48). Allopurinol improves human visceral disease (21), but primates infected with MCL respond poorly to it (49). There are allopurinol-sensitive and -insensitive strains of T. cruzi (50). The basis for inhibition of leishmania purine pathways by allopurinol is well documented (48). Recently, in an elegant series of studies, allopurinol riboside monophosphate (HPPR-MP) has been shown to be 40-100x more specific for leishmania succinic-AMP-synthetase and GMP reductase than is Formycin B-MP (51). Unlike Formycin B-MP, HPPR-MP cannot bind to mammalian RNA. Therefore, HPPR has a two advantages in the treatment of leishmaniasis: 1) specificity for leishmania enzymes, and 2) inability to act as a substrate for mammalian inosine pathways (51).

The use of azoles against leishmaniasis is still controversial. Oral ketoconazole has been used at high doses once or twice daily for 3 months to treat human cutaneous and
mucocutaneous leishmaniasis (52-53). Clinical improvement was remarkable, although some patients experienced somnolence and dizziness (52). However, neither the treatment regime nor Therapeutic Index was competitive with Pentostam. Experimental infections of Trypanosoma cruzi in mice and L. donovani in hamsters have been reported to respond to high doses (200 mg/kg) of ketoconazole and related azoles (54). Using identical doses and regimes, we found no inhibition of L. donovani infections in BALB/c mice with either ketoconazole or its acid hydrolysate (Annual Report 2, DAMD 17-80-C-0016). We have also shown the inefficacy of tioconazole at its MTD against experimental infections of L. m. mexicana (Appendix II).

Although imidazoles inhibit intracellular amastigotes and promastigotes in vitro (55), recent data indicate that ergosterol biosynthesis chiefly resembles that of animals (56). This may explain why the levels of ketoconazole needed to eradicate L. tropica amastigotes from macrophages, and to suppress human experimental infections are toxic (52-53, 57). These data suggest that azoles are not a promising alternative to antimonial therapy.

III. Results

As in our revised objectives, the results will be discussed in four parts:

A. Pentostam Dose Response to L. donovani, L. m. mexicana and L. b. guyanensis.

B. Screening of 1984 WRAIR compounds against L. donovani Khartoum

C. Combination chemotherapy of DFMO and Pentostam against L. donovani, L. m. mexicana, and L. b. guyanensis

D. Evaluation of the L. braziliensis braziliensis test system

A. Pentostam Dose Response

1. Leishmania donovani Test System

The rationale for establishing Pentostam Dose Response to leishmania infections in each of the models is twofold: 1) to set the base line for establishing a Pentostam Index for experimental drugs and 2) to see whether each system is a good predictor of effective pentavalent antimony doses and regimes in humans. During the first year of this contract we showed that

a) the ED50 and ED90 for L. donovani Khartoum in BALB/cByJ mice were 1.25 and 10.7 mkd x 5, respectively;
b) single doses at 10, 20, or 80 mkd were as suppressive as multiple doses; and
c) cures occurred at 90 mkd.
These doses were considerably lower than those previously reported by us for *L. donovani* 1S Sudan in BALB/c mice (29 and 58 mkd, respectively), and we suggested the Khartoum and Sudan strains of *L. donovani* have different sensitivities to Pentostam. Both the primary hamster and secondary mouse test systems have shown single doses of Pentostam equivalent to multiple doses (Wm Hanson, pers. commun., Annual Report 1, 1983). There are still no published studies comparing single and multiple doses in non-human primates or humans.

To complete the PDR for *L. donovani*, we tested lower dilutions of Pentostam (10 - 0.02 mkd x 5). Here we show the ED90, 70, and 50 to be 11, 4, and 1.28 mkd, respectively, in amastigote (A) infections (Fig. 1). Effective doses to cure primary culture promastigotes (PCP) are approximately 5x higher, 61, 17, and 6.25 mkd (Table 2). Doses as low as 0.3 and 1.5 mkd suppress A and PCP infections 25% (Fig. 1). In all test systems, PCP were more resistant to Pentostam than were A (Table 2). Suppression varies from 0-23% when < one mkd is administered.

2. *L. m. mexicana* Test System

Previously in *L. m. mexicana* infections we had shown that:

a) 400 mkd Pentostam suppressed lesions 85%, and apparently cured these mice.
b) percent suppression was directly related to treatment regime - a full course of 15 days was necessary,
c) male mice were more resistant to Pentostam treatment than were females.
d) at 400 mkd liver and spleen weights of treated mice were significantly larger than untreated controls,

In a series of three experiments to determine the PDR for A, PCP, and subcultured promastigote (SP) *L. m. mexicana* infections in our secondary test system (Fig. 2), we show that:

a) cures were achieved only at 660 mkd x 15, the LD50 for Pentostam (Table 1A);
b) amastigotes survive at the maximum tolerated dose (MTD = 330 mkd x 15) to an absolute number of 12 ± 29 cells/mg tissue as measured by serial µL dilutions (Table 1B, last column);
c) the ED90 and 50 of Pentostam for *L. mexicana* infections varies with cell type (Table 2). Primary culture promastigotes (PCP) are 2-3x more resistant to treatment than A or SP (Fig. 2);
d) Pentostam has no significant effect upon liver, spleen, or body weights of mice at any doses tested (data not shown);
e) lesions ulcerated in 50-100% of untreated and low dose treated mice (<41 mkd);
f) metastasis to viscera never occurred in Pentostam-treated mice; whereas it usually did in untreated
controls.

These data show that although L. mexicana infections may be suppressed 25 - 80% by Pentostam, parasitological cures are rarely achieved, and then only at toxic levels (Tables 1A and 1B).

3. L. b. guyanensis Test System

Previously we had shown that amastigotes of L. b. panamensis or L. b. guyanensis were suppressed 77 or 91%, respectively, when Pentostam was administered for three consecutive weeks SC at 416 Sbv mkd (Annual Report, 1982). Neither of these doses was curative, and eight weeks post-infection (2 weeks after last treatment) all lesions were culture positive. There was no apparent difference in suppression, healing, or cure when ulcerated versus closed lesions were evaluated.

In a series of three experiments to determine the PDR for A, PCP, and SP of L. b. guyanensis (Fig. 3), we show that:

a) cures were achieved at >250 mkd x 15 as measured by culturing (Table 3). This is 3x less than that required to cure L. m. mexicana infections.
b) the ED90 and ED50 of Pentostam for L. b. guyanensis infections also varied with cell type (Table 2). PCP were 3-4x more resistant to therapy than were A or SP (Fig. 3).
c) the ED90 for L. b. guyanensis was one to 2 logs lower than that for L. m. mexicana (Table 2),
d) as in L. m. mexicana infections, Pentostam had no significant effect upon liver, spleen, or body weight at dose tested (data not shown),
e) metastasis to viscera did not occur.

These results suggest that Pentostam cures cutaneous infections caused by a mucocutaneous species, and at doses 3x lower than those suppressing CL. The significance of this finding for patients with MCL is unknown, but suggests that early Pentostam therapy of skin test- or seropositive patients might help prevent disfiguring MCL.

B. Experimental WRAIR Compounds

1. L. donovani Test System

Previously, none of the 15 experimental WRAIR compounds tested by us were competitive with Pentostam (Annual Report 1, 1983; Final Report, 1982).

Five 8-aminoquinolines, two imidazoles, and the antimalarial primaquine phosphate were tested for efficacy as antileishmanial agents. All had low Therapeutic and Pentostam Indices, and three of the aminoquinolines caused mild to moderately toxic symptoms.
including i) bleeding at injection site, (ii) tachynea, (iii) internal hemolysis, and iv) hyperactivity. These are known side effects of aminoquinolines (58).

The rationale for testing aminoquinolines was that those groups with substitutions at the 3 and 5 methyl groups (lepidines) are especially active against leishmania in vivo (59) and in vitro (60). Although their mode of action is not yet understood, it is suggested that they interfere with mitochondrial respiratory ubiquinones (26). The 8-aminoquinoline moxipraquine (61) was suppressive against T. cruzi, L. mexicana and L. braziliensis as long as treatment was applied, but cures were never achieved. This compound reached clinical trials before it was discovered to be teratogenic in rats and rabbits. At that time its development as an alternative to antimonials was discontinued. To date then, none of the aminoquinolines tested have had Therapeutic Indices competitive with pentavalent antimonials.

This year, 7 of 10 WRAIR-84 experimental compounds have been tested against L. donovani (Table 4). All are well-tolerated at levels active against Plasmodium spp. (Table 5), and all are 74-94% suppressive against L. donovani in our secondary test system (Table 4). Since these drugs were tested at the Maximum Tolerated Dose (MTD) and two-fold dilutions lower (MTD/2 and MTD/4), it is extremely likely the ED 90 and 50 of these drugs will be competitive with Pentostam. Currently, we are retesting these seven drugs at lower doses. Of the remaining three compounds, BK 63407 is extremely toxic at very low doses (Tables 4 and 5).

2. L. m. mexicana Test System

Based upon the suppression observed in our L. donovani model, we are currently testing the seven experimental WRAIR drugs against cutaneous infections as per our standard protocol.

The first series of tests suggest that none of the 84 WRAIR compounds is effective against L. m. mexicana infections (Table 6), at doses which suppress L. donovani >90% (Table 4). For 6 of 7 drugs, Pentostam Indices (PI) are excellent when measured as % suppression from infected controls (4.3 - 84 PI, Table 5 last column). However, there is no suppression of lesions from original size (Table 5, Column 3). Drug G (BG56256) is also toxic for L. m. mexicana infected mice at doses safely used to treat L. donovani infections (Table 6). We had previously observed this phenomenon in L. mexicana infections (Annual Report 1, DAMD 17-83-C-3039), and still have no explanation for it. Perhaps this drug is photosensitive, or pentostam accumulation and metabolism within infected tissue macrophages yields toxic metabolites and/or an exaggerated host response. This altered toxicity of some drugs in cutaneous infections should be explored.

3. L. b. guyanensis Test System
As per our revised protocol, only 1984 experimental drugs showing promise against L. m. mexicana will be further tested against L. b. guyanensis. So far, none of this year's compounds appear effective against CL (Table 6), and have not then been tested against L. b. guyanensis.

C. Combination Chemotherapy of DFMO + Pentostam

Previously we had reported a synergistic effect of the polyamine inhibitor DFMO and the antineoplastic glycopeptide Bleomycin against L. donovani infections in mice (Annual Report 2, 1982, DAMD 17-80-C-0061). This was the first time in 30 years a new drug competitive with Pentostam showed efficacy against leishmaniasis. Because DFMO is parasite specific, non-toxic, and easy to deliver, we are currently testing it in combination with Pentostam solution (Burroughs-Wellcome, Beckenham, Kent, England, 100mg/ml) against L. donovani and L. m. mexicana and L. b. guyanensis infections.

1. L. donovani Test System

Three days prior to infection mice are dosed with 0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0% DFMO in their drinking water (total = 10 days). On day 3, Pentostam is given subcutaneously at its ED 25, 50, or 90. One percent DFMO + 3 mkd Bleomycin or Pentostam alone at 30 mkd (curative dose) serve as positive controls. Mice sham-treated with saline serve as negative controls. As a further test, mice will be identically treated one week after infection is initiated.

2. L. m. mexicana Test System

Mice have been infected with and will be treated with DFMO + Pentostam as per our standard protocol (Annual Report 1, 1983). DFMO concentrations are identical to those in the visceral test system, but Pentostam doses are 160, 80, and 40 mkd x 15, the ED50, 25, and 11 for SP L. m. mexicana infections, respectively.

In a pilot experiment, suppression by Pentostam of lesions was not enhanced when combined with 0.5 - 3% DFMO in the drinking water (Table 7). Based upon results with L. b. guyanensis (C.3.), however, this experiment should be repeated with higher doses of DFMO.

3. L. b. guyanensis Test System

Using our standard protocol (Annual Report 1, 1983), we are currently treating mice with 0 - 5% DFMO and Pentostam at 6.25, 12.5, 25, and 50 mkd x 15, the ED 50, 75, 90 and 100, respectively. One and 3 percent DFMO + 3 mkd Bleomycin, or Pentostam alone at 50 mkd serve as positive controls. Mice sham-treated with water serve as negative controls. After only one week, the lesions of mice infected with L. b. guyanensis which had been treated with 5% DFMO alone were suppressed 46% from control and
40% from original lesion sizes, respectively (Table 8). However, Pentostam alone (positive control) did not suppress lesion sizes at any dose tested (Table 8, Column 1). This drug was furnished by the CDC. Using Pentostam powder provided by WRAIR, these doses should have been approximately 25% suppressive after one week (Annual Report 2, DAMD 17-80 C-0061, 1982). This suggests that a PDR for this commercial preparation in each of the test systems is necessary if WRAIR can no longer provide the powder (J. Berman, pers. comm.). It may also account for the poor results observed in our L. m. mexicana DFMO + Pentostam experiment (Table 7). Bleomycin alone suppressed L. b. guyanensis infections 25%. Its activity is not enhanced when combined either with 1 or 3% DFMO. Lesions of all mice treated with >2% DFMO and/or 12.5 mgd Pentostam improved as measured by scabbing. Two of 15 mice receiving 5% DFMO died, and all showed weight loss of 1-3 g during the first week. Therefore, at higher doses of DFMO, some toxicity is noted. Most mice stabilized after the first week of treatment.

D. Evaluation of L. braziliensis braziliensis Test System

Previously we had suggested that lack of lesion development upon initial infection with L. b. braziliensis was due in part to sex of host and conditions of medium. Subsequently (Annual Report 1983), we showed that

1. blood agar overlaid with CSM or HBSS allowed transformation of amastigotes;
2. growth was equivalent in each;
3. 7-9 week old male mice infected with >10^7 promastigotes were 100% infected;
4. amastigotes from mouse lesions were more infective for mice than those from hamsters;
5. tail base was superior to footpad infections.

During the second year of this contract we have shown that:

1. mouse lesions are a better source of amastigotes for drug screening as measured both by transformation and growth in culture (Table 9), and by lesion size and % infection in mice (Tables 10);
2. a solid substrate (plain agar) is necessary for amastigote to promastigote transformation (Table 9);
3. serum [Schneider's drosophila medium + 15% v/v heat inactivated fetal bovine serum (SDM+) v/s Hanks' balanced salt solution (HBSS) or SDM] is essential for promastigote growth (Table 9);
4. heme is necessary for infectivity (BA v/s SDM+, Table 10);

We have recent evidence that hamsters are better hosts for initial recovery of recent human isolates than are BALB/cByJ mice. In February of this year, we cultured L. b. braziliensis MHOM/PR/84/CUMC2 from a patient. Primary and subcultured
promastigotes from the initial isolate were cultivated either in RA/SDM+ or SDM+, and were inoculated intradermally at the optimum dose into mice or hamsters. Only the hamsters developed lesions. Several of these have typical nasal MCL, one is completely depilated and one died recently of metastasis to viscera. A recent isolate may be essential for developing reliable lesions of L. b. braziliensis for screening. We now have that isolate. Recently, we have shown that cloning can yield highly virulent L. b. guyanensis which are genetically stable. Cloning this recent isolate of L. b. braziliensis would offer another alternative for developing a rapid, reliable infections for drug screening in mice or hamsters.

IV. Discussion and Conclusions

A. Pentostam Dose Response

As mentioned previously, the rationale for establishing Pentostam Dose Response to leishmania infections in each of the experimental animal test systems is twofold: 1) to set the baseline for establishing a Pentostam Index for experimental drugs and 2) to see whether each system is a good predictor of effective pentavalent antimony doses and regimes in humans.

1. Visceral Test System

To date, meglumine antimoniate (26.3% SbV) in both the hamster and owl monkey primary and tertiary test systems suppress and/or parasitologically cure L. donovani Khartoum infections in an 8 to 10 day screen at 90 - 104 mkd (2,34). Using an 8 day screen in our secondary BALB/c test system, we obtain identical results using 80 mkd. These data agree remarkably with those of Stauber (65) who first established the 8-day screen in hamsters (ED 90 = 94 mkd). They also show that whether BALB/c mice, outbred hamsters, or owl monkeys are used, Pentostam suppresses L. donovani at identical doses. Therefore, these data indicate that each animal can serve as a valid model in which to screen experimental drugs.

How well do these models predict the human response to Pentostam treatment? Two recent human studies using Pentostam against Kenyan and Indian kala-azar show that these test systems are good predictors of curative doses and regimes used for human infections (13,20). As in animal models, improvement was noted in 90-95% of the patients by the end of the first week (20). Parasitological cures were achieved in 98% of Indian patients and 88% of Kenyan patients treated more than 20 and 30 days, respectively (13,20). Similar cure rates were noted 15 days after treatment in Chinese patients (67). The total doses achieving cures in both humans and BALB/c mice, hamsters, or owl monkeys is 400 to 660 mkd. Therefore, in all animal test systems Pentostam produces parasitological cures at levels and regimes which cure patients.
In each of the human studies a few patients did not respond to pentavalent antimonials (13,20,67). In Kenya, these patients were eventually cured by combining Pentostam with allopurinol (20), and in India or China by combining the drug with Pentamidine (13,67). These data indicate that combination chemotherapy in humans is a valid alternative to antimony therapy alone.

Differences in human sensitivity to antimony therapy have been chiefly attributed to the parasite (11). A Kenyan strain of *L. donovani* became sensitive to antimony after passage in hamsters. The authors postulate this may be due either to a basic change in the parasite or to selection of a subpopulation sensitive to antimony (11). There is an alternate plausible explanation. The metabolism of Pentostam in hamsters may produce different kinds and amounts of metabolites than do humans. This phenomenon accounts for the difference in activity of allopurinol and its riboside against *L. donovani* in hamsters and humans (52).

Unlike humans who required sustained treatment with pentavalent antimonials (13,20a), PDRs in both hamsters and mice have shown they can be cured with a single dose (58, Annual Report 1, 1983).

Although absolute amounts of antimony in animal tissues have been measured (59), nothing is known about its active metabolites. We do know that antimony preferentially accumulates within the liver and spleen (69), and that 129Sb sodium stibogluconate accumulates within amastigotes in vitro (27). Direct inhibition of the glycolytic enzymes of leishmania may occur, as these enzymes are compartmentalized into a special organelle, the glycosome (29). Some evidence suggests that Pentostam localizes in this organelle (31). The active metabolites of Pentostam are completely unknown, but are assumed to be trivalent compounds, which interfere with phosphofructokinase (PFK) and pyruvate kinase (28). In leishmania, however, PFK is not under strict regulation (52). This may mean that Pentostam has more than one mode of action in order to be so effective against these parasites.

Rational approaches to chemotherapy of leishmaniasis in the last few years and months have identified several enzyme systems specific for leishmania which could be additional, potential targets for Pentostam:

1. Purine salvage - HPPRase (28)
2. Toxic radical scavengers - FeSOD (66)
3. Polyamine biosynthesis - ODC (57)
4. Glutathione reductase (58,69)

Of these four, the latter two offer the best potential target for Pentostam. Glutathione (GSH) and glutathione reductase (GSSH) contain -SH groups, the proposed site of inhibition by heavy metals (28). Specific inhibition of GSH synthesis by D,L-Buthionine-SR-Sulfoxamine (BSO) has already been used to cure trypanosomiasis in mice (58). Recently, a unique cofactor
essential for GSH-GSSH conversion, "trypanothione", has been isolated and purified from leishmania and trypanosomes (69). This cofactor is unique because it consists of GSH + glycine, cysteine, and spermidine. Arsenicals and pentostam may exert activity against the -SH groups of this essential cofactor (69). Structurally, Pentamidine resembles spermidine. Therefore, it may specifically prevent trypanothione biosynthesis, by substituting for spermidine.

With this new information, one could predict why combination therapy of DFMO + Pentostam should be synergistic:

(a. DFMO acts at the rate limiting step of polyamine biosynthesis. Its overall effect is to decrease putresine, spermidine, and spermine (67).

(b. Spermidine is necessary for the biosynthesis of trypanothione an essential cofactor for GSH reduction.

(c. Pentostam binds -SH groups

(d. By depleting polyamines essential for cell division, protein synthesis, and cofactor biosynthesis using DFMO, and by binding -SH groups of GSSH necessary to scavenge radicals using Pentostam, parasites should be killed more rapidly.

Antimonials are not only our best drugs, they appear to be highly selective and specific for leishmania. For this reason, we recommend the mode of action of Pentostam be given high priority by WRAIR.

We think the difference in efficacy of Pentostam against visceral, cutaneous, and mucocutaneous infections caused by PCP is biologically significant. These cells are equivalent to those transmitted by flies to humans in natural infections. There are two points we wish to make. The higher doses of Pentostam and longer continuous regimes recently proposed by the WHO and supported by researchers in India are firmly supported by our experimental data. Secondly, the physiological and biochemical bases for differences between PCP and A or SP should be given utmost priority and thoroughly explored. This for the long range goals of both improved chemotherapy by mode of action studies, and vaccine production by identifying the virulence factor(s) in PCP.

2. Cutaneous and Mucocutaneous Test Systems

Unlike L. donovani, there are no carefully controlled human studies with which to compare our PRDs in hamsters and mice against L. m. mexicana or L. b. guyanensis infections. However, the immune response of BALB/cByJ to L. b. guyanensis infections
is very much like that reported for human MCL infections (47). Antibody plays a more important role, than does cell-mediated immunity, and immunosuppression of this response is correlated with metastasis to far sites leading to mucocutaneous disease (16, 70). Therefore, these data suggest that the BALB/cByJ mouse is a good predictor for behavior of MCL in humans, and that the effect of Pentostam and experimental drugs against MCL in this model is valid. It also suggests that conclusions about model validity based upon host response to other species, i.e. L. tropica, is fallacious and counterproductive. There are no data on immune response of inbred hamsters to any of these infections.

We recommend that WRAIR keep each of its test systems for visceral, cutaneous, and mucocutaneous leishmaniasis in BALB/c mice.

B. Experimental WRAIR Compounds

The rationale for testing primaquine phosphate, 8-aminoquinolines, and ketoconazole against experimental infections of leishmania arose from a real need to identify drugs effective against cutaneous and mucocutaneous leishmaniasis in the Panama Canal Zone. Known and experimental drugs are equally effective against human and experimental visceral leishmaniasis. To date, however, there are no drugs, including antimonials, which unequivocally cure L. mexicana or L. braziliensis infections.

Unlike the 83-WRAIR drugs previously tested, 7 of ten received this year are active against L. donovani at doses competitive with Pentostam (Tables 4,5). Efficacy of 6 of these 7 against L. m. mexicana infections is remarkable when measured as % suppression from control, generating Pentostam Incesses of 4.3 - 84 (Table 6, last column). However, when % of original lesion size is measured, none of these compounds is suppressive (Table 6, column 3). Since we are using the MTD and 2x serial dilutions, it is doubtful that new lead compounds will be identified from this 84-series against CL or MCL. However, the potent efficacy of these same drugs against visceral infections, suggests that drug delivery may be the major reason for poor efficacy against cutaneous and mucocutaneous infections.

Previously, we showed reduction of Sbv to its active metabolites occurred systemically. When Pentostam is delivered SC, it cures L. donovani and suppresses L. mexicana and L. braziliensis infections >85% (Annual Report 2, DAMD 17-80-C-0061). In this series of experiments, drugs were delivered orally, as per a change in protocol by COTR in 1983. If these new drugs require slow delivery from a cutaneous depot, as Pentostam does against L. m. mexicana and L. b. guyanensis, then we may be missing their activity. For this reason, we plan to retest the three most active 84 WRAIR drugs using SC injections as per our standard protocol.
We do not yet know what the classes of compounds are represented in the 84 WRAIR series. Their potency suggests DNA or specific enzyme inhibitors. These compounds were chosen because of their effectiveness in the primary hamster screen by 1984 COTR Lovelace. Since some of the most promising compounds were unavailable, substitutions were made in the last several sent. This may account for their greater toxicity.

The toxicity of BG 56256 in L. m. mexicana infections at doses safely used against L. donovani is intriguing. We have noticed this phenomenon before, and recommend it be explored. Is the immune response to tissue infections somehow potentiating drug toxicity? Is the drug photosensitive? If information on the drug were available, perhaps some of these questions could be answered.

We are currently evaluating lower doses of the 7 active WRAIR compounds in our L. donovani test system.

C. Combination Chemotherapy of DFMO + Pentostam

The rationale for testing DFMO with Pentostam is based upon the specific action of DFMO upon the rate limiting step in polyamine biosynthesis of kinetoplastids, its low toxicity, and its ease of delivery in drinking water. Although the mode of action of Pentostam is incompletely known, evidence suggests several specific essential enzyme targets in kinetoplastid metabolism (Section IV. A.). Therefore, if these two drugs could act synergistically to specifically interfere with the essential pathways of leishmania, complete cures of CL and MCL at lower doses and more reasonable regimes might be realized. Based upon preliminary results for DFMO + Bleomycin in the L. donovani model (Annual Report 1, 1983), and the newly proposed sites of Pentostam activity, we would expect the combination of DFMO and Pentostam to be effective.

The real question is whether the combination of two drugs affecting essential metabolic pathways in leishmania (DFMO + Pentostam) is likely to be as synergistic as DFMO + Bleomycin in which DNA is the ultimate target. If the essential cofactor trypanothione depends solely upon polyamine biosynthesis for its spermidine moiety, and the reduction of GSH to GSSH upon trypanothione, then specific, enhanced killing of leishmania may occur at levels equivalent to DFMO + Bleomycin. However, alternate means of obtaining polyamines or of reducing GSH, albeit at less efficient rates, may exist in leishmania. If this is true, then less dramatic results may be expected by combining DFMO with Pentostam.

Our data for L. b. guyanensis suggest that high concentrations (5%) of DFMO alone may suppress cutaneous lesions. It also indicates that delivery of DFMO to intracellular amastigotes at a tissue site readily occurs. The lack of effect against L. m. mexicana infections in tissue sites may be due to differences in:
(a. uptake of DFMO by these two species,
(b. delivery within the phagolysosome, or
(c. distribution to macrophages within the lesion.

The first of these is easily tested. In collaboration with Dr. C.J. Bacchi, we are currently testing the in vitro uptake of labelled DFMO by *L. m. mexicana*, *L. b. guyanensis*, and *L. donovani*. Phagolysosomes containing amastigotes of *L. m. mexicana* are much larger than those containing *L. b. guyanensis* (JSK and MR, unpublished observations). In collaboration with Dr. M. Rabinvitch and Dr. Owen Griffith, we are currently testing the uptake of labelled Pentostam and DFMO into these organelles. The third possibility is more difficult to test. In BALB/cByJ mice, lesions of *L. mexicana* resemble large histiocytomas whereas those of *L. b. guyanensis* are spreading ulcerative lesions with raised borders. The number of amastigotes per mg tissue is 2–3 logs less in the latter, as measured by ul dilutions. Delivery to infected macrophages within the histiocytoma will probably require a novel carrier system. As previously mentioned, liposomes do not appear to enhance drug delivery in either *L. mexicana* or *L. tropica* infections (29,33). The enhanced activity of platinum bound to PGA or DMSO, and daunorubicin against *T. brucei* and *T. cruzi* infections, respectively (34–36), suggests these carriers be tested against CL and MCL. Or, combination of antipain and leupeptin with one of the phenothiazines or dye electron carriers might be useful. For CL, any of the new leads mentioned in this report using various routes of delivery could be explored.

Problems

As mentioned previously (Section III, C. 3), in all DFMO + Pentostam experiments, Pentostam (100 mg/ml) furnished by the CDC was substituted for BJ 58563 when this compound became unavailable from WRAIR. All PDRs against *L. donovani*, *L. b. guyanensis*, and *L. m. mexicana* in our secondary test system were determined using this powder. We had previously shown (Annual Report 1, DAMD 17-80-C-0061) that the solution provided by the CDC was less active than the provided by WRAIR. Three alternatives have been suggested for solving this problem:

1. obtain more BJ 58563,
2. repeat all PDRs using CDC Pentostam or
3. switch all testing to glucantime as standard.

Since the proposed revision of this contract for the third year includes testing of topical creams in a hamster model, while completing DFMO + Pentostam in BALB/c mice, we recommend enough BJ 58563 be provided to complete the latter and that glucantime be used in the hamster experiments. This would be time and cost efficient.
D. L. b. braziliensis Test System

During the past two years under DAMD 17083-C-3039, we have shown that L. b. braziliensis M2904 and a recent human isolate have special requirements for growth and transformation in vitro. We have established experimental infections in BALB/cByJ mice in order to study properties of virulence. Because of the projected revisions in this contract for testing topical creams in hamsters against L. m. mexicana and L. b. panamensis infections, additional studies on L. b. braziliensis will be carried out under separate funding being requested by the Principal Investigator (PI) to the National Institutes of Health and to the National Science Foundation. If promising compounds are identified under the current contract, the PI will test them against L. b. braziliensis in BALB/cByJ mice at the request of COTR Lovelace.

V. Literature Cited

TABLE 1A

Comparison of the suppressive effect of Pentostam and various compounds on Leishmania mexicana mexicana

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Date</th>
<th>Route</th>
<th>Type Test</th>
<th>Animal</th>
<th>Strain</th>
<th>Mean Lesion Size (mm²)</th>
<th>% Suppression Necropsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/20</td>
<td>4</td>
<td>5</td>
<td>Man</td>
<td>1</td>
<td>6.7</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>3/27</td>
<td>4</td>
<td>5</td>
<td>Ham</td>
<td>1</td>
<td>7.0</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>4/8</td>
<td>4</td>
<td>5</td>
<td>Mouse</td>
<td>1</td>
<td>6.6</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>5/6</td>
<td>4</td>
<td>5</td>
<td>Rat</td>
<td>1</td>
<td>6.5</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>6/4</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>7/5</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>8/6</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>9/7</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>10/8</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>90</td>
</tr>
</tbody>
</table>

TABLE 1B

Comparison of the suppressive effect of Pentostam and various compounds on Leishmania mexicana mexicana

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Date</th>
<th>Route</th>
<th>Type Test</th>
<th>Animal</th>
<th>Strain</th>
<th>Mean Lesion Size (mm²)</th>
<th>% Suppression Necropsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Man</td>
<td>1</td>
<td>6.7</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Ham</td>
<td>1</td>
<td>7.0</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Mouse</td>
<td>1</td>
<td>6.6</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Rat</td>
<td>1</td>
<td>6.5</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>6/03/64</td>
<td>4</td>
<td>5</td>
<td>Dog</td>
<td>1</td>
<td>6.1</td>
<td>90</td>
</tr>
</tbody>
</table>
TABLE 2

Effect of Cell Type upon Effective Dose of Pentostam to Suppress Leishmaniasis in BALB/cByJ Mice

<table>
<thead>
<tr>
<th>Leishmania Subspecies</th>
<th>Cell Type</th>
<th>(^b\text{ED 90}) PCP</th>
<th>(^b\text{ED 90}) A</th>
<th>(^b\text{ED 50}) PCP</th>
<th>(^b\text{ED 50}) A</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEXICANA MEXICANA</td>
<td></td>
<td>1090</td>
<td>521</td>
<td>290</td>
<td>150</td>
</tr>
<tr>
<td>BRAZILIENSIS GUYANENSIS</td>
<td></td>
<td>90</td>
<td>25</td>
<td>21</td>
<td>07</td>
</tr>
<tr>
<td>DONOVANI ARCHIBALDI</td>
<td></td>
<td>61</td>
<td>11</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^a\text{PCP} = \text{primary culture promastigote}, \ A = \text{amastigote}\)

\(^b\text{Effective Dose (ED)} = \text{mg/kg/day}\)
TABLE 3A

Comparison of the suppressive effect of pentosamine and various compounds on *Leishmania braziliensis guyanensis*

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Date</th>
<th>Route</th>
<th>Regimen</th>
<th>Type Test</th>
<th>Animal</th>
<th>Strain</th>
<th>NO.</th>
<th>Wt</th>
<th>Lesion Size (mm²)</th>
<th>Lesion Type</th>
<th>Necropsy</th>
<th>Necropsy</th>
<th>% Suppression</th>
<th>% Necropsy</th>
<th>Culture (+/ Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 58563</td>
<td>400</td>
<td>6 6</td>
<td>0.09</td>
<td>7.0</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>6 6</td>
<td>0.10</td>
<td>8.0</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>6 6</td>
<td>0.11</td>
<td>8.2</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>6 6</td>
<td>0.09</td>
<td>6.9</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
<td>1/2</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>6 6</td>
<td>0.12</td>
<td>7.3</td>
<td>0.92</td>
<td>87.4</td>
<td>87.2</td>
<td>1</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>6 6</td>
<td>0.11</td>
<td>6.4</td>
<td>0.33</td>
<td>95.0</td>
<td>95.6</td>
<td>1</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control+</td>
<td>0 6 6</td>
<td>0.27</td>
<td>7.5</td>
<td>7.2</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3B

Comparison of the suppressive effect of pentosamine and various compounds on *Leishmania braziliensis guyanensis*

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Date</th>
<th>Route</th>
<th>Regimen</th>
<th>Type Test</th>
<th>Animal</th>
<th>Strain</th>
<th>NO.</th>
<th>Wt</th>
<th>Lesion Size (mm²)</th>
<th>Lesion Type</th>
<th>Necropsy</th>
<th>Necropsy</th>
<th>% Suppression</th>
<th>% Necropsy</th>
<th>Culture (+/ Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 58563</td>
<td>330</td>
<td>5 5</td>
<td>0.06</td>
<td>6.0</td>
<td>0.2</td>
<td>97</td>
<td>97</td>
<td>1</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>6 6</td>
<td>0.06</td>
<td>6.5</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
<td>1/2</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6 6</td>
<td>0.06</td>
<td>5.5</td>
<td>0.2</td>
<td>96</td>
<td>97</td>
<td>1</td>
<td>2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7 7</td>
<td>0.08</td>
<td>4.6</td>
<td>4.5</td>
<td>33</td>
<td>33</td>
<td>1</td>
<td>2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>6 6</td>
<td>0.02</td>
<td>3.5</td>
<td>4.7</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0 6 6</td>
<td>0.21</td>
<td>7.0</td>
<td>7.4</td>
<td>0</td>
<td></td>
<td>0</td>
<td>2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4A

Leishmaniasis

Comparison of the suppressive effect of Pentostam & various compounds on *Leishmania donovani* Khartoum

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Date</th>
<th>Route</th>
<th>Regimen</th>
<th>Type Test</th>
<th>Animal</th>
<th>Strain</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-3)</td>
<td>(4-8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2/3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

| Code NO. | COMPOUND | WT. MEAN | % SUPPRESSION | % SUPPRESSED | % SUPPERS
TABLE 5
Toxicity of WRAIR 1984 Compounds in BALB/cByJ Mice

<table>
<thead>
<tr>
<th>Code</th>
<th>Drug</th>
<th>LD50 (mg/kg)</th>
<th>MTD (mg/kg)</th>
<th>LD100 (mg/kg)</th>
<th>Toxic Active Cured</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BD 99087</td>
<td>256</td>
<td>320</td>
<td>384</td>
<td>640 160</td>
</tr>
<tr>
<td>B</td>
<td>BG 11417</td>
<td>120</td>
<td>80</td>
<td>160</td>
<td>320 160 80 40</td>
</tr>
<tr>
<td>C</td>
<td>BH 73903</td>
<td>108</td>
<td>80</td>
<td>180</td>
<td>**</td>
</tr>
<tr>
<td>D</td>
<td>BH 57098</td>
<td>144</td>
<td>120</td>
<td>320</td>
<td>**</td>
</tr>
<tr>
<td>E</td>
<td>BE 20578</td>
<td>240</td>
<td>220</td>
<td>280</td>
<td>- 160,80 320</td>
</tr>
<tr>
<td>F</td>
<td>BH 84022</td>
<td>240</td>
<td>200</td>
<td>260</td>
<td>**</td>
</tr>
<tr>
<td>G</td>
<td>BG 56256</td>
<td>60</td>
<td>40</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>H</td>
<td>BE 66930</td>
<td>256</td>
<td>200</td>
<td>320</td>
<td>640 80</td>
</tr>
<tr>
<td>I</td>
<td>BG 56738</td>
<td>60</td>
<td>40</td>
<td>80</td>
<td>160 80,40</td>
</tr>
<tr>
<td>J</td>
<td>BK 63407</td>
<td>?</td>
<td>?</td>
<td>15</td>
<td>**</td>
</tr>
</tbody>
</table>

*Total Dose - mg/kg over 5 days orally
**Toxicity data unavailable from WRAIR

TABLE 6
Effect of 1984 Experimental WRAIR Drugs upon Lesions of Leishmania mexicana infected BALB/cByJ Mice

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose (mg/kg/day)</th>
<th>Percent Lesion Size</th>
<th>Suppression % Control</th>
<th>Pentostam Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21.3</td>
<td>130</td>
<td>25</td>
<td>5.2</td>
</tr>
<tr>
<td>B</td>
<td>5.3</td>
<td>140</td>
<td>8</td>
<td>8.2</td>
</tr>
<tr>
<td>C</td>
<td>5.5</td>
<td>123</td>
<td>3</td>
<td>5.6</td>
</tr>
<tr>
<td>D</td>
<td>8.0</td>
<td>131</td>
<td>11</td>
<td>4.3</td>
</tr>
<tr>
<td>E</td>
<td>14.7</td>
<td>147</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>5.3</td>
<td>133</td>
<td>6</td>
<td>6.0</td>
</tr>
<tr>
<td>G</td>
<td>1.3</td>
<td>132</td>
<td>25</td>
<td>84.0</td>
</tr>
<tr>
<td>H</td>
<td>4.8</td>
<td>128</td>
<td>19</td>
<td>17.0</td>
</tr>
<tr>
<td>Pentostam</td>
<td>160.0</td>
<td>87</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>138</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*Drug by gavage once daily, 5 days/week x 3 weeks at Maximum Tolerated Dose.
**Pentostam subcutaneously daily, as above at Effective Dose
N = 6 mice/group
TABLE 7

Effect of DFMO + Pentostam upon Lesions of *Leishmania mexicana mexicana* Infected BALB/cByJ Mice

<table>
<thead>
<tr>
<th>Pentostam<sup>a</sup></th>
<th>DFMO<sup>b</sup></th>
<th>Percent Lesion Size</th>
<th>Suppression % Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG/KG/DAY</td>
<td>%</td>
<td>Original</td>
<td>Control</td>
</tr>
<tr>
<td>160</td>
<td>3</td>
<td>96</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>99</td>
<td>87</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>100</td>
<td>84</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>100</td>
<td>91</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>100</td>
<td>91</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

^aDFMO in drinking water 3 days prior to Pentostam; daily for 3 weeks.

^bPentostam subcutaneously 5 days/week x 3 weeks

N = 5 mice/group

TABLE 8

Percent Suppression of *Leishmania braziliensis guyanensis* Lesions by DFMO + Pentostam⁶

<table>
<thead>
<tr>
<th>Pentostam</th>
<th>Percent DFMO</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>35<sup>*</sup></td>
<td>3</td>
<td>10</td>
<td>46<sup>*</sup></td>
</tr>
<tr>
<td>6.25</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>14</td>
<td>13</td>
<td>32</td>
<td>10</td>
<td>37</td>
</tr>
<tr>
<td>12.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>25.00</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>50.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>25<sup>*</sup></td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Bleomycin</td>
<td>25<sup>*</sup></td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[*]Significant difference also % original lesion size

* One week post treatment. N = 6 mice/group
Table 9

EFFECT OF MEDIA ON THE TRANSFORMATION OF L. B. Brasiliensis M 2904

<table>
<thead>
<tr>
<th>Base</th>
<th>Overlay</th>
<th>Days in Culture (Cells x 10^6)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Agar</td>
<td>cSDM</td>
<td>0.13</td>
<td>0.13</td>
<td>0.75</td>
<td>0.13</td>
<td>0.50</td>
<td>21.5</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>SDM</td>
<td>0.63</td>
<td>0.00</td>
<td>0.13</td>
<td>1.13</td>
<td>12.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HBSS</td>
<td>0.63</td>
<td>3.00</td>
<td>0.90</td>
<td>1.75</td>
<td>15.8</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>Plain Agar</td>
<td>cSDM</td>
<td>0.38</td>
<td>0.25</td>
<td>0.25</td>
<td>1.75</td>
<td>3.50</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SDM</td>
<td>0.50</td>
<td>0.00</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HBSS</td>
<td>0.25</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>No Agar</td>
<td>cSDM</td>
<td>0.13</td>
<td>0.63</td>
<td>0.25</td>
<td>2.00</td>
<td>2.50</td>
<td>4.00</td>
<td></td>
</tr>
</tbody>
</table>

Blood Agar

- cSDM: 0.13 3.63 4.30 17.5 54.5 56.5
- SDM: 1.00 2.30 3.30 11.5 23.3 10.0
- HBSS: 1.00 0.00 2.13 9.80 40.0 54.5

Plain Agar

- cSDM: 0.13 1.50 2.13 7.30 15.5 56.0
- SDM: 0.50 0.00 0.13 0.00 0.00 0.00
- HBSS: 0.63 0.00 0.13 0.00 0.00 0.00

No Agar

- cSDM: 0.50 0.13 3.40 9.80 9.30

Conclusions:

- Mouse better than hamster
- Agar needed for transformation
- Serum needed to sustain growth

Legend:
T = transformed
M = motile
VM = very motile
S = small
E = elongated
Table 10 A

Leishmania brasiliensis brasiliensis: Infection in Mice with parasites from mouse origin versus hamster origin

<table>
<thead>
<tr>
<th>Weeks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>M→M Mean Sch</td>
<td>1.0</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>s.d.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>%pos.</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>H→M Mean BA</td>
<td>3.1</td>
<td>3.0</td>
<td>3.1</td>
<td>2.5</td>
<td>3.0</td>
<td>2.8</td>
<td>2.0</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.4</td>
<td>1.2</td>
<td>1.4</td>
<td>2.1</td>
<td>2.8</td>
<td>1.7</td>
<td>2.0</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>%pos.</td>
<td>100</td>
<td>100</td>
<td>80</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td>80</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>H→M Mean BA</td>
<td>3.6</td>
<td>1.0</td>
<td>2.2</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>s.d.</td>
<td>0.5</td>
<td>--</td>
<td>1.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.8</td>
<td>--</td>
</tr>
<tr>
<td>%pos.</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 10B

Leishmania brasiliensis brasiliensis: Infection in Hamsters with parasites from mouse origin vs. hamster origin.

Hamster to Hamster:

- Blood Agar: +4, +3, +2
- Schneiders: +2, +2

H→M

- Blood Agar: +3, +2, +1
- Schneiders: +3, +2, +2

0 = no change
+1 = hair loss
+2 = slight enlargement
+3 = enlargement
+4 = very enlarged
Figure 1. Suppression of *Leishmania donovani* Khartoum by Pentostam in BALB/cByJ Mice
Figure 2. Suppression by Pentostam of Lesions in Leishmania mexicana Infected BALBc Mice
Figure 3. Suppression of *Leishmania braziliensis guyanensis* Lesions by Pentostam in BALB/cByJ Mice
VII. Distribution List

A. Commander
U.S. Army Medical Research and Development Command
ATTN: SGRD-RMS
Fort Detrick
Frederick, Maryland 21701

B. Howard E. Noyes, Director
Office of Research Management
SGRD-UWZ-C
Walter Reed Army Institute of Research
Washington, D.C. 20307

C. Major James Lovelace, COTR
Walter Reed Army Institute of Research
Department of Parasitology
Division of Experimental Therapeutics
Washington, D.C. 20012

D. Ann W. Stanford
Research Administrator
Office of Research and Sponsored Programs
Cornell University Medical College
1300 York Avenue
New York City 10021

E. Thomas C. Jones, M.D.
Chief, Division of International Medicine A-431
Department of Medicine
Cornell University Medical College
1300 York Avenue
New York City 10021
August 30, 1984

Dr. Jan S. Keithly
Cornell University Medical College
1300 York Ave.
New York, NY 10021

Dear Dr. Keithly:

Enclosed is a 300.0 gram sample of alpha-difluoromethylornithine (MDL 71,782 A) for use in the antileishmania studies in mice as outlined in your Statement of Investigator form.

For your personal use we are enclosing three pertinent reprints which may be helpful in your studies.

Also enclosed is a summary sheet on the chemistry and pharmacology of MDL 71,782 A.

We look forward to a report of the results of these studies when they are completed.

Sincerely,

W.J. Hudak, Ph.D.
Manager, Research Information

WJH:cs

Enc.

For Acknowledgements: Merrell Dow Research Institute
April 6, 1984

Dr. Jan S. Keithly
Division of International Medicine
Department of Medicine
The New York Hospital-Cornell Medical Center
525 East 68th Street
New York, New York 10021

Dear Jan,

I was delighted to speak to you today about everything. I enclose the statement of investigator forms and some recent references you may or may not have seen.

Very best wishes,

Peter P. McCann, Ph.D.
Senior Biochemist
Associate Professor of Cell Biology
University of Cincinnati College of Medicine

PPM/bjh
(enclosures)
REFERENCES:

2) Danzin, C., Jung, M.J., Grove, J. and Bey, P. Effect of α-difluoromethylornithine, an enzyme-activated irreversible inhibitor of ornithine decarboxylase, on polyamine levels in rat tissues. Life Sci. 24:519-524 (1979)

* Reprints-preprints available from Merrell Dow.
April 10, 1984

Janet S. Keithly, Ph.D.
Department of Medicine
Division of International Medicine
Cornell University Medical Center
New York, NY 10021

Dear Dr. Keithly:

Pursuant to our recent conversations, I would be most happy to collaborate with you on studies of iron metabolism in Leishmania.

Two separate approaches seem appropriate. Given the environment in which Leishmania flourish, it is reasonable that they would secrete a siderophore in order to sequester iron necessary for growth. The capacity to produce such a siderophore could indeed be a major factor in determining virulence. Isolation and identification of this putative virulence factor should aid in the development of a highly sensitive and selective model for screening antileishmanial agents. I will undertake the chemical aspects of such a characterization.

Apart from contributing to the development of an appropriate screening system, identification of the abovementioned siderophore should provide clues for designing chemotherapeutic agents which interfere with iron utilization by these organisms. I will provide you with a variety of iron-chelating agents to screen as potential drugs. These could be screened in vitro as well as in the model that you are developing. I am also willing to synthesize new chelators as a result of identifying the leishmanial siderophore and/or the results of screening studies.

Sincerely,

Robert W. Grady, Ph.D.
Assistant Professor
Department of Pediatrics/
Pharmacology
BIOGRAPHICAL SKETCH

Give the following information for key professional personnel listed on page 2, beginning with the Principal Investigator/Program Director. Photocopy this page for each person.

NAME: Robert W. Grady, Ph.D.

TITLE: Assistant Professor, Dept. of Pediatrics/Pharmacology

EDUCATION: Begin with latest degree or other major professional education and include postdoctoral training.

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (circle highest degree)</th>
<th>YEAR CONFERRED</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown University</td>
<td>B.S.</td>
<td>1963</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>University of Minnesota</td>
<td>Ph.D.</td>
<td>1971</td>
<td>Biochemistry</td>
</tr>
</tbody>
</table>

RESEARCH AND/OR PROFESSIONAL EXPERIENCE: List in chronological order previous employment, experience, and honors. Include present membership on any Federal Government Public Advisory Committee. List in chronological order, the titles and complete references to all publications during the past three years and to representative earlier publications pertinent to this application. DO NOT EXCEED TWO PAGES.

Positions Held:
- 1979-present: Assistant Professor, Cornell University Medical Center
- 1979-1983: Adjunct Assistant Professor, The Rockefeller University
- 1975-1979: Assistant Professor, The Rockefeller University
- 1972-1975: Research Associate, The Rockefeller University
- 1971-1972: Post-doctoral Fellow, Albert Einstein College of Medicine

Memberships:
- American Chemical Society
- New York Academy of Sciences
- American Association for the Advancement of Science
- International Society of Hematology

Publications: (Total 42: Original Articles 35; Review Articles 7)

April 11, 1984

Dr. Janet Keithly
Department of Medicine
Cornell University Medical College
New York, NY 10021

Dear Dr. Keithly:

I am writing to formally confirm our agreement to collaborate on the following projects:

1) A study of the mechanism of action of pentostam in vivo and in vitro in protozoa such as leishmania. My laboratory will prepare radiolabelled pentostam and will assist in determining the effects of glutathione depletion on pentostam toxicity.

2) A study of the use of carnitine analogs to inhibit growth and division of leishmania. My laboratory has prepared several analogs which are designed to interfere with particular steps in fatty acid oxidation.

I thank you for the opportunity to participate in these projects and look forward to beginning studies as soon as possible.

Sincerely,

Owen W. Griffith, Ph.D.
Associate Professor
Name: Owen W. Griffith, Ph.D.

Education:

B.A. (Biochemistry) 1968, University of California (Berkeley)

Ph.D. (Biochemistry) 1974, The Rockefeller University, New York City

Professional Experience:

July 1981 - Associate Professor, Department of Biochemistry, Cornell University Medical College, New York, N.Y. (Tenured)

July 1978 - Assistant Professor, Department of Biochemistry, Cornell University Medical College, New York, N.Y.

January 1978 - Instructor, Department of Biochemistry, Cornell University Medical College, New York, N.Y.

July 1974 - Postdoctoral Fellow, Department of Biochemistry, Cornell University Medical College, New York, N.Y.

Honors and Awards:

Phi Beta Kappa; Woodrow Wilson Designate; NSF Predoctoral Fellowship, 1968 - 1971; NIH Postdoctoral Fellowship, 1975 - 1977;

Professional Societies:

Member, American Society of Biological Chemists
Member, American Chemical Society
Member, New York Academy of Sciences
Member, American Association for the Advancement of Science

Major Research Interests:

Amino Acid metabolism; carnitine and the control of fatty acid oxidation; enzyme mechanisms and synthesis of enzyme specific substrates and inhibitors; in vivo manipulation of metabolic pathways; biochemistry of inherited metabolic disorders.
CURRENT RESEARCH

My studies center on the elucidation of amino acid and fatty acid metabolism in the intact animal. Specifically radiolabeled substrates or substrate analogs are used to monitor the metabolic flux through individual pathways and enzyme-specific inhibitors are used to predictably manipulate key metabolic pathways in vivo. Present investigations concern cysteine catabolism, glutathione turnover, \(\beta \)-amino acid metabolism, and the role of carnitine in fatty acid oxidation; specific studies in each of these areas are outlined below.

In mammals, cysteine is catabolized by at least 8 distinct pathways. Although a multitude of intermediate products are formed, the ultimate catabolites are few (pyruvate, \(\text{SO}_4^{\text{2-}} \), taurine). The enzymology of many of the reactions involved is well defined in vitro, but little is known of the relative importance of the various pathways in vivo. I am using radiolabeled cysteine and cysteine analogs (\(\alpha \)-methylcysteine, \(3 \)-methylcysteine) to determine the capacity of various pathways of cysteine metabolism in vivo; compounds radiolabeled in either C-1 or C-3 are used to determine the products ultimately formed (i.e. C-1 is metabolized to \(\text{CO}_2 \) by all of the established pathways whereas C-3 is metabolized to \(\text{CO}_2 \) only if taurine is not formed). The partitioning of cysteinesulfinate, a major cysteine catabolite, between decarboxylation and transamination pathways of metabolism was recently determined by this technique (38). Inhibitors of cysteinesulfinate decarboxylase have been administered to animals to increase the percentage of cysteinesulfinate transaminated (38); animals treated in this way will be used to quantitatively evaluate alternative pathways of taurine formation (e.g. via coenzyme A and cysteamine). This general approach will ultimately be extended to the other pathways of cysteine metabolism with the goal of determining which reactions are primarily responsible for maintaining the tissue cysteine concentration at its normally very low level (100-200 \(\mu \text{M} \)).

Studies of glutathione turnover center on the use of enzyme-selective inhibitors to control glutathione synthesis (8,9,14,24,37) or catabolism (12). Inhibitors of glutathione synthesis have been shown to be therapeutic for animal trypanosomiasis, a model for African sleeping sickness (27). Glutathione depletion has been shown to increase the sensitivity of tumor cells to oxygen-mediated cytolysis

References are numbered to correspond to the list of publications beginning on p. 6.
by leukocytes (35) and to prevent the synthesis of leukotriene C (29) and prostaglandin E₂ (34) in macrophages. These inhibitors have also been used to evaluate the rate and control of glutathione synthesis in various cells and tissues (9,12, 15,17,21,23,26,30,32,33). These studies are continuing and now focus on the design and synthesis of compounds with better pharmacologic properties (i.e., slower renal excretion and, in the case of γ-glutamyltranspeptidase inhibitors, lower toxicity). The role of γ-glutamyltranspeptidase in extracellular glutathione oxidation is also under investigation; the relative role of transpeptidase (19) and glutathione oxidase in vivo is presently poorly defined and in dispute. Specific inhibitors of γ-glutamyltranspeptidase are being applied to this problem.

Studies of β-amino acid metabolism focus on the catabolism of β-amino-iso-butyrate. We have purified β-amino-iso-butyrate - pyruvate transaminase from rat liver mitochondria and are investigating the substrate specificity of this enzyme with the view of establishing its role in the metabolism of other β-amino acids (e.g. β-alanine and hypotaurine). Selective inhibitors of this enzyme have been designed and are being evaluated both in vitro and in vivo. Enzyme inhibition produces a marked urinary excretion of β-amino-iso-butyrate. Since R-(-)β-amino-iso-butyrate is a product of thymine catabolism, the enzyme inhibitors may facilitate the in vivo evaluation of thymine turnover; such measurements may be important in the early detection of some forms of cancer.

Studies of carnitine metabolism were initiated only recently. Analogs of carnitine (methyl substituted derivatives as well as analogs in which the hydroxyl is replaced by SH or NH₂) have been prepared and used to evaluate the specificity of the carnitine acyltransferases. The results of these studies will form a basis for the rational design of enzyme-specific inhibitors. These investigations have two goals, (i) the development of animal models for the carnitine deficiency syndromes (inherited human disorders characterized by several muscular and systemic derangements of varying severity) and (ii) the synthesis of compounds which can control ketogenesis in the whole animal. The latter may be of use in controlling some of the complications of diabetes.
PUBLICATIONS

Table 1

EFFECT OF TIOCONAZOLE CREAM UPON ULCERATED AND CLOSED LESIONS CAUSED BY Leishmania braziliensis guyanensis

<table>
<thead>
<tr>
<th>Week</th>
<th>Percent of Original Lesion Diameter (mm ±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ulcerated</td>
</tr>
<tr>
<td>During Treatment</td>
<td>105 ± 6</td>
</tr>
<tr>
<td>1</td>
<td>113 ± 8</td>
</tr>
<tr>
<td>2</td>
<td>118 ± 10</td>
</tr>
<tr>
<td>3</td>
<td>122 ± 10</td>
</tr>
<tr>
<td>4</td>
<td>123 ± 9</td>
</tr>
<tr>
<td>Post-Treatment</td>
<td>116 ± 10</td>
</tr>
</tbody>
</table>

Figure 1

EFFECT OF TIOCONAZOLE ON Leishmania braziliensis guyanensis IN FEMALE BALB/c BYJ MICE

Mice were infected intradermally with 1x10⁵ amastigotes of L. braziliensis guyanensis and were treated for 3 weeks with Pentostam (160 mkd), Tioconazole (Tz) cream (1%), Oral Tz (120 mkd), Combination Tz (1% + 120mkd), or with combination placebo cream and oral water ().
TABLE 2

EFFECT OF TIOCONAZOLE UPON Leishmania mexicana amazonensis INFECTIONS IN BALB/cByJ MICE

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose (mkd x 5)</th>
<th>Percent</th>
<th>Original Lesion Diameter (mm ±SD)</th>
<th>Suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Week -1</td>
<td>0</td>
</tr>
<tr>
<td>Tioconazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral Only</td>
<td>120</td>
<td></td>
<td>115 ± 10</td>
<td>129 ± 13</td>
</tr>
<tr>
<td>Cream Only</td>
<td>1%</td>
<td></td>
<td>134 ± 31</td>
<td>128 ± 26</td>
</tr>
<tr>
<td>Combination</td>
<td>120 + 1%</td>
<td></td>
<td>112 ± 11</td>
<td>118 ± 29</td>
</tr>
<tr>
<td>Placebo Combination</td>
<td>H₂O + 1%</td>
<td></td>
<td>133 ± 20</td>
<td>138 ± 34</td>
</tr>
<tr>
<td>Pentostam (Sb⁵)</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁵Inoculum = 2 x 10⁷ amastigotes

Placebo cream = 20gm aquaphore in 30ml H₂O; Oral placebo = H₂O

Pentostam = 37.5% pentavalent antimony (Sb⁵); Standard from Log Probit Plot, see also Table 3.

TABLE 3

Effect of Pentostam on Leishmania mexicana mexicana Amastigote- and Promastigote- Infections in Male BALB/cByJ Mice.

<table>
<thead>
<tr>
<th>Parasite Stage</th>
<th>Pentostam Sb mkd</th>
<th>Animals</th>
<th>Lesion Wt. (mg)</th>
<th>Lesion Area (mm²)</th>
<th>% Supp.</th>
<th>Toxic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T E X O</td>
<td>T E X O</td>
<td>2-3 7-8</td>
<td>2-3 7-8</td>
<td></td>
</tr>
<tr>
<td>Amastigotes</td>
<td>400 x 5</td>
<td>6 5 1</td>
<td>202 2/2</td>
<td>82 222</td>
<td>67 56</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>800 x 5</td>
<td>6 4 2</td>
<td>79 2/2</td>
<td>60 169</td>
<td>76 66</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>400 x 10</td>
<td>5 5 0</td>
<td>314 1/2</td>
<td>101 127</td>
<td>31 40</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>200 x 10</td>
<td>4 4 0</td>
<td>642 2/2</td>
<td>126 177</td>
<td>14 17</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>100 x 10</td>
<td>5 5 0</td>
<td>350 2/2</td>
<td>132 174</td>
<td>10 18</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>400 x 15</td>
<td>5 5 0</td>
<td>166 nd</td>
<td>63 66</td>
<td>58 62</td>
<td>No</td>
</tr>
<tr>
<td>Promastigotes</td>
<td>400 x 15</td>
<td>4 4 0</td>
<td>147 2/2</td>
<td>88 108</td>
<td>62 74</td>
<td>No</td>
</tr>
</tbody>
</table>