GAS-SOLID TRANSPORT IN A 0.0508 M PIPE AT VARIOUS INCLINATIONS WITH AND WITHOUT ELECTROSTATICS(U) ARMY MILITARY PERSONNEL CENTER ALEXANDRIA VA C A MYLER

UNCLASSIFIED AUG 85

F/G 13/11

NL
GAS-SOLID TRANSPORT IN A 0.0508 m PIPE AT VARIOUS INCLINATIONS WITH AND WITHOUT ELECTROSTATICS

Captain Craig A. Wyler
HQDA, MILPERCEN(DAPC-DPA-E)
200 Stovall Street
Alexandria, VA 22332

Final Report AUG 85

Approved for Public Release; distribution unlimited

A thesis submitted to the University of Pittsburgh in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering
Title: Gas-Solid Transport in a 0.058 m P. P. C. at Various Inclinations with and Without Electrostatics

Author: Craig A. Myler

Performing Organization Name and Address:
Student, HQDA, MILPERCEN (DARPA-OPA-E), 22C Stovall Street, Alexandria, Virginia 22332

Controlling Office Name and Address:
HQDA, MILPERCEN, ATT: (DARPA-OPA-E), 22C Stovall Street, Alexandria, Virginia 22332

Monitoring Agency Name & Address (if different from Controlling Office):

Report Date: Aug 85

Number of Pages: 236

DISTRIBUTION STATEMENT (of this Report):
Approved for Public Release; distribution unlimited

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report):

SUPPLEMENTARY NOTES: M.S. Thesis, University of Pittsburgh

KEYWORDS: Choking, Electrostatics, Horizontal, Inclined, Linear Stability, Particle Velocity, Pressure Drop, Vertical

ABSTRACT:

Pneumatic transport of fines was conducted in a 0.058 m P. P. C. at 45°, 60°, and 90° from the horizontal. Particle velocities, pressure drop, gas velocities, and solid fluid rate were measured. Analysis included numerous relationships and stability. Electrostatic effects were controlled through humidity control.
GAS-SOLID TRANSPORT IN A 0.0508 m PIPE AT VARIOUS INCLINATIONS WITH AND WITHOUT ELECTROSTATICS

by

Craig A. Myler

B.S. in Chemistry, Virginia Military Institute, 1979

Submitted to the Graduate Faculty
of the School of Engineering
in partial fulfillment of
the requirements for the degree of

Master of Science
in
Chemical Engineering

University of Pittsburgh 1985

The author grants permission to reproduce copies.

Signed
ACKNOWLEDGEMENTS

I would like to thank Dr. G.E. Klinzing for having the faith to let me try, the patience when I failed, and the encouragement I needed to continue. I would also like to thank Dr. M.P. Mathur and Dr. B. Morsi for their time and expertise in evaluating this thesis.

To Abdi Zaltash I owe a great deal, and I sincerely thank him for his time and effort in assisting me throughout my research.

I would like to thank Mr. Larry Herman and Mrs. Pye Pajewski for their assistance in technical matters. I also thank Miss Suxuan Huang for her performing the particle analysis.

Finally, I would like to thank my wife, Janice, for silently accepting the long hours I kept and the irritable disposition I often displayed.
The transport of solid particles by air through a 0.0508 m pipe was studied in vertical, horizontal, and 45° orientations. Through control of the air humidity, the effects of electrostatic charging was observed. Pressure drop and particle velocities were measured. Particles used included 79µm, 125µm, and 450µm glass beads and 128µm Plexiglas beads.

Analysis of particle velocity, pressure drop, pressure drop fluctuation, electrostatic pressure drop, choking, and saltation was performed. Visual observations of the flow patterns and behavior were made. A linear stability analysis for the three orientations was performed.
DESCRIPTORS

Choking Electrostatics
Horizontal Inclined
Linear Stability Particle Velocity
Pressure Drop Saltation
Vertical
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii
ABSTRACT .. iii
LIST OF FIGURES .. viii
LIST OF TABLES ... xiv
NOMENCLATURE ... xix
1.0 INTRODUCTION ... 1
2.0 LITERATURE REVIEW ... 2
 2.1 BALANCE OF FORCES ... 2
 2.2 PRESSURE DROP .. 7
 2.3 PARTICLE PATH APPROACH .. 9
 2.4 THERMODYNAMIC ANALOGY APPROACH 10
 2.5 VERTICAL SYSTEMS ... 10
 2.5.1 Force Balance on Vertical System 10
 2.6 HORIZONTAL SYSTEMS ... 14
 2.7 INCLINED SYSTEMS ... 15
 2.8 ELECTROSTATICS ... 16
 2.9 STABILITY ... 18
 2.9.1 Choking .. 18
 2.9.2 Saltation .. 19
 2.9.3 Stability Analysis ... 20
 a. Linear Stability ... 21
 b. Liapunov Stability ... 22
<table>
<thead>
<tr>
<th>Table B-9</th>
<th>Eigenvalues for 125(\mu)m Glass Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=8.9\times10^{-3}) and (R.H. = 18.0)</td>
</tr>
<tr>
<td></td>
<td>131</td>
</tr>
<tr>
<td>Table B-10</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=18.3\times10^{-3}) and (R.H. = 52.0)</td>
</tr>
<tr>
<td></td>
<td>132</td>
</tr>
<tr>
<td>Table B-11</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=18.7\times10^{-3}) and (R.H. = 52.0)</td>
</tr>
<tr>
<td></td>
<td>133</td>
</tr>
<tr>
<td>Table B-12</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=26.3\times10^{-3}) and (R.H. = 51.7)</td>
</tr>
<tr>
<td></td>
<td>134</td>
</tr>
<tr>
<td>Table B-13</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=28.4\times10^{-3}) and (R.H. = 16.0)</td>
</tr>
<tr>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Table B-14</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=12.5\times10^{-3}) and (R.H. = 50.0)</td>
</tr>
<tr>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Table B-15</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=10.0\times10^{-3}) and (R.H. = 16.0)</td>
</tr>
<tr>
<td></td>
<td>137</td>
</tr>
<tr>
<td>Table B-16</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=22.7\times10^{-3}) and (R.H. = 50.0)</td>
</tr>
<tr>
<td></td>
<td>138</td>
</tr>
<tr>
<td>Table B-17</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=20.6\times10^{-3}) and (R.H. = 16.0)</td>
</tr>
<tr>
<td></td>
<td>139</td>
</tr>
<tr>
<td>Table B-18</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=33.3\times10^{-3}) and (R.H. = 50.0)</td>
</tr>
<tr>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Table B-19</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=30.0\times10^{-3}) and (R.H. = 19.4)</td>
</tr>
<tr>
<td></td>
<td>141</td>
</tr>
<tr>
<td>Table B-20</td>
<td>Eigenvalues for 79(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=9.5\times10^{-3}) and (R.H. = 53.7)</td>
</tr>
<tr>
<td></td>
<td>142</td>
</tr>
<tr>
<td>Table B-21</td>
<td>Eigenvalues for 79(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=8.8\times10^{-3}) and (R.H. = 16.0)</td>
</tr>
<tr>
<td></td>
<td>143</td>
</tr>
<tr>
<td>Table B-22</td>
<td>Eigenvalues for 79(\mu)m Glass Beads in the Vertical Orientation</td>
</tr>
<tr>
<td></td>
<td>When (W_s=17.8\times10^{-3}) and (R.H. = 51.7)</td>
</tr>
<tr>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>
3.0 EXPERIMENTAL METHODS .. 23
3.1 THE TEST SECTION .. 23
3.2 AIR DELIVERY SYSTEM ... 24
 3.2.1 Blower ... 25
 3.2.2 Humidity Control and Measurement 26
 3.2.3 Air Flowrate Control and Measurement 26
 3.2.4 Piping for the Air Delivery System 27
3.3 SOLIDS FEEDING SYSTEM .. 27
3.4 SOLIDS RECOVERY AND WEIGHING SYSTEM 27
3.5 PRESSURE MEASUREMENT .. 28
3.6 PARTICLE VELOCITY MEASUREMENT 28
3.7 EXPERIMENTAL PROCEDURE ... 29
 3.7.1 Start-up Procedures ... 29
 3.7.2 Experimental Data Acquisition 30
 3.7.3 Shutdown Procedure ... 32
4.0 RESULTS AND ANALYSIS ... 33
4.1 PARTICLE SIZE ... 33
4.2 FLOW BEHAVIOR AND PATTERNS ... 33
 a. Vertical Systems .. 34
 b. Horizontal Systems .. 35
 c. Inclined Systems ... 36
4.3 PARTICLE VELOCITY ANALYSIS .. 38
4.4 PRESSURE DROP .. 42
 4.4.1 Pressure Drop vs. Gas Velocity 42
 a. Vertical Systems .. 42
 b. Horizontal Systems .. 44
 c. Inclined Systems ... 45
4.4.2 Comparison to Correlations ... 49
4.4.3 Pressure Drop Fluctuation ... 49
 a. Vertical Systems ... 50
 b. Horizontal Systems ... 50
 c. Inclined Systems .. 51
4.4.4 Electrostatic Pressure Drop .. 51
4.5 STABILITY .. 52
 4.5.1 Choking .. 52
 4.5.2 Saltation .. 54
 4.5.3 Linear Analysis .. 56
 a. Vertical Systems .. 56
 b. Horizontal Systems .. 57
 c. Inclined Systems .. 57
5.0 CONCLUSIONS .. 59
6.0 RECOMMENDATIONS .. 62
APPENDIX A. FIGURES REFERRED TO IN TEXT 63
APPENDIX B. TABLES REFERRED TO IN TEXT 121
APPENDIX C. COMPUTER PROGRAMS 177
APPENDIX D. EXPERIMENTAL DATA 200
APPENDIX E. MISCELLANEOUS ... 224
Bibliography ... 236
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Force Balance on a Gas-Solid Flow in a Pipe at Inclination θ</td>
<td>3</td>
</tr>
<tr>
<td>2-2</td>
<td>Pressure Drop vs. Gas Velocity Near the Choking Point</td>
<td>18</td>
</tr>
<tr>
<td>3-1</td>
<td>Experimental Test Loop</td>
<td>24</td>
</tr>
<tr>
<td>3-2</td>
<td>Electrostatic Ring Probe</td>
<td>25</td>
</tr>
<tr>
<td>4-1</td>
<td>Flow Patterns in Horizontal Flow</td>
<td>36</td>
</tr>
<tr>
<td>4-2</td>
<td>Retrograde Dunes in Inclined Flow</td>
<td>37</td>
</tr>
<tr>
<td>4-3</td>
<td>Particle Velocity vs. Gas Velocity for 125μm Glass Beads in the Vertical Orientation</td>
<td>39</td>
</tr>
<tr>
<td>4-4</td>
<td>Particle Velocity vs. Gas Velocity for 125μm Glass Beads in the Horizontal Orientation</td>
<td>40</td>
</tr>
<tr>
<td>4-5</td>
<td>Particle Velocity vs. Gas Velocity for 125μm Glass Beads in the Inclined Orientation</td>
<td>41</td>
</tr>
<tr>
<td>4-6</td>
<td>Pressure Drop vs. Gas Velocity for 125μm Glass Beads in the Vertical Orientation</td>
<td>43</td>
</tr>
<tr>
<td>4-7</td>
<td>Pressure Drop vs. Gas Velocity for the 125μm Glass Beads in the Horizontal Orientation</td>
<td>46</td>
</tr>
<tr>
<td>4-8</td>
<td>Pressure Drop vs. Gas Velocity for the 125μm Glass Beads in the Inclined Orientation</td>
<td>47</td>
</tr>
<tr>
<td>A-1</td>
<td>Particle Velocity vs. Gas Velocity for 79μm Glass Beads in the Vertical Orientation</td>
<td>65</td>
</tr>
<tr>
<td>A-2</td>
<td>Particle Velocity vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation</td>
<td>66</td>
</tr>
<tr>
<td>A-3</td>
<td>Particle Velocity vs. Gas Velocity for 128μm Plexiglas Beads in the Vertical Orientation</td>
<td>67</td>
</tr>
<tr>
<td>A-4</td>
<td>Particle Velocity vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation</td>
<td>68</td>
</tr>
</tbody>
</table>
Figure A-5 Partical Velocity vs. Gas Velocity for 450\textmu m Glass beads in the Horizontal Orientation ... 69
Figure A-6 Partical Velocity vs. Gas Velocity for 79\textmu m Glass Beads in the Inclined Orientation .. 70
Figure A-7 Partical Velocity vs. Gas Velocity for 450\textmu m Glass Beads in the Inclined Orientation .. 71
Figure A-8 Pressure Drop vs. Gas Velocity for 79\textmu m Glass Beads in the Vertical Orientation .. 72
Figure A-9 Pressure Drop vs. Gas Velocity for 450\textmu m Glass Beads in the Vertical Orientation .. 73
Figure A-10 Pressure Drop vs. Gas Velocity for 128\textmu m Plexiglas Beads in the Vertical Orientation ... 74
Figure A-11 Pressure Drop vs. Gas Velocity for 79\textmu m Glass Beads in the Horizontal Orientation ... 75
Figure A-12 Pressure Drop vs. Gas Velocity for 450\textmu m Glass Beads in the Horizontal Orientation ... 76
Figure A-13 Pressure Drop vs. Gas Velocity for the 79\textmu m Glass Beads in the Inclined Orientation .. 77
Figure A-14 Pressure Drop vs. Gas Velocity for the 450\textmu m Glass Beads in the Inclined Orientation .. 78
Figure A-15 Pressure Drop vs. Gas Velocity for 79\textmu m Glass Beads for the Combined Orientations at the Lower Mass Flow Rate Without Electrostatics .. 79
Figure A-16 Pressure Drop vs. Gas Velocity for 79\textmu m Glass Beads for the Combined Orientations at the Lower Mass Flow Rate With Electrostatics .. 80
Figure A-17 Pressure Drop vs. Gas Velocity for 79\textmu m Glass Beads for the Combined Orientations at the Higher Mass Flow Rate Without Electrostatics ... 81
Figure A-18 Pressure Drop vs. Gas Velocity for 79\textmu m Glass Beads for the Combined Orientations at the Higher Mass Flow Rate With Electrostatics .. 82
Figure A-19 Pressure Drop vs. Gas Velocity for 125\textmu m Glass Beads for the Combined Orientations at the Lower Mass Flow Rate Without Electrostatics ... 83
Figure A-20 Pressure Drop vs. Gas Velocity for 125μm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate With Electrostatics

Figure A-21 Pressure Drop vs. Gas Velocity for 125μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate Without Electrostatics

Figure A-22 Pressure Drop vs. Gas Velocity for 125μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate With Electrostatics

Figure A-23 Pressure Drop vs. Gas Velocity for 450μm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate Without Electrostatics

Figure A-24 Pressure Drop vs. Gas Velocity for 450μm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate With Electrostatics

Figure A-25 Pressure Drop vs. Gas Velocity for 450μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate Without Electrostatics

Figure A-26 Pressure Drop vs. Gas Velocity for 450μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate With Electrostatics

Figure A-27 Pressure Drop Fluctuation vs. Gas Velocity for 125μm Glass Beads in the Vertical Orientation

Figure A-28 Pressure Drop Fluctuation vs. Gas Velocity for 79μm Glass Beads in the Vertical Orientation

Figure A-29 Pressure Drop Fluctuation vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation

Figure A-30 Pressure Drop Fluctuation vs. Gas Velocity for 128μm Plexiglas Beads in the Vertical Orientation

Figure A-31 Pressure Drop Fluctuation vs. Gas Velocity for 125μm Glass Beads in the Horizontal Orientation

Figure A-32 Pressure Drop Fluctuation vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation

Figure A-33 Pressure Drop Fluctuation vs. Gas Velocity for 450μm Glass Beads in the Horizontal Orientation
Figure A-34	Pressure Drop Fluctuation vs. Gas Velocity for 125µm Glass Beads in the Inclined Orientation	98
Figure A-35	Pressure Drop Fluctuation vs. Gas Velocity for 79µm Glass Beads in the Inclined Orientation	99
Figure A-36	Pressure Drop Fluctuation vs. Gas Velocity for 450µm Glass Beads in the Inclined Orientation	100
Figure A-37	Electrostatic Pressure Drop vs. kg H₂O/kg solids for the 79µm Glass Beads in the Inclined Orientation	101
Figure A-38	Electrostatic Pressure Drop vs. kg H₂O/kg solids for the 125µm Glass Beads in the Inclined Orientation	102
Figure A-39	Electrostatic Pressure Drop vs. kg H₂O/kg solids for the 450µm Glass Beads in the Inclined Orientation	103
Figure A-40	Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79µm Glass Beads in the Vertical Orientation with \(W = 9 \times 10^{-3} \)	104
Figure A-41	Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79µm Glass Beads in the Vertical Orientation with \(W = 18 \times 10^{-3} \)	105
Figure A-42	Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79µm Glass Beads in the Vertical Orientation with \(W = 27 \times 10^{-3} \)	106
Figure A-43	Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125µm Glass Beads in the Vertical Orientation with \(W = 8 \times 10^{-3} \)	107
Figure A-44	Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125µm Glass Beads in the Vertical Orientation with \(W = 18 \times 10^{-3} \)	108
Figure A-45	Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125µm Glass Beads in the Vertical Orientation with \(W = 27 \times 10^{-3} \)	109
Figure A-46 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation with \(W = 11 \times 10^{-3} \) .. 110

Figure A-47 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation with \(W = 21 \times 10^{-3} \) .. 111

Figure A-48 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation with \(W = 30 \times 10^{-3} \) .. 112

Figure A-49 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 128μm Plexiglas Beads in the Vertical Orientation with \(W = 8 \times 10^{-3} \) .. 113

Figure A-50 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 128μm Plexiglas Beads in the Vertical Orientation with \(W = 12 \times 10^{-3} \) .. 114

Figure A-51 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation with \(W = 17 \times 10^{-3} \) .. 115

Figure A-52 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation with \(W = 24 \times 10^{-3} \) .. 116

Figure A-53 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125μm Glass Beads in the Horizontal Orientation with \(W = 17 \times 10^{-3} \) .. 117

Figure A-54 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125μm Glass Beads in the Horizontal Orientation with \(W = 24 \times 10^{-3} \) .. 118

Figure A-55 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Horizontal Orientation with \(W = 19 \times 10^{-3} \) .. 119

Figure A-56 Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Horizontal Orientation with \(W = 30 \times 10^{-3} \) .. 120

xii
Figure E-1	Sample Data Acquisition Form	228
Figure E-2	Particle Analysis for 79\(\mu\)m Glass Beads Before Experiments	229
Figure E-3	Particle Analysis for 79\(\mu\)m Glass Beads After Experiments	230
Figure E-4	Particle Analysis for 125\(\mu\)m Glass Beads Before Experiments	231
Figure E-5	Particle Analysis for 125\(\mu\)m Glass Beads After Experiments	232
Figure E-6	Particle Analysis for 450\(\mu\)m Glass Beads Before Experiments	233
Figure E-7	Particle Analysis for 450\(\mu\)m Glass Beads After Experiments	234
Figure E-8	Particle Analysis for 128\(\mu\)m Plexiglas Beads Before Experiments	235
Figure E-9	Particle Analysis for 128\(\mu\)m Plexiglas Beads After Experiments	236
Figure E-10	Air Delivery Unit and Solids Feeder	237
Figure E-11	Vertical Test Section Showing Electrostatic Ring Probes	238
Figure E-12	Horizontal Test Section Showing Electrostatic Ring Probes	239
LIST OF TABLES

<p>| Table 2-1 | Various Correlations Available for Pneumatic Systems | 12 |
| Table 4-1 | Particle Size Analysis | 34 |
| Table 4-2 | Choking in the Vertical Systems | 53 |
| Table 4-3 | Saltation Velocity Analysis | 55 |
| Table B-1 | Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 79μm Glass Beads in the Vertical Orientation | 123 |
| Table B-2 | Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 125μm Glass Beads in the Vertical Orientation | 124 |
| Table B-3 | Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 450μm Glass Beads in the Vertical Orientation | 125 |
| Table B-4 | Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 128μm Plexiglas Beads in the Vertical Orientation | 126 |
| Table B-5 | Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 79μm Glass Beads in the Horizontal Orientation | 127 |
| Table B-6 | Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 125μm Glass Beads in the Horizontal Orientation | 128 |
| Table B-7 | Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 450μm Glass Beads in the Horizontal Orientation | 129 |
| Table B-8 | Eigenvalues for 125μm Glass Beads in the Vertical Orientation When Ws=8.5x10⁻³ and R.H.= 57.2 | 130 |</p>
<table>
<thead>
<tr>
<th>Table B-23</th>
<th>Eigenvalues for 79(\mu)m Glass Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=18.3\times10^{-3}) and R.H. = 16.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-24</th>
<th>Eigenvalues for 79(\mu)m Glass Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=26.5\times10^{-3}) and R.H. = 53.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-25</th>
<th>Eigenvalues for 79(\mu)m Glass Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=28.3\times10^{-3}) and R.H. = 18.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-26</th>
<th>Eigenvalues for 128(\mu)m Plexiglas Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=8.6\times10^{-3}) and R.H. = 47.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-27</th>
<th>Eigenvalues for 128(\mu)m Plexiglas Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=8.8\times10^{-3}) and R.H. = 16.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-28</th>
<th>Eigenvalues for 128(\mu)m Plexiglas Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=12.9\times10^{-3}) and R.H. = 52.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-29</th>
<th>Eigenvalues for 128(\mu)m Plexiglas Beads in the Vertical Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=12.4\times10^{-3}) and R.H. = 16.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-30</th>
<th>Eigenvalues for 125(\mu)m Glass Beads in the Horizontal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=18.5\times10^{-3}) and R.H. = 51.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-31</th>
<th>Eigenvalues for 125(\mu)m Glass Beads in the Horizontal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=15.8\times10^{-3}) and R.H. = 16.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-32</th>
<th>Eigenvalues for 125(\mu)m Glass Beads in the Horizontal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=25.3\times10^{-3}) and R.H. = 52.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-33</th>
<th>Eigenvalues for 125(\mu)m Glass Beads in the Horizontal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=23.5\times10^{-3}) and R.H. = 16.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-34</th>
<th>Eigenvalues for 79(\mu)m Glass Beads in the Horizontal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=19.0\times10^{-3}) and R.H. = 55.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-35</th>
<th>Eigenvalues for 79(\mu)m Glass Beads in the Horizontal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=15.4\times10^{-3}) and R.H. = 19.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table B-36</th>
<th>Eigenvalues for 79(\mu)m Glass Beads in the Horizontal Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When (W_s=24.1\times10^{-3}) and R.H. = 53.4</td>
</tr>
<tr>
<td>Table B-37</td>
<td>Eigenvalues for 79(\mu)m Glass Beads in the Horizontal Orientation When (W_s=24.5 \times 10^{-3}) and R.H. = 18.5</td>
</tr>
<tr>
<td>Table B-38</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Horizontal Orientation When (W_s=19.8 \times 10^{-3}) and R.H. = 56.3</td>
</tr>
<tr>
<td>Table B-39</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Horizontal Orientation When (W_s=19.5 \times 10^{-3}) and R.H. = 16.3</td>
</tr>
<tr>
<td>Table B-40</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Horizontal Orientation When (W_s=28.6 \times 10^{-3}) and R.H. = 56.2</td>
</tr>
<tr>
<td>Table B-41</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Horizontal Orientation When (W_s=32.3 \times 10^{-3}) and R.H. = 16.4</td>
</tr>
<tr>
<td>Table B-42</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Inclined Orientation When (W_s=18.2 \times 10^{-3}) and R.H. = 56.4</td>
</tr>
<tr>
<td>Table B-43</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Inclined Orientation When (W_s=17.8 \times 10^{-3}) and R.H. = 19.0</td>
</tr>
<tr>
<td>Table B-44</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Inclined Orientation When (W_s=27.0 \times 10^{-3}) and R.H. = 56.7</td>
</tr>
<tr>
<td>Table B-45</td>
<td>Eigenvalues for 125(\mu)m Glass Beads in the Inclined Orientation When (W_s=28.9 \times 10^{-3}) and R.H. = 22.0</td>
</tr>
<tr>
<td>Table B-46</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Inclined Orientation When (W_s=18.6 \times 10^{-3}) and R.H. = 55.7</td>
</tr>
<tr>
<td>Table B-47</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Inclined Orientation When (W_s=20.3 \times 10^{-3}) and R.H. = 21.9</td>
</tr>
<tr>
<td>Table B-48</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Inclined Orientation When (W_s=29.1 \times 10^{-3}) and R.H. = 53.6</td>
</tr>
<tr>
<td>Table B-49</td>
<td>Eigenvalues for 450(\mu)m Glass Beads in the Inclined Orientation When (W_s=28.8 \times 10^{-3}) and R.H. = 18.0</td>
</tr>
<tr>
<td>Table B-50</td>
<td>Eigenvalues for 79(\mu)m Glass Beads in the Inclined Orientation When (W_s=18.1 \times 10^{-3}) and R.H. = 52.8</td>
</tr>
</tbody>
</table>
Table B-51 Eigenvalues for 79\(\mu\)m Glass Beads in the Inclined Orientation
When \(W_s=16.5\times10^{-3}\) and \(R.H. = 18.5\) 173

Table B-52 Eigenvalues for 79\(\mu\)m Glass Beads in the Inclined Orientation
When \(W_s=26.6\times10^{-3}\) and \(R.H. = 54.6\) 174

Table B-53 Eigenvalues for 79\(\mu\)m Glass Beads in the Inclined Orientation
When \(W_s=25.8\times10^{-3}\) and \(R.H. = 17.6\) 175
NOMENCLATURE

- C_{D_s}: Drag coefficient of single particle (dimensionless)
- D_p: Particle diameter (m)
- D_t: Tube diameter (m)
- f_g: Gas friction factor (dimensionless)
- f_{pc}: Particle friction factor at choking (dimensionless)
- f_s: Solid friction factor (dimensionless)
- g: Gravitational acceleration (m/s^2)
- Δm_g: Mass of gas in differential length of tube (kg)
- Δm_p: Mass of solids in differential length of tube (kg)
- ΔP_e: Electrostatic pressure drop (Pa)
- ΔP_t: Total pressure drop (Pa)
- q: Charge/particle (C)
R Solids loading (kg solids/kg air)

Re_p Particle Reynolds number (dimensionless)

Re_t Terminal Reynolds number (dimensionless)

t Time (s)

U_f Actual fluid velocity (m/s)

U_{fs} Steady state fluid velocity (m/s)

\dot{U}_f Fluid velocity fluctuation (m/s)

U_{fc} Actual fluid velocity at choking (m/s)

U_s Superficial gas velocity (m/s)

U_{gas} Superficial gas velocity at saltation (m/s)

U_{gc} Superficial gas velocity at choking (m/s)

U_p Particle velocity (m/s)

U_{ps} Steady state particle velocity (m/s)

\dot{U}_p Particle velocity fluctuation (m/s)

U_s Slip velocity (m/s)
U_t Terminal velocity (m/s)

V_p Volume of a particle (m3)

Z_0 Contact distance (m)

W_s Solid flow rate (kg/s)

Greek Letters

ε Gas voidage (dimensionless)

ε_c Gas voidage at choking (dimensionless)

ε_0 Permittivity of free space (farad/m)

ρ_f Fluid density (kg/m3)

ρ_p Particle density (kg/m3)

μ Fluid viscosity (kg/ms)

ξ Pressure gradient in axial direction (Pa/m)

π Constant equal to 3.14159265

θ Angle from the horizontal (degrees)
\(\Psi_p \)
Particle-Particle collision factor (dimensionless)

\(\Psi_f \)
Friction factor (dimensionless)

\(\Psi_w \)
Wall collision factor (dimensionless)
1.0 INTRODUCTION

In the transport of solid particles by a gas stream, numerous forces act on the system. The direction and magnitude of these forces significantly affect the behaviour of the flow. Two such forces which arise in gas-solids transport, and not significantly in single phase gas flow, are those of gravity and electrostatics. The major problem with these two forces is that they affect the solid particles almost exclusively.

Gravity imposes a constant downward acceleration on the particles. To overcome the force caused by this acceleration, the gas must equal and overcome this force by exerting a drag force on the particles. When the drag force is no longer sufficient to overcome the force of gravity, and other forces present, the particles fall, and transport ceases. This falling of the particles is dependent on the orientation of the pipe through which they are being transported. In vertical upflow, the particles can fall unimpeded by the pipe itself, whereas in horizontal flow, the maximum descent is the diameter of the pipe. At other orientations, the particles can continue to fall while in contact with the pipe wall. The effect of gravity is different in different orientations and therefore must be accounted for in conjunction with that orientation.

Electrostatic forces are not as easily defined. The contacting of the solid particles with the pipe wall causes static electrification. As the particles themselves are moving and charged, the magnitude and direction of the electric field is difficult to define, even for a homogeneous dispersion of the particles. Combined with the effect of gravity, the electrostatic forces can affect the flow differently with pipe orientation.

The purpose of this study is to examine the effects of pipe orientation on gas-solid transport with and without electrostatics. Additionally, the use of electrostatic ring probes for the measurement of solid particle velocity in a 0.0508 m pipe will be assessed.
2.0 LITERATURE REVIEW

Investigations into pneumatic transport have generally taken two approaches. The first is an attempt to empirically correlate data from these systems into workable expressions. The second approach is through theoretical modeling. The first approach suffers from the number of variables, and therefore, the number of groupings required to describe a given system. The second approach is hampered by a lack of fundamental knowledge.

2.1 BALANCE OF FORCES

An application of Newton’s second law to the particles shown in figure 2-1 provides the following equation:

$$\Delta m \frac{dU}{dt} = \dot{\mathbf{r}}_D - \mathbf{dF} \sin \theta - \mathbf{dF} - \Delta m \rho \frac{\partial P}{\partial x} \pm F_{add} \quad (2-1)$$

Similarly, the gas must also have a balance of forces, which can be described by:
Figure 2-1: Force Balance on a Gas-Solid Flow in a Pipe at Inclination θ

\[\Delta m \frac{dU}{dt} = -dF_d - dF_s \sin \theta - dF_f - \Delta m / \rho \frac{\partial P}{\partial x} \] \hspace{1cm} (2-2)

The first term on the RHS of equation 2-1 is the force due to drag on the particles. For a single particle, this term is described by:
\[dF_p = \frac{3}{4} C_{Ds} \rho_f (U - U_m) \Delta m / [(\rho_p - \rho_f)D_p] \quad (2-3) \]

Wen and Yu1 suggest a modification to the single particle drag coefficient of:

\[C_{Ds}^{\text{(modified)}} = e^{-4.7} C_{Ds}^{\text{(single particle)}} \quad (2-4) \]

This gives:

\[dF_p = \frac{3}{4} e^{-4.7} C_{Ds} \rho_f (U - U_m) \Delta m / [(\rho_p - \rho_f)D_p] \quad (2-5) \]

The second term on the RHS of equation 2–1 is a gravity force. Direct application of Newton's law gives:

Parenthetical references placed superior to the line of text refer to the bibliography.
\[dF = \Delta m g \] \hspace{1cm} (2-6)

which is the weight of the particles in the tube.

The third term on the RHS of equation 2-1 is the force due to friction. Using a friction factor for the solids, this force can be described as:

\[dF = 2f U \Delta m / D \] \hspace{1cm} (2-7)

The fourth term on the RHS of equation 2-1 is the force due to the pressure gradient along the axis of the pipe.

Additional forces are present in the flow system and are often significant. They include forces due to electrostatic generation, external fields of force (such as magneto static fields), lift forces due to rotation, and cohesive forces. The electrostatic forces will be discussed later. The other forces are assumed to be negligible for this discussion and will be neglected.

Substitution of the expressions above into equation 2-1 and rearrangement yields:
\[
dU_p/dt = 3/4e^{-4.7} C_d \rho_f (U-U_p)^2/[\left((\rho_f - \rho_p)D\right)] - g\sin\theta - \\
\frac{2f U^2}{D} - 1/\rho_p \frac{\partial P}{\partial x}
\]

For steady flow, and neglecting the pressure term, this becomes:

\[
3/4e^{-4.7} C_d \rho_f (U-U_p)^2/[\left((\rho_f - \rho_p)D\right)] - g\sin\theta - 2f U^2/D = 0
\]

As the voidage can be expressed as:

\[
\epsilon = 1 - \frac{4W}{\rho_p \pi D^2 U_p}
\]

Equation 2-9 can be made explicit for the particle velocity. There are, however, two terms in equation 2-9 which make the solution for the particle velocity difficult. They are the drag coefficient and the solid friction factor. The drag coefficient is dependent on the air flow rate. The friction factor is apparently strongly influenced by pipe orientation, particle diameter, particle and pipe material, and possibly other factors.
2.2 PRESSURE DROP

The pressure drop across a length of a pneumatic transport line is a very important design parameter. The introduction of solids into a gas stream causes, for most conditions, an increase in the pressure drop over that of air alone. Cases of pressure drop reduction to below that of air alone have been reported\(^2\), \(^3\), however, the conditions for this phenomena are very specialized. For steady flow conditions, the pressure drop can be obtained by adding the reduced forms of equations 2-1 and 2-2 as a sum of the forces in the system. This gives:

\[
\Delta m \, g \sin \theta + \Delta m \, g \sin \theta + \Delta m \, 2f \frac{U^2}{D} + \frac{\Delta m \, 2f \, U^2}{D} + \frac{(\Delta m / \rho + \Delta m / \rho) \Delta P / \Delta x = 0}{(2-11)}
\]

Note that in formulating equation 2-11, the force due to drag on the particles is equal and opposite the force causing the drag by the fluid, and therefore, cancels. Also, the additional force terms have been omitted. The mass terms in equation 2-11 can be expressed in terms of the voidage as:

\[
\Delta m_p = (1-\varepsilon) \rho P V
\]

\[
\Delta m_s = \varepsilon \rho P V
\]

and equation 2-11 becomes:
Integrating equation 2-14 over a length L, rearranging, and noting the sign convention of the pressure drop, yields:

$$
\Delta P = [(1-\varepsilon)\rho_\text{p} - \varepsilon \rho_\text{p}] L \sin \theta
$$

The apparent simplicity of equation 2-15 is misleading. First, the particle velocity must be known. As mentioned before, the solids friction factor is apparently influenced by many factors, and therefore makes solution for the particle velocity from equation 2-8 difficult. Measuring the particle velocity is also difficult. Methods used have included the use of radioactive tracers3, electrostatic signal cross-correlation4,6, ultrasonic cross-correlation4, and Laser-Doppler velocimetry9. All of these methods have drawbacks and/or difficulties in measuring the particle velocity. The additional forces
which were left out of equation 2-15 are sometimes very significant. The electrostatic forces which can be generated in pneumatic systems are often very large and have a significant impact on the pressure drop. These forces will be discussed further on.

2.3 PARTICLE PATH APPROACH

Molerus\(^{10}\) has taken the force balance on particles in pneumatic transport a step further. He has considered the path of flight of a particle and the different interactions of the particle in different phases of its motion. A particle is considered to undergo the following flight phases:

- Flight under the influence of gravity
- Particle-Particle Collision
- Particle-Wall Collision
- Slide along the pipe wall
- Pressure Gradient effects

From these possible interactions, equation 2-16 is obtained.

\[
\frac{\Delta P}{\rho} = 3 \rho C_p (Re) \frac{U^2 L}{(4D \rho_p)} + \frac{(1 - \rho_f/\rho_p) g L (sin \theta - \psi \cos \theta)}{\rho_p} - \psi (\mu/\rho_p)^{1/3} \frac{L \rho^2}{\rho_p} - \psi \frac{L \rho^2}{D}
\]

(2-16)

where
\[\psi_f = \text{friction coefficient} \]
\[\psi_p = \text{Particle-Particle collision coefficient} \]
\[\psi_w = \text{Wall collision coefficient} \]

Comparison of equation 2-16 with equation 2-8 at steady state is obvious. The major difference is in the frictional terms. Molerus provides simplifications to equation 2-16 for different flow conditions; however, the empirical nature of the friction factors required remains.

2.4 THERMODYNAMIC ANALOGY APPROACH

A different approach to describing pneumatic systems was initiated by Tuba. This approach treats the pneumatic system by a thermodynamic phase equilibrium analogy. The solids flux, fluid flux, and voidage are used in the format of the Van der Waals equation of state. In this format, the critical properties of the system, and hence the constants for the equation, can be determined.

2.5 VERTICAL SYSTEMS

2.5.1 Force Balance on Vertical System

The force balance equation for the particles in a vertical section of pipe is:
For dilute systems, the pressure term is normally negligible due to the relatively large particle density and small amount of particles in the system. Neglecting additional forces and substituting the appropriate expressions for the forces, this expression becomes:

\[
\frac{\Delta m}{dt} \frac{dU}{dt} = dF_D - dF_f - dF - \Delta m / \rho \frac{\partial P}{\partial x} + F_{\text{add}}
\]

\[(2-17)\]

\[
\frac{dU}{dt} = \frac{3}{4} \varepsilon^{3/2} C_p \rho (U - U_f)^3 / [(\rho - \rho_f)D] - g - \frac{2f U_f^2}{D} - 1 / \rho \frac{\partial P}{\partial x}
\]

\[(2-18)\]

At steady state, and with values for the drag coefficient and solids friction factor, this equation can be solved for the particle velocity.

The pressure drop equation is:

\[
\Delta P = [(1-\varepsilon)\rho - \varepsilon \rho_f] L g - 2\rho f (1-\varepsilon)U_f^2 / D - 2\rho f \varepsilon U_f^2 / D
\]

\[(2-19)\]
Solution for the pressure drop requires a gas friction factor, \(f \), which can be obtained from single phase correlations such as the Blasius or Koo equations. The particle velocity and solids friction factor are not so easily determined. Table 2-1 lists some of the expressions available and the systems from which they were obtained. The Institute of Gas Technology performed testing of various correlations and recommends the modified Konno-Saito correlation.

Table 2-1: Various Correlations Available for Pneumatic Systems

<table>
<thead>
<tr>
<th>INVESTIGATOR</th>
<th>SYSTEM</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konno and Saito(^{12})</td>
<td>(D = 0.1) to (1.0) mm</td>
<td>(f_s = 0.0285 \left(\frac{gD}{U} \right)^{1/2}) / (U)</td>
</tr>
<tr>
<td></td>
<td>(p = 1440) to (2500) (\text{kg/m}^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(D = 26.5) and (46.8) mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vertical and Horizontal</td>
<td></td>
</tr>
<tr>
<td>Yang(^{13})</td>
<td>Vertical</td>
<td>(f_s = 0.00515 \left(\frac{1 - \epsilon}{\epsilon} \right)^{3/2} \left(\frac{1 - \epsilon U}{U} \right)^{0.869})</td>
</tr>
<tr>
<td></td>
<td>(D = 6.78) and (13.5) mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
<td>(f_s = 0.02925 \left(\frac{1 - \epsilon}{\epsilon} \right)^{3/2} \left(\frac{1 - \epsilon U}{U} \right)^{1.15})</td>
</tr>
<tr>
<td></td>
<td>(D = 50.8) and (76.2) cm</td>
<td></td>
</tr>
<tr>
<td>Leung and Wiles(^{14})</td>
<td>Vertical</td>
<td>(f_s = 0.05 / \left(\frac{U}{U_p} \right))</td>
</tr>
<tr>
<td></td>
<td>Avg of results</td>
<td></td>
</tr>
<tr>
<td></td>
<td>from van Swaaij, Reddy and Pai, and Konno-Saito</td>
<td></td>
</tr>
<tr>
<td>Van Swaaij, et al.(^{15})</td>
<td>(D = 0.18) m</td>
<td>(f_s = 0.08 / \left(\frac{U}{U_p} \right))</td>
</tr>
<tr>
<td>Reddy and Pai(^{16})</td>
<td>(D = 0.10) m</td>
<td>(f_s = 0.046 / \left(\frac{U}{U_p} \right))</td>
</tr>
<tr>
<td></td>
<td>(D = 100) to (270) (\text{um})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glass Beads</td>
<td></td>
</tr>
</tbody>
</table>
Capes and Nakamura17

\[D = 0.0381 \text{ m} \]
\[D = 256 \text{ to } 3400 \text{ \(\mu \text{m} \)} \]
\[\rho = 0.911 \text{ to } 7.7 \text{ gm/cm}^3 \]

\[D = 0.0381 \text{ m} \]
\[f_s = 0.048/U_p^{1.22} \]

Stemerding18

\[D = 0.0508 \text{ m} \]
\[D = 20 \text{ to } 150 \text{ \(\mu \text{m} \)} \]
\[\rho = 1.6 \text{ gm/cm}^3 \]

\[D = 0.0508 \text{ m} \]
\[f_s = 0.003 \]

Molerus19

Horizontal
\[D = 0.04 \text{ and } 0.01 \text{ m} \]

State Diagram
from which \(P \)
can be read

Morikawa and Tsuji20

Vertical
\[D = 40 \text{ mm (acrylic)} \]
\[D = 1.11 \text{ to } 3.43 \text{ mm} \]
\[\rho = 923 \text{ to } 969 \text{ kg/m}^3 \]

Horizontal
same as above

\[f_s = 1.503(U_p/(gD)^{1/2})^{-1.83} \]

Inclined
same as above

(30, 45, and
60 degrees)

Figure from
which \(f_s \)
can be read

Marcus, et al.4

Horizontal
\[D = 0.1 \text{ m} \]
\[D = 30 \mu \text{m} \]
\[\rho = 1500 \text{ kg/m}^3 \]

\[U_p = U(1-0.0221D_p^{0.3}\rho_p^{0.5}) \]

Yang13

Vertical
\[D = 0.267 \text{ to } 1.023 \text{ in} \]
\[D = 109 \text{ to } 2024 \mu \text{m} \]
\[\rho = 53.7 \text{ to } 169 \text{ lb/ft}^3 \]

\[U_p = U - [(1-2f_s U_p^2/D_p)^x \]
\[4/3(\rho_p - \rho d) \epsilon^2/(\rho C_d d_s)]^{1/2} \]
2.6 HORIZONTAL SYSTEMS

The force balance for the particles in a horizontal system \((\theta=0) \) is:

\[
\frac{\Delta m}{\Delta t} \frac{dU}{dt} = dF_D - dF_f - \Delta m / \rho \frac{\partial P}{\partial x} \pm F_{\text{add}}
\]

(2-20)

Again, neglecting the pressure term and additional forces, this becomes:

\[
\frac{dU}{dt} = 3/4 \varepsilon C_d \rho (U - U)^2 \Delta m / (\rho - \rho) \frac{D}{D} - 2f U^2 / D - \Delta m / \rho \frac{\partial P}{\partial x}
\]

(2-21)

The effects of gravity are not immediately apparent in equation 2-21. The effects are
incorporated in the solid friction factor. The expression derived by Molerus10 does
contain a term in the horizontal case which is gravity dependent. The pressure drop
equation for horizontal transport is:

\[
\Delta P = 2\rho f (1-\varepsilon)LU^2/D + 2\rho f \varepsilon LU^2/D,
\]
(2-22)

Some correlations applicable to horizontal systems are given in table 2-1. Again, the
system from which the correlations were obtained is a key factor as to the applicability
of the correlation.

2.7 INCLINED SYSTEMS

The most general form of the force balance on the particles in pneumatic trans-
port is for the inclined geometry. Here, the gravity effect is present in both a vertical
and horizontal sense. The force balance and the pressure drop equations are given by
equations 2-9 and 2-15. There seems to be a general lack of data on inclined systems,
and therefore, very few correlations to describe them. The work done by Morikawa
and Tsuji20 used data from pipes at three inclinations. Their results give a correlation
in terms of a figure of friction factor and loading versus particle Froude number. The
work of Molerus10 is capable of describing the inclined system, however, the difficulties
in obtaining the separate friction factors in the equation would be severe.
2.8 ELECTROSTATICS

During the course of transporting solid particles through a pipe, there occurs a substantial amount of contacting between the particles and the pipe wall. If the particles and the pipe are of different materials, then electrostatic charging occurs. The extent to which this charging proceeds is dependent on many factors. These include the condition of the pipe wall, the condition of the solid particles, the relative humidity of the carrier gas, the particle size, and the particle velocity. These conditions often allow for a significant amount of charging. The effect of this charging may in some cases be useful, while in other cases, detrimental. A particular use of the charging in pneumatic transport is in measuring devices for solids flow. The detrimental effects normally appear as increases in the pressure drop of the system. Another detrimental effect is that of discharge of static electricity which can lead to explosions.

Klinzing gives the force attributable to electrostatics on a single particle as:

\[F_{e,i} = Eq \] \hspace{1cm} (2-23)

with the resulting force for a system of n particles as:

\[F_e = \sum_{i=1}^{n} F_{e,i} = \sum_{i=1}^{n} Eq\Delta m \] \hspace{1cm} (2-24)

This force can be inserted into equation 2-1 to determine the force balance for a sys-
tem involving electrostatics. A problem arises, however, when trying to evaluate the charge per particle and the electric field strength. Also, the direction which this force is exerted is not easily determined.

Ally has given a theoretical analysis of this type system. He assumes that the particles in the system are, on an average, contained at $D/4$. His analysis results in pressure drop due to electrostatics of:

$$\Delta P_E = 45(1-\varepsilon)q^2D/(16\pi^2 \varepsilon_0 D^6)$$ \hspace{1cm} (2-25)$$

with q given as:

$$q = \int \sum_{i=1}^{k} \left(\frac{\partial \lambda}{\partial \xi} \right)_X \, d\xi - q_0$$ \hspace{1cm} (2-26)$$

Where ξ is representative of each of the variables which q is a function of. The first limitation of equation 2-25 is the complexity which equation 2-26 imparts. Additionally, the assumption of a uniform concentration of particles at $D/4$ is obviously unsuited to flow in horizontal and inclined pipes where a significant density gradient can exist.
2.9 STABILITY

As the gas velocity is decreased in a pneumatic system, the balance of forces is maintained by a decrease in the system voidage. There is a point at which the drag force which is suspending the particles becomes insufficient to balance the forces of gravity, friction, and pressure. At this point the system can no longer be maintained in a steady state. The range of instabilities which occur at and near this point are described in different ways depending on the orientation of the pneumatic system. In vertical systems it is known as choking. In horizontal systems it is called saltation. In all cases, it is a difficult situation to define and predict.

2.9.1 Choking

The phenomenon of choking in vertical pneumatic transport is best described by the pressure drop observed as the gas velocity is decreased. Figure 2-2 shows the relationship.

![Figure 2-2: Pressure Drop vs. Gas Velocity Near the Choking Point](image-url)
As the gas velocity is decreased from point A to point B, the pressure drop decreases to a minimum at point B. Further decrease in the gas velocity from B to C shows an increase in pressure drop. Point B is called the choking point. This point, as described by Yang25, is by no means as precise as shown in figure 2-2 due to the number of variables which determine it. Yang gives the following correlation to determine the choking parameters in vertical flow:

\begin{equation}
2gD\left(\epsilon_e^{0.7} - 1\right)/U_{ic} - U_t^2 = 6.81 \times 10^5 \left(\rho_i/\rho_p\right)^{2.2}
\end{equation}

(2-27)

2.9.2 Saltation

The stability of a horizontal pneumatic system is somewhat different than the vertical case. As the gas velocity is decreased, the particles begin to separate to the lower portion of the pipe. Further decrease in the gas velocity causes some particles to actually deposit on the bottom of the pipe. This deposition is known as saltation. If the gas velocity is decreased enough, the particles will eventually fill the crosssection of the pipe and flow will stop.

Jones and Leung26 compared various correlations for determining the saltation velocity. They recommend the Rizk correlation which is given as:
\[U_{\text{gain}} = (gD)^{1/2} \left[R/(0.1)^{1.44} D_p^{1.96} D^{1.1} \right]^{1/2} D_p^{2.5} \]

(2-28)

where: \(D_p \) is in mm.

This correlation was recommended for its simplicity and because the resultant accuracy was approximately equal to that of other more complicated expressions.

2.9.3 Stability Analysis

Another approach to describing the stability of a pneumatic transport system is through the use of the basic dynamic equations of the flow. The velocities of the gas and solids can be expressed as a steady state term plus a fluctuation from that steady state by:

\[
U_p = U_p + \dot{U}_p \\
U_s = U_s + \dot{U}_s
\]

(2-29)

If the fluctuating terms can be shown to decay, then the system is said to be stable. If the fluctuating terms grow, then the system is said to be unstable.
a. Linear Stability. The linear stability approach utilizes Taylor Series expansion to linearize the non-linear terms in equations 2-8 and 2-2. Klinzing first performed this operation on a vertical system without electrostatics, and then on a system containing electrostatics. The result of this analysis was the following second order differential equation:

\[
d^2U_p/dt^2 + \lambda_1 \frac{dU_p}{dt} + \lambda_2 U_p = \lambda_3
\]

where:

\[
\lambda_1 = a - a - b - b
\]

\[
\lambda_2 = a b + a b - a b
\]

\[
\lambda_3 = a b - a b - a b
\]

and

\[
a_0 = \frac{3}{4}e^{-4Tp} \frac{C_1}{D_S} \rho (U - U_p) / \left[(\rho - \rho_p)D \right] - g \sin \theta - 2f U_p^2 / D - 1 / \rho_p \partial P / \partial x
\]

\[
a_1 = \frac{6}{4}e^{-4Tp} \frac{C_1}{D_S} \rho (U - U_p) / 4 \rho D
\]

\[
a_2 = -4f U_p / D
\]

\[
b_0 = \frac{3}{4}e^{-4Tp} \frac{C_1}{D_S} (1 - \epsilon) (U - U_p)^2 / 4 \epsilon D - g \sin \theta - 2f U_p^2 / D - 1 / \rho_s \partial P / \partial x
\]

\[
b_1 = \frac{3}{4}e^{-4Tp} \frac{C_1}{D_S} (1 - \epsilon) (U - U_p) / 4 \epsilon D
\]

\[
b_2 = -2f U_p / D
\]

The eigenvalues of equation 2-30 determine the stability of system without electrostatics. They are determined from:

\[
m_{1,2} = \left(1 - \gamma \pm \sqrt{1 - 4 \gamma^2} \right) / 2
\]

(2-31)

For the system to be linearly stable, \(m_1 \) and \(m_2 \) must both be negative. By including the force due to electrostatics in a vertical system given by equation 2-25, the analysis can be extended to systems containing electrostatics.
b. Liapunov Stability. Another approach to determining the stability of a pneumatic transport system is through the use of the second method of Liapunov. This method was first applied to pneumatic transport by Joseph. This method determines regions of stability around a steady state value.
3.0 EXPERIMENTAL METHODS

This study investigates the flow of spherical solid particles in a 0.0508 m (2 inch nominal) Excelon (PVC) pipe at three different inclinations. Air for the system was supplied by a 7.5 horsepower Roots blower followed by a conditioning system capable of adjusting the water content of the air. The solid particles were introduced into the air stream by means of a live-bin vibrating-screw feeder unit. The gas-solid stream was transported through a 0.0508 m (PVC) pipe which included a 3.05m (10 foot) test section of translucent Excelon pipe. This test section included pressure taps at each end and contained two aluminum probes used for determining the solid particle velocity. The gas-solids stream was separated in a cyclone separator, the air stream being passed to the atmosphere, and the solids stream passed to a storage tank mounted on a platform scale. The system is illustrated in figure 3-1.

3.1 THE TEST SECTION

The main test section consisted of a schedule 40, Excelon pipe, 3.05 m long with an internal diameter of 0.0508 m. The ends of the pipe were fitted with two inch nominal, schedule 80, PVC flanges. Pressure taps were made in the flanges with a 3.175 mm hole through to the test section.

Probes used to obtain velocity measurements were fitted to the test section ensuring continuity between the probe wall and the inner pipe wall. The probes were constructed from free machining aluminum rod. The probe construction and dimensions are shown in figure 3-2. The first probe was located 0.6096 m from the downstream end of the main test section. The second probe was located 0.6605 m upstream of the first probe.
3.2 AIR DELIVERY SYSTEM
3.2.1 Blower

The air delivery system was a stand alone unit centered around a Roots-Connersville, Model 2406J, Whispair Blower, mounted on a baseplate. The blower was powered by a 7.5 horsepower, 220 V, 3 phase electric motor through a drive belt pulley system. The blower operated at 3600 RPM, delivering 250 SCFM of air at 6 psig. As the blower is a positive displacement, rotary lobe type blower, a pulsation in air delivery was encountered with a frequency of 240 Hz. This pulsation was partially damped by the humidity control columns and the control valves used in the air delivery system.
3.2.2 Humidity Control and Measurement

Air from the blower was passed through two packed columns used to control the humidity. Each column was constructed from 0.2794 m diameter Plexiglas tube with 1.905 cm aluminum end plates. The first column was packed with 1.905 cm ceramic Intalox saddles. Water was delivered to the center of this column through tygon tubing. An outlet at the bottom of this column allowed water to be passed continuously through the column. The second column was packed with 1.905 cm ceramic Intalox saddles and Dryrite, to adsorb moisture from the incoming air. At the top of each column was a three inch nominal, PVC Gate Valve. The flow through each column could be controlled by the positioning of these valves. Thus, the total air stream humidity could be adjusted by manually positioning these two valves. Immediately downstream of the humidity control columns was a thermometer mounted in the pipe. Following the thermometer was a humidity probe connected to a Hydrodynamics Hygrometer, Model 15-3050. By the proper choice of sensing elements, the humidity of the air stream was able to be determined. The range of measurable humidities for this meter was 12 to 90%. Dial readings from the hygrometer and the air temperature are used with charts to determine the percent relative humidity.

3.2.3 Air Flowrate Control and Measurement

Air from the humidity control columns flowed to a tee-fitting where a bypass valve allowed the control of air discharged to the atmosphere, thus controlling the amount of air through the test section. This valve was a three inch nominal, PVC gate valve identical to the valves used in the humidity control section. Another three inch nominal, PVC gate valve was in line with the feed line to the test section. This valve allowed the flow of air to the test section to be reduced to zero. One of either of these valves was required to be fully open during operation of the blower to avoid overpressurizing the blower. Prior to the discharge end of the air delivery system was an Elster, Model Q160 turbine meter, used to measure the flow rate of air to the test section. This meter had an 8-digit roller counter which displayed the volume of gas passed through the meter. By reading the counter at the beginning and end of a known time interval, the volumetric flow rate of air was obtained.
3.2.4 Piping for the Air Delivery System

All piping in the air delivery system was three inch nominal, schedule 40, PVC. Flanges to valves and the turbine meter were three inch nominal, schedule 80 PVC. A three inch to two inch reducer coupling was attached to the discharge end of the air delivery system to accommodate the two inch test section.

3.3 SOLIDS FEEDING SYSTEM

The solids feeding system consisted of a Vibra-Screw, Inc., Live Bin Volumetric Screw Feeder mounted on a steel frame. The bin capacity of this feeder was three cubic feet. The feeder was modified to make use of an auger type screw which allowed for higher back pressures on the screw feeder than was possible with the manufacturer's screw. The auger screw was mounted in a chuck which used teflon tipped set screws to secure the screw. If the screw was impeded due to excessive pressure or a blockage, the chuck continued turning without turning the screw until the blockage was eliminated. The rate of revolution of the screw, and thus, the volumetric feed rate of the solids, was controlled by a dial setting on the feeder unit.

The discharge from the screw feeder was injected into the test section through a two inch nominal y-fitting. This allowed the solids to be injected downward into the test section, thereby reducing blockages in the screw feeder.

3.4 SOLIDS RECOVERY AND WEIGHING SYSTEM

Solids recovery from the test section was accomplished with a Federal Classifications Systems Cyclone Separator. The air stream from the cyclone was passed through an MSA absolute filter to the atmosphere. The solids from the bottom of the cyclone fell into a 15 gallon, conical bottom storage tank which was mounted on a Circuts and Systems, Inc., Model sx-501 platform scale. A valve was located at the base of the storage tank which allowed the solid mass rate to be determined. With the valve open,
the solids from the storage tank passed by gravity, back to the bin of the screw feeder, thus completing the loop.

3.5 PRESSURE MEASUREMENT

The pressure drop through the test section was measured by the use of a Viatran Model 215 pressure transducer. The range of this transducer was 0 to 5 inches of water. Pressure taps were located at a ten foot interval of the test section. The output signal from the transducer was connected to a Hewlett-Packard Model 7702B Strip-chart Recorder which provided a graphical output of the pressure response.

3.6 PARTICLE VELOCITY MEASUREMENT

Measurement of particle velocity in the test section was accomplished using electrostatic ring probes. This method involves the use of cross-correlation techniques to determine time of flight through a known distance. The probes used were constructed from three inch diameter, free-machining, aluminum rod. The contact length of each probe was two inches. The probe separation was 2.167 feet.

Signals from the electrostatic probes were processed through two Keithly 610C Electrometers. The output from the electrometers was recorded on magnetic tape. This provided a simultaneous record of each probe which could be processed by computer to determine the particle velocity.

The computer used for processing the data was a Digital Equipment Corporation MNC/Declab-23 system. This system contained an analog to digital converter through which recorded signals were converted to digital signal files. The digital signal files were then correlated using a FORTRAN computer program. The computer programs used for data input to the computer and for determining the particle velocity are included in Appendix C.
3.7 EXPERIMENTAL PROCEDURE

The experimental procedure involved three overall steps: Start-up, Experimental Data Acquisition, and Shut-down. The start-up and shut-down procedures were completed at the beginning and end of each operating period. The steps taken for experimental data acquisition were completed for each condition. Refer to figure 3-1 for equipment numbers.

3.7.1 Start-up Procedures

The following steps were completed at the beginning of each experimental day:

- Check equipment for breakage, stray objects, etc.

- Electronic equipment warm-up (approximately 15 minutes)

- Check pressure transducer calibration

- Install desired humidity sensor

- Check valves
 - Valves 4, 5, and 6 should be fully open and valve 16 should be fully closed

- Blower start-up
 - Caution should be made when starting the blower that proper ear protection is observed. The noise level of the blower exceeds 80 decibels at 5 feet.
- Humidity adjustment

 * The humidity meter is turned on. For lower humidity runs, valve 5 is slowly closed until the desired humidity is achieved. For high humidity, the water inlet line is connected to the water supply and the needle valve is adjusted for proper water flow. Valve 4 is then slowly closed until the desired humidity is achieved.

 * Care must be taken not to allow water to become entrained in the air stream as damage to the humidity probe could result.

3.7.2 Experimental Data Acquisition

Data acquisition was accomplished using pre-printed data acquisition forms. A sample form is shown in appendix. Preset conditions for each run were first made. These included the test section orientation, humidity, and particle size. The air flow rate was approximated by the use of a manometer, which read the air pressure at the outlet of the air delivery system. The following steps were taken for each run:

1. The date, time, tape number, and particle information were recorded.

2. Valve 16 was slowly opened completely.

3. Valve 6 was closed until the desired air flow rate was achieved.

4. The temperature and humidity were noted.

5. The solids feeder was turned on and the dial reading recorded.
6. The turbine meter counter reading was recorded and time was begun on a stopwatch.

7. The scale was reset to zero if required and the valve located at the bottom of the storage tank was closed. The time on the stopwatch was noted for the time of solids weighing.

8. The tape counter number on the tape recorder was noted and the recorder started. After a sufficient time period (at least 8 seconds), the tape recorder was stopped and the counter number again noted. The tape recorder was then advanced to provide spacing between signals for each run.

9. Visual observations were then made through the glass viewing section.

10. The scale reading was taken and the time period from the stopwatch was recorded. The valve located at the base of the storage tank was opened.

11. The turbine meter counter reading was taken and the time period from the stopwatch recorded.

12. Humidity and Temperature were again noted.

13. The ending time of the experimental run was then recorded.
14. The solids feeder was turned to off and valve 6 fully opened.

3.7.3 Shutdown Procedure

There were no unusual shutdown procedures other than shutting off of the equipment, except in the case of high humidity experiments. For these cases, the humidification column had to be purged to prevent water from leaking back into the blower. This was accomplished by stopping the water supply to column 3 and allowing the blower to run with valve 4 fully closed, and valve 5 fully open. When the water in the column was eliminated, valves 4 and 5 were opened fully and the blower stopped.
4.0 RESULTS AND ANALYSIS

4.1 PARTICLE SIZE

Experiments were conducted using four particle sizes. Three of these were glass beads while the fourth was Plexiglas. A particle size analysis was conducted on these particles prior to the experiments and after completion of the experiments. Table 4-1 shows the results of the analysis and the particle size used. The results of the analysis are included in Appendix.

4.2 FLOW BEHAVIOR AND PATTERNS

The three different test section orientations showed a marked difference as to the flow behavior and flow patterns of the different particles. There were some general aspects common to all particles in a given orientation. In the vertical pipe, as the gas velocity was lowered, the particles could be seen to deviate from streamlined flow lines. Pulsations occurred in the system where denser slugs of material moved through the pipe with lengths of lesser particle density between them.

In the horizontal test section, decrease in the gas velocity caused a radial separation in the pipe. The bottom of the pipe had a higher particle density than the top, even before saltation occurred.

As the gas velocity was decreased in the inclined orientation, a reverse flow behavior was observed. Particles formed retrograde dunes which slid downwards and were either reduced by entrainment, or were destroyed by partially plugging the entrance to the test section where they were redispersed into the gas stream.
Table 4-1: Particle Size Analysis

Weight Mean Particle Diameter (µm)

<table>
<thead>
<tr>
<th>Bead Size</th>
<th>Before</th>
<th>After</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.1</td>
<td>90.8</td>
<td>67.8 (avg=79.3)</td>
<td>79</td>
</tr>
<tr>
<td>125.0</td>
<td>133.8</td>
<td>100.7 (avg=117.3)</td>
<td>125</td>
</tr>
<tr>
<td>446.3</td>
<td>447.8</td>
<td>343.1 (avg=395.5)</td>
<td>450</td>
</tr>
<tr>
<td>128.6</td>
<td>126.7</td>
<td>100.9 (avg=113.8)</td>
<td>128</td>
</tr>
<tr>
<td>(Plexiglas)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Vertical Systems. The 79µm glass beads tended to pulse through the system even at higher velocities. These pulsations could be termed slugging; however, the density of the slugs was only slightly greater than that of the flow between them and they occurred at higher frequencies. Definite slugging was observed at lower gas velocities. An additional observation at lower velocities was an internal radial motion of the particles. This motion became more pronounced as the gas velocity was further decreased. This radial motion set in at much higher gas velocities for the systems at high humidity. It appeared that the presence of electrostatics in the system stabilized this motion.

The 125µm glass beads acted much the same as the 79µm glass beads except that definite slugging occurred at higher gas velocities. Again, the radial motions were damped by the presence of electrostatics, but the formation of dense slugs occurred at
higher gas velocities. Wall interactions were also more pronounced with the 125\(\mu\)m glass beads. At low gas velocities, particles hit the walls and then rebounded into the main stream of flow with increasingly lower trajectories. At the lowest gas velocities, some particles hit the wall and traveled downward in the pipe.

Wall interactions were most pronounced with the 450\(\mu\)m glass beads. At lower velocities, particles in-between slugs, could be seen to traverse the width of the pipe from wall collision to wall collision. Again, the presence of electrostatics seemed to dampen the internal motion of the flow. The plugging of the pipe with these particles was a very rapid phenomenon. The smaller particles seemed to drop out slowly in comparison.

b. Horizontal Systems. The 79\(\mu\)m glass beads were the most susceptible to saltation in the horizontal pipe. As gas velocities were decreased, the flow separated with the bottom of the pipe having a higher solids concentration than the top (See Figure 4-1). Further decrease in gas velocity caused some of the particles to salt out on the bottom of the pipe forming blunt nosed islands. A further decrease in gas velocity caused more saltation until the bottom of the pipe was covered with a layer of particles. At the onset of this condition, particles began to salt out in the vertical section and eventually plugged the vertical pipe. The presence of electrostatics caused more pulsing in the horizontal section.

The 125\(\mu\)m glass beads followed similar behavior to the 79\(\mu\)m glass beads except when saltation caused the bottom of the pipe to be covered. In this case, the small disturbances seen on the top of this layer were not observed. The layer was very smooth and particles could be seen to be lifted from this layer into the stream flowing above.

The 450\(\mu\)m glass beads did not salt out in the horizontal orientation. Although flow separated to the bottom of the pipe, the particles never actually stayed on the pipe wall. There was much more activity along the particle trajectories and more wall collisions were observed.
c. Inclined Systems. The 79μm glass beads tended to begin salting out of the horizontal section before any deposition occurred in the inclined section. When deposition did begin, it began very near the entrance to the inclined section. Eventually, retrograde dunes formed and traveled downward (See Figure 4-2).

The 125μm glass beads formed the same type retrograde dunes as the 79μm glass beads, except that the horizontal section preceding the 45° test section salted out prior
to formation of the retrograde dunes for high humidity cases, and after formation for the lower humidities.

The 450\(\mu\)m glass beads formed the retrograde dunes very quickly and their size and velocity was much higher than the smaller particles. These dunes began as a thin layer on the bottom of the pipe from which particles were entrained. This layer grew as deposition increased until a dune of sufficient size formed and slid down the pipe. The formation of the retrograde dunes in all systems concluded with the plugging of the vertical section. The smaller particle sizes took much longer for this to occur than the 450\(\mu\)m glass beads.
4.3 PARTICLE VELOCITY ANALYSIS

The particle velocity was obtained from cross-correlation of the signals from two electrostatic ring probes. This data has been plotted as particle velocity vs. gas velocity. The best fit of the data to a straight line was obtained by linear regression. Comparison is made between the experimental particle velocity, the expression $U_p - U_g$, and the IGT recommended correlation. The particle velocity obtained for the vertical systems shows fair agreement with the correlations. Figure 4-3 shows the particle velocity for 125 μm glass beads vs. gas velocity. At lower gas velocities, agreement with the correlations is within 10%. As the gas velocity increases, the experimental values tend to be less than that from either correlation with a mean deviation of approximately 20%. For the 79 μm glass beads, 125 μm glass beads and 128 μm Plexiglas beads, the experimental particle velocity was less than both correlations with the expression $U_p - U_g$, giving only slightly better results. For the 450 μm glass beads, the experimental particle velocities were between the two correlations with the IGT over predicting. The additional particle velocity figures are included in figures A-1, A-2 and A-3.

The horizontal systems showed much the same results as the vertical systems, except that the spread of the data was much greater. The analysis for the 125 μm glass beads is shown in figure 4-4. The mean deviation from the correlations has increased from 20% to 47%. The additional horizontal systems are shown in figures A-4 and A-5.

The inclined systems also show the same type deviation from the two correlations. The analysis for the 125 μm glass beads is shown in figure 4-5. The additional inclined systems are shown in figures A-6 and A-7.
Figure 4-3: Particle Velocity vs. Gas Velocity for 125\(\mu\)m Glass Beads in the Vertical Orientation
Figure 4-4: Particle Velocity vs. Gas Velocity for 125μm Glass Beads in the Horizontal Orientation
Figure 4-5: Particle Velocity vs. Gas Velocity for 125 μm Glass Beads in the Inclined Orientation
4.4 PRESSURE DROP

Various pressure drop relationships were investigated to determine the effect of pipe orientation and electrostatics on the flow. These included the pressure drop vs. gas velocity relationship, the pressure drop fluctuation vs. gas velocity relationship, and the electrostatic pressure drop vs. water to air mass ratio.

4.4.1 Pressure Drop vs. Gas Velocity

As discussed in section 2.9, the pressure drop vs. gas velocity curve graphically represents the nature of a pneumatic system in terms of stability. It also provides the criterion for optimum operation. The presence of electrostatics in the system affects the pressure drop in different ways. For this study, operation at high humidity was assumed to eliminate the electrostatic effects.

a. Vertical Systems. The pressure drop vs. gas velocities for the vertical systems studied are shown in figures 4-6, A-8, A-9, and A-10. Particular attention was paid to these systems during the experiments to obtain data near the choking point. In most cases, the system was allowed to completely plug the pipe. The 79μm glass beads remained in steady flow at much lower gas velocities than the larger glass beads as expected. The instabilities near the choking point were not as dramatic as the 125μm glass beads. By visual observation, a great deal of instability in the system was seen, however, the pressure drop readings did not indicate the dramatic increase in pressure that was expected. The effects of electrostatics in this system were also not as expected. The smaller particle size should have caused the largest increase in pressure drop of all particles studied. The results, however, show only a very small increase in pressure drop due to electrostatics.

The 125μm glass beads showed a unique behavior near the choking point. Figure 4-6 shows an increasing maximum for the high humidity cases. This maximum actually exceeds the pressure drop for the low humidity experiments at the highest mass flow rate. A similar phenomenon was found in a 0.0254 m pipe by Zaltash. This
Figure 4-6: Pressure Drop vs. Gas Velocity for 125μ
Glass Beads in the Vertical Orientation
phenomenon was attributed to a particle size effect. Since the Plexiglas beads had a particulate size of 128µm, and this behavior was not observed for them, a density factor should be included. For Zaltash's study, the group \((D_p / D_i)(\rho_p / \rho_i)\) was equal to 6.06. In this study, the same group equals 4.79, suggesting that this group could describe a critical particle to pipe combination. This type of phenomenon has been disclaimed, however, most studies have not explored the region of choking that closely.

The 450µm glass beads showed results much more as expected. The range of unstable behavior was not as broad as with the smaller particles and instability leading to the plugging of the pipe occurred very rapidly. For low mass flow rates, the electrostatic effect was negligible. As the mass flow rate was increased, the electrostatic contribution to the pressure drop increased.

The 128µm Plexiglas particles showed very little electrostatic effects. This is due to the nature of the particle and pipe materials having very similar dielectric constants.

b. Horizontal Systems. Three particles were studied in the horizontal section. They were the 79µm, 125µm and 450µm glass beads. The Plexiglas particles were not studied due to concern over the explosive hazard they presented. The range of gas velocities was less than that of the vertical systems as the increased total line pressure prevented consistent bead feeder operation at higher velocities. As the horizontal test section was preceded by a 2.5m vertical section, the complete plugging of the horizontal section was not obtained. The pressure drop vs. gas velocity data is presented in figures 4-7, A-11, and A-12. The 79µm glass beads were the most susceptible to saltation due to the saltation gas velocities being greater than the choking velocities. The pressure drop vs. gas velocity curves are less smooth than the larger particles. The presence of electrostatics in the low humidity cases tended to dampen the fluctuations. The effect of the electrostatics on the magnitude of the pressure drop was seen to vary due to the fluctuations present in the high humidity cases.

The pressure drop vs. gas velocity data for the 125µm glass beads is shown in figure 4-7. Again, the presence of electrostatics dampened the fluctuations in the
curves. The effect of the electrostatics on the magnitude of the pressure drop is an overall decrease. This is opposite to the effect found in the vertical cases. (see Figure 4-6)

The 450μm glass beads showed a much more stable pressure drop response. This is due to the 450μm glass beads not salting out at all prior to complete plugging of the vertical section. The effect of electrostatics was found to increase the pressure drop, although, this effect was not as prominent as the decrease found for the 125μm glass beads.

c. Inclined Systems. The particles, mass rates, and humidities studied in the inclined section were the same as those for the horizontal section. The inclined test section was placed at the same point as the horizontal section. The test section was inclined at 45°. Due to space limitations, no entrance length after the horizontal section was included. The resultant effect of the 45° bend on the test section was not included in the analysis. The results are presented in figures A-13, 4-8 and A-14.

The 79μm glass beads showed the greatest fluctuation in the pressure drop vs. gas velocity curves. Electrostatic effects caused increased fluctuations. In the higher mass flow rate cases, the lower humidity pressure drop was greater than that of the high humidity. This is a reversal of the pattern seen in the horizontal systems.

The pressure drop vs. gas velocity data for the 125μm glass beads is shown in figure 4-8. Again, a reverse of the horizontal case was observed with electrostatics causing an increase in the pressure drop and fluctuations.

The 40μm glass beads had the least fluctuations in the pressure drop vs gas velocity curves. Also, the presence of electrostatics caused an increase in pressure drop for both mass flow rates.
Figure 4-7: Pressure Drop vs. Gas Velocity for the 125µm Glass Beads in the Horizontal Orientation
Figure 4-8: Pressure Drop vs. Gas Velocity for the 125μm Glass Beads in the Inclined Orientation
d. Combined System Analysis. Each system was compared for the effect of pipe orientation on pressure drop vs. gas velocity. This analysis shows how the pressure drop for different particle sizes varied with pipe orientation as well as electrostatic effects. This combined data is shown in figures A-15 through A-26.

For the 79μm glass beads, the horizontal orientation dominated the vertical case, except for the condition of high mass flow rates and high humidity. The effect of electrostatics dampened fluctuations in the horizontal case with little effect in the vertical cases. This can be explained by a charge distribution effect, where in the vertical case, clustering is inhibited by the charge on the particles but pressure drop is increased due to the additional electrostatic force. In the horizontal cases, the charge on the particles tends to inhibit the increase in solid concentration to the bottom of the pipe. The 45° inclined pipe showed an increase in pressure drop over both the horizontal and vertical cases for the low humidity cases. For high humidities, the pressure drops were much closer to those for the horizontal and vertical cases. This is apparently due to a combination of the repulsive forces of the particles now having an axial component and the electrostatic force terms.

The 125μm glass beads followed the same trend as the 79μm glass beads, except that now the separation between vertical and horizontal cases is not as great. The dominant orientation is not as clearly delineated, which was borne out by observation when saltation and choking occurred simultaneously.

The 450μm glass beads also follow the same pattern, except that the vertical system now dominates. This effect was observed by the vertical section choking above the saltation velocity of the particles.
4.4.2 Comparison to Correlations

The experimental pressure drop was compared to two correlations for the vertical and horizontal orientations. The Konno and Saito12 correlation was used for both orientations. The correlations by Yang13 were also used, one for the vertical orientation and another for the horizontal orientation. The results of this analysis have been plotted as $\Delta P_{\text{experimental}}/\Delta P_{\text{calculated}}$ vs. gas velocity and are shown in Figures A-40 through A-56. Absolute mean errors and standard deviations were also calculated and are included in Tables B-1 through B-7.

In the vertical systems, the correlation of Konno and Saito had an absolute mean error range of 11.0% to 88.1%. The correlation of Yang had an error range of 11.7% to 44.3%. It is important to note that for most conditions, the values calculated using the correlation of Yang were less than the experimental values, while the correlation of Konno and Saito usually predicted pressure drops above the experimental values.

For the horizontal systems, the correlation of Konno and Saito gave an error range from 10.2% to 55.9%. The correlation of Yang had an error range from 6.0% to 36.7%. For most conditions, the correlation of Konno and Saito was found to underpredict the pressure drop. Such a generalization could not be made for the results obtained using the correlation of Yang.

4.4.3 Pressure Drop Fluctuation

Upon introduction of the solids to the gas stream, the pressure drop began to fluctuate. This fluctuation was found to depend on particle size, humidity, pipe orientation, and solids mass flow rate.
a. Vertical Systems. The pressure drop vs. gas velocity for the 79µm glass beads in the vertical pipe is shown in figure A-28. There was little correlation between gas velocity and pressure drop fluctuation with a mean fluctuation of about 20%. The effect of electrostatics and solids mass flow rate was also indeterminate.

The 125µm glass beads (see Figure) showed an increase in pressure drop fluctuation with decrease in mass flow rate. This could be due to a decrease in particle-particle collisions allowing greater particle mobility across the pipe. The presence of electrostatics increased the pressure drop fluctuations for all cases. At the lowest mass flow rate, a maximum fluctuation was found as the gas velocity was decreased. Further decrease in gas velocity caused a decrease in fluctuation intensity. This was also the case for the next highest mass flow rate, except the maximum was not as well defined. At the highest solids mass flow rate, this maximum was not present.

The data for the 450µm glass beads is shown in figure A-29. Again, a decrease in fluctuations was found for increasing solids mass flow rate. For all cases, fluctuations increased with decreasing gas velocity. The presence of electrostatics caused an increase in fluctuations for the two lower mass flow rates but a reduction in fluctuations for the higher solids mass flow rate. In all cases this difference was less than 10%.

The 128µm Plexiglass beads showed little fluctuation in pressure drop. (see Figure A-30) A mean fluctuation of about 5% best describes this system. This is probably due to the lesser density of the Plexiglas particles (about 1/2 that of the glass beads) and the low mass flow rates studied.

b. Horizontal Systems. The results for the 79µm glass beads in the horizontal orientation are shown in figure A-32. Like the vertical case, the fluctuations appear to vary about a mean value of 20% with little effect from gas velocity or solids mass flow rate.

The results for the 125µm glass beads are shown in Figure A-31. In this case there is an increase in pressure drop fluctuation with decreasing gas velocity. For the
higher solids mass flow rate, the presence of electrostatics increases the fluctuations, but only by about 2%. In the lower mass flow rate there is not appreciable difference between the electrostatic and non-electrostatic cases.

The results for the 450μm glass beads are shown in Figure A-33. There is an increase in pressure drop fluctuation with decreasing gas velocity. Solids mass flow rate had little effect on the pressure drop fluctuations while electrostatics showed a small decrease in fluctuations.

c. Inclined Systems. The inclined systems displayed the most uniform pressure drop fluctuations for all particle sizes. In all cases, there was an increase in pressure drop fluctuation with decrease in gas velocity to a maximum. Further decrease in gas velocity caused a decrease in fluctuation. The only variation to this behavior was for the 125μm glass beads at the lower solids mass flow rate. In this case the pressure drop fluctuations decreased to a minimum, then increased to a maximum, and then decreased again as the gas velocity was decreased. The results for the inclined systems are shown in Figures A-34, A-35 and A-36.

4.4.4 Electrostatic Pressure Drop

The effect of electrostatic forces on the pressure drop was not as expected. An increase in pressure drop was anticipated for all vertical systems; however, some cases resulted in pressure drop reduction. The horizontal systems also showed pressure drop reductions for some cases. Only the 45° inclined systems showed consistent pressure drop increase with electrostatics. An explanation for this behavior lies in the particle flow conditions. Ally considered the particles in his system to occupy, on an average, an annular region centered at D/4 and calculated the work required to move them to the wall. This assumption is valid for a homogenous distribution of particles moving with negligible radial velocity components. This condition is approached when D is small. Observations during the experiments revealed, for some cases, a considerable amount of internal motion in the flow. This apparently changes the work function due to electrostatics by altering the magnitude or direction of the electrical field.
A comparison was made between the inclined systems which showed predominantly positive increases to the pressure drop with the results of Ally30. Ally found that electrostatic pressure drop increased with decreasing water to solids ratio. A minimum water to solids ratio of about 0.1 was determined above which there was no appreciable increase in pressure drop due to electrostatics. Figures A-37, A-38 and A-39 show the electrostatic pressure drop vs. water to solids mass ratio for the inclined systems. For these systems the minimum water to solids mass ratio is between 0.03 and 0.07 which agrees within 10\% of Ally's result. The decrease in the minimum is probably due to the cleanliness of the particles; Ally's being cleaner.

4.5 STABILITY

The stability of the systems studied varied widely with particle size, pipe orientation and electrostatics. In the vertical systems, motions in the radial and tangential directions in the pipe became very pronounced as the system was brought to choking. The horizontal systems went through a separation across the radius of the pipe, with the bottom of the pipe having a higher solids concentration. In the 45° inclined pipe, the formation of retrograde dunes formed for all cases.

4.5.1 Choking

The phenomenon of choking has already been described as the result of a range of instabilities. It is probably better described by a range of parameters. For this study, the choking point was chosen as the point where solids first dropped out of the flow below the feed point and were not picked up by the gas stream. The instabilities leading to this point occurred before this, and small changes in the system operation could have brought about choking at different times.

Two different correlations were used to predict the choking point. They were the Yang27 and the Rose and Duckworth26. The comparison of these two correlations with the experimental results is shown in Table 4-2. Both correlations are seen to under-
<table>
<thead>
<tr>
<th>Particle Size (μm)</th>
<th>Average W<sub>U</sub> (kg/sx10<sup>-3</sup>)</th>
<th>U<sub>U</sub><sub>(exp)</sub> gc</th>
<th>U<sub>U</sub><sub>(calc)</sub> gc</th>
<th>Yang</th>
<th>Rose and Duckworth</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glass beads</td>
<td>18.3</td>
<td>3.25</td>
<td>5.02</td>
<td>1.88</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>27.0</td>
<td>3.29</td>
<td>5.18</td>
<td>1.79</td>
<td>1.03</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glass beads</td>
<td>17.4</td>
<td>5.57</td>
<td>4.89</td>
<td>1.30</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>26.5</td>
<td>5.89</td>
<td>6.70</td>
<td>1.42</td>
<td>0.72</td>
</tr>
<tr>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glass beads</td>
<td>17.4</td>
<td>5.85</td>
<td>8.24</td>
<td>4.71</td>
<td>2.57</td>
</tr>
<tr>
<td></td>
<td>30.5</td>
<td>7.11</td>
<td>7.67</td>
<td>4.83</td>
<td>2.88</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plexiglas beads</td>
<td>12.6</td>
<td>3.22</td>
<td>3.78</td>
<td>1.14</td>
<td>0.84</td>
</tr>
</tbody>
</table>
predict the experimental choking point. The Rose and Duckworth correlation has an error range of 83% to 147%, which is clearly unsuitable for predicting choking. The Yang correlation does much better with errors from 39% to 26%. The largest errors occur for the 79\(\mu\)m glass beads which apparently act as clusters.

The effect of electrostatics on choking varies with particle size and mass flow rate. For the 79\(\mu\)m glass beads, electrostatics tend to decrease the choking gas velocity for the lower mass flow rates. This could be due to the breaking up of clusters in the system due to the like charges on the particles. For the 125\(\mu\)m glass beads and the 128 \(\mu\)m Plexiglas beads, the presence of electrostatics increases the choking gas velocity. The effects of electrostatics on the 450\(\mu\)m glass beads is only a slight increase in the choking gas velocity.

4.5.2 Saltation

Saltation in the horizontal pipe was determined at the superficial gas velocity where solid particles were in constant contact with the bottom of the pipe. The 450\(\mu\)m glass beads did not salt out in this study as the vertical section leading to the horizontal section became plugged before any saltation occurred.

Two correlations were compared to the experimental results. The correlation of Owens\(^2\) which relates a pseudoc Froude number to saltation as follows:

\[
\frac{\rho_s U^2}{\rho_g f / 2 \rho_g g D} > 0.01
\]

(4-1)

The second correlation is that of Rizk\(^2\) which is.
\[U_{salt} = [10^{1440D - 1.9e} (gD)^{250D - 1.22} W / \rho A]^{1/1100D - 3.5} \] (4-2)

Both of these expressions are implicit in saltation gas velocity and can be solved by iteration. The results of these calculations and the experimental saltation velocities are shown in Table 4-3.

<table>
<thead>
<tr>
<th>Particle</th>
<th>(W_g) (exper)</th>
<th>(U_{salt}) (exper)</th>
<th>(U_{salt}) (calc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>18.3</td>
<td>5.78</td>
<td>4.38</td>
</tr>
<tr>
<td>glass</td>
<td>27.0</td>
<td>5.82</td>
<td>4.68</td>
</tr>
<tr>
<td>beads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>20.6</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>glass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>5.41</td>
<td>5.83</td>
<td>6.17</td>
</tr>
<tr>
<td>glass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>30.5</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* NO SALTATION OCCURRED

For the 79\(\mu m \) glass beads the Rizk correlation was far superior to the Owens correlation for both high and low humidity, with errors of 2% to 6% for the high humidity and 17% to 58% for the low humidity. The Owens correlation was off by 303% to 169%.
For the 125μm glass beads the Rizk correlation was again superior. Errors ranged from 2% to 17%, while the Owens correlation ranged from 68% to 128%. The Owens correlation was better for the 125μm particles than for the 79μm particles but still was less accurate than the Rizk correlation.

The 450μm glass beads had no experimental saltation velocities as the particles never salted out. Comparison of the saltation velocities obtained by the two correlations with the experimental choking velocities for 450μm glass beads shown in Table 4-2 shows that the expected saltation velocities to be below that of choking which is what was found.

4.5.3 Linear Analysis

A linear stability analysis was performed for all conditions. Values for the solids friction factor were obtained by solving equation 2-15 for \(f \) using the experimental pressure drop, gas velocity, and particle velocity. Equation 2-31 was then solved for \(m_1 \) and \(m_2 \). For all cases, \(m_2 \) was negative and much greater than \(m_1 \). The condition for stability was then the sign of \(m_1 \). For positive values of \(m_1 \), the flow was considered unstable. As the effect of the electrostatic forces did not always fit the form of equation 2-25, the low humidity cases were treated identically to the high humidity cases, with the electrostatic effects being combined in the solids friction factor.

a. Vertical Systems. The results of the linear analysis for the 79μm glass beads in the vertical pipe are included in tables B-20 through B-25. The analysis shows this particle to be very unstable, except at the higher gas velocities. There is considerable fluctuation in the eigenvalue \(m_1 \). This fluctuation was observed in the pulsing and twisting motions of the flow, although complete plugging of the pipe did not occur at the unstable gas velocities resulting from the analysis. The effects of electrostatics was found to be minor, except in the highest mass flow rate condition. In this case, electrostatics caused instability at higher gas velocities.

The results for the 125μm glass beads are included in tables B-8 through B-13.
This particle size showed unusual behavior with change in mass flow rate and electrostatics. Stability increased with increasing mass flow rate. At low mass flow rates, electrostatics increased stability. As mass flow rate increased, this effect was damped out.

The results for the 450µm glass beads are included in tables B-14 through B-19. A very unusual result was obtained for the lowest mass flow rate. In that case, stability was seen to increase from unstable to stable with a decrease in the gas velocity.

The results for the 128µm Plexiglas beads are included in tables B-26 through B-29. The 128µm Plexiglas beads were seen to show unusually unstable behavior by linear analysis. Stability was predicted for the higher gas flow rates, but unstable predictions occurred for most of the lower gas flow rates. Again, observations of the Plexiglas beads during flow, pointed out the twisting and pulsing instabilities without plugging of the pipe.

b. Horizontal Systems. The linear analysis results for all horizontal systems are included in tables B-34 through B-41. Stable eigenvalues were obtained for all conditions. This result does not reflect the true nature of the flow conditions. The voidage used in calculations was for a uniformly dispersion of particles across the pipe. This was not the true condition as gas flow rate was decreased as the flow separated to cause an increased concentration in the bottom of the pipe. The equations for the analysis are incapable of predicting this gravity effect. A possible solution would be to use equation 2-16. This possibility, however, requires knowledge of the individual friction factors, which were not obtained.

c. Inclined Systems. The linear analysis results for the inclined systems are included in tables B-50 through B-49. The results show an increase in stability with decrease in humidity for all systems. The 79µm glass beads had unstable eigenvalues for the high humidity cases only, while the 125µm and 450µm glass beads had stable eigenvalues for all cases. In general, stability was increased with increase in gas velocity and increase
in mass flow rate. There was fluctuation in the values of the eigenvalues as gas velocity was decreased.
5.0 CONCLUSIONS

1. The use of electrostatic ring probes was found to work reasonably well in the 0.0508 m pipe. Agreement with correlations tested was within 50%. The use of this type probe in the horizontal and inclined orientations is not recommended in the probe's current form as a particle density gradient can exist in these orientations which can cause significant deviations in the signals from the probes.

2. Various flow patterns were observed for the different orientations studied:
 a. In the vertical orientation, radial and tangential disturbances were observed as the system was brought toward choking.
 b. In the horizontal systems, the particle density in the lower portion of the pipe increased as saltation was approached. Prior to uniform saltation, blunt nosed dunes formed on the bottom of the pipe.
 c. In the inclined orientation, retrograde dunes formed and were observed to flow along the bottom of the pipe against the main stream.

3. The pressure drop vs. gas velocity was found to depend heavily on pipe
orientation and particle size. The vertical pipe was found to control the system in terms of stability for the largest particles. The horizontal section was found to control the system for the smaller particles. For the medium particle size, both the vertical and horizontal sections contributed to instabilities.

4. A unique behavior was found for the 125 μm glass beads. The pressure drop curve passed through a maximum as gas velocity was decreased. This behavior was compared to similar observations made by Zaltash who attributed this phenomenon to a particle to tube size ratio. As this behavior was not found for the 128 μm Plexiglas particles, a density factor is believed to contribute. For Zaltash's study, the group \(\frac{D}{D} \left(\frac{\rho}{\rho_f} \right) \) equaled 6.06. For this study, this group equaled 4.79.

5. Fluctuations in the pressure drop were found to decrease with increasing solids mass flow rate. For the smallest particles, there was little change in the fluctuations with change in gas velocity. As particle size increased, the dependency of the fluctuations on gas velocity increased, with fluctuations increasing with decreasing gas velocity. The effect of electrostatics was found to vary considerably with particle size and pipe orientation.

6. The effect of electrostatic forces on the systems studied was found to vary considerably. The orientation, particle size, and gas velocity were found to affect the impact of electrostatics significantly.
7. The correlation of Konno and Saito was found to be comparable to that of Yang in the vertical systems studied with the advantage of over-predicting for most conditions. In the horizontal systems, the correlation of Yang for this orientation was found superior.

8. The two correlations used to predict choking gas velocities were found to be inadequate as the velocities were below the experimental velocities by as much as 831%. The use of the Yang correlation for choking velocity was found to be superior to that of Rose and Duckworth, however, both correlations under-predicted the choking point. The instabilities associated with choking cover a wide range of gas velocities, and therefore, the definition of choking should include the capacity to cover this range.

9. For predicting saltation, the correlation of Rizk was found to predict within 17% of the experimental values.

10. The linear analysis performed was found to describe the vertical systems as far as observations made. Its applicability to the horizontal and inclined orientations is questionable as the fundamental equations used do not adequately describe the system.
6.0 RECOMMENDATIONS

The following recommendations are included as possibilities for further investigation:

1. A means of verifying the velocities obtained with the electrostatic probes should be examined. This could be by such means as high speed photography.

2. A selection of particles with different densities and sizes should be studied. In conjunction with this, other pipe sizes should be included. A particle size and density range should include values of the group \((D_p/D)(\rho_p/\rho)\) within the range of the unique behavior found.

3. The role of electrostatics requires much further attention. Work in this area should attempt to evaluate the direction and magnitude of the electric field.
APPENDIX A.
FIGURES REFERRED TO IN TEXT
Figure A-1: Particle Velocity vs. Gas Velocity for 79\(\mu \)m Glass Beads in the Vertical Orientation
Figure A-2: Particle Velocity vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation
Figure A-3: Particle Velocity vs. Gas Velocity for 128\(\mu\)m Plexiglas Beads in the Vertical Orientation
Figure A-4: Partical Velocity vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation
LEGEND

- BEST FIT BY LINEAR REGRESSION
 \[U_p = 0.6217 U_g - 1.6473 \]
- \[U_p = (U_g - U_t) \]
- IG T (1978) \[U_p = 0.8878 U_g \]

○ HIGH HUMIDITY
△ LOW HUMIDITY

Figure A-5: Partical Velocity vs. Gas Velocity for 450μm Glass beads in the Horizontal Orientation
Figure A-6: Particle Velocity vs. Gas Velocity for 79 μm Glass Beads in the Inclined Orientation
Figure A-7: Particle Velocity vs. Gas Velocity for 450μm Glass Beads in the Inclined Orientation
GAS-SOLID TRANSPORT IN A 80508 M PIPE AT VARIOUS INCLINATIONS WITH AND WITHOUT ELECTROSTATICS(U) ARMY MILITARY PERSONNEL CENTER ALEXANDRIA VA C A MYLER UNCLASSIFIED AUG 85
Figure A-8: Pressure Drop vs. Gas Velocity for 79 μm Glass Beads in the Vertical Orientation
Figure A-9: Pressure Drop vs. Gas Velocity for 450µm Glass Beads in the Vertical Orientation
Figure A-10: Pressure Drop vs. Gas Velocity for 128 μm Plexiglas Beads in the Vertical Orientation
Figure A-11: Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation
Figure A-12: Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Horizontal Orientation
Figure A-13: Pressure Drop vs. Gas Velocity for the 79 μm Glass Beads in the Inclined Orientation
Figure A-14: Pressure Drop vs. Gas Velocity for the 450μm Glass Beads in the Inclined Orientation
Figure A-15: Pressure Drop vs. Gas Velocity for 79μm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate Without Electrostatics
Figure A-16: Pressure Drop vs. Gas Velocity for 79μm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate With Electrostatics
Figure A-17: Pressure Drop vs. Gas Velocity for 79μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate Without Electrostatics
Figure A-18: Pressure Drop vs. Gas Velocity for 79μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate With Electrostatics
Figure A-19: Pressure Drop vs. Gas Velocity for 125μm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate Without Electrostatics
Figure A-20: Pressure Drop vs. Gas Velocity for 125 µm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate With Electrostatics
Figure A-21: Pressure Drop vs. Gas Velocity for 125\textmu{}m Glass Beads for the Combined Orientations at the Higher Mass Flow Rate Without Electrostatics
Figure A-22: Pressure Drop vs. Gas Velocity for 125μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate With Electrostatics
Figure A-23: Pressure Drop vs. Gas Velocity for 450µm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate Without Electrostatics
Figure A-25: Pressure Drop vs. Gas Velocity for 450μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate Without Electrostatics
Figure A-24: Pressure Drop vs. Gas Velocity for 450μm Glass Beads for the Combined Orientations at the Lower Mass Flow Rate With Electrostatics
Figure A-26: Pressure Drop vs. Gas Velocity for 450μm Glass Beads for the Combined Orientations at the Higher Mass Flow Rate With Electrostatics
Figure A-27: Pressure Drop Fluctuation vs. Gas Velocity for 125μm Glass Beads in the Vertical Orientation
Figure A-28: Pressure Drop Fluctuation vs. Gas Velocity for 79 μm Glass Beads in the Vertical Orientation
Figure A-29: Pressure Drop Fluctuation vs. Gas Velocity for 450\(\mu\)m Glass Beads in the Vertical Orientation
Figure A-30: Pressure Drop Fluctuation vs. Gas Velocity for 128μm Plexiglas Beads in the Vertical Orientation
Figure A-31: Pressure Drop Fluctuation vs. Gas Velocity for 125μm Glass Beads in the Horizontal Orientation
Figure A-32: Pressure Drop Fluctuation vs. Gas Velocity for 79\(\mu\)m Glass Beads in the Horizontal Orientation
Figure A-33: Pressure Drop Fluctuation vs. Gas Velocity for 450\,\mu \text{m} Glass Beads in the Horizontal Orientation
Figure A-34: Pressure Drop Fluctuation vs. Gas Velocity for 125μm Glass Beads in the Inclined Orientation
Figure A-35: Pressure Drop Fluctuation vs. Gas Velocity for 79μm Glass Beads in the Inclined Orientation
Figure A-36: Pressure Drop Fluctuation vs. Gas Velocity for 450\(\mu\)m Glass Beads in the Inclined Orientation
Figure A-37: Electrostatic Pressure Drop vs. kg H_2O/kg solids for the 79μm Glass Beads in the Inclined Orientation
Figure A-38: Electrostatic Pressure Drop vs. kg H_2O/kg solids for the 125 μm Glass Beads in the Inclined Orientation
Figure A-39: Electrostatic Pressure Drop vs. kg H₂O/kg solids for the 450μm Glass Beads in the Inclined Orientation
Figure A-40: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Vertical Orientation with $W = 9 \times 10^{-3}$
Figure A-41: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Vertical Orientation with $W_s = 18 \times 10^{-3}$
Figure A-42: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Vertical Orientation with $W = 27 \times 10^{-3}$
Figure A-43: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125μm Glass Beads in the Vertical Orientation with \(\dot{W} = 8 \times 10^{-3} \).
Figure A-44: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125μm Glass Beads in the Vertical Orientation with \(W = 18 \times 10^{-3} \).
Figure A-45: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125\(\mu\)m Glass Beads in the Vertical Orientation with \(W = 27. \times 10^{-3}\).
Figure A-46: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation with $W_s=11 \times 10^{-3}$
Figure A-47: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation with W = 21. x10⁻³
Figure A- 48: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Vertical Orientation with $W_i = 30 \times 10^{-3}$
Figure A-49: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 128μm Plexiglas Beads in the Vertical Orientation with \(W_s = 8 \times 10^{-3} \).
Figure A-50: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 128 μm Plexiglas Beads in the Vertical Orientation with $W_s = 12 \times 10^{-3}$.
Figure A-51: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation with $W_s=17 \times 10^{-3}$
Figure A-52: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 79μm Glass Beads in the Horizontal Orientation with W = 24 x 10⁻³
Figure A-53: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125μm Glass Beads in the Horizontal Orientation with $W = 17 \times 10^{-3}$
Figure A-54: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 125 µm Glass Beads in the Horizontal Orientation with W = 24. x10⁻³
Figure A-55: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450 \mu m Glass Beads in the Horizontal Orientation with $W = 19 \times 10^{-3}$
Figure A-56: Ratio of Experimental to Calculated Pressure Drop vs. Gas Velocity for 450μm Glass Beads in the Horizontal Orientation with $W = 30 \times 10^{-3}$
APPENDIX B.

TABLES REFERRED TO IN TEXT
Table B-1: Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 79μ Glass Beads in the Vertical Orientation

<table>
<thead>
<tr>
<th>W, Humidity</th>
<th>Konno and Saito</th>
<th>Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x 10^{-3})</td>
<td>Abs. Mean Std</td>
<td>Abs. Mean Std</td>
</tr>
<tr>
<td></td>
<td>Error (%) Dev</td>
<td>Error (%) Dev</td>
</tr>
<tr>
<td>9.5</td>
<td>85.1 38.1</td>
<td>32.7 25.8</td>
</tr>
<tr>
<td>8.8</td>
<td>81.2 34.6</td>
<td>35.4 17.7</td>
</tr>
<tr>
<td>17.8</td>
<td>88.1 49.2</td>
<td>44.3 27.3</td>
</tr>
<tr>
<td>18.3</td>
<td>53.6 24.8</td>
<td>24.5 13.2</td>
</tr>
<tr>
<td>26.5</td>
<td>45.5 12.0</td>
<td>11.7 8.6</td>
</tr>
<tr>
<td>28.3</td>
<td>49.3 12.7</td>
<td>14.7 8.5</td>
</tr>
</tbody>
</table>
Table B-2: Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 125μm Glass Beads in the Vertical Orientation

<table>
<thead>
<tr>
<th>W_1 (x 10^{-3})</th>
<th>Humidity</th>
<th>Konno and Saito</th>
<th>Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Abs. Mean Std</td>
<td>Abs. Mean Std</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error (%) Dev</td>
<td>Error (%) Dev</td>
</tr>
<tr>
<td>8.5</td>
<td>High</td>
<td>80.7 36.3</td>
<td>36.5 18.3</td>
</tr>
<tr>
<td>8.9</td>
<td>Low</td>
<td>20.1 8.26</td>
<td>27.3 17.8</td>
</tr>
<tr>
<td>18.3</td>
<td>High</td>
<td>34.6 15.7</td>
<td>17.7 8.7</td>
</tr>
<tr>
<td>18.8</td>
<td>Low</td>
<td>19.6 8.4</td>
<td>24.4 10.6</td>
</tr>
<tr>
<td>26.3</td>
<td>High</td>
<td>11.0 10.3</td>
<td>25.1 7.6</td>
</tr>
<tr>
<td>28.4</td>
<td>Low</td>
<td>21.9 12.3</td>
<td>18.8 10.7</td>
</tr>
</tbody>
</table>
Table B-3: Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 450μm Glass Beads in the Vertical Orientation

<table>
<thead>
<tr>
<th>W, (x 10⁻³)</th>
<th>Humidity</th>
<th>Konno and Saito</th>
<th>Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs. Mean</td>
<td>Std Error (%)</td>
<td>Dev</td>
</tr>
<tr>
<td></td>
<td>Abs. Mean</td>
<td>Std Error (%)</td>
<td>Dev</td>
</tr>
</tbody>
</table>

- 12.5 High: 21.7 12.1 36.5 11.7
- 10.0 Low: 25.7 13.9 34.8 16.5
- 22.7 High: 12.2 6.9 37.1 10.5
- 20.6 Low: 32.3 22.0 23.9 14.6
- 33.3 High: 11.5 10.3 24.2 14.1
- 30.0 Low: 19.3 7.4 16.5 11.6
Table B-4: Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 128μm Plexiglas Beads in the Vertical Orientation

<table>
<thead>
<tr>
<th>W' w (x 10^-3)</th>
<th>Humidity</th>
<th>Konno and Saito</th>
<th>Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs. Mean</td>
<td>Std Error (%)</td>
<td>Abs. Mean</td>
</tr>
<tr>
<td>High</td>
<td>51.8</td>
<td>17.5</td>
<td>18.4</td>
</tr>
<tr>
<td>Low</td>
<td>52.4</td>
<td>25.4</td>
<td>21.8</td>
</tr>
<tr>
<td>High</td>
<td>22.6</td>
<td>17.4</td>
<td>24.9</td>
</tr>
<tr>
<td>Low</td>
<td>37.5</td>
<td>26.2</td>
<td>28.7</td>
</tr>
</tbody>
</table>
Table B-5: Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 79μm Glass Beads in the Horizontal Orientation

<table>
<thead>
<tr>
<th>W_r (x 10^{-3})</th>
<th>Humidity</th>
<th>Konno and Saito</th>
<th>Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs. Mean</td>
<td>Std</td>
<td>Abs. Mean</td>
</tr>
<tr>
<td>19.0</td>
<td>17.6</td>
<td>11.0</td>
<td>12.4</td>
</tr>
<tr>
<td>15.4</td>
<td>10.2</td>
<td>7.5</td>
<td>13.2</td>
</tr>
<tr>
<td>24.1</td>
<td>12.1</td>
<td>3.9</td>
<td>24.1</td>
</tr>
<tr>
<td>24.5</td>
<td>14.8</td>
<td>5.1</td>
<td>14.0</td>
</tr>
</tbody>
</table>
Table B-6: Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 125μm Glass Beads in the Horizontal Orientation

<table>
<thead>
<tr>
<th>W_s Humidity ($x 10^{-3}$)</th>
<th>Abs. Mean Konno and Saito Std Error (%) Dev</th>
<th>Abs. Mean Yang Std Error (%) Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5 High</td>
<td>29.2</td>
<td>9.3</td>
</tr>
<tr>
<td>15.8 Low</td>
<td>19.8</td>
<td>12.9</td>
</tr>
<tr>
<td>25.3 High</td>
<td>55.9</td>
<td>3.8</td>
</tr>
<tr>
<td>23.5 Low</td>
<td>29.2</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Table B-7: Comparison of Absolute Mean Percent Error between the Correlation of Konno and Saito and that of Yang for 450μm Glass Beads in the Horizontal Orientation

<table>
<thead>
<tr>
<th>W_s (x 10^{-3})</th>
<th>Humidity</th>
<th>Konno and Saito</th>
<th>Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs. Mean</td>
<td>Std Error (%)</td>
<td>Abs. Mean</td>
</tr>
<tr>
<td>19.8</td>
<td>17.5</td>
<td>5.1</td>
<td>12.1</td>
</tr>
<tr>
<td>19.5</td>
<td>21.0</td>
<td>8.1</td>
<td>8.4</td>
</tr>
<tr>
<td>28.6</td>
<td>21.5</td>
<td>4.5</td>
<td>6.0</td>
</tr>
<tr>
<td>32.3</td>
<td>38.7</td>
<td>21.3</td>
<td>18.5</td>
</tr>
</tbody>
</table>
Table B-8: Eigenvalues for 125μm Glass Beads in the Vertical Orientation
When \(W_s = 8.5 \times 10^{-3} \) and R.H. = 57.2

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>14.67</td>
<td>12.01</td>
<td>-2.831</td>
<td>-36.963</td>
</tr>
<tr>
<td>35</td>
<td>10.78</td>
<td>6.60</td>
<td>-0.212</td>
<td>-56.710</td>
</tr>
<tr>
<td>36</td>
<td>8.62</td>
<td>7.26</td>
<td>0.440</td>
<td>-35.193</td>
</tr>
<tr>
<td>37</td>
<td>7.65</td>
<td>5.37</td>
<td>1.977</td>
<td>-49.059</td>
</tr>
<tr>
<td>38</td>
<td>6.05</td>
<td>4.37</td>
<td>2.671</td>
<td>-48.888</td>
</tr>
<tr>
<td>39</td>
<td>5.16</td>
<td>4.89</td>
<td>1.810</td>
<td>-22.455</td>
</tr>
<tr>
<td>40</td>
<td>4.36</td>
<td>3.32</td>
<td>2.438</td>
<td>-47.432</td>
</tr>
</tbody>
</table>
Table B-9: Eigenvalues for 125μm Glass Beads in the Vertical Orientation
When $W_s = 8.9 \times 10^{-3}$ and R.H. = 18.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_{f1}</th>
<th>U_{f2}</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>10.14</td>
<td>7.68</td>
<td>-1.692</td>
<td>-46.678</td>
</tr>
<tr>
<td>28</td>
<td>7.00</td>
<td>4.72</td>
<td>-1.133</td>
<td>-57.043</td>
</tr>
<tr>
<td>29</td>
<td>6.14</td>
<td>5.90</td>
<td>-1.749</td>
<td>-22.089</td>
</tr>
<tr>
<td>30</td>
<td>5.45</td>
<td>4.55</td>
<td>-0.332</td>
<td>-40.093</td>
</tr>
<tr>
<td>31</td>
<td>5.07</td>
<td>4.68</td>
<td>-0.591</td>
<td>-28.651</td>
</tr>
<tr>
<td>32</td>
<td>4.42</td>
<td>3.93</td>
<td>-1.015</td>
<td>-33.548</td>
</tr>
<tr>
<td>33</td>
<td>4.22</td>
<td>2.75</td>
<td>0.527</td>
<td>-61.098</td>
</tr>
</tbody>
</table>
Table B-10: Eigenvalues for 125\(\mu\)m Glass Beads in the Vertical Orientation

When \(W_s=18.3\times10^{-3}\) and R.H. = 52.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>12.67</td>
<td>9.05</td>
<td>-1.536</td>
<td>-69.785</td>
</tr>
<tr>
<td>10</td>
<td>11.91</td>
<td>7.26</td>
<td>-0.763</td>
<td>-84.781</td>
</tr>
<tr>
<td>11</td>
<td>10.18</td>
<td>7.26</td>
<td>-0.937</td>
<td>-71.497</td>
</tr>
<tr>
<td>12</td>
<td>8.40</td>
<td>5.79</td>
<td>-0.778</td>
<td>-77.514</td>
</tr>
<tr>
<td>13</td>
<td>6.89</td>
<td>5.12</td>
<td>-0.505</td>
<td>-73.195</td>
</tr>
<tr>
<td>14</td>
<td>5.49</td>
<td>4.75</td>
<td>0.499</td>
<td>-54.585</td>
</tr>
<tr>
<td>16</td>
<td>7.98</td>
<td>5.04</td>
<td>1.149</td>
<td>-89.093</td>
</tr>
<tr>
<td>17</td>
<td>6.11</td>
<td>5.84</td>
<td>0.050</td>
<td>-32.033</td>
</tr>
<tr>
<td>48</td>
<td>11.69</td>
<td>7.59</td>
<td>-0.934</td>
<td>-77.454</td>
</tr>
<tr>
<td>49</td>
<td>8.89</td>
<td>6.61</td>
<td>-0.267</td>
<td>-67.992</td>
</tr>
<tr>
<td>50</td>
<td>7.25</td>
<td>6.29</td>
<td>-1.197</td>
<td>-51.951</td>
</tr>
<tr>
<td>51</td>
<td>6.58</td>
<td>5.64</td>
<td>-1.685</td>
<td>-54.300</td>
</tr>
<tr>
<td>52</td>
<td>6.14</td>
<td>5.28</td>
<td>-0.591</td>
<td>-53.521</td>
</tr>
<tr>
<td>53</td>
<td>5.40</td>
<td>4.62</td>
<td>-0.224</td>
<td>-55.671</td>
</tr>
<tr>
<td>54</td>
<td>4.67</td>
<td>4.57</td>
<td>-0.980</td>
<td>-24.574</td>
</tr>
<tr>
<td>82</td>
<td>10.67</td>
<td>7.59</td>
<td>-0.483</td>
<td>-67.684</td>
</tr>
<tr>
<td>83</td>
<td>8.16</td>
<td>6.29</td>
<td>-0.630</td>
<td>-62.335</td>
</tr>
<tr>
<td>84</td>
<td>7.07</td>
<td>6.60</td>
<td>-1.334</td>
<td>-36.584</td>
</tr>
<tr>
<td>85</td>
<td>6.36</td>
<td>5.20</td>
<td>-0.763</td>
<td>-60.795</td>
</tr>
<tr>
<td>86</td>
<td>5.64</td>
<td>4.86</td>
<td>0.384</td>
<td>-55.216</td>
</tr>
</tbody>
</table>
Table B-11: Eigenvalues for 125\(\mu\)m Glass Beads in the Vertical Orientation
When \(W_s=18.7 \times 10^{-3}\) and R.H. = 52.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_\parallel)</th>
<th>(U_\perp)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>16.76</td>
<td>12.23</td>
<td>-2.725</td>
<td>-64.098</td>
</tr>
<tr>
<td>20</td>
<td>13.38</td>
<td>7.59</td>
<td>-1.385</td>
<td>-92.192</td>
</tr>
<tr>
<td>21</td>
<td>10.63</td>
<td>10.16</td>
<td>-1.747</td>
<td>-30.931</td>
</tr>
<tr>
<td>22</td>
<td>8.36</td>
<td>6.17</td>
<td>-0.885</td>
<td>-71.308</td>
</tr>
<tr>
<td>23</td>
<td>6.14</td>
<td>5.04</td>
<td>-1.849</td>
<td>-61.962</td>
</tr>
<tr>
<td>24</td>
<td>5.80</td>
<td>5.74</td>
<td>-1.426</td>
<td>-19.581</td>
</tr>
<tr>
<td>25</td>
<td>5.02</td>
<td>4.68</td>
<td>-1.278</td>
<td>-41.258</td>
</tr>
<tr>
<td>76</td>
<td>10.40</td>
<td>8.36</td>
<td>-1.577</td>
<td>-58.488</td>
</tr>
<tr>
<td>77</td>
<td>8.22</td>
<td>7.86</td>
<td>-1.728</td>
<td>-31.751</td>
</tr>
<tr>
<td>78</td>
<td>7.45</td>
<td>5.69</td>
<td>-0.692</td>
<td>-69.590</td>
</tr>
<tr>
<td>79</td>
<td>6.78</td>
<td>6.74</td>
<td>-1.411</td>
<td>-16.090</td>
</tr>
<tr>
<td>80</td>
<td>6.49</td>
<td>4.97</td>
<td>-0.632</td>
<td>-71.135</td>
</tr>
<tr>
<td>81</td>
<td>5.78</td>
<td>5.69</td>
<td>-1.438</td>
<td>-22.182</td>
</tr>
</tbody>
</table>
Table B-12: Eigenvalues for 125 μm Glass Beads in the Vertical Orientation
When $Ws = 26.3 \times 10^{-3}$ and R.H. = 51.7

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>14.94</td>
<td>12.95</td>
<td>-2.843</td>
<td>-53.698</td>
</tr>
<tr>
<td>57</td>
<td>10.22</td>
<td>7.86</td>
<td>-1.425</td>
<td>-76.838</td>
</tr>
<tr>
<td>58</td>
<td>8.54</td>
<td>7.68</td>
<td>-2.570</td>
<td>-53.694</td>
</tr>
<tr>
<td>59</td>
<td>6.98</td>
<td>6.60</td>
<td>-2.447</td>
<td>-43.353</td>
</tr>
<tr>
<td>60</td>
<td>6.00</td>
<td>5.74</td>
<td>-1.485</td>
<td>-40.397</td>
</tr>
<tr>
<td>61</td>
<td>4.71</td>
<td>4.65</td>
<td>-1.669</td>
<td>-26.041</td>
</tr>
<tr>
<td>63</td>
<td>6.75</td>
<td>6.74</td>
<td>-2.087</td>
<td>-15.246</td>
</tr>
<tr>
<td>64</td>
<td>8.71</td>
<td>7.18</td>
<td>-2.009</td>
<td>-73.655</td>
</tr>
<tr>
<td>65</td>
<td>11.16</td>
<td>7.18</td>
<td>-0.850</td>
<td>-104.549</td>
</tr>
</tbody>
</table>
Table B-13: Eigenvalues for 125\(\mu\)m Glass Beads in the Vertical Orientation
When \(W_s = 28.4\times10^{-3}\) and R.H. = 16.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>15.96</td>
<td>15.01</td>
<td>-3.593</td>
<td>-40.644</td>
</tr>
<tr>
<td>67</td>
<td>13.78</td>
<td>12.01</td>
<td>-2.173</td>
<td>-56.828</td>
</tr>
<tr>
<td>68</td>
<td>13.11</td>
<td>11.39</td>
<td>-1.854</td>
<td>-58.067</td>
</tr>
<tr>
<td>69</td>
<td>11.25</td>
<td>9.05</td>
<td>-1.298</td>
<td>-72.546</td>
</tr>
<tr>
<td>70</td>
<td>9.47</td>
<td>7.59</td>
<td>-0.909</td>
<td>-75.928</td>
</tr>
<tr>
<td>71</td>
<td>8.05</td>
<td>7.18</td>
<td>-1.025</td>
<td>-59.666</td>
</tr>
<tr>
<td>72</td>
<td>6.74</td>
<td>4.75</td>
<td>-0.061</td>
<td>-108.392</td>
</tr>
<tr>
<td>73</td>
<td>6.36</td>
<td>4.59</td>
<td>-0.507</td>
<td>-106.956</td>
</tr>
<tr>
<td>74</td>
<td>5.02</td>
<td>4.40</td>
<td>-1.651</td>
<td>-70.773</td>
</tr>
<tr>
<td>75</td>
<td>5.33</td>
<td>4.65</td>
<td>-2.011</td>
<td>-73.749</td>
</tr>
</tbody>
</table>
Table B-14: Eigenvalues for 450μm Glass Beads in the Vertical Orientation
When $W_s=12.5 \times 10^{-3}$ and R.H. = 50.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_z</th>
<th>U_1</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>12.87</td>
<td>9.71</td>
<td>1.376</td>
<td>-7.554</td>
</tr>
<tr>
<td>90</td>
<td>11.52</td>
<td>9.71</td>
<td>2.500</td>
<td>-6.998</td>
</tr>
<tr>
<td>91</td>
<td>8.76</td>
<td>5.62</td>
<td>1.472</td>
<td>-9.199</td>
</tr>
<tr>
<td>92</td>
<td>7.16</td>
<td>6.41</td>
<td>0.099</td>
<td>-6.172</td>
</tr>
<tr>
<td>93</td>
<td>6.40</td>
<td>4.89</td>
<td>-0.693</td>
<td>-8.255</td>
</tr>
<tr>
<td>94</td>
<td>5.89</td>
<td>5.04</td>
<td>-1.643</td>
<td>-7.182</td>
</tr>
<tr>
<td>95</td>
<td>5.51</td>
<td>4.49</td>
<td>-2.326</td>
<td>-8.181</td>
</tr>
<tr>
<td>97</td>
<td>10.36</td>
<td>8.36</td>
<td>1.001</td>
<td>-7.321</td>
</tr>
<tr>
<td>98</td>
<td>7.74</td>
<td>5.55</td>
<td>0.083</td>
<td>-8.566</td>
</tr>
</tbody>
</table>
Table B-15: Eigenvalues for 450μm Glass Beads in the Vertical Orientation
When $W_s=10.0\times10^{-3}$ and R.H. = 16.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>15.96</td>
<td>12.95</td>
<td>1.298</td>
<td>-8.108</td>
</tr>
<tr>
<td>120</td>
<td>11.83</td>
<td>7.59</td>
<td>0.188</td>
<td>-9.341</td>
</tr>
<tr>
<td>121</td>
<td>10.45</td>
<td>7.59</td>
<td>1.297</td>
<td>-8.070</td>
</tr>
<tr>
<td>122</td>
<td>9.56</td>
<td>6.67</td>
<td>0.899</td>
<td>-8.552</td>
</tr>
<tr>
<td>123</td>
<td>8.89</td>
<td>5.55</td>
<td>1.059</td>
<td>-9.621</td>
</tr>
<tr>
<td>124</td>
<td>8.00</td>
<td>6.17</td>
<td>1.064</td>
<td>-7.901</td>
</tr>
<tr>
<td>125</td>
<td>7.38</td>
<td>6.17</td>
<td>1.711</td>
<td>-6.841</td>
</tr>
<tr>
<td>126</td>
<td>6.80</td>
<td>5.37</td>
<td>-0.183</td>
<td>-7.816</td>
</tr>
<tr>
<td>127</td>
<td>5.74</td>
<td>4.15</td>
<td>-1.082</td>
<td>-9.049</td>
</tr>
<tr>
<td>128</td>
<td>6.18</td>
<td>4.05</td>
<td>-0.159</td>
<td>-10.167</td>
</tr>
</tbody>
</table>
Table B-16: Eigenvalues for 450μm Glass Beads in the Vertical Orientation
When \(W_s = 22.7 \times 10^{-3} \) and R.H. = 50.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>16.67</td>
<td>14.05</td>
<td>-3.123</td>
<td>-10.598</td>
</tr>
<tr>
<td>100</td>
<td>14.76</td>
<td>12.01</td>
<td>-2.320</td>
<td>-11.003</td>
</tr>
<tr>
<td>101</td>
<td>11.56</td>
<td>7.96</td>
<td>-1.137</td>
<td>-13.120</td>
</tr>
<tr>
<td>102</td>
<td>10.36</td>
<td>8.81</td>
<td>-1.861</td>
<td>-10.327</td>
</tr>
<tr>
<td>103</td>
<td>9.36</td>
<td>6.95</td>
<td>-0.706</td>
<td>-12.432</td>
</tr>
<tr>
<td>104</td>
<td>8.89</td>
<td>8.69</td>
<td>-1.117</td>
<td>-6.415</td>
</tr>
<tr>
<td>105</td>
<td>6.87</td>
<td>5.20</td>
<td>-2.138</td>
<td>-12.921</td>
</tr>
<tr>
<td>107</td>
<td>7.56</td>
<td>5.37</td>
<td>-1.733</td>
<td>-13.312</td>
</tr>
<tr>
<td>108</td>
<td>5.85</td>
<td>3.95</td>
<td>-2.741</td>
<td>-13.822</td>
</tr>
</tbody>
</table>
Table B-17: Eigenvalues for 450μm Glass Beads in the Vertical Orientation

When \(W_s = 20.6 \times 10^{-3} \) and R.H. = 16.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_x)</th>
<th>(U_y)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>15.34</td>
<td>12.01</td>
<td>4.012</td>
<td>-10.039</td>
</tr>
<tr>
<td>130</td>
<td>14.00</td>
<td>11.79</td>
<td>-1.009</td>
<td>-9.952</td>
</tr>
<tr>
<td>131</td>
<td>12.36</td>
<td>11.19</td>
<td>-0.674</td>
<td>-8.801</td>
</tr>
<tr>
<td>132</td>
<td>10.74</td>
<td>7.26</td>
<td>-0.281</td>
<td>-13.441</td>
</tr>
<tr>
<td>133</td>
<td>10.05</td>
<td>8.36</td>
<td>-0.068</td>
<td>-10.296</td>
</tr>
<tr>
<td>134</td>
<td>9.49</td>
<td>5.55</td>
<td>0.754</td>
<td>-15.969</td>
</tr>
<tr>
<td>135</td>
<td>9.16</td>
<td>4.37</td>
<td>2.508</td>
<td>-19.249</td>
</tr>
<tr>
<td>136</td>
<td>7.87</td>
<td>3.86</td>
<td>1.173</td>
<td>-19.938</td>
</tr>
<tr>
<td>137</td>
<td>6.58</td>
<td>3.51</td>
<td>1.059</td>
<td>-18.505</td>
</tr>
<tr>
<td>138</td>
<td>5.89</td>
<td>2.75</td>
<td>1.562</td>
<td>-19.867</td>
</tr>
<tr>
<td>139</td>
<td>16.58</td>
<td>14.05</td>
<td>-1.462</td>
<td>-9.934</td>
</tr>
</tbody>
</table>
Table B-18: Eigenvalues for 450μm Glass Beads in the Vertical Orientation
When $W_s=33.3 \times 10^{-3}$ and R.H. = 50.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>17.34</td>
<td>7.59</td>
<td>-2.066</td>
<td>-22.008</td>
</tr>
<tr>
<td>110</td>
<td>15.04</td>
<td>6.41</td>
<td>-0.975</td>
<td>-24.554</td>
</tr>
<tr>
<td>111</td>
<td>11.78</td>
<td>7.26</td>
<td>-0.868</td>
<td>-19.266</td>
</tr>
<tr>
<td>112</td>
<td>9.00</td>
<td>4.62</td>
<td>0.765</td>
<td>-25.278</td>
</tr>
<tr>
<td>113</td>
<td>7.78</td>
<td>4.49</td>
<td>-0.307</td>
<td>-22.827</td>
</tr>
<tr>
<td>115</td>
<td>7.11</td>
<td>4.89</td>
<td>0.438</td>
<td>-17.694</td>
</tr>
<tr>
<td>116</td>
<td>8.41</td>
<td>5.95</td>
<td>-1.301</td>
<td>-17.090</td>
</tr>
<tr>
<td>117</td>
<td>9.78</td>
<td>7.26</td>
<td>-1.401</td>
<td>-15.538</td>
</tr>
<tr>
<td>118</td>
<td>10.75</td>
<td>8.81</td>
<td>-2.642</td>
<td>-13.493</td>
</tr>
</tbody>
</table>
Table B-19: Eigenvalues for 450\(\mu\)m Glass Beads in the Vertical Orientation
When \(W_s=30.0 \times 10^{-3}\) and R.H. = 19.4

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_1)</th>
<th>(U_2)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>16.06</td>
<td>11.19</td>
<td>-2.399</td>
<td>-15.191</td>
</tr>
<tr>
<td>141</td>
<td>13.28</td>
<td>9.30</td>
<td>-1.711</td>
<td>-15.840</td>
</tr>
<tr>
<td>142</td>
<td>11.31</td>
<td>10.48</td>
<td>-1.039</td>
<td>-9.913</td>
</tr>
<tr>
<td>143</td>
<td>10.00</td>
<td>7.96</td>
<td>-0.786</td>
<td>-13.918</td>
</tr>
<tr>
<td>144</td>
<td>8.97</td>
<td>6.67</td>
<td>-0.443</td>
<td>-15.457</td>
</tr>
<tr>
<td>145</td>
<td>8.11</td>
<td>7.50</td>
<td>-1.024</td>
<td>-9.793</td>
</tr>
<tr>
<td>146</td>
<td>7.11</td>
<td>5.74</td>
<td>-0.990</td>
<td>-14.150</td>
</tr>
<tr>
<td>148</td>
<td>7.67</td>
<td>5.74</td>
<td>-0.255</td>
<td>-15.480</td>
</tr>
<tr>
<td>149</td>
<td>6.98</td>
<td>5.04</td>
<td>-0.211</td>
<td>-16.381</td>
</tr>
</tbody>
</table>
Table B-20: Eigenvalues for 79\,\mu m Glass Beads in the Vertical Orientation
When $W_s=9.5\times10^{-3}$ and R.H. = 53.7

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_l</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>11.16</td>
<td>8.36</td>
<td>-0.820</td>
<td>-100.078</td>
</tr>
<tr>
<td>151</td>
<td>9.11</td>
<td>6.11</td>
<td>-0.087</td>
<td>-118.126</td>
</tr>
<tr>
<td>152</td>
<td>8.36</td>
<td>3.86</td>
<td>1.164</td>
<td>-172.593</td>
</tr>
<tr>
<td>153</td>
<td>7.62</td>
<td>3.51</td>
<td>3.612</td>
<td>-175.384</td>
</tr>
<tr>
<td>154</td>
<td>6.62</td>
<td>3.77</td>
<td>2.181</td>
<td>-146.208</td>
</tr>
<tr>
<td>155</td>
<td>5.82</td>
<td>2.29</td>
<td>4.985</td>
<td>-213.789</td>
</tr>
<tr>
<td>156</td>
<td>6.53</td>
<td>5.69</td>
<td>0.731</td>
<td>-73.453</td>
</tr>
<tr>
<td>157</td>
<td>5.20</td>
<td>3.07</td>
<td>4.568</td>
<td>-143.880</td>
</tr>
<tr>
<td>158</td>
<td>4.18</td>
<td>3.37</td>
<td>2.986</td>
<td>-80.709</td>
</tr>
<tr>
<td>159</td>
<td>4.71</td>
<td>3.93</td>
<td>1.686</td>
<td>-81.802</td>
</tr>
</tbody>
</table>
Table B-21: Eigenvalues for 79\(\mu\)m Glass Beads in the Vertical Orientation
When \(W_s=8.8\times10^{-3}\) and R.H. = 16.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_l)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>12.00</td>
<td>5.00</td>
<td>0.226</td>
<td>-171.283</td>
</tr>
<tr>
<td>201</td>
<td>10.43</td>
<td>6.60</td>
<td>-0.243</td>
<td>-119.470</td>
</tr>
<tr>
<td>202</td>
<td>8.31</td>
<td>6.60</td>
<td>-0.319</td>
<td>-88.570</td>
</tr>
<tr>
<td>203</td>
<td>7.16</td>
<td>4.89</td>
<td>1.171</td>
<td>-112.449</td>
</tr>
<tr>
<td>204</td>
<td>5.69</td>
<td>5.16</td>
<td>1.524</td>
<td>-60.401</td>
</tr>
<tr>
<td>205</td>
<td>5.91</td>
<td>4.23</td>
<td>2.110</td>
<td>-107.413</td>
</tr>
<tr>
<td>206</td>
<td>5.38</td>
<td>3.83</td>
<td>2.232</td>
<td>-108.191</td>
</tr>
<tr>
<td>207</td>
<td>5.10</td>
<td>2.71</td>
<td>4.700</td>
<td>-155.089</td>
</tr>
<tr>
<td>208</td>
<td>4.36</td>
<td>3.83</td>
<td>2.422</td>
<td>-60.254</td>
</tr>
<tr>
<td>209</td>
<td>6.94</td>
<td>5.74</td>
<td>-0.718</td>
<td>-82.480</td>
</tr>
</tbody>
</table>
Table B-22: Eigenvalues for 79μm Glass Beads in the Vertical Orientation
When Ws=17.8x10^{-3} and R.H. = 51.7

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_1</th>
<th>U_2</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>13.38</td>
<td>8.80</td>
<td>-1.951</td>
<td>-155.776</td>
</tr>
<tr>
<td>161</td>
<td>11.85</td>
<td>6.67</td>
<td>-0.916</td>
<td>-189.476</td>
</tr>
<tr>
<td>162</td>
<td>10.85</td>
<td>7.96</td>
<td>-1.190</td>
<td>-143.077</td>
</tr>
<tr>
<td>163</td>
<td>9.16</td>
<td>4.75</td>
<td>1.222</td>
<td>-219.420</td>
</tr>
<tr>
<td>164</td>
<td>8.65</td>
<td>7.96</td>
<td>0.060</td>
<td>-79.071</td>
</tr>
<tr>
<td>165</td>
<td>7.82</td>
<td>3.32</td>
<td>4.521</td>
<td>-281.476</td>
</tr>
<tr>
<td>166</td>
<td>7.60</td>
<td>6.60</td>
<td>0.691</td>
<td>-100.056</td>
</tr>
<tr>
<td>167</td>
<td>5.69</td>
<td>2.29</td>
<td>5.777</td>
<td>-328.035</td>
</tr>
<tr>
<td>168</td>
<td>4.07</td>
<td>2.23</td>
<td>6.009</td>
<td>-225.110</td>
</tr>
<tr>
<td>169</td>
<td>5.82</td>
<td>4.34</td>
<td>2.550</td>
<td>-149.925</td>
</tr>
</tbody>
</table>
Table B-23: Eigenvalues for 79 \(\mu \text{m} \) Glass Beads in the Vertical Orientation
When \(W_s = 18.3 \times 10^{-3} \) and R.H. = 16.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_1)</th>
<th>(U_2)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>14.34</td>
<td>12.01</td>
<td>-2.105</td>
<td>-102.406</td>
</tr>
<tr>
<td>191</td>
<td>12.36</td>
<td>6.67</td>
<td>-0.738</td>
<td>-192.559</td>
</tr>
<tr>
<td>192</td>
<td>10.85</td>
<td>5.24</td>
<td>1.031</td>
<td>-221.892</td>
</tr>
<tr>
<td>193</td>
<td>10.67</td>
<td>5.04</td>
<td>0.335</td>
<td>-237.665</td>
</tr>
<tr>
<td>194</td>
<td>8.31</td>
<td>6.17</td>
<td>-1.103</td>
<td>-103.003</td>
</tr>
<tr>
<td>195</td>
<td>9.20</td>
<td>6.41</td>
<td>0.843</td>
<td>-144.561</td>
</tr>
<tr>
<td>196</td>
<td>7.54</td>
<td>5.37</td>
<td>0.082</td>
<td>-141.464</td>
</tr>
<tr>
<td>197</td>
<td>6.47</td>
<td>6.11</td>
<td>-0.138</td>
<td>-69.074</td>
</tr>
<tr>
<td>198</td>
<td>5.56</td>
<td>5.00</td>
<td>1.073</td>
<td>-89.761</td>
</tr>
</tbody>
</table>
Table B-24: Eigenvalues for 79\textmu m Glass Beads in the Vertical Orientation
When $W_s=26.5\times10^{-1}$ and R.H. = 53.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_1</th>
<th>U_2</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>13.85</td>
<td>8.80</td>
<td>-1.366</td>
<td>-205.698</td>
</tr>
<tr>
<td>171</td>
<td>11.37</td>
<td>8.69</td>
<td>-0.808</td>
<td>-165.253</td>
</tr>
<tr>
<td>172</td>
<td>8.78</td>
<td>6.67</td>
<td>-0.043</td>
<td>-179.832</td>
</tr>
<tr>
<td>173</td>
<td>7.41</td>
<td>6.41</td>
<td>-0.021</td>
<td>-135.238</td>
</tr>
<tr>
<td>174</td>
<td>4.30</td>
<td>4.29</td>
<td>-0.587</td>
<td>-24.388</td>
</tr>
<tr>
<td>175</td>
<td>7.67</td>
<td>6.35</td>
<td>-0.276</td>
<td>-151.643</td>
</tr>
<tr>
<td>176</td>
<td>8.60</td>
<td>7.59</td>
<td>-0.556</td>
<td>-122.825</td>
</tr>
<tr>
<td>177</td>
<td>10.30</td>
<td>5.95</td>
<td>-0.183</td>
<td>-220.969</td>
</tr>
<tr>
<td>178</td>
<td>7.82</td>
<td>5.69</td>
<td>0.122</td>
<td>-195.892</td>
</tr>
<tr>
<td>179</td>
<td>5.00</td>
<td>4.23</td>
<td>0.849</td>
<td>-143.765</td>
</tr>
</tbody>
</table>
Table B-25: Eigenvalues for 79\(\mu\)m Glass Beads in the Vertical Orientation

When \(W_s = 28.3 \times 10^{-3}\) and \(R.H. = 18.5\)

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_i)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>14.60</td>
<td>10.20</td>
<td>-1.701</td>
<td>-179.757</td>
</tr>
<tr>
<td>181</td>
<td>13.41</td>
<td>10.48</td>
<td>-1.683</td>
<td>-149.934</td>
</tr>
<tr>
<td>182</td>
<td>12.15</td>
<td>9.86</td>
<td>-1.348</td>
<td>-141.819</td>
</tr>
<tr>
<td>183</td>
<td>10.37</td>
<td>7.96</td>
<td>-0.758</td>
<td>-164.232</td>
</tr>
<tr>
<td>184</td>
<td>9.34</td>
<td>5.50</td>
<td>0.696</td>
<td>-251.283</td>
</tr>
<tr>
<td>185</td>
<td>8.15</td>
<td>6.67</td>
<td>-0.020</td>
<td>-150.757</td>
</tr>
<tr>
<td>186</td>
<td>6.96</td>
<td>4.86</td>
<td>0.481</td>
<td>-210.951</td>
</tr>
<tr>
<td>187</td>
<td>7.04</td>
<td>4.49</td>
<td>1.095</td>
<td>-239.068</td>
</tr>
<tr>
<td>189</td>
<td>6.71</td>
<td>4.34</td>
<td>1.614</td>
<td>-233.461</td>
</tr>
</tbody>
</table>
Table B-26: Eigenvalues for 128\(\mu\)m PLEXIGLAS BEADS in the Vertical Orientation
When \(W_s = 8.6 \times 10^{-3}\) and R.H. = 47.2

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_1)</th>
<th>(U_2)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
<td>8.76</td>
<td>6.41</td>
<td>-0.078</td>
<td>-84.711</td>
</tr>
<tr>
<td>232</td>
<td>5.33</td>
<td>4.49</td>
<td>0.839</td>
<td>-65.872</td>
</tr>
<tr>
<td>233</td>
<td>3.85</td>
<td>2.58</td>
<td>2.298</td>
<td>-103.202</td>
</tr>
<tr>
<td>234</td>
<td>3.18</td>
<td>3.12</td>
<td>1.708</td>
<td>-24.296</td>
</tr>
<tr>
<td>236</td>
<td>3.45</td>
<td>2.95</td>
<td>0.871</td>
<td>-61.497</td>
</tr>
<tr>
<td>237</td>
<td>5.91</td>
<td>4.75</td>
<td>0.691</td>
<td>-75.356</td>
</tr>
<tr>
<td>238</td>
<td>7.78</td>
<td>5.95</td>
<td>0.437</td>
<td>-79.412</td>
</tr>
<tr>
<td>239</td>
<td>10.76</td>
<td>7.96</td>
<td>-2.313</td>
<td>-85.116</td>
</tr>
</tbody>
</table>
Table B-27: Eigenvalues for 128 \(\mu \text{m} \) PLEXIGLAS BEADS in the Vertical Orientation
When \(W_s = 8.8 \times 10^{-3} \) and R.H. = 16.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_4)</th>
<th>(U_5)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>9.82</td>
<td>6.17</td>
<td>-1.300</td>
<td>-104.704</td>
</tr>
<tr>
<td>221</td>
<td>8.45</td>
<td>5.50</td>
<td>-0.117</td>
<td>-98.514</td>
</tr>
<tr>
<td>222</td>
<td>6.14</td>
<td>4.75</td>
<td>0.632</td>
<td>-80.790</td>
</tr>
<tr>
<td>223</td>
<td>4.62</td>
<td>3.25</td>
<td>2.279</td>
<td>-94.641</td>
</tr>
<tr>
<td>224</td>
<td>3.55</td>
<td>2.43</td>
<td>2.248</td>
<td>-92.672</td>
</tr>
<tr>
<td>225</td>
<td>4.27</td>
<td>2.90</td>
<td>3.012</td>
<td>-102.794</td>
</tr>
<tr>
<td>226</td>
<td>3.32</td>
<td>2.95</td>
<td>-0.034</td>
<td>-54.146</td>
</tr>
<tr>
<td>227</td>
<td>8.34</td>
<td>7.18</td>
<td>-1.064</td>
<td>-60.789</td>
</tr>
<tr>
<td>228</td>
<td>6.53</td>
<td>5.50</td>
<td>1.044</td>
<td>-64.348</td>
</tr>
</tbody>
</table>
Table B-28: Eigenvalues for 128µm PLEXIGLAS BEADS in the Vertical Orientation

When \(W_s = 12.9 \times 10^{-3} \) and R.H. = 52.8

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_i)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>12.97</td>
<td>6.88</td>
<td>-2.667</td>
<td>-137.974</td>
</tr>
<tr>
<td>241</td>
<td>12.63</td>
<td>7.96</td>
<td>-1.694</td>
<td>-121.708</td>
</tr>
<tr>
<td>242</td>
<td>8.22</td>
<td>7.59</td>
<td>-1.375</td>
<td>-56.763</td>
</tr>
<tr>
<td>243</td>
<td>6.00</td>
<td>3.92</td>
<td>1.055</td>
<td>-126.422</td>
</tr>
<tr>
<td>244</td>
<td>4.74</td>
<td>3.12</td>
<td>-0.704</td>
<td>-127.767</td>
</tr>
<tr>
<td>245</td>
<td>8.15</td>
<td>5.20</td>
<td>0.263</td>
<td>-126.677</td>
</tr>
<tr>
<td>246</td>
<td>3.63</td>
<td>3.18</td>
<td>-0.620</td>
<td>-76.412</td>
</tr>
<tr>
<td>248</td>
<td>8.04</td>
<td>5.95</td>
<td>-0.897</td>
<td>-105.060</td>
</tr>
<tr>
<td>249</td>
<td>4.89</td>
<td>3.18</td>
<td>-0.288</td>
<td>-136.043</td>
</tr>
</tbody>
</table>
Table B-29: Eigenvalues for 128μm PLEXIGLAS BEADS in the Vertical Orientation
When \(W_s = 12.4 \times 10^{-3} \) and R.H. = 16.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_t)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>11.08</td>
<td>7.59</td>
<td>-0.888</td>
<td>-59.989</td>
</tr>
<tr>
<td>211</td>
<td>7.34</td>
<td>5.33</td>
<td>0.478</td>
<td>-58.984</td>
</tr>
<tr>
<td>212</td>
<td>7.26</td>
<td>5.95</td>
<td>0.548</td>
<td>-46.778</td>
</tr>
<tr>
<td>213</td>
<td>6.26</td>
<td>5.90</td>
<td>0.494</td>
<td>-28.826</td>
</tr>
<tr>
<td>214</td>
<td>4.59</td>
<td>4.37</td>
<td>0.679</td>
<td>-26.894</td>
</tr>
<tr>
<td>215</td>
<td>4.30</td>
<td>2.68</td>
<td>0.102</td>
<td>-84.097</td>
</tr>
<tr>
<td>217</td>
<td>13.13</td>
<td>12.01</td>
<td>-4.997</td>
<td>-35.777</td>
</tr>
<tr>
<td>218</td>
<td>4.96</td>
<td>3.06</td>
<td>-3.516</td>
<td>-78.796</td>
</tr>
<tr>
<td>219</td>
<td>3.78</td>
<td>3.37</td>
<td>-3.287</td>
<td>-35.872</td>
</tr>
</tbody>
</table>
Table B-30: Eigenvalues for 125μm Glass Beads in the Horizontal Orientation

When \(W_s=18.5\times10^{-3} \) and R.H. = 51.7

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>269</td>
<td>10.98</td>
<td>7.26</td>
<td>-4.575</td>
<td>-80.759</td>
</tr>
<tr>
<td>270</td>
<td>10.98</td>
<td>6.67</td>
<td>-3.805</td>
<td>-87.783</td>
</tr>
<tr>
<td>271</td>
<td>9.96</td>
<td>8.69</td>
<td>-5.980</td>
<td>-51.978</td>
</tr>
<tr>
<td>272</td>
<td>9.62</td>
<td>6.11</td>
<td>-4.665</td>
<td>-87.534</td>
</tr>
<tr>
<td>273</td>
<td>8.65</td>
<td>3.24</td>
<td>-4.448</td>
<td>-160.639</td>
</tr>
<tr>
<td>274</td>
<td>7.73</td>
<td>3.53</td>
<td>-3.920</td>
<td>-133.033</td>
</tr>
<tr>
<td>275</td>
<td>6.85</td>
<td>3.46</td>
<td>-3.644</td>
<td>-123.811</td>
</tr>
<tr>
<td>276</td>
<td>5.78</td>
<td>2.33</td>
<td>-3.188</td>
<td>-164.382</td>
</tr>
</tbody>
</table>
Table B-30: Eigenvalues for 125μm Glass Beads in the Horizontal Orientation
When \(W_s = 18.5 \times 10^{-3} \) and R.H. = 51.7

<table>
<thead>
<tr>
<th>RUN</th>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>269</td>
<td>10.98</td>
<td>7.26</td>
<td>-4.575</td>
<td>-80.759</td>
</tr>
<tr>
<td>270</td>
<td>10.98</td>
<td>6.67</td>
<td>-3.805</td>
<td>-87.783</td>
</tr>
<tr>
<td>271</td>
<td>9.96</td>
<td>8.69</td>
<td>-5.980</td>
<td>-51.978</td>
</tr>
<tr>
<td>272</td>
<td>9.62</td>
<td>6.11</td>
<td>-4.665</td>
<td>-87.534</td>
</tr>
<tr>
<td>273</td>
<td>8.65</td>
<td>3.24</td>
<td>-4.448</td>
<td>-160.639</td>
</tr>
<tr>
<td>274</td>
<td>7.73</td>
<td>3.53</td>
<td>-3.920</td>
<td>-133.033</td>
</tr>
<tr>
<td>275</td>
<td>6.85</td>
<td>3.46</td>
<td>-3.644</td>
<td>-123.811</td>
</tr>
<tr>
<td>276</td>
<td>5.78</td>
<td>2.33</td>
<td>-3.188</td>
<td>-164.382</td>
</tr>
</tbody>
</table>
Table B-31: Eigenvalues for 125μm Glass Beads in the Horizontal Orientation
When $W_s=15.8 \times 10^{-3}$ and R.H. = 16.9

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_1</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>9.45</td>
<td>3.93</td>
<td>-1.614</td>
<td>-129.698</td>
</tr>
<tr>
<td>256</td>
<td>9.20</td>
<td>4.89</td>
<td>-3.139</td>
<td>-101.078</td>
</tr>
<tr>
<td>257</td>
<td>7.56</td>
<td>3.24</td>
<td>-3.103</td>
<td>-135.064</td>
</tr>
<tr>
<td>258</td>
<td>6.49</td>
<td>4.86</td>
<td>-2.682</td>
<td>-71.661</td>
</tr>
<tr>
<td>259</td>
<td>6.00</td>
<td>2.90</td>
<td>-2.578</td>
<td>-124.840</td>
</tr>
<tr>
<td>260</td>
<td>4.36</td>
<td>2.43</td>
<td>-4.621</td>
<td>-63.201</td>
</tr>
<tr>
<td>261</td>
<td>10.31</td>
<td>7.59</td>
<td>-3.718</td>
<td>-70.016</td>
</tr>
</tbody>
</table>
Table B-32: Eigenvalues for 125\mu m Glass Beads in the Horizontal Orientation
When $W_s = 25.3 \times 10^{-1}$ and R.H. = 52.3

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_δ</th>
<th>U_λ</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>277</td>
<td>9.47</td>
<td>9.30</td>
<td>-5.857</td>
<td>-29.980</td>
</tr>
<tr>
<td>278</td>
<td>8.59</td>
<td>4.34</td>
<td>-6.796</td>
<td>-145.492</td>
</tr>
<tr>
<td>279</td>
<td>7.64</td>
<td>5.33</td>
<td>-5.788</td>
<td>-102.796</td>
</tr>
<tr>
<td>280</td>
<td>7.56</td>
<td>6.41</td>
<td>-5.289</td>
<td>-70.120</td>
</tr>
<tr>
<td>281</td>
<td>5.92</td>
<td>5.16</td>
<td>-5.309</td>
<td>-68.845</td>
</tr>
<tr>
<td>283</td>
<td>4.72</td>
<td>3.67</td>
<td>-5.451</td>
<td>-60.980</td>
</tr>
</tbody>
</table>
Table B-33: Eigenvalues for 125μm Glass Beads in the Horizontal Orientation
When $W_s=23.5 \times 10^{-3}$ and R.H. = 16.1

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>262</td>
<td>9.78</td>
<td>8.25</td>
<td>-4.526</td>
<td>-67.774</td>
</tr>
<tr>
<td>263</td>
<td>8.28</td>
<td>5.55</td>
<td>-3.477</td>
<td>-108.033</td>
</tr>
<tr>
<td>264</td>
<td>7.89</td>
<td>3.24</td>
<td>-3.338</td>
<td>-197.517</td>
</tr>
<tr>
<td>265</td>
<td>6.36</td>
<td>6.35</td>
<td>-3.092</td>
<td>-16.459</td>
</tr>
<tr>
<td>266</td>
<td>4.89</td>
<td>3.05</td>
<td>-4.058</td>
<td>-95.944</td>
</tr>
<tr>
<td>267</td>
<td>4.39</td>
<td>3.05</td>
<td>-2.405</td>
<td>-42.230</td>
</tr>
<tr>
<td>268</td>
<td>6.84</td>
<td>4.37</td>
<td>-3.249</td>
<td>-128.942</td>
</tr>
</tbody>
</table>

Table B-34: Eigenvalues for 79\(\mu\)m Glass Beads in the Horizontal Orientation
When \(W_s=19.0\times10^{-3}\) and R.H. = 55.4

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>10.18</td>
<td>5.00</td>
<td>-2.756</td>
<td>-217.775</td>
</tr>
<tr>
<td>300</td>
<td>9.07</td>
<td>5.74</td>
<td>-4.528</td>
<td>-172.826</td>
</tr>
<tr>
<td>301</td>
<td>8.85</td>
<td>5.69</td>
<td>-3.945</td>
<td>-171.717</td>
</tr>
<tr>
<td>302</td>
<td>7.74</td>
<td>4.75</td>
<td>-3.600</td>
<td>-185.832</td>
</tr>
<tr>
<td>303</td>
<td>7.16</td>
<td>4.13</td>
<td>-2.536</td>
<td>-205.899</td>
</tr>
</tbody>
</table>
Table B-35: Eigenvalues for 79\(\mu \)m Glass Beads in the Horizontal Orientation
When \(W_s=15.4\times10^{-3} \) and R.H. = 19.1

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>284</td>
<td>11.60</td>
<td>4.59</td>
<td>-3.510</td>
<td>-252.039</td>
</tr>
<tr>
<td>285</td>
<td>11.29</td>
<td>3.37</td>
<td>-3.454</td>
<td>-327.862</td>
</tr>
<tr>
<td>286</td>
<td>10.63</td>
<td>8.36</td>
<td>-3.755</td>
<td>-121.101</td>
</tr>
<tr>
<td>287</td>
<td>9.87</td>
<td>7.03</td>
<td>-3.277</td>
<td>-144.643</td>
</tr>
<tr>
<td>288</td>
<td>9.20</td>
<td>8.36</td>
<td>-3.410</td>
<td>-83.293</td>
</tr>
<tr>
<td>289</td>
<td>8.00</td>
<td>4.49</td>
<td>-2.711</td>
<td>-204.325</td>
</tr>
<tr>
<td>290</td>
<td>5.87</td>
<td>4.49</td>
<td>-3.526</td>
<td>-97.430</td>
</tr>
</tbody>
</table>
Table B-36: Eigenvalues for 79 μm Glass Beads in the Horizontal Orientation
When \(W_s = 24.1 \times 10^{-3} \) and R.H. = 53.4

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>10.28</td>
<td>5.00</td>
<td>-3.459</td>
<td>-267.717</td>
</tr>
<tr>
<td>306</td>
<td>8.67</td>
<td>5.69</td>
<td>-2.356</td>
<td>-200.096</td>
</tr>
<tr>
<td>307</td>
<td>8.20</td>
<td>2.29</td>
<td>-2.779</td>
<td>-544.860</td>
</tr>
<tr>
<td>308</td>
<td>7.34</td>
<td>2.75</td>
<td>-2.520</td>
<td>-434.440</td>
</tr>
<tr>
<td>309</td>
<td>5.83</td>
<td>2.75</td>
<td>-2.447</td>
<td>-277.358</td>
</tr>
<tr>
<td>310</td>
<td>8.00</td>
<td>7.18</td>
<td>-2.813</td>
<td>-112.160</td>
</tr>
<tr>
<td>311</td>
<td>8.22</td>
<td>3.93</td>
<td>-2.610</td>
<td>-317.180</td>
</tr>
</tbody>
</table>
Table B-37: Eigenvalues for 79\textmu m Glass Beads in the Horizontal Orientation
When $W_s=24.5\times10^{-3}$ and R.H. = 18.5

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>292</td>
<td>10.28</td>
<td>4.34</td>
<td>-3.069</td>
<td>-340.659</td>
</tr>
<tr>
<td>293</td>
<td>9.78</td>
<td>3.93</td>
<td>-3.343</td>
<td>-356.531</td>
</tr>
<tr>
<td>294</td>
<td>8.84</td>
<td>3.44</td>
<td>-3.288</td>
<td>-392.431</td>
</tr>
<tr>
<td>295</td>
<td>6.17</td>
<td>4.03</td>
<td>-2.611</td>
<td>-168.245</td>
</tr>
<tr>
<td>296</td>
<td>9.22</td>
<td>6.95</td>
<td>-3.164</td>
<td>-168.044</td>
</tr>
<tr>
<td>297</td>
<td>8.11</td>
<td>2.66</td>
<td>-2.871</td>
<td>-478.106</td>
</tr>
</tbody>
</table>
Table B-38: Eigenvalues for 450μm Glass Beads in the Horizontal Orientation
When $W_s=19.8 \times 10^{-3}$ and R.H. = 56.3

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>14.09</td>
<td>10.48</td>
<td>-2.404</td>
<td>-11.995</td>
</tr>
<tr>
<td>320</td>
<td>10.94</td>
<td>7.26</td>
<td>-3.569</td>
<td>-14.038</td>
</tr>
<tr>
<td>321</td>
<td>10.36</td>
<td>4.86</td>
<td>-3.287</td>
<td>-19.096</td>
</tr>
<tr>
<td>322</td>
<td>8.54</td>
<td>5.90</td>
<td>-3.443</td>
<td>-13.878</td>
</tr>
<tr>
<td>323</td>
<td>7.69</td>
<td>4.75</td>
<td>-3.576</td>
<td>-16.060</td>
</tr>
<tr>
<td>324</td>
<td>6.89</td>
<td>3.44</td>
<td>-3.031</td>
<td>-20.199</td>
</tr>
</tbody>
</table>
Table B-39: Eigenvalues for 450 μm Glass Beads in the Horizontal Orientation
When $W_s = 19.5 \times 10^{-3}$ and R.H. = 16.3

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_1</th>
<th>U_2</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>12.71</td>
<td>9.71</td>
<td>-4.684</td>
<td>-12.815</td>
</tr>
<tr>
<td>313</td>
<td>12.09</td>
<td>8.36</td>
<td>-4.995</td>
<td>-14.513</td>
</tr>
<tr>
<td>314</td>
<td>10.19</td>
<td>8.69</td>
<td>-3.834</td>
<td>-10.446</td>
</tr>
<tr>
<td>315</td>
<td>10.85</td>
<td>5.69</td>
<td>-3.248</td>
<td>-17.223</td>
</tr>
<tr>
<td>316</td>
<td>8.78</td>
<td>5.69</td>
<td>-4.108</td>
<td>-15.220</td>
</tr>
<tr>
<td>317</td>
<td>8.00</td>
<td>5.04</td>
<td>-4.007</td>
<td>-15.711</td>
</tr>
<tr>
<td>318</td>
<td>6.42</td>
<td>5.16</td>
<td>-2.913</td>
<td>-11.527</td>
</tr>
</tbody>
</table>
Table B-40: Eigenvalues for 450μm Glass Beads in the Horizontal Orientation
When $W_s=28.6\times10^{-3}$ and R.H. = 56.2

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>326</td>
<td>9.84</td>
<td>6.35</td>
<td>-3.693</td>
<td>-17.514</td>
</tr>
<tr>
<td>327</td>
<td>9.06</td>
<td>4.72</td>
<td>-3.506</td>
<td>-22.121</td>
</tr>
<tr>
<td>328</td>
<td>7.78</td>
<td>4.62</td>
<td>-3.266</td>
<td>-20.477</td>
</tr>
<tr>
<td>329</td>
<td>7.61</td>
<td>4.62</td>
<td>-2.954</td>
<td>-20.182</td>
</tr>
<tr>
<td>331</td>
<td>10.11</td>
<td>6.11</td>
<td>-3.405</td>
<td>-18.188</td>
</tr>
<tr>
<td>332</td>
<td>10.72</td>
<td>6.88</td>
<td>-3.441</td>
<td>-17.285</td>
</tr>
</tbody>
</table>
Table B-41: Eigenvalues for 450 μm Glass Beads in the Horizontal Orientation
When $W_s = 32.3 \times 10^{-3}$ and R.H. = 16.4

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_l</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>417</td>
<td>11.90</td>
<td>7.96</td>
<td>-4.498</td>
<td>-17.245</td>
</tr>
<tr>
<td>418</td>
<td>10.09</td>
<td>7.96</td>
<td>-4.292</td>
<td>-14.424</td>
</tr>
<tr>
<td>419</td>
<td>8.75</td>
<td>5.33</td>
<td>-3.861</td>
<td>-19.808</td>
</tr>
<tr>
<td>420</td>
<td>7.91</td>
<td>4.23</td>
<td>-3.290</td>
<td>-23.398</td>
</tr>
<tr>
<td>421</td>
<td>7.27</td>
<td>4.49</td>
<td>-9.571</td>
<td>-24.491</td>
</tr>
</tbody>
</table>
Table B-42: Eigenvalues for 125µm Glass Beads in the Inclined Orientation
When $Ws = 18.2 \times 10^{-3}$ and R.H. = 56.4

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_x</th>
<th>U_y</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>375</td>
<td>9.87</td>
<td>5.55</td>
<td>-0.877</td>
<td>-97.403</td>
</tr>
<tr>
<td>376</td>
<td>9.42</td>
<td>6.41</td>
<td>-1.135</td>
<td>-79.783</td>
</tr>
<tr>
<td>377</td>
<td>8.98</td>
<td>6.67</td>
<td>-1.184</td>
<td>-70.007</td>
</tr>
<tr>
<td>378</td>
<td>8.14</td>
<td>7.96</td>
<td>-1.140</td>
<td>-24.521</td>
</tr>
<tr>
<td>379</td>
<td>7.42</td>
<td>5.74</td>
<td>-0.788</td>
<td>-68.204</td>
</tr>
<tr>
<td>380</td>
<td>6.36</td>
<td>4.86</td>
<td>-0.429</td>
<td>-71.975</td>
</tr>
<tr>
<td>381</td>
<td>4.85</td>
<td>3.44</td>
<td>-1.611</td>
<td>-68.151</td>
</tr>
</tbody>
</table>
Table B-43: Eigenvalues for 125 μm Glass Beads in the Inclined Orientation
When $W_s = 17.8 \times 10^{-3}$ and R.H. = 19.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_1</th>
<th>U_2</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>361</td>
<td>10.18</td>
<td>9.30</td>
<td>-2.515</td>
<td>-41.271</td>
</tr>
<tr>
<td>362</td>
<td>9.98</td>
<td>5.37</td>
<td>-1.999</td>
<td>-102.630</td>
</tr>
<tr>
<td>363</td>
<td>9.69</td>
<td>7.26</td>
<td>-2.872</td>
<td>-69.243</td>
</tr>
<tr>
<td>364</td>
<td>8.18</td>
<td>5.95</td>
<td>-2.061</td>
<td>-74.621</td>
</tr>
<tr>
<td>365</td>
<td>7.47</td>
<td>3.93</td>
<td>-1.386</td>
<td>-115.478</td>
</tr>
<tr>
<td>366</td>
<td>6.45</td>
<td>4.89</td>
<td>-3.531</td>
<td>-74.407</td>
</tr>
<tr>
<td>367</td>
<td>4.89</td>
<td>3.06</td>
<td>-20.342</td>
<td>-94.250</td>
</tr>
</tbody>
</table>
Table B-44: Eigenvalues for 125μm Glass Beads in the Inclined Orientation
When \(W_s=27.0 \times 10^{-3} \) and R.H. = 56.7

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_\parallel)</th>
<th>(U_\perp)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>382</td>
<td>8.31</td>
<td>7.26</td>
<td>-1.609</td>
<td>-62.477</td>
</tr>
<tr>
<td>383</td>
<td>7.72</td>
<td>5.55</td>
<td>-1.111</td>
<td>-98.450</td>
</tr>
<tr>
<td>384</td>
<td>7.11</td>
<td>5.16</td>
<td>-0.805</td>
<td>-99.051</td>
</tr>
<tr>
<td>385</td>
<td>7.61</td>
<td>5.37</td>
<td>-0.785</td>
<td>-101.748</td>
</tr>
<tr>
<td>386</td>
<td>5.17</td>
<td>4.72</td>
<td>-2.980</td>
<td>-48.651</td>
</tr>
<tr>
<td>387</td>
<td>6.70</td>
<td>5.20</td>
<td>-0.988</td>
<td>-88.804</td>
</tr>
<tr>
<td>388</td>
<td>10.06</td>
<td>7.86</td>
<td>-2.151</td>
<td>-77.011</td>
</tr>
</tbody>
</table>
Table B-45: Eigenvalues for 125 μm Glass Beads in the Inclined Orientation

When $W_s = 28.9 \times 10^{-3}$ and R.H. = 22.0

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_g</th>
<th>U_ℓ</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>368</td>
<td>9.00</td>
<td>7.50</td>
<td>-3.722</td>
<td>-72.218</td>
</tr>
<tr>
<td>369</td>
<td>8.45</td>
<td>6.41</td>
<td>-3.760</td>
<td>-88.661</td>
</tr>
<tr>
<td>370</td>
<td>7.70</td>
<td>3.93</td>
<td>-3.497</td>
<td>-156.845</td>
</tr>
<tr>
<td>371</td>
<td>6.95</td>
<td>5.20</td>
<td>-3.834</td>
<td>-96.698</td>
</tr>
<tr>
<td>373</td>
<td>6.56</td>
<td>5.74</td>
<td>-4.424</td>
<td>-68.021</td>
</tr>
<tr>
<td>374</td>
<td>7.06</td>
<td>6.41</td>
<td>-4.646</td>
<td>-58.133</td>
</tr>
</tbody>
</table>
GAS-SOLID TRANSPORT IN A 90° M. PIPE AT VARIOUS INCLINATIONS WITH AND WITHOUT ELECTROSTATICS

UNCLASSIFIED AUG 85
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
Table B-46: Eigenvalues for 450\(\mu\)m Glass Beads in the Inclined Orientation
When \(W_s=18.6 \times 10^{-3}\) and R.H. = 55.7

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>347</td>
<td>11.91</td>
<td>9.86</td>
<td>-2.581</td>
<td>-10.295</td>
</tr>
<tr>
<td>348</td>
<td>11.11</td>
<td>6.60</td>
<td>-2.100</td>
<td>-14.630</td>
</tr>
<tr>
<td>349</td>
<td>10.82</td>
<td>6.41</td>
<td>-2.151</td>
<td>-14.863</td>
</tr>
<tr>
<td>350</td>
<td>10.00</td>
<td>6.17</td>
<td>-1.925</td>
<td>-14.417</td>
</tr>
<tr>
<td>351</td>
<td>9.29</td>
<td>5.04</td>
<td>-1.575</td>
<td>-16.556</td>
</tr>
<tr>
<td>352</td>
<td>7.38</td>
<td>4.72</td>
<td>-2.457</td>
<td>-15.117</td>
</tr>
</tbody>
</table>
Table B-47: Eigenvalues for 450μm Glass Beads in the Inclined Orientation
When $W_s=20.3\times10^{-3}$ and R.H. = 21.9

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>10.89</td>
<td>5.90</td>
<td>-5.218</td>
<td>-17.784</td>
</tr>
<tr>
<td>335</td>
<td>9.29</td>
<td>5.33</td>
<td>-4.313</td>
<td>-17.444</td>
</tr>
<tr>
<td>336</td>
<td>8.85</td>
<td>5.37</td>
<td>-3.969</td>
<td>-16.101</td>
</tr>
<tr>
<td>337</td>
<td>8.16</td>
<td>3.59</td>
<td>-3.510</td>
<td>-21.504</td>
</tr>
</tbody>
</table>
Table B-48: Eigenvalues for 450\(\mu\)m Glass Beads in the Inclined Orientation

When \(Ws=29.1 \times 10^{-3}\) and R.H. = 53.6

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>355</td>
<td>10.61</td>
<td>5.04</td>
<td>-1.694</td>
<td>-22.584</td>
</tr>
<tr>
<td>357</td>
<td>8.72</td>
<td>5.50</td>
<td>-1.581</td>
<td>-18.121</td>
</tr>
<tr>
<td>358</td>
<td>8.28</td>
<td>4.03</td>
<td>-1.379</td>
<td>-24.286</td>
</tr>
<tr>
<td>359</td>
<td>7.72</td>
<td>6.60</td>
<td>-3.122</td>
<td>-12.371</td>
</tr>
</tbody>
</table>
Table B-49: Eigenvalues for 450μm Glass Beads in the Inclined Orientation

When \(\text{Ws} = 28.8 \times 10^{-3} \) and \(\text{R.H.} = 18.0 \)

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>10.00</td>
<td>7.86</td>
<td>-4.148</td>
<td>-14.135</td>
</tr>
<tr>
<td>341</td>
<td>9.47</td>
<td>4.13</td>
<td>-2.706</td>
<td>-26.064</td>
</tr>
<tr>
<td>342</td>
<td>8.67</td>
<td>7.86</td>
<td>-4.250</td>
<td>-10.939</td>
</tr>
<tr>
<td>343</td>
<td>8.50</td>
<td>8.25</td>
<td>-4.139</td>
<td>-8.241</td>
</tr>
<tr>
<td>344</td>
<td>6.72</td>
<td>3.75</td>
<td>-9.565</td>
<td>-25.360</td>
</tr>
<tr>
<td>345</td>
<td>7.34</td>
<td>7.18</td>
<td>-5.461</td>
<td>-11.918</td>
</tr>
</tbody>
</table>
Table B-50: Eigenvalues for 79\(\mu\)m Glass Beads in the Inclined Orientation

When \(W_s=18.1\times10^{-3}\) and R.H. = 52.8

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_s)</th>
<th>(U_f)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>403</td>
<td>10.05</td>
<td>7.18</td>
<td>-2.216</td>
<td>-148.197</td>
</tr>
<tr>
<td>404</td>
<td>9.78</td>
<td>6.11</td>
<td>-2.055</td>
<td>-177.720</td>
</tr>
<tr>
<td>405</td>
<td>9.05</td>
<td>5.20</td>
<td>-2.100</td>
<td>-197.538</td>
</tr>
<tr>
<td>406</td>
<td>8.45</td>
<td>7.26</td>
<td>-1.751</td>
<td>-103.945</td>
</tr>
<tr>
<td>407</td>
<td>7.22</td>
<td>2.71</td>
<td>1.387</td>
<td>-325.563</td>
</tr>
<tr>
<td>408</td>
<td>7.02</td>
<td>2.39</td>
<td>1.738</td>
<td>-360.726</td>
</tr>
<tr>
<td>409</td>
<td>6.78</td>
<td>3.35</td>
<td>-0.454</td>
<td>-251.050</td>
</tr>
</tbody>
</table>
Table B-51: Eigenvalues for 79μm Glass Beads in the Inclined Orientation
When Ws=16.5x10^{-3} and R.H. = 18.5

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>389</td>
<td>11.08</td>
<td>8.81</td>
<td>-2.401</td>
<td>-99.369</td>
</tr>
<tr>
<td>390</td>
<td>10.36</td>
<td>4.13</td>
<td>-0.529</td>
<td>-271.150</td>
</tr>
<tr>
<td>391</td>
<td>9.52</td>
<td>5.69</td>
<td>-1.205</td>
<td>-183.498</td>
</tr>
<tr>
<td>392</td>
<td>8.05</td>
<td>7.59</td>
<td>-2.110</td>
<td>-70.350</td>
</tr>
<tr>
<td>393</td>
<td>7.60</td>
<td>6.11</td>
<td>-1.646</td>
<td>-123.537</td>
</tr>
<tr>
<td>394</td>
<td>6.80</td>
<td>5.16</td>
<td>-1.584</td>
<td>-140.582</td>
</tr>
</tbody>
</table>
Table B-52: Eigenvalues for 79\textmu m Glass Beads in the Inclined Orientation
When $W_s = 26.6 \times 10^{-3}$ and R.H. = 54.6

<table>
<thead>
<tr>
<th>RUN</th>
<th>U_s</th>
<th>U_f</th>
<th>m_1</th>
<th>m_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>9.11</td>
<td>6.88</td>
<td>-2.159</td>
<td>-169.376</td>
</tr>
<tr>
<td>411</td>
<td>7.95</td>
<td>5.95</td>
<td>-0.662</td>
<td>-179.888</td>
</tr>
<tr>
<td>412</td>
<td>7.06</td>
<td>5.20</td>
<td>-0.891</td>
<td>-186.387</td>
</tr>
<tr>
<td>413</td>
<td>6.84</td>
<td>3.44</td>
<td>0.769</td>
<td>-322.710</td>
</tr>
<tr>
<td>415</td>
<td>6.45</td>
<td>3.12</td>
<td>1.338</td>
<td>-332.440</td>
</tr>
<tr>
<td>416</td>
<td>6.25</td>
<td>4.75</td>
<td>-0.817</td>
<td>-179.629</td>
</tr>
</tbody>
</table>
Table B-53: Eigenvalues for 79\,\mu m Glass Beads in the Inclined Orientation
When \(W_s = 25.8 \times 10^{-3} \) and R.H. = 17.6

<table>
<thead>
<tr>
<th>RUN</th>
<th>(U_1)</th>
<th>(U_2)</th>
<th>(m_1)</th>
<th>(m_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>396</td>
<td>9.22</td>
<td>8.36</td>
<td>-2.824</td>
<td>-107.020</td>
</tr>
<tr>
<td>397</td>
<td>8.61</td>
<td>6.17</td>
<td>-2.313</td>
<td>-194.539</td>
</tr>
<tr>
<td>398</td>
<td>8.78</td>
<td>5.20</td>
<td>-1.532</td>
<td>-254.876</td>
</tr>
<tr>
<td>399</td>
<td>6.89</td>
<td>4.89</td>
<td>-1.717</td>
<td>-200.346</td>
</tr>
<tr>
<td>400</td>
<td>6.06</td>
<td>4.75</td>
<td>-3.326</td>
<td>-130.947</td>
</tr>
<tr>
<td>401</td>
<td>7.39</td>
<td>4.75</td>
<td>-2.912</td>
<td>-239.469</td>
</tr>
<tr>
<td>402</td>
<td>7.64</td>
<td>5.90</td>
<td>-2.860</td>
<td>-174.742</td>
</tr>
</tbody>
</table>
APPENDIX C.

COMPUTER PROGRAMS
CROS1.FOR
CROSSCORRELATION PROGRAM

THIS IS THE FIRST PROGRAM IN A SERIES OF TWO WHICH MUnT BE EXECUTED IN ORDER TO CALCULATE THE PARTICLE VELOCITY. THIS PROGRAM TAKES THE ANALOG SIGNAL FROM THE TAPE RECORDER AND CONVERTS IT INTO A DIGITAL SIGNAL. DATA IS INPUTED FROM THE FIRST TWO CHANNELS ON THE A/D BOARD. THE UPSTREAM SIGNAL SHOULD BE CONNECTED TO CHANNEL 0 AND THE DOWNSTREAM SIGNAL SHOULD BE CONNECTED TO CHANNEL 1 ON THE A/D BOARD. DATA SHOULD BE INPUTED FOR 8 SECONDS IN ORDER TO COLLECT 8000 POINTS IN FILE 'FILE.DAT'.

THE EXAMPLE BEGINS BY DEFINING CERTAIN ARRAYS REQUIRED BY THE SWEEP PROCESS. INFO IS USED AS THE SWEEP-INFORMATION ARRAY AND IBUF(1,N+1) IS USED AS THE Nth BUFFER.

IN ADDITION, ARRAY FBUF IS DEFINED. THIS ARRAY IS USED FOR TEMPORARY STORAGE OF A/D CONVERTED VALUES.

DIMENSION INFO(40),IBUF(1000,8),FBUF(1000)

THE FIRST OPERATION PERFORMED IN THIS EXAMPLE IS TO CHECK THE STATUS AND READINGS OF A/D CHANNELS 0 AND 8. NOTE THAT CHANNEL 0 CAN NEVER RETURN ANY STATUS OTHER THAN SINGLE-ENDED VOLTAGE INPUT WITH A GAIN VALUE OF 1. CHANNEL 8, ON THE OTHER HAND, MAY HAVE A PREAMPLIFIER (THAT IS, AN MNCAG) ASSOCIATED WITH IT, THUS ALLOWING A VARIABLE STATUS AS WELL AS INPUT.

THIS SECTION LOOPS ON OPERATOR CONTROL SO THAT VARIATIONS IN INPUT STATUS AND VALUE CAN BE VERIFIED.

BEFORE PROCEEDING, SOME ADDITIONAL ARRAYS NEED TO BE DEFINED.

DIMENSION RANGE(5,3),LENG(3),GAIN(5)
INTEGER*4 IDOUBL
REAL*8 VALN
LOGICAL*1 TYPE(10,3),ANS
DATA RANGE/ .01,.1,02,10.24,5.12, VOLTS
1 .01,.1,02,10.24,0.0, MILLIAMPS
1 .1,02,10.24,102,4,0.0/ K OHMS
DATA TYPE/ ,‘V’,‘O’,‘L’,‘T’,‘S’,‘4’ .
1 ,‘M’,‘I’,‘L’,‘I’,‘A’,‘M’,‘P’,‘S’,
1 ,‘K’,‘O’,‘H’,‘M’,‘S’,‘3’ /
DATA LENG/6,10,7/
DATA GAIN/ .5,5.,50.,500.,1. /

DO 10 I=0,8,8

NOW GET MNCAD #0 STATUS INFORMATION FOR THE APPROPRIATE CHANNEL.
CALL MADSTS(IND.I,INNER,IOUTER,NOMAG)
NOW READ AND CONVERT THE VALUE RECEIVED FROM THE A/D CHANNEL.
VAL=CAD2FP(IADINP,I.IVAL))
NOW NORMALIZE THE CONVERTED VALUE AND SET THE DOUBLE PRECISION RESULT TO A FLOATING POINT NUMBER.
CALL KAD2DI(IVAL,IDOUBL)
VALN=DJFLT(IDOUBL)
NOW PRINT RAW DATUM (IVAL), THE NORMALIZED DATUM (VALN), AND THE ACTUAL DATUM (IVAL).
TYPE 100,IVAL,VAL,(TYPE(J,INNER),J=1,LENG(INNER))
1000 FORMAT(‘ THE RAW INPUT READ ON CHANNEL #1’ IS '06' OCTAL.’/ THE ACTUAL INPUT IS THEREFORE ’F10.4, 10A1)
1001 TYPE 1001,VALN
FORMAT(‘ THE NORMALIZED REPRESENTATION OF THE INPUT IS ’F10.0.’)
REPORT ON THE STATUS OF THE CHANNEL

TYPE 1004
1004 FORMAT(‘ THE INPUT IS ’$)
GO TO (14,15,16).NOMAG+2
14 TYPE 1005
1005 FORMAT(' QUASI-DIFFERENTIAL $'
GO TO 30
15 TYPE 1006
1006 FORMAT(' DIFFERENTIAL $'
GO TO 30
16 TYPE 1007
1007 FORMAT(' SINGLE-ENDED $'
30 GO TO (21,22,22,22,22,22),IOUTER
21 TYPE 1008
1008 FORMAT(' WITH THE GAIN SET TO PROGRAMMABLE.'
GO TO 10
22 TYPE 1009,RANGE(IOUTER-1,INNER),(TYPE(J,INNER),J-1,
1 LENG(INNER))
1009 FORMAT(' WITH A RANGE OF + OR - $'
TYPE 1010,GAIN(IOUTER-1)
1010 FORMAT(' THE EFFECTIVE GAIN IS $'
10 CONTINUE
C
C CHECK IF THE OPERATOR WISHES TO VERIFY INFORMATION
C AGAIN.
C
TYPE 1020
1020 FORMAT('/ SHOULD CHANNELS BE CHECKED AGAIN? $'
ACCEPT 2000,ANS
2000 FORMAT(A1)
IF(ANS.EQ.'Y')GO TO 1
C
C THE EXAMPLE NOW GIVES THE OPERATOR THE OPTION TO
C START A SWEEP OF CHANNEL SWEEPS ON ANY CHANNEL
C BETWEEN 0 AND 8. UP TO A MAXIMUM OF FOUR CHANNELS
C MAY BE SELECTED TO BE SAMPLED DURING EACH CHANNEL
C SWEEP. AN AGGREGATE TOTAL OF 100 SAMPLES WILL BE
C TAKEN IN THIS PROCESS.
C
C THE OPERATOR MAY NOW ALSO CHOOSE THE INTERSAMPLE
C INTERVAL TIME, OR DWELL, AS A INTEGRAL MULTIPLE OF
C .01 SECONDS. THE VALUE CHOSEN MUST BE LESS THAN
C 65536 BUT GREATER THAN ZERO.
C
C THE OPERATOR MAY ALSO CHOOSE TO HAVE THE INTERVAL BE
C THE TIME BETWEEN SUCCESSIVE FIRINGS OF SCHMITT
C TRIGGER 1 OF THE PRIMARY CLOCK BY CHOOSING ZERO (0)
C AS THE LENGTH OF THE SAMPLE PERIOD.
C
C
180

50 TYPE 1021
1021 FORMAT' WHICH CHANNEL IS THE FIRST A/D CHANNEL TO
1 BE SAMPLED AT THE END OF EACH'/' SAMPLE PERIOD(0-8)?
2 'S)
 ACCEPT 2001,ICHN
2001 FORMAT(15)
 IF(ICHN.LT.0.OR.ICHN.GT.8) GO TO 50
51 TYPE 1022
1022 FORMAT' HOW MANY CHANNELS SHOULD BE SAMPLED EACH
1 SAMPLE PERIOD (1-4)? 'S)
 ACCEPT 2001,NCHN
 IF(NCHN.LT.1.OR.NCHN.GT.4) GO TO 51

C
C NOTE THAT THE MODE INDICATES THAT THE SWEEP WILL NOT
C START WHEN THE CALL TO THE ADSWP SUBROUTINE IS MADE
C IF THE SWEEP IS DRIVEN BY THE PRIMARY CLOCK AT A
C SPECIFIED RATE. THE PROGRAM WAITS FOR A COMMAND FROM
C THE OPERATOR AND THEN CALLS THE Digo SUBPROGRAM TO
C START THE SWEEP IMMEDIATELY.
C
C IF THE SWEEP IS EXTERNALLY DRIVEN, i.e., BY INPUT
C DIRECTLY GIVE TO THE MNCAD MODULE, OR FROM INPUT TO
C ST2 OF THE PRIMARY CLOCK (MNCKW), THE PROGRAM WAITS
C TILL THE USER GIVES THE COMMAND BEFORE CALLING THE
C SUBPROGRAM ADSWP. ADSWP ARMS AND ENABLES THE
C SAMPLING PROCESS IMMEDIATELY IN THIS MODE.
C
TYPE 1019
1019 FORMAT(5X.'SPECIFY NUMBER OF CYCLES(1,2,3,4,5 OR 6)
1 'S)
 ACCEPT 2019,M
2019 FORMAT(I)
 TYPE 2222
2222 FORMAT(5X.'WHICH UNIT IS TO BE OPENED? ' S)
 ACCEPT 2223,IUNIT
2223 FORMAT(I)
 IF(IUNIT.EQ.3) GO TO 666
 OPEN(UNIT=2,NAME='FILE.DAT',TYPE='NEW',DISP='SAVE')
 GO TO 667
666 OPEN(UNIT=3,NAME='FBUF1.DAT',TYPE='NEW',DISP='SAVE'
1)
667 DO 31 I=1,M
 CALL SETIBF(INFO,IND,IBUF(1,1),IBUF(1,2),IBUF(1,3),
1 IBUF(1,4),IBUF(1,5),IBUF(1,6),IBUF(1,7),IBUF(1,8))
CALL RLSBUF(INFO,IND,0.1,2,3,4,5,6,7)
CALL CLOCKA(4.,IND)
MODE=256
CALL ADSWP(INFO,1000,8,M0DE.-1,ICHN,NCHN)
IF(INFO(1).NE.0) STOP 'ADSWP - LIBGEN OR
1 CONFIGURATION ERROR.'

THE DEFAULTED ARGUMENTS INDICATE THAT THE SWEEP HAS
NO DELAY FROM THE START EVENT, AND NO COMPLETION
Routines IS ASSOCIATED WITH IT.

AT THE OPERATOR'S COMMAND THE SWEEP WILL BEGIN.

TYPE 1024
1024 FORMAT(STRIKE THE "RETURN" KEY TO START THE SWEEP
1 . 'S)
ACCEPT 2000,ANS
CALL DIG0(,,IND)

WAIT FOR EACH BUFFER, CONVERT THE INPUT TO ACTUAL
VALUES, TYPE THE ACTUAL VALUES, AND THEN GO GET
NEXT BUFFER.

60 CALL CAD2FP(IBUF(1,1(WTBUFF(INFO,1,IND)-1)),FBUF,1000)
IF(IUNIT.EQ.3) GO TO 444
WRITE(2,33)FBUF
GO TO 445
444 WRITE(3,33)FBUF
445 CONTINUE
33 FORMAT(F)
IF(INFO(1).EQ.0) GO TO 60
31 CONTINUE
IF(IUNIT.EQ.3)GO TO 888
CLOSE(UNIT=2,DISP='SAVE')
GO TO 889
888 CLOSE(UNIT=3,DISP='SAVE')

WHEN ALL DATA ARE ACQUIRED, PRINT THE RAW DATA AND
END.

889 CONTINUE
TYPE 1026/INFO(1)
1026 FORMAT(/' A/D SWEEP ENDING CODE = '13)
STOP
END
CROSS.FOR
CROSSCORRELATION SEQUENCE
IN ORDER TO CROSSCORRELATE TWO SIGNALS, TWO
PROGRAMS MUST BE EXECUTED IN THE ORDER THAT THEY
APPEAR BELOW:

(1)...RUN CROS1
(2)...RUN CROSS

THE FIRST, 'CROS1', CONVERTS A/D DATA IS GATHERED FROM
THE FIRST TWO CHANNELS ON THE A/D BOARD AND 8,000
POINTS ARE STORED IN A SINGLE FILE CALLED FILE.DAT.
THE A/D BOARD SAMPLES AT A RATE OF 1MSEC., THEREFORE
DATA MUST BE GATHERED FOR 8 SECONDS.

THE 2ND, 'CROSS', IS THE ACTUAL CROSSCORRELATION.
TWO SIGNAL FILES ARE CREATED FROM THE ONE CREATED
BY CROS1.
THE TWO SIGNAL FILES ARE MULTIPLIED AND THEN
INTEGRATED EACH TIME THE PROGRAM GOES THROUGH ITS
MAIN LOOP ONE VALUE OF THE CROSS-CORRELATION
COEFFICIENT IS STORED IN THE VARIABLE LOCATION
SUMT. EACH POINT CORRESPONDS TO A DELAY TIME EQUAL
TO 1MSEC. EXCEPT FOR THE FIRST WHICH CORRESPONDS TO
A DELAY TIME EQUAL TO 0.0 MSEC. 300 VALUES OF THE
CROSS-CORRELATION COEFFICIENT ARE PRINTED, THEREFORE
A TOTAL DELAY TIME OF 299 MSEC IS SHOWN. THE PROGRAM
SEARCHES THE 300 POINTS AND LOCATES THE MAXIMUM
CROSS-CORRELATION VALUE AND THE TIME CORRESPONDING
TO THIS MAXIMUM. THE PROGRAM THEN CALCULATES A
PARTICLE VELOCITY BASED ON A 2.16 FT PROBE SEPARATION.
THIS PROGRAM ALSO CALCULATES THE VOIDAGE(E), THE GAS
VELOCITY(VG), THE SLIP VELOCITY(VS), THE ACTUAL GAS
RATE(SCFMA), THE SOLID FLOW RATE(WS), AND THE
THE LOADING.
DURING EXECUTION A NUMBER OF QUESTIONS ARE ASKED.

DIMENSION FBUF(2500), FBUF1(2500), RMULT(2200),
1 SUMT(300)
TYPE 2990
2990 FORMAT(5X,'THIS MONTH IS? (1-12)')$
ACCEPT 2991.KMON
2991 FORMAT(I)
 TYPE 2992
2992 FORMAT(5X,'TODAYS DATE IS?')$)
 ACCEPT 2993.KDATE
2993 FORMAT(I)
 TYPE 2994
2994 FORMAT(5X,'THIS YEAR IS?')$
 ACCEPT 2995.KYEAR
2995 FORMAT(I)
 TYPE 2996
2996 FORMAT(5X,'PRINT TRIAL NUMBER?')$
 ACCEPT 3001.KTN
3001 FORMAT(I)
 TYPE 3002
3002 FORMAT(5X,'PRINT TAPE NUMBER?')$
 ACCEPT 3003.KTAPN
3003 FORMAT(I)
 TYPE 3004
3004 FORMAT(5X,'TAPE FOOTAGE,BEGINNING NUMBER ?')$
 ACCEPT 3005.KBTAF
3005 FORMAT(I)
 TYPE 3006
3006 FORMAT(5X,'TAPE FOOTAGE,END?')$
 ACCEPT 3007.KLENTA
3007 FORMAT(I)
 TYPE 3008
3008 FORMAT(5X,'TAPE SIDE ?')$
 ACCEPT 3009.KTS
3009 FORMAT(I)
 TYPE 4000
4000 FORMAT(5X,'SOLID FLOW RATE (LBS/MIN) ?')$
 ACCEPT 4001.WS
4001 FORMAT(F)
 TYPE 4002
4002 FORMAT(5X,'AIR HUMIDITY ?')$
 ACCEPT 4003.AH
4003 FORMAT(F)
 TYPE 3010
3010 FORMAT(5X,'WHAT IS THE TURBINE METER READING
1 (SCFM) ?')$
 ACCEPT 3011.SCFM
3011 FORMAT(F)
 DWELL=.001
TYPE 2003

2003 FORMAT(5X,'SOLID DENSITY (LBS/FT-3) ?$)
ACCEPT 2004,DEN

2004 FORMAT(F)

C***
C THIS STATEMENT IS USED TO CALCULATE THE ACTUAL GAS
C FLOW RATE. SCFM IS THE TURBINEMETER READING.
C
SCFMA=SCFM

C***
C***
C THIS STATEMENT IS USED TO CALCULATE THE ACTUAL
C LOADING (ALOAD).
C
ALOAD=379*WS/(SCFMA*29)

C***
C***
C***
C THE OPEN STATEMENT READ IN THE TWO SIGNAL FILES. FBUF
C IS THE VARIABLE NAME FOR SIG1.DAT, AND FBUF1 IS THE
C VARIABLE NAME FOR SIG2.DAT.
C
OPEN(UNIT=2,NAME='FILL.DAT',TYPE='OLD',DISP='SAVE')
 DO 6 ID=1,2500
 READ(2,7)FBUF(ID)
 READ(2,7)FBUF1(ID)
 6 CONTINUE

41 PRINT 42
42 FORMAT('RING PROBES WERE USED',/)

46 ADD1=0.0
ADD2=0.0
 DO 45 I=1,2500
 ADD1=ADD1+FBUF(I)
 ADD2=ADD2+FBUF1(I)
 45 CONTINUE
IF(ADD1.GE.0.0)GO TO 47
 DO 48 I=1,2500
 FBUF(I)=-FBUF(I)
 48 CONTINUE
IF(ADD2.GE.0.0)GO TO 49
DO 43 I=1,2500
IF(FBUF(I).LE.0.0)FBUF(I)=0.0
IF(FBUF1(I).LE.0.0)FBUF1(I)=0.0
CONTINUE
ADD1=0.0
ADD2=0.0
49 DO 43 I=1,2500
IF(FBUF(I).LE.0.0)FBUF(I)=0.0
IF(FBUF1(I).LE.0.0)FBUF1(I)=0.0
CONTINUE

C

DO 80 I=1,625
TOTAL1=0.0
TOTAL2=0.0
DO 90 J=1,2
M=J+(I-1)*2
TOTAL1=TOTAL1+FBUF(M)
TOTAL2=TOTAL2+FBUF1(M)
90 CONTINUE
AVG1=TOTAL1/2.0
AVG2=TOTAL2/2.0
DO 100 K=1,2
M1=K+(I-1)*2
FBUF(M1)=AVG1
FBUF1(M1)=AVG2
ADD1=ADD1+FBUF(M1)
ADD2=ADD2+FBUF1(M1)
100 CONTINUE
80 CONTINUE
THRES1=0.5*ADD1/2500.0
THRES2=0.5*ADD2/2500.0

C

THE FOLLOWING STATEMENT SET THE THRESHOLD VALUE.
C
DO 10 I=1,2500
IF(FBUF1(I).LE.THRES2)FBUF1(I)=0.0
IF(FBUF(I).LE.THRES1)FBUF(I)=0.0
10 CONTINUE
C
THIS IS WHERE THE PROGRAM MULTIPLIES AND INTEGRATES THE TWO SIGNAL FILES.

DO 11 J=1,300
DO 12 I=1,2200
K=I+J
RMULT(I)=FBUF(K)*FBUF1(I)
12 CONTINUE
SUM=0.0
DO 60 I=1,2199
C12=(RMULT(I+1)+RMULT(I))*DWELL/2.0
SUM=SUM+C12
60 CONTINUE
SUMT(I)=SUM
11 CONTINUE

THIS STATEMENT TAKES THE GAS FLOW RATE AND DIVIDES IT BY THE PRODUCT OF THE CROSS SECTIONAL AREA AND THE REQUIRED TIME CONVERSION FROM MINUTES TO SECONDS.

GV=SCFMA/1.3712427

PRINT 101,KMON,KDATE,KYEAR
101 FORMAT(/,'DATE',2X,I,2X,I,2X,I,2X,I,2X,/) PRINT 102,KTN
102 FORMAT('TRIAL NUMBER',2X,I,2X,/) PRINT 103,KTAPN
103 FORMAT('TAPE NUMBER',2X,I,2X,/) PRINT 104,KBTAF,KENTA
104 FORMAT('TAPE FOOTAGE',1X,I,'-',1,I,/) PRINT 105,KTS
105 FORMAT('TAPE SIDE',2X,I,2X,/) PRINT 106
106 FORMAT(50X,'CROSSCORRELATION DATA',/)
THE FOLLOWING STATEMENTS SEARCH THE CROSS-
CORRELATION DATA TO LOCATE TIMES WHEN MAXIMUMS
OCCUR.

TAU=2166.67/GV
KOUNT=0
TIME=0.0
DO 500 I=1,298
 TIME=TIME+1.0
 IF(SUMT(I).GE.SUMT(I+1)) GO TO 134
 IF(SUMT(I).LT.SUMT(I+1)) GO TO 831
831 CONTINUE
 IF(SUMT(I+1).LT.SUMT(I+2)) GO TO 134
 IF(SUMT(I+1).GT.SUMT(I+2)) GO TO 832
832 PRINT 833,TIME,SUMT(I+1)
833 FORMAT(1X,'A MAXIMUM OCCURRED. TIME(MSEC.)=',F5.1,5X,
1 F11.7,/) 134 IF(TIME.LT.TAU) GO TO 500
 IF(KOUNT.EQ.1) GO TO 500
 N=I
 KOUNT=KOUNT+1
 T=TIME
500 CONTINUE

THESE STATEMENTS LOCATE THE MAXIMUM CROSSCORRELATION
VALUE AND THE CORRESPONDING DELAY INTERVAL.

900 PMAX=SUMT(N)
 KDT=1
 DO 368 I=N,300
 IF(SUMT(I).LT.PMAX) GO TO 350
 PMAX=SUMT(I)
 TIMAX=T
350 T=T+KDT
368 CONTINUE
THIS STATEMENT CALCULATES THE PARTICLE VELOCITY.
SINCE TIME IS IN SECONDS INSTEAD OF MSEC. A FACTOR
OF 1,000 APPEARS IN THE NUMERATOR.

\[PV = \frac{2167.67}{\text{TIMAX}} \]

THE NEXT TWO STATEMENTS ARE USED TO CALCULATE THE
VOIDAGE (E).

\[EA = 0.72963 \times \text{ALOAD} \times \text{SCFMA} / (PV \times \text{DEN}) \]
\[E = 1 - EA \]

THIS STATEMENT CALCULATES THE SLIP VELOCITY.

\[SV = (\text{GV} / E) - PV \]

PRINT 132, AH

132 FORMAT('AIR HUMIDITY(%)', 2X, F5.2, //)
PRINT 131, ALOAD
131 FORMAT('LOADING', 2X, F6.3, //)
PRINT 358, SCFMA
358 FORMAT('AIR FLOW RATE (SCFM)', 2X, F6.3, //)
PRINT 701, E
701 FORMAT('VOIDAGE', 2X, 'E=', F, //)
PRINT 702, WS
702 FORMAT('SOLID FLOW RATE (LBS/ MIN)', 2X, 'WS=', F5.3, //)
PRINT 703, GV
703 FORMAT('GAS VELOCITY (FT/ SEC)', 2X, 'VG=', F6.3, //)
PRINT 704, PV
704 FORMAT('PARTICLE VELOCITY (FT/ SEC)', 2X, 'VP=',
1 F6.3, //)
PRINT 705, SV
705 FORMAT('SLIP VELOCITY (FT/SEC)',2X,'VS=',F6.3,/)
CLOSE(UNIT=3)
CLOSE(UNIT=4)
STOP
END
C PROGRAM TO CALCULATE CHOKING AND SALTATION
C VELOCITIES
C
100 PRINT*, 'INPUT THE PARTICLE DENSITY'
 READ*, RP
 RF=1.2
 XMU=1.E-5
 G=9.8
 D=.0508
 A=3.1415*D**2/4
 PRINT*, 'INPUT THE PARTICLE DIAMETER'
 READ*, DP
 DP=DP*1.E-6
 PRINT*, 'INPUT THE MASS FLOW RATE'
 READ*, WS
 FPC=6.81E5*(RF/RP)**2.2
 PRINT*, 'INPUT AN INITIAL GUESS FOR UFC'
 READ*, GUESS
 UFL=GUESS
 DO 10 I=1.500
 UT=1.53*G**.71*DP**1.14*(RP-RF)**.71
 UT=UT/(RF**.29*XMU**.43)
 UF=(2*G*D*((1-(WS/((UFL-UT)*RP*A))))**-4.7-1)/FPC**.5
 UF=UF+UT
 ERR=ABS(UF-UFL)
 IF(ERR.LT..0001) THEN
 GOTO 20
 ENDIF
 UFL=UF
 10 CONTINUE
 PRINT*, 'DID NOT CONVERGE FOR YANG'
 GOTO 30
20 PRINT*, 'UFC YANG = ',UF
30 CONTINUE
 DP=DP*1000.
 UGSALT=WS/(RF*A)**10.**(1.44*DP+1.96)
 UGSALT=UGSALT*(G+D)**((1.18*DP+2.5)/2)
 UGSALT=UGSALT**(1/(1.1*DP+3.5))
 PRINT*, 'SALTATION VELOCITY BY RIZK = ',UGSALT
 DP=DP/1000.
 PRINT*, 'INPUT AN INITIAL GUESS FOR OWENS SALTATION'
 READ*, UFLO
 DO 40 I=1.500
 FG=.0014+.125/((RF*D*UFLO)/XMU)**.32
 40 CONTINUE
UGSALT=(.01*(2*RP*G*DP)/(RF*FG))**.5
ERR=ABS(UGSALT-UFLO)
IF(ERR.LT.0.001) THEN
GOTO 60
ENDIF
UFLO=UGSALT
CONTINUE
PRINT*,'DID NOT CONVERGE FOR OWENS'
GOTO 50
PRINT*,'SALTATION VELOCITY BY OWENS = ',UGSALT
CONTINUE
PRINT*, 'INPUT AN INITIAL GUESS FOR ROSE'
READ*, UFL
DO 70 I=1,500
WG=RF*A*UFL
UGCR=3.2*(WS/WG)**.2*(D/DP)**.6*(RP/RF)**-.7
UGCR=UGCR*(UFL/(G+D)**.5)**.5
UGCR=UGCR*UT
ERR=ABS(UGCR-UFL)
IF(ERR.LT.0.001) THEN
GOTO 80
ENDIF
UFL=UGCR
CONTINUE
PRINT*, 'DID NOT CONVERGE FOR ROSE AND DUCKWORTH'
GOTO 90
PRINT*, 'CHOKING VLOCITY BY ROSE AND DUCKWORTH = ',UGCR
CONTINUE
PRINT*, 'INPUT A 1 TO CONTINUE'
READ*, Z
IF(Z.EQ.1.) THEN
GOTO 100
ENDIF
STOP
END
C LINEAR STABILITY
C DT=PIPE DIAMETER
C DP=PARTICLE DIAMETER
C UPS=PARTICLE VELOCITY
C UFS=GAS VELOCITY
C RP=PARTICLE DENSITY
C RF=FLUID DENSITY
C PRESS=PRESSURE DROP
C XM1,XM2 ARE THE EIGENVALUES
C IRUN IS THE EXPERIMENTAL RUN NUMBER
C
OPEN(UNIT=10,FILE='INPUT.DAT')
DT=0.0508
RF=1.2
GRAV=9.8
PRINT*, 'INPUT PARTICLE DIAMETER IN MICRONS'
READ*, DP
DP=DP*1.E-6
PRINT*, 'INPUT ANGLE OF INCLINATION IN DEGREES'
READ*, ANGLE
THETA=ANGLE/180.*3.1415
PRINT*, 'SIN(THETA), IS THE SIN OF THETA'
C GET CONSTANTS FOR PARTICLE VELOCITY AS FUNCTION
C OF GAS VELOCITY (LINEAR)
C PRINT*, 'INPUT THE SLOPE'
READ*, SLOPE
PRINT*, 'INPUT THE INTERCEPT'
READ*, INTER
OPEN(UNIT=11,FILE='OUTPUT.DAT')
5 WRITE(11,200)
WRITE(11,210)
WRITE(11,220)
WRITE(11,210)
WRITE(11,200)
WRITE(11,210)
200 FORMAT(5('_'))
210 FORMAT(' ')
220 FORMAT(4X,'RUN',7X,'Ug',8X,'Uf',10X,'M1',10X,'M2')
READ(10,110) NDAT, RP, IRUN
110 FORMAT(1,F,I)
IF(NDAT.EQ.999) THEN
GOTO 1000
ENDIF
DO 10 I=1, NDAT
READ(10,100) WS, UFS, UPS, PRE, DUMMY1, DUMMY2, DUMMY3

100 FORMAT(7F)
RE=DT*UFS*3.28*0.07476/(1.24E-5)
FG=0.0791/RE**0.25
DPG=2*FG*UFS**2*0.07476*10/0.170583
DPG=DPG*760/(32.174*14.696*144)
DFF=DUMMY2-DPG
PRESS=PRE-DIFF

C CONVERSION TO SI UNITS
WS=WS*7.56E-3
UFS=UFS*0.3048
UPS=UPS*0.3048
PRESS=PRESS*43.74097
RP=RP*16.02
UPS=SLOPE*UFS+INTER
E=1-(4*WS/(3.1415*DT**2*TJPS*RP))

C CALC DRAG COEFF
REP=RF*DP*(UFS/E-UPS)/1.E-5
CDS=18.5*E**-4.7/REP**.6
UFS=UFS/E
FS=0.0285*(GRAV*DT)**.5/UPS

C GET CONSTANTS FOR LINEAR ANALYSIS
A=3*CDS*RF/(4*RP*DP)
B=GRAV*SIN(THETA)+PRESS/RP
C=2*FS/DT
D=GRAV*SIN(THETA)+PRESS/RF
EE=2*FG/DT
A0=A*(UFS-UPS)**2-B-C*UPS**2
A1=2*A*(UFS-UPS)
A2=-2*C*UPS
B0=-A*(UFS-UPS)**2-EE*UFS**2
B1=-2*A*(UFS-UPS)
B2=-2*EE*UFS
XL1=(A1-B1-B2-A2)
XL2=A2+B1+A2+B2-A1+B2

C D2=L1XD1+L2=L3
XM1=-XL1+(XL1**2-4*XL2)**.5
XM1=XM1/2
XM2=-XL1-(XL1**2-4*XL2)**.5
XM2=XM2/2
UFS=UFS/E
WRITE(11,250) IRUN, UFS, UPS, XM1, XM2

250 FORMAT(4X,I3,5X,F5.2,5X,F5.2,5X,F8.3,5X,F8.3)
IRUN=IRUN+1
RP=RP/16.02
10 CONTINUE
WRITE(11,260)
260 FORMAT('Y')
GOTO 5
1000 STOP
END
C PROGRAM TO CALCULATE PRESSURE DROP
C RATIOS WITH YANG AND KONNO SAITO
C
C DT=PIPE DIAMETER
C DP=PARTICLE DIAMETER
C UPS=PARTICLE VELOCITY
C UFS=GAS VELOCITY
C RP=PARTICLE DENSITY
C RF=FLUID DENSITY
C PRESS=PRESSURE DROP
C IRUN IS THE EXPERIMENTAL RUN NUMBER
C DPKS = PRESSURE DROP BY KONNO-SAITO
C DPY = PRESSURE DROP BY YANG
C
C OPEN INPUT FILE
C
OPEN(UNIT=10,FILE='INPUT.DAT')
DT=0.0508
RF=1.2
GRAV=9.8
C GET DP AND ANGLE FROM SCREEN
PRINT*,'INPUT PARTICLE DIAMETER IN MICRONS'
READ*,DP
DP=DP*1.E-6
PRINT*,'INPUT ANGLE OF INCLINATION IN DEGREES'
READ*,ANGLE
THETA=ANGLE/180.*3.1415
C OPEN OUTPUT FILES
OPEN(UNIT=11,FILE='ROUT.DAT')
OPEN(UNIT=12,FILE='ROUTY.DAT')
OPEN(UNIT=13,FILE='MEAN.DAT',ACCESS='APPEND')
210 FORMAT('')
C READ DATA AND CHECK FOR END OF FILE
5 READ(10,110)NDAT,RP,IRUN
PRINT*,'NDAT IS ',NDAT
110 FORMAT(I,F,I)
IF(NDAT.EQ.999) THEN
GOTO 1000
ENDIF
DO 10 I=1,NDAT
READ(10,100)WS,UFS,UPS,PREDUMMY1.DUMMY2,DUMMY3,DU
100 FORMAT(7F)
RE=DT*UFS*3.28*0.07476/(1.24E-5)
FG=0.0791/RE**0.25
DPG=2*FG*UFS*2*0.07476*10/0.170583
DPG = DPG * 760 / (32.174 * 14.696 * 144)
DIFF = DUMMY2 - DPG
PRESS = PRE - DIFF

C CONVERSION TO SI UNITS
WS = WS * 7.56E-3
UFS = UFS * 0.3048
UPS = UPS * 0.3048
PRESS = PRESS * 43.73097
RP = RP * 16.02
E = 1 - (4 * WS / (3.1415 * DT ** 2 * UPS * PRP))
UFS = UFS / E

C CALC TERMINAL VELOCITY
UT = 0.153 * GRAV ** 0.71 * DP ** 1.14 * (RP - RF) ** 0.71

C CALC PRESSURE DROP BY KONNO SAITO AND
C GET THE RATIO RATIOK
UPKS = E * UFS - UT
FSKS = 0.0285 * (GRAV * DT) ** 0.5 / UPKS
EKS = 1 - (4 * WS / (3.1415 * DT ** 2 * (RP - RF) * UPKS))
DPKS = (1 - EKS) * GRAV * SIN(THEA) * RP - RF * EKS * GRAV * SIN(THEA)
DPKS = DPKS - 2 * FG * RF * UFS ** 2 / DT
DPKS = DPKS - 2 * FSKS * RP - (1 - EKS) * UPKS ** 2 / DT
RATIOK = PRESS / DPKS
DEVS = ABS (PRESS - DPKS) / PRESS * 100

C DECIDE WHICH YANG CORRELATION TO USE
C VERTICAL OR HORIZONTAL
IF (ANGLE.LT.50.) THEN
GOTO 200
ENDIF

C CALC PRESSURE DROP BY YANG
C FOR VERTICAL PIPE AND
C PRINT RESULTS TO THE OUTPUT
C FILE
UPY = 1.
150 EY = 1 - 4 * WS / (3.1415 * DT ** 2 * (RP - RF) * UPY)
FSY = (1 - EY) * UT / (UFS - UPY) ** 0.979
FSY = FSY ** (1 - EY) * 0.00315 / EY ** 3
UPYC = UFS - UT * SQRT (((1 - FSY * UPY ** 2 / (2 * GRAV * DT)) * EY ** 4.7))
ERROR = ABS (UPYC - UPY)
IF (ERROR.LT.0.0001) THEN
GOTO 180
ENDIF
UPY = UPYC
GOTO 150
180 DPY = (1 - EY) * GRAV * RP - RF * EKS * GRAV
DPY = DPY + 2 * FG * RF * UF ** 2 / DT
DPY = DPY + 2 * FSY * RP * (1 - EY) * UPY ** 2 / DT
RATIOY = PRESS / DPY
DEVY = ABS((PRESS - DPY) / PRESS) * 100
RP = RP / 16.02
WRITE(11, 350) UFS, RATIOK
WRITE(12, 350) UFS, RATIOY
WRITE(13, 370) DEVKS, DEVY
GOTO 10

C CALC PRESSURE DROP BY YANG FOR
C THE HORIZONTAL PIPE AND PRINT
C RESULTS TO THE OUTPUT FILES

200 UPY = 1.
205 EY = 1 - 4 * WS / (3.1415 * DT ** 2 * (RP - RF) * UFS ** 2)
IF (EY.GT.0.9999) THEN
 EY = .99999
ENDIF

FSY = .0293 * (1 - EY) / EY ** 3
FSY = FSY * (1 - EY) * UFS / (GRAV * DT) ** .5 ** -1.15

UPYC = UFS - UT * SQRT(((FSY * UPY ** 2 / (2 * GRAV * DT)) * EY ** 4.7))
IF (UPYCLT.0.0) THEN
 UPYC = ABS(UPYC)
ENDIF

ERROR = ABS(UPYC - UPY)
IF (ERROR.LT.0.0001) THEN
 GOTO 300
ENDIF

UPY = UPYC
GOTO 205

300 DPY = 2 * FG * RF * UFS ** 2 / DT
DPY = DPY + 2 * FSY * RP * (1 - EY) * UPY ** 2 / DT
RATIOY = PRESS / DPY
DEVY = ABS((PRESS - DPY) / PRESS) * 100
UFS = UFS * E
WRITE(11, 350) UFS, RATIOK
WRITE(12, 350) UFS, RATIOY
WRITE(13, 370) DEVKS, DEVY

350 FORMAT(F, '.', F)
15 RP = RP / 16.02
10 CONTINUE
WRITE(11, 360) IRUN
WRITE(12, 360) IRUN
WRITE(13, 360) IRUN

360 FORMAT('RUNS ABOVE BEGAN AT RUN ', I)
370 FORMAT(F,5X,F)
 GOTO 5
1000 END
APPENDIX D.

EXPERIMENTAL DATA
125 MICRON GLASS BEADS
VERTICAL ORIENTATION
HIGH HUMIDITY

<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>14.67</td>
<td>12.01</td>
<td>6.7E-3</td>
<td>55.74</td>
<td>51.91</td>
<td>.9999</td>
<td>.183</td>
</tr>
<tr>
<td>35</td>
<td>10.78</td>
<td>8.80</td>
<td>7.8E-3</td>
<td>34.11</td>
<td>30.27</td>
<td>.9998</td>
<td>.255</td>
</tr>
<tr>
<td>36</td>
<td>8.62</td>
<td>7.26</td>
<td>8.8E-3</td>
<td>23.04</td>
<td>20.48</td>
<td>.9998</td>
<td>.400</td>
</tr>
<tr>
<td>37</td>
<td>7.65</td>
<td>6.37</td>
<td>7.8E-3</td>
<td>17.87</td>
<td>16.60</td>
<td>.9997</td>
<td>.495</td>
</tr>
<tr>
<td>38</td>
<td>8.05</td>
<td>4.37</td>
<td>9.1E-3</td>
<td>14.83</td>
<td>11.00</td>
<td>.9996</td>
<td>.600</td>
</tr>
<tr>
<td>39</td>
<td>5.16</td>
<td>4.86</td>
<td>9.4E-3</td>
<td>15.85</td>
<td>6.33</td>
<td>.9985</td>
<td>.727</td>
</tr>
<tr>
<td>40</td>
<td>4.38</td>
<td>3.32</td>
<td>9.1E-3</td>
<td>17.88</td>
<td>6.20</td>
<td>.9994</td>
<td>.833</td>
</tr>
</tbody>
</table>

TEMP = 25.0 C
HUMIDITY = 57.2
MASS RATE = 8.5E-3 kg/sec

125 MICRON GLASS BEADS
VERTICAL ORIENTATION
LOW HUMIDITY

<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>14.24</td>
<td>11.39</td>
<td>7.3E-3</td>
<td>52.21</td>
<td>49.28</td>
<td>.9999</td>
<td>.206</td>
</tr>
<tr>
<td>27</td>
<td>10.14</td>
<td>7.58</td>
<td>8.8E-3</td>
<td>37.39</td>
<td>27.18</td>
<td>.9998</td>
<td>.346</td>
</tr>
<tr>
<td>28</td>
<td>7.00</td>
<td>7.72</td>
<td>9.1E-3</td>
<td>32.10</td>
<td>14.23</td>
<td>.9998</td>
<td>.523</td>
</tr>
<tr>
<td>29</td>
<td>8.14</td>
<td>6.90</td>
<td>9.1E-3</td>
<td>30.44</td>
<td>11.28</td>
<td>.9997</td>
<td>.596</td>
</tr>
<tr>
<td>30</td>
<td>5.45</td>
<td>4.65</td>
<td>9.8E-3</td>
<td>25.70</td>
<td>9.18</td>
<td>.9996</td>
<td>.684</td>
</tr>
<tr>
<td>31</td>
<td>5.07</td>
<td>4.68</td>
<td>9.8E-3</td>
<td>25.96</td>
<td>8.08</td>
<td>.9998</td>
<td>.748</td>
</tr>
<tr>
<td>32</td>
<td>4.42</td>
<td>3.83</td>
<td>8.8E-3</td>
<td>28.06</td>
<td>6.37</td>
<td>.9998</td>
<td>.793</td>
</tr>
<tr>
<td>33</td>
<td>4.22</td>
<td>2.75</td>
<td>8.8E-3</td>
<td>27.55</td>
<td>5.87</td>
<td>.9994</td>
<td>.831</td>
</tr>
</tbody>
</table>

TEMP = 35.0 C
HUMIDITY = 18.0
MASS RATE = 8.8E-3 kg/sec
<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>12.87</td>
<td>9.05</td>
<td>18.1E-3</td>
<td>50.38</td>
<td>40.18</td>
<td>.9996</td>
<td>.570</td>
</tr>
<tr>
<td>10</td>
<td>11.91</td>
<td>7.26</td>
<td>17.8E-3</td>
<td>49.28</td>
<td>38.07</td>
<td>.9985</td>
<td>.697</td>
</tr>
<tr>
<td>11</td>
<td>10.18</td>
<td>7.26</td>
<td>16.1E-3</td>
<td>41.43</td>
<td>27.38</td>
<td>.9985</td>
<td>.713</td>
</tr>
<tr>
<td>12</td>
<td>8.40</td>
<td>7.79</td>
<td>15.2E-3</td>
<td>40.90</td>
<td>18.55</td>
<td>.9994</td>
<td>.887</td>
</tr>
<tr>
<td>13</td>
<td>6.88</td>
<td>5.12</td>
<td>18.0E-3</td>
<td>37.97</td>
<td>12.34</td>
<td>.9992</td>
<td>1.101</td>
</tr>
<tr>
<td>14</td>
<td>5.48</td>
<td>4.75</td>
<td>18.4E-3</td>
<td>28.72</td>
<td>8.28</td>
<td>.9992</td>
<td>1.410</td>
</tr>
<tr>
<td>15</td>
<td>7.08</td>
<td>5.04</td>
<td>18.9E-3</td>
<td>28.28</td>
<td>17.68</td>
<td>.9992</td>
<td>.947</td>
</tr>
<tr>
<td>16</td>
<td>6.11</td>
<td>5.84</td>
<td>18.9E-3</td>
<td>29.07</td>
<td>11.19</td>
<td>.9993</td>
<td>1.238</td>
</tr>
</tbody>
</table>

126 MICRON GLASS BEADS

VERTICAL ORIENTATION

HIGH HUMIDITY

TEMP = 22.5 C HUMIDITY = 52.0 MASS RATE = 18.3E-3 kg/sec
<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>18.76</td>
<td>12.23</td>
<td>18.3E-3</td>
<td>71.07</td>
<td>85.54</td>
<td>.9997</td>
<td>.388</td>
</tr>
<tr>
<td>20</td>
<td>13.38</td>
<td>7.59</td>
<td>18.3E-3</td>
<td>50.96</td>
<td>44.19</td>
<td>.9995</td>
<td>.547</td>
</tr>
<tr>
<td>21</td>
<td>10.63</td>
<td>10.16</td>
<td>18.3E-3</td>
<td>44.07</td>
<td>29.52</td>
<td>.9998</td>
<td>.712</td>
</tr>
<tr>
<td>22</td>
<td>9.36</td>
<td>6.17</td>
<td>18.3E-3</td>
<td>39.82</td>
<td>19.39</td>
<td>.9994</td>
<td>.905</td>
</tr>
<tr>
<td>23</td>
<td>8.14</td>
<td>5.04</td>
<td>19.0E-3</td>
<td>46.28</td>
<td>11.29</td>
<td>.9992</td>
<td>1.237</td>
</tr>
<tr>
<td>24</td>
<td>6.00</td>
<td>6.74</td>
<td>19.1E-3</td>
<td>40.24</td>
<td>10.23</td>
<td>.9993</td>
<td>1.319</td>
</tr>
<tr>
<td>25</td>
<td>5.02</td>
<td>4.68</td>
<td>19.1E-3</td>
<td>41.78</td>
<td>7.98</td>
<td>.9992</td>
<td>1.523</td>
</tr>
<tr>
<td>26</td>
<td>10.40</td>
<td>8.36</td>
<td>18.3E-3</td>
<td>44.40</td>
<td>28.44</td>
<td>.9996</td>
<td>.704</td>
</tr>
<tr>
<td>27</td>
<td>6.22</td>
<td>7.88</td>
<td>18.7E-3</td>
<td>41.32</td>
<td>18.25</td>
<td>.9995</td>
<td>.908</td>
</tr>
<tr>
<td>28</td>
<td>7.45</td>
<td>5.89</td>
<td>19.4E-3</td>
<td>38.32</td>
<td>15.64</td>
<td>.9993</td>
<td>1.044</td>
</tr>
<tr>
<td>29</td>
<td>6.78</td>
<td>6.74</td>
<td>19.3E-3</td>
<td>39.82</td>
<td>13.44</td>
<td>.9994</td>
<td>1.138</td>
</tr>
<tr>
<td>30</td>
<td>6.48</td>
<td>4.67</td>
<td>18.3E-3</td>
<td>38.77</td>
<td>12.46</td>
<td>.9992</td>
<td>1.168</td>
</tr>
<tr>
<td>31</td>
<td>5.78</td>
<td>5.09</td>
<td>18.3E-3</td>
<td>39.82</td>
<td>10.17</td>
<td>.9993</td>
<td>1.298</td>
</tr>
</tbody>
</table>

TEMP = 35.0 C HUMIDITY = 18.0 MASS RATE = 18.8E-3 kg/sec
125 Micron Glass Beads

Vertical Orientation

High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>14.94</td>
<td>12.95</td>
<td>23.2E-3</td>
<td>68.87</td>
<td>53.57</td>
<td>.9998</td>
<td>.622</td>
</tr>
<tr>
<td>57</td>
<td>10.22</td>
<td>7.88</td>
<td>25.6E-3</td>
<td>50.56</td>
<td>27.60</td>
<td>.9993</td>
<td>1.003</td>
</tr>
<tr>
<td>58</td>
<td>8.54</td>
<td>7.68</td>
<td>25.8E-3</td>
<td>58.44</td>
<td>20.12</td>
<td>.9993</td>
<td>1.214</td>
</tr>
<tr>
<td>59</td>
<td>6.98</td>
<td>6.50</td>
<td>28.5E-3</td>
<td>57.54</td>
<td>14.14</td>
<td>.9992</td>
<td>1.517</td>
</tr>
<tr>
<td>60</td>
<td>6.00</td>
<td>5.74</td>
<td>26.2E-3</td>
<td>49.18</td>
<td>10.68</td>
<td>.9991</td>
<td>1.745</td>
</tr>
<tr>
<td>61</td>
<td>4.71</td>
<td>4.85</td>
<td>24.3E-3</td>
<td>81.80</td>
<td>7.11</td>
<td>.9999</td>
<td>2.082</td>
</tr>
<tr>
<td>62</td>
<td>6.75</td>
<td>6.74</td>
<td>28.1E-3</td>
<td>65.47</td>
<td>12.65</td>
<td>.9992</td>
<td>1.806</td>
</tr>
<tr>
<td>64</td>
<td>8.71</td>
<td>7.18</td>
<td>28.6E-3</td>
<td>57.82</td>
<td>20.86</td>
<td>.9992</td>
<td>1.314</td>
</tr>
<tr>
<td>65</td>
<td>11.16</td>
<td>7.18</td>
<td>28.0E-3</td>
<td>52.71</td>
<td>32.18</td>
<td>.9992</td>
<td>1.003</td>
</tr>
</tbody>
</table>

Temp = 25.0 C Humidity = 51.7 Mass Rate = 26.3E-3 kg/sec

125 Micron Glass Beads

Vertical Orientation

Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>15.96</td>
<td>15.01</td>
<td>25.7E-3</td>
<td>82.18</td>
<td>60.15</td>
<td>.9997</td>
<td>.644</td>
</tr>
<tr>
<td>67</td>
<td>13.78</td>
<td>12.01</td>
<td>26.9E-3</td>
<td>61.48</td>
<td>46.53</td>
<td>.9995</td>
<td>.782</td>
</tr>
<tr>
<td>68</td>
<td>13.11</td>
<td>11.39</td>
<td>27.4E-3</td>
<td>56.88</td>
<td>42.85</td>
<td>.9995</td>
<td>.836</td>
</tr>
<tr>
<td>69</td>
<td>11.25</td>
<td>9.05</td>
<td>28.0E-3</td>
<td>50.60</td>
<td>32.81</td>
<td>.9994</td>
<td>.980</td>
</tr>
<tr>
<td>70</td>
<td>9.47</td>
<td>7.59</td>
<td>28.3E-3</td>
<td>48.10</td>
<td>24.13</td>
<td>.9992</td>
<td>1.188</td>
</tr>
<tr>
<td>71</td>
<td>8.05</td>
<td>7.18</td>
<td>29.4E-3</td>
<td>46.09</td>
<td>18.15</td>
<td>.9992</td>
<td>1.481</td>
</tr>
<tr>
<td>72</td>
<td>6.74</td>
<td>4.75</td>
<td>29.7E-3</td>
<td>46.88</td>
<td>13.28</td>
<td>.9997</td>
<td>1.762</td>
</tr>
<tr>
<td>73</td>
<td>6.36</td>
<td>4.59</td>
<td>29.9E-3</td>
<td>51.88</td>
<td>12.01</td>
<td>.9987</td>
<td>1.879</td>
</tr>
<tr>
<td>74</td>
<td>5.02</td>
<td>4.40</td>
<td>28.3E-3</td>
<td>59.78</td>
<td>7.98</td>
<td>.9987</td>
<td>2.258</td>
</tr>
<tr>
<td>75</td>
<td>5.33</td>
<td>4.65</td>
<td>30.0E-3</td>
<td>64.52</td>
<td>8.84</td>
<td>.9987</td>
<td>2.249</td>
</tr>
</tbody>
</table>

Temp = 35.0 C Humidity = 16.0 Mass Rate = 28.4E-3 kg/sec
450 Micron Glass Beads
Vertical Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa)</th>
<th>Air Press (Pa)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>12.87</td>
<td>6.5E-3</td>
<td>48.92</td>
<td>41.25</td>
<td>.9999</td>
<td>.203</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>11.52</td>
<td>6.71</td>
<td>39.08</td>
<td>15.53</td>
<td>.9998</td>
<td>.295</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>8.76</td>
<td>5.62</td>
<td>31.28</td>
<td>21.04</td>
<td>.9998</td>
<td>.453</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>7.18</td>
<td>6.41</td>
<td>10.0E-3</td>
<td>30.10</td>
<td>.9997</td>
<td>.592</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>6.40</td>
<td>8.89</td>
<td>10.8E-3</td>
<td>32.59</td>
<td>.9996</td>
<td>.873</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>8.89</td>
<td>5.04</td>
<td>10.8E-3</td>
<td>10.52</td>
<td>.9996</td>
<td>.731</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>5.51</td>
<td>4.49</td>
<td>37.48</td>
<td>9.37</td>
<td>.9995</td>
<td>.768</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>10.36</td>
<td>8.38</td>
<td>37.18</td>
<td>28.22</td>
<td>.9998</td>
<td>.350</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>7.74</td>
<td>5.95</td>
<td>32.26</td>
<td>16.94</td>
<td>.9998</td>
<td>.533</td>
<td></td>
</tr>
</tbody>
</table>

Temp = 20.0 C Humidity = 50.0 Mass Rate = 12.5E-3 kg/sec

450 Micron Glass Beads
Vertical Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa)</th>
<th>Air Press (Pa)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>15.86</td>
<td>12.95</td>
<td>7.2E-3</td>
<td>68.85</td>
<td>60.15</td>
<td>.9999</td>
<td>.180</td>
</tr>
<tr>
<td>120</td>
<td>11.83</td>
<td>7.59</td>
<td>9.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.344</td>
</tr>
<tr>
<td>121</td>
<td>10.45</td>
<td>7.59</td>
<td>8.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.455</td>
</tr>
<tr>
<td>122</td>
<td>10.45</td>
<td>7.59</td>
<td>9.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.548</td>
</tr>
<tr>
<td>123</td>
<td>9.56</td>
<td>8.67</td>
<td>9.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.584</td>
</tr>
<tr>
<td>124</td>
<td>9.56</td>
<td>8.67</td>
<td>10.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.645</td>
</tr>
<tr>
<td>125</td>
<td>7.36</td>
<td>8.17</td>
<td>10.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.751</td>
</tr>
<tr>
<td>126</td>
<td>6.60</td>
<td>5.37</td>
<td>10.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.746</td>
</tr>
<tr>
<td>127</td>
<td>5.74</td>
<td>4.15</td>
<td>10.0E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.746</td>
</tr>
<tr>
<td>128</td>
<td>6.18</td>
<td>4.05</td>
<td>11.5E-3</td>
<td>35.83</td>
<td>17.18</td>
<td>.9999</td>
<td>.746</td>
</tr>
</tbody>
</table>

Temp = 35.0 C Humidity = 16.0 Mass Rate = 10.0E-3 kg/sec
450 Micron Glass Beads

Vertical Orientation

High Humidity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>18.87</td>
<td>14.05</td>
<td>17.8E-3</td>
<td>86.82</td>
<td>84.91</td>
<td>.9997</td>
<td>.428</td>
</tr>
<tr>
<td>100</td>
<td>14.78</td>
<td>12.01</td>
<td>19.8E-3</td>
<td>72.88</td>
<td>82.45</td>
<td>.9997</td>
<td>.535</td>
</tr>
<tr>
<td>101</td>
<td>11.58</td>
<td>7.98</td>
<td>20.9E-3</td>
<td>54.83</td>
<td>34.20</td>
<td>.9995</td>
<td>.723</td>
</tr>
<tr>
<td>102</td>
<td>10.36</td>
<td>8.81</td>
<td>22.6E-3</td>
<td>55.04</td>
<td>28.22</td>
<td>.9995</td>
<td>.872</td>
</tr>
<tr>
<td>103</td>
<td>9.36</td>
<td>8.98</td>
<td>22.8E-3</td>
<td>48.62</td>
<td>23.83</td>
<td>.9993</td>
<td>1.974</td>
</tr>
<tr>
<td>104</td>
<td>8.89</td>
<td>8.69</td>
<td>22.6E-3</td>
<td>47.15</td>
<td>21.81</td>
<td>.9995</td>
<td>1.016</td>
</tr>
<tr>
<td>105</td>
<td>6.87</td>
<td>5.20</td>
<td>23.0E-3</td>
<td>55.89</td>
<td>13.78</td>
<td>.9991</td>
<td>1.338</td>
</tr>
<tr>
<td>106</td>
<td>7.56</td>
<td>2.37</td>
<td>21.5E-3</td>
<td>52.01</td>
<td>18.28</td>
<td>.9992</td>
<td>1.135</td>
</tr>
<tr>
<td>108</td>
<td>5.85</td>
<td>3.95</td>
<td>18.3E-3</td>
<td>56.36</td>
<td>10.40</td>
<td>.9991</td>
<td>1.249</td>
</tr>
</tbody>
</table>

Temp: 23.0 C
Humidity: 50.0
Mass Rate: 22.7E-3 kg/sec

450 Micron Glass Beads

Vertical Orientation

Low Humidity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>129</td>
<td>15.34</td>
<td>12.01</td>
<td>18.8E-3</td>
<td>74.08</td>
<td>58.11</td>
<td>.9997</td>
<td>.439</td>
</tr>
<tr>
<td>130</td>
<td>14.00</td>
<td>11.79</td>
<td>18.9E-3</td>
<td>61.25</td>
<td>47.84</td>
<td>.9997</td>
<td>.540</td>
</tr>
<tr>
<td>131</td>
<td>12.36</td>
<td>11.19</td>
<td>20.8E-3</td>
<td>53.14</td>
<td>38.46</td>
<td>.9996</td>
<td>.673</td>
</tr>
<tr>
<td>132</td>
<td>10.74</td>
<td>7.26</td>
<td>21.7E-3</td>
<td>47.42</td>
<td>30.05</td>
<td>.9994</td>
<td>.810</td>
</tr>
<tr>
<td>133</td>
<td>10.05</td>
<td>8.36</td>
<td>22.7E-3</td>
<td>42.08</td>
<td>26.78</td>
<td>.9995</td>
<td>.903</td>
</tr>
<tr>
<td>134</td>
<td>9.49</td>
<td>6.95</td>
<td>22.8E-3</td>
<td>41.48</td>
<td>24.23</td>
<td>.9992</td>
<td>.952</td>
</tr>
<tr>
<td>135</td>
<td>9.16</td>
<td>4.37</td>
<td>22.5E-3</td>
<td>34.89</td>
<td>22.78</td>
<td>.9990</td>
<td>.982</td>
</tr>
<tr>
<td>136</td>
<td>7.87</td>
<td>3.86</td>
<td>23.1E-3</td>
<td>43.83</td>
<td>17.45</td>
<td>.9988</td>
<td>1.172</td>
</tr>
<tr>
<td>137</td>
<td>8.58</td>
<td>3.51</td>
<td>22.1E-3</td>
<td>42.77</td>
<td>12.76</td>
<td>.9987</td>
<td>1.344</td>
</tr>
<tr>
<td>138</td>
<td>5.89</td>
<td>2.75</td>
<td>19.4E-3</td>
<td>43.46</td>
<td>10.52</td>
<td>.9986</td>
<td>1.315</td>
</tr>
<tr>
<td>139</td>
<td>16.58</td>
<td>14.05</td>
<td>18.4E-3</td>
<td>77.08</td>
<td>63.31</td>
<td>.9998</td>
<td>.397</td>
</tr>
</tbody>
</table>

Temp: 35.0 C
Humidity: 16.0
Mass Rate: 20.8E-3 kg/sec
<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>17.34</td>
<td>7.59</td>
<td>20.0E-3</td>
<td>97.99</td>
<td>69.53</td>
<td>.9993</td>
<td>.800</td>
</tr>
<tr>
<td>110</td>
<td>15.04</td>
<td>6.41</td>
<td>30.2E-3</td>
<td>83.05</td>
<td>54.22</td>
<td>.9991</td>
<td>.804</td>
</tr>
<tr>
<td>111</td>
<td>11.78</td>
<td>7.28</td>
<td>34.2E-3</td>
<td>84.91</td>
<td>35.38</td>
<td>.9991</td>
<td>1.161</td>
</tr>
<tr>
<td>112</td>
<td>9.00</td>
<td>4.82</td>
<td>38.1E-3</td>
<td>54.73</td>
<td>22.08</td>
<td>.9984</td>
<td>1.603</td>
</tr>
<tr>
<td>113</td>
<td>7.78</td>
<td>4.48</td>
<td>35.3E-3</td>
<td>62.33</td>
<td>17.11</td>
<td>.9984</td>
<td>1.814</td>
</tr>
<tr>
<td>114</td>
<td>7.11</td>
<td>4.89</td>
<td>33.1E-3</td>
<td>47.27</td>
<td>14.62</td>
<td>.9986</td>
<td>1.880</td>
</tr>
<tr>
<td>115</td>
<td>8.41</td>
<td>5.95</td>
<td>33.9E-3</td>
<td>62.65</td>
<td>19.60</td>
<td>.9989</td>
<td>1.611</td>
</tr>
<tr>
<td>116</td>
<td>9.78</td>
<td>7.28</td>
<td>33.4E-3</td>
<td>82.01</td>
<td>25.53</td>
<td>.9991</td>
<td>1.366</td>
</tr>
<tr>
<td>117</td>
<td>10.75</td>
<td>8.81</td>
<td>33.1E-3</td>
<td>73.92</td>
<td>30.15</td>
<td>.9992</td>
<td>1.230</td>
</tr>
</tbody>
</table>

TEMP= 20.0 C **HUMIDITY= 50.0** **MASS RATE= 33.3E-3 kg/sec**

<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>18.08</td>
<td>11.19</td>
<td>27.4E-3</td>
<td>88.25</td>
<td>60.82</td>
<td>.9995</td>
<td>.883</td>
</tr>
<tr>
<td>141</td>
<td>13.28</td>
<td>9.30</td>
<td>31.1E-3</td>
<td>71.70</td>
<td>43.61</td>
<td>.9993</td>
<td>.938</td>
</tr>
<tr>
<td>142</td>
<td>11.31</td>
<td>10.48</td>
<td>33.8E-3</td>
<td>57.84</td>
<td>32.82</td>
<td>.9994</td>
<td>1.195</td>
</tr>
<tr>
<td>143</td>
<td>10.00</td>
<td>7.88</td>
<td>34.0E-3</td>
<td>54.65</td>
<td>25.56</td>
<td>.9991</td>
<td>1.260</td>
</tr>
<tr>
<td>144</td>
<td>6.97</td>
<td>6.87</td>
<td>33.5E-3</td>
<td>51.84</td>
<td>21.96</td>
<td>.9990</td>
<td>1.496</td>
</tr>
<tr>
<td>145</td>
<td>8.11</td>
<td>7.50</td>
<td>33.5E-3</td>
<td>52.88</td>
<td>18.41</td>
<td>.9991</td>
<td>1.654</td>
</tr>
<tr>
<td>146</td>
<td>7.11</td>
<td>5.74</td>
<td>34.0E-3</td>
<td>57.02</td>
<td>14.63</td>
<td>.9988</td>
<td>1.813</td>
</tr>
<tr>
<td>147</td>
<td>7.67</td>
<td>5.74</td>
<td>33.1E-3</td>
<td>50.14</td>
<td>15.98</td>
<td>.9988</td>
<td>1.725</td>
</tr>
<tr>
<td>148</td>
<td>6.98</td>
<td>5.04</td>
<td>32.3E-3</td>
<td>51.42</td>
<td>14.14</td>
<td>.9997</td>
<td>1.850</td>
</tr>
</tbody>
</table>

TEMP= 36.5 C **HUMIDITY= 19.4** **MASS RATE= 30.0E-3 kg/sec**
79 Micron Glass Beads
Vertical Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>11.18</td>
<td>8.36</td>
<td>9.4E-3</td>
<td>33.43</td>
<td>32.18</td>
<td>.9998</td>
<td>.335</td>
</tr>
<tr>
<td>151</td>
<td>9.11</td>
<td>6.11</td>
<td>9.6E-3</td>
<td>28.54</td>
<td>22.58</td>
<td>.9997</td>
<td>.423</td>
</tr>
<tr>
<td>152</td>
<td>8.36</td>
<td>6.88</td>
<td>9.6E-3</td>
<td>29.21</td>
<td>19.39</td>
<td>.9995</td>
<td>.481</td>
</tr>
<tr>
<td>153</td>
<td>7.62</td>
<td>3.51</td>
<td>9.8E-3</td>
<td>19.07</td>
<td>16.51</td>
<td>.9994</td>
<td>.516</td>
</tr>
<tr>
<td>154</td>
<td>6.62</td>
<td>3.77</td>
<td>9.8E-3</td>
<td>20.57</td>
<td>12.91</td>
<td>.9995</td>
<td>.594</td>
</tr>
<tr>
<td>155</td>
<td>5.82</td>
<td>2.28</td>
<td>9.8E-3</td>
<td>20.52</td>
<td>10.31</td>
<td>.9991</td>
<td>.675</td>
</tr>
<tr>
<td>156</td>
<td>6.53</td>
<td>5.69</td>
<td>9.8E-3</td>
<td>18.09</td>
<td>12.61</td>
<td>.9996</td>
<td>.608</td>
</tr>
<tr>
<td>157</td>
<td>5.20</td>
<td>3.07</td>
<td>9.7E-3</td>
<td>12.29</td>
<td>8.48</td>
<td>.9994</td>
<td>.749</td>
</tr>
<tr>
<td>158</td>
<td>4.18</td>
<td>3.37</td>
<td>7.7E-3</td>
<td>13.43</td>
<td>5.77</td>
<td>.9995</td>
<td>.733</td>
</tr>
<tr>
<td>159</td>
<td>4.71</td>
<td>3.83</td>
<td>9.2E-3</td>
<td>17.33</td>
<td>7.11</td>
<td>.9995</td>
<td>.778</td>
</tr>
</tbody>
</table>

Temp: 20.0 C
Humidity: 53.7
Mass Rate: 9.6E-3 kg/sec

79 Micron Glass Beads
Vertical Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>12.00</td>
<td>5.00</td>
<td>8.5E-3</td>
<td>41.64</td>
<td>38.54</td>
<td>.9997</td>
<td>.283</td>
</tr>
<tr>
<td>201</td>
<td>10.43</td>
<td>6.60</td>
<td>8.5E-3</td>
<td>31.81</td>
<td>28.55</td>
<td>.9997</td>
<td>.326</td>
</tr>
<tr>
<td>202</td>
<td>8.31</td>
<td>6.80</td>
<td>9.0E-3</td>
<td>25.80</td>
<td>19.21</td>
<td>.9997</td>
<td>.432</td>
</tr>
<tr>
<td>203</td>
<td>7.16</td>
<td>4.89</td>
<td>9.1E-3</td>
<td>20.53</td>
<td>14.78</td>
<td>.9998</td>
<td>.507</td>
</tr>
<tr>
<td>204</td>
<td>5.89</td>
<td>5.16</td>
<td>9.1E-3</td>
<td>15.00</td>
<td>9.90</td>
<td>.9998</td>
<td>.638</td>
</tr>
<tr>
<td>205</td>
<td>5.91</td>
<td>4.23</td>
<td>9.3E-3</td>
<td>18.33</td>
<td>10.58</td>
<td>.9998</td>
<td>.627</td>
</tr>
<tr>
<td>206</td>
<td>5.38</td>
<td>3.83</td>
<td>9.1E-3</td>
<td>16.63</td>
<td>8.97</td>
<td>.9995</td>
<td>.675</td>
</tr>
<tr>
<td>207</td>
<td>5.10</td>
<td>2.71</td>
<td>9.0E-3</td>
<td>14.55</td>
<td>8.17</td>
<td>.9993</td>
<td>.704</td>
</tr>
<tr>
<td>208</td>
<td>4.38</td>
<td>3.83</td>
<td>7.0E-3</td>
<td>13.22</td>
<td>6.92</td>
<td>.9996</td>
<td>.842</td>
</tr>
<tr>
<td>209</td>
<td>6.94</td>
<td>5.74</td>
<td>9.1E-3</td>
<td>26.50</td>
<td>13.99</td>
<td>.9997</td>
<td>.523</td>
</tr>
</tbody>
</table>

Temp: 20.0 C
Humidity: 16.0
Mass Rate: 8.8E-3 kg/sec
70 Micron Glass Beads
Vertical Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>13.38</td>
<td>8.80</td>
<td>17.0E-3</td>
<td>55.88</td>
<td>44.19</td>
<td>.9988</td>
<td>.508</td>
</tr>
<tr>
<td>161</td>
<td>11.85</td>
<td>6.67</td>
<td>17.5E-3</td>
<td>48.48</td>
<td>35.71</td>
<td>.9995</td>
<td>.590</td>
</tr>
<tr>
<td>162</td>
<td>10.85</td>
<td>7.98</td>
<td>18.8E-3</td>
<td>43.27</td>
<td>30.60</td>
<td>.9995</td>
<td>.697</td>
</tr>
<tr>
<td>163</td>
<td>9.18</td>
<td>4.75</td>
<td>18.1E-3</td>
<td>32.87</td>
<td>22.76</td>
<td>.9992</td>
<td>.783</td>
</tr>
<tr>
<td>164</td>
<td>8.85</td>
<td>7.98</td>
<td>18.3E-3</td>
<td>25.69</td>
<td>20.58</td>
<td>.9995</td>
<td>.848</td>
</tr>
<tr>
<td>165</td>
<td>7.82</td>
<td>3.32</td>
<td>18.3E-3</td>
<td>19.83</td>
<td>17.28</td>
<td>.9989</td>
<td>.937</td>
</tr>
<tr>
<td>166</td>
<td>7.60</td>
<td>6.60</td>
<td>18.1E-3</td>
<td>22.56</td>
<td>16.43</td>
<td>.9994</td>
<td>.955</td>
</tr>
<tr>
<td>167</td>
<td>5.89</td>
<td>2.29</td>
<td>18.1E-3</td>
<td>22.56</td>
<td>9.80</td>
<td>.9984</td>
<td>1.276</td>
</tr>
<tr>
<td>168</td>
<td>4.07</td>
<td>2.23</td>
<td>14.8E-3</td>
<td>16.99</td>
<td>5.50</td>
<td>.9987</td>
<td>1.468</td>
</tr>
<tr>
<td>169</td>
<td>5.92</td>
<td>4.34</td>
<td>18.2E-3</td>
<td>17.33</td>
<td>10.31</td>
<td>.9992</td>
<td>1.253</td>
</tr>
</tbody>
</table>

Temp = 20.0 °C
Humidity = 51.7
Mass Rate = 17.8E-3 kg/sec

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>14.34</td>
<td>12.01</td>
<td>18.4E-3</td>
<td>52.41</td>
<td>49.88</td>
<td>.9997</td>
<td>.459</td>
</tr>
<tr>
<td>191</td>
<td>12.36</td>
<td>6.67</td>
<td>18.8E-3</td>
<td>48.87</td>
<td>38.45</td>
<td>.9995</td>
<td>.544</td>
</tr>
<tr>
<td>192</td>
<td>10.85</td>
<td>5.24</td>
<td>17.4E-3</td>
<td>36.89</td>
<td>30.60</td>
<td>.9993</td>
<td>.641</td>
</tr>
<tr>
<td>193</td>
<td>10.67</td>
<td>6.04</td>
<td>18.8E-3</td>
<td>43.27</td>
<td>29.73</td>
<td>.9993</td>
<td>.698</td>
</tr>
<tr>
<td>194</td>
<td>8.31</td>
<td>6.17</td>
<td>9.4E-3</td>
<td>31.34</td>
<td>18.21</td>
<td>.9997</td>
<td>.453</td>
</tr>
<tr>
<td>195</td>
<td>9.20</td>
<td>6.41</td>
<td>18.3E-3</td>
<td>25.63</td>
<td>22.95</td>
<td>.9995</td>
<td>.710</td>
</tr>
<tr>
<td>196</td>
<td>9.54</td>
<td>5.37</td>
<td>15.7E-3</td>
<td>30.48</td>
<td>18.18</td>
<td>.9994</td>
<td>.833</td>
</tr>
<tr>
<td>197</td>
<td>6.47</td>
<td>0.11</td>
<td>17.8E-3</td>
<td>26.34</td>
<td>12.38</td>
<td>.9994</td>
<td>1.099</td>
</tr>
<tr>
<td>198</td>
<td>5.56</td>
<td>5.00</td>
<td>17.1E-3</td>
<td>22.26</td>
<td>9.49</td>
<td>.9993</td>
<td>1.233</td>
</tr>
</tbody>
</table>

Temp = 30.0 °C
Humidity = 18.0
Mass Rate = 18.3E-3 kg/sec
79 Micron Glass Beads
Vertical Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa</th>
<th>Air Press Pa</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>13.85</td>
<td>8.80</td>
<td>27.1E-3</td>
<td>61.01</td>
<td>46.98</td>
<td>.9994</td>
<td>.782</td>
</tr>
<tr>
<td>171</td>
<td>11.37</td>
<td>8.09</td>
<td>28.3E-3</td>
<td>46.02</td>
<td>33.25</td>
<td>.9993</td>
<td>.897</td>
</tr>
<tr>
<td>172</td>
<td>8.78</td>
<td>6.67</td>
<td>29.3E-3</td>
<td>39.01</td>
<td>21.14</td>
<td>.9991</td>
<td>1.335</td>
</tr>
<tr>
<td>173</td>
<td>7.41</td>
<td>6.41</td>
<td>28.7E-3</td>
<td>38.13</td>
<td>15.70</td>
<td>.9991</td>
<td>1.548</td>
</tr>
<tr>
<td>174</td>
<td>4.30</td>
<td>4.29</td>
<td>19.1E-3</td>
<td>37.97</td>
<td>8.05</td>
<td>.9991</td>
<td>1.774</td>
</tr>
<tr>
<td>175</td>
<td>7.87</td>
<td>6.35</td>
<td>28.5E-3</td>
<td>39.06</td>
<td>16.58</td>
<td>.9991</td>
<td>1.487</td>
</tr>
<tr>
<td>176</td>
<td>8.60</td>
<td>7.59</td>
<td>28.8E-3</td>
<td>39.52</td>
<td>20.37</td>
<td>.9992</td>
<td>1.342</td>
</tr>
<tr>
<td>177</td>
<td>10.30</td>
<td>5.95</td>
<td>23.0E-3</td>
<td>44.54</td>
<td>27.95</td>
<td>.9992</td>
<td>.883</td>
</tr>
<tr>
<td>178</td>
<td>7.82</td>
<td>5.69</td>
<td>28.3E-3</td>
<td>39.59</td>
<td>17.25</td>
<td>.9990</td>
<td>1.451</td>
</tr>
<tr>
<td>179</td>
<td>5.00</td>
<td>4.23</td>
<td>24.3E-3</td>
<td>33.90</td>
<td>7.89</td>
<td>.9988</td>
<td>1.940</td>
</tr>
</tbody>
</table>

Temp = 20.0 C
Humidity = 53.0
Mass Rate = 28.5E-3 kg/sec

79 Micron Glass Beads
Vertical Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa</th>
<th>Air Press Pa</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>14.60</td>
<td>10.20</td>
<td>27.1E-3</td>
<td>62.94</td>
<td>51.45</td>
<td>.9995</td>
<td>.742</td>
</tr>
<tr>
<td>181</td>
<td>13.41</td>
<td>10.48</td>
<td>28.8E-3</td>
<td>56.49</td>
<td>44.38</td>
<td>.9995</td>
<td>.799</td>
</tr>
<tr>
<td>182</td>
<td>12.15</td>
<td>9.86</td>
<td>27.2E-3</td>
<td>50.10</td>
<td>37.33</td>
<td>.9994</td>
<td>.897</td>
</tr>
<tr>
<td>183</td>
<td>10.37</td>
<td>7.96</td>
<td>27.6E-3</td>
<td>44.48</td>
<td>28.30</td>
<td>.9993</td>
<td>1.063</td>
</tr>
<tr>
<td>184</td>
<td>8.34</td>
<td>8.50</td>
<td>28.0E-3</td>
<td>39.50</td>
<td>23.54</td>
<td>.9990</td>
<td>1.201</td>
</tr>
<tr>
<td>185</td>
<td>8.15</td>
<td>8.07</td>
<td>27.7E-3</td>
<td>35.92</td>
<td>18.56</td>
<td>.9992</td>
<td>1.381</td>
</tr>
<tr>
<td>186</td>
<td>8.86</td>
<td>4.86</td>
<td>27.1E-3</td>
<td>38.87</td>
<td>14.08</td>
<td>.9989</td>
<td>1.555</td>
</tr>
<tr>
<td>187</td>
<td>7.04</td>
<td>4.49</td>
<td>26.9E-3</td>
<td>38.06</td>
<td>14.36</td>
<td>.9988</td>
<td>1.631</td>
</tr>
<tr>
<td>188</td>
<td>6.71</td>
<td>4.34</td>
<td>26.3E-3</td>
<td>31.41</td>
<td>13.18</td>
<td>.9988</td>
<td>1.698</td>
</tr>
</tbody>
</table>

Temp = 35.0 C
Humidity = 18.5
Mass Rate = 28.3E-3 kg/sec
128 Micron Plexiglas Beads

Vertical Orientation

High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
<td>8.76</td>
<td>6.41</td>
<td>8.7E-3</td>
<td>26.15</td>
<td>21.05</td>
<td>.9995</td>
<td>.397</td>
</tr>
<tr>
<td>232</td>
<td>6.33</td>
<td>4.40</td>
<td>8.8E-3</td>
<td>19.56</td>
<td>8.84</td>
<td>.9993</td>
<td>.659</td>
</tr>
<tr>
<td>233</td>
<td>3.86</td>
<td>2.58</td>
<td>8.8E-3</td>
<td>21.58</td>
<td>4.98</td>
<td>.9988</td>
<td>.850</td>
</tr>
<tr>
<td>234</td>
<td>3.16</td>
<td>3.12</td>
<td>8.8E-3</td>
<td>17.87</td>
<td>3.87</td>
<td>.9982</td>
<td>.856</td>
</tr>
<tr>
<td>235</td>
<td>3.45</td>
<td>2.95</td>
<td>7.8E-3</td>
<td>21.99</td>
<td>4.11</td>
<td>.9990</td>
<td>.878</td>
</tr>
<tr>
<td>236</td>
<td>5.91</td>
<td>4.75</td>
<td>9.4E-3</td>
<td>20.80</td>
<td>10.58</td>
<td>.9993</td>
<td>.633</td>
</tr>
<tr>
<td>237</td>
<td>7.78</td>
<td>5.85</td>
<td>8.8E-3</td>
<td>22.21</td>
<td>17.11</td>
<td>.9984</td>
<td>.457</td>
</tr>
<tr>
<td>238</td>
<td>10.76</td>
<td>7.90</td>
<td>8.3E-3</td>
<td>41.39</td>
<td>30.15</td>
<td>.9986</td>
<td>.309</td>
</tr>
</tbody>
</table>

Temp = 18.0 C

Humidity = 47.2

Mass Rate = 45.7E-3 kg/sec

128 Micron Plexiglas Beads

Vertical Orientation

Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>9.82</td>
<td>6.17</td>
<td>8.7E-3</td>
<td>36.67</td>
<td>25.74</td>
<td>.9995</td>
<td>.354</td>
</tr>
<tr>
<td>221</td>
<td>8.45</td>
<td>5.60</td>
<td>8.5E-3</td>
<td>27.93</td>
<td>19.75</td>
<td>.9994</td>
<td>.403</td>
</tr>
<tr>
<td>222</td>
<td>6.14</td>
<td>4.75</td>
<td>9.3E-3</td>
<td>21.50</td>
<td>11.29</td>
<td>.9993</td>
<td>.808</td>
</tr>
<tr>
<td>223</td>
<td>4.82</td>
<td>3.25</td>
<td>8.8E-3</td>
<td>18.37</td>
<td>6.88</td>
<td>.9990</td>
<td>.789</td>
</tr>
<tr>
<td>224</td>
<td>3.55</td>
<td>2.43</td>
<td>7.4E-3</td>
<td>20.92</td>
<td>4.32</td>
<td>.9989</td>
<td>.832</td>
</tr>
<tr>
<td>225</td>
<td>4.27</td>
<td>2.90</td>
<td>9.2E-3</td>
<td>17.73</td>
<td>5.98</td>
<td>.9988</td>
<td>.859</td>
</tr>
<tr>
<td>226</td>
<td>3.32</td>
<td>2.95</td>
<td>7.2E-3</td>
<td>24.29</td>
<td>3.88</td>
<td>.9991</td>
<td>.865</td>
</tr>
<tr>
<td>227</td>
<td>6.34</td>
<td>7.18</td>
<td>8.3E-3</td>
<td>28.24</td>
<td>18.30</td>
<td>.9990</td>
<td>.399</td>
</tr>
<tr>
<td>228</td>
<td>6.53</td>
<td>5.50</td>
<td>8.8E-3</td>
<td>17.72</td>
<td>12.61</td>
<td>.9994</td>
<td>.538</td>
</tr>
</tbody>
</table>

Temp = 33.5 C

Humidity = 18.0

Mass Rate = 8.8E-3 kg/sec
128 Micron Plexiglas Beads
Vertical Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>12.97</td>
<td>8.88</td>
<td>11.2E-3</td>
<td>58.42</td>
<td>41.82</td>
<td>.9994</td>
<td>.345</td>
</tr>
<tr>
<td>241</td>
<td>12.63</td>
<td>7.90</td>
<td>12.0E-3</td>
<td>48.89</td>
<td>39.85</td>
<td>.9994</td>
<td>.399</td>
</tr>
<tr>
<td>242</td>
<td>8.32</td>
<td>7.59</td>
<td>12.8E-3</td>
<td>32.90</td>
<td>18.85</td>
<td>.9994</td>
<td>.621</td>
</tr>
<tr>
<td>243</td>
<td>6.00</td>
<td>3.92</td>
<td>12.9E-3</td>
<td>26.18</td>
<td>10.88</td>
<td>.9995</td>
<td>1.023</td>
</tr>
<tr>
<td>244</td>
<td>4.74</td>
<td>3.12</td>
<td>12.1E-3</td>
<td>36.56</td>
<td>7.19</td>
<td>.9995</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>8.15</td>
<td>5.20</td>
<td>13.4E-3</td>
<td>30.05</td>
<td>18.56</td>
<td>.9990</td>
<td>.657</td>
</tr>
<tr>
<td>246</td>
<td>3.83</td>
<td>3.18</td>
<td>12.1E-3</td>
<td>33.87</td>
<td>4.51</td>
<td>.9995</td>
<td>1.336</td>
</tr>
<tr>
<td>248</td>
<td>8.04</td>
<td>6.95</td>
<td>13.7E-3</td>
<td>34.37</td>
<td>18.12</td>
<td>.9991</td>
<td>.682</td>
</tr>
<tr>
<td>249</td>
<td>4.89</td>
<td>3.18</td>
<td>13.2E-3</td>
<td>38.19</td>
<td>7.59</td>
<td>.9994</td>
<td>1.082</td>
</tr>
</tbody>
</table>

Temp = 20.0°C
Humidity = 52.0%
Mass Rate = 12.9E-3 kg/sec

128 Micron Plexiglas Beads
Vertical Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>11.08</td>
<td>7.59</td>
<td>12.9E-3</td>
<td>39.40</td>
<td>31.74</td>
<td>.9997</td>
<td>.468</td>
</tr>
<tr>
<td>211</td>
<td>7.34</td>
<td>5.33</td>
<td>13.9E-3</td>
<td>26.92</td>
<td>15.43</td>
<td>.9995</td>
<td>.756</td>
</tr>
<tr>
<td>212</td>
<td>7.28</td>
<td>5.85</td>
<td>13.9E-3</td>
<td>24.10</td>
<td>15.16</td>
<td>.9995</td>
<td>.783</td>
</tr>
<tr>
<td>213</td>
<td>8.26</td>
<td>14.2E-3</td>
<td>23.19</td>
<td>11.70</td>
<td>.9995</td>
<td>.806</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>4.59</td>
<td>4.37</td>
<td>13.2E-3</td>
<td>24.17</td>
<td>6.81</td>
<td>.9994</td>
<td>1.152</td>
</tr>
<tr>
<td>215</td>
<td>4.30</td>
<td>2.84</td>
<td>14.2E-3</td>
<td>30.28</td>
<td>6.05</td>
<td>.9999</td>
<td>1.320</td>
</tr>
<tr>
<td>216</td>
<td>3.45</td>
<td>3.24</td>
<td>7.8E-3</td>
<td>37.31</td>
<td>4.11</td>
<td>.9995</td>
<td>.804</td>
</tr>
<tr>
<td>217</td>
<td>13.13</td>
<td>12.01</td>
<td>12.0E-3</td>
<td>70.71</td>
<td>42.75</td>
<td>.9998</td>
<td>.385</td>
</tr>
<tr>
<td>218</td>
<td>4.96</td>
<td>3.06</td>
<td>12.8E-3</td>
<td>52.48</td>
<td>7.78</td>
<td>.9992</td>
<td>1.028</td>
</tr>
<tr>
<td>219</td>
<td>3.78</td>
<td>3.37</td>
<td>9.8E-3</td>
<td>40.58</td>
<td>4.83</td>
<td>.9994</td>
<td>1.017</td>
</tr>
</tbody>
</table>

Temp = 35.0°C
Humidity = 18.0%
Mass Rate = 12.4E-3 kg/sec
125 Micron Glass Beads

Horizontal Orientation

High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>10.88</td>
<td>7.28</td>
<td>17.7E-3</td>
<td>50.42</td>
<td>31.27</td>
<td>.9995</td>
<td>.643</td>
</tr>
<tr>
<td>270</td>
<td>10.88</td>
<td>6.87</td>
<td>17.5E-3</td>
<td>44.03</td>
<td>31.27</td>
<td>.9995</td>
<td>.636</td>
</tr>
<tr>
<td>271</td>
<td>9.96</td>
<td>6.89</td>
<td>17.9E-3</td>
<td>61.07</td>
<td>26.35</td>
<td>.9995</td>
<td>.717</td>
</tr>
<tr>
<td>272</td>
<td>9.82</td>
<td>6.11</td>
<td>16.3E-3</td>
<td>47.17</td>
<td>24.83</td>
<td>.9994</td>
<td>.756</td>
</tr>
<tr>
<td>273</td>
<td>8.85</td>
<td>3.24</td>
<td>19.8E-3</td>
<td>43.67</td>
<td>20.58</td>
<td>.9988</td>
<td>.618</td>
</tr>
<tr>
<td>274</td>
<td>7.73</td>
<td>3.83</td>
<td>19.1E-3</td>
<td>36.03</td>
<td>18.93</td>
<td>.9989</td>
<td>.685</td>
</tr>
<tr>
<td>275</td>
<td>6.85</td>
<td>3.48</td>
<td>18.1E-3</td>
<td>31.65</td>
<td>13.88</td>
<td>.9990</td>
<td>1.113</td>
</tr>
<tr>
<td>276</td>
<td>5.78</td>
<td>2.33</td>
<td>18.9E-3</td>
<td>25.49</td>
<td>10.17</td>
<td>.9984</td>
<td>1.305</td>
</tr>
</tbody>
</table>

- **Temp**: 29.4°C
- **Humidity**: 51.7%
- **Mass Rate**: 18.5E-3 kg/sec

Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>8.45</td>
<td>3.83</td>
<td>17.8E-3</td>
<td>25.30</td>
<td>24.02</td>
<td>.9991</td>
<td>.744</td>
</tr>
<tr>
<td>256</td>
<td>8.20</td>
<td>3.89</td>
<td>16.8E-3</td>
<td>33.17</td>
<td>22.95</td>
<td>.9993</td>
<td>.731</td>
</tr>
<tr>
<td>257</td>
<td>7.56</td>
<td>3.24</td>
<td>17.7E-3</td>
<td>29.03</td>
<td>16.26</td>
<td>.9999</td>
<td>.635</td>
</tr>
<tr>
<td>258</td>
<td>6.49</td>
<td>4.88</td>
<td>17.8E-3</td>
<td>22.67</td>
<td>12.46</td>
<td>.9993</td>
<td>1.095</td>
</tr>
<tr>
<td>259</td>
<td>6.00</td>
<td>2.90</td>
<td>17.1E-3</td>
<td>21.08</td>
<td>10.88</td>
<td>.9988</td>
<td>1.140</td>
</tr>
<tr>
<td>260</td>
<td>4.36</td>
<td>2.43</td>
<td>6.9E-3</td>
<td>10.44</td>
<td>6.22</td>
<td>.9985</td>
<td>.537</td>
</tr>
<tr>
<td>261</td>
<td>10.31</td>
<td>7.59</td>
<td>18.0E-3</td>
<td>40.79</td>
<td>28.02</td>
<td>.9995</td>
<td>.696</td>
</tr>
</tbody>
</table>

- **Temp**: 33.2°C
- **Humidity**: 16.8%
- **Mass Rate**: 15.8E-3 kg/sec
125 Micron Glass Beads
Horizontal Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>278</td>
<td>8.59</td>
<td>4.34</td>
<td>26.2E-3</td>
<td>72.04</td>
<td>20.33</td>
<td>.9888</td>
<td>1.221</td>
</tr>
<tr>
<td>279</td>
<td>7.64</td>
<td>5.33</td>
<td>27.2E-3</td>
<td>62.54</td>
<td>16.58</td>
<td>.9900</td>
<td>1.428</td>
</tr>
<tr>
<td>280</td>
<td>7.56</td>
<td>6.41</td>
<td>27.2E-3</td>
<td>58.39</td>
<td>16.28</td>
<td>.9991</td>
<td>1.441</td>
</tr>
<tr>
<td>281</td>
<td>5.82</td>
<td>5.18</td>
<td>27.5E-3</td>
<td>54.01</td>
<td>10.60</td>
<td>.9999</td>
<td>1.856</td>
</tr>
<tr>
<td>283</td>
<td>4.72</td>
<td>3.87</td>
<td>12.9E-3</td>
<td>31.40</td>
<td>7.14</td>
<td>.9993</td>
<td>1.088</td>
</tr>
</tbody>
</table>

Temp: 28.4 C
Humidity: 52.3
Mass Rate: 26.3E-3 kg/sec

125 Micron Glass Beads
Horizontal Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>282</td>
<td>9.78</td>
<td>8.25</td>
<td>27.5E-3</td>
<td>50.81</td>
<td>25.53</td>
<td>.9993</td>
<td>1.123</td>
</tr>
<tr>
<td>283</td>
<td>8.28</td>
<td>5.55</td>
<td>28.2E-3</td>
<td>42.06</td>
<td>19.08</td>
<td>.9990</td>
<td>1.362</td>
</tr>
<tr>
<td>284</td>
<td>7.89</td>
<td>3.24</td>
<td>28.5E-3</td>
<td>40.52</td>
<td>17.54</td>
<td>.9982</td>
<td>1.444</td>
</tr>
<tr>
<td>285</td>
<td>6.36</td>
<td>6.35</td>
<td>28.0E-3</td>
<td>33.74</td>
<td>12.03</td>
<td>.9991</td>
<td>1.822</td>
</tr>
<tr>
<td>286</td>
<td>4.89</td>
<td>3.05</td>
<td>16.4E-3</td>
<td>26.74</td>
<td>7.59</td>
<td>.9889</td>
<td>1.340</td>
</tr>
<tr>
<td>287</td>
<td>4.39</td>
<td>4.30</td>
<td>4.3E-3</td>
<td>8.84</td>
<td>6.28</td>
<td>.9997</td>
<td>1.391</td>
</tr>
<tr>
<td>288</td>
<td>6.84</td>
<td>4.37</td>
<td>30.5E-3</td>
<td>37.90</td>
<td>13.84</td>
<td>.9886</td>
<td>1.784</td>
</tr>
</tbody>
</table>

Temp: 38.4 C
Humidity: 16.1
Mass Rate: 23.5E-3 kg/sec
7b Micron Glass Beads
Horizontal Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>10.18</td>
<td>5.00</td>
<td>10.8E-3</td>
<td>33.77</td>
<td>27.39</td>
<td>9993</td>
<td>.854</td>
</tr>
<tr>
<td>299</td>
<td>9.87</td>
<td>7.98</td>
<td>18.4E-3</td>
<td>38.88</td>
<td>25.94</td>
<td>9996</td>
<td>.866</td>
</tr>
<tr>
<td>300</td>
<td>9.07</td>
<td>5.74</td>
<td>17.0E-3</td>
<td>42.80</td>
<td>22.37</td>
<td>9994</td>
<td>.750</td>
</tr>
<tr>
<td>301</td>
<td>8.85</td>
<td>5.89</td>
<td>17.4E-3</td>
<td>38.20</td>
<td>21.42</td>
<td>9994</td>
<td>.788</td>
</tr>
<tr>
<td>302</td>
<td>7.74</td>
<td>4.75</td>
<td>17.4E-3</td>
<td>32.20</td>
<td>16.94</td>
<td>9993</td>
<td>.899</td>
</tr>
<tr>
<td>303</td>
<td>7.16</td>
<td>4.13</td>
<td>17.8E-3</td>
<td>23.72</td>
<td>14.78</td>
<td>9991</td>
<td>.993</td>
</tr>
</tbody>
</table>

Temp: 22.4 C **Humidity:** 55.4 **Mass Rate:** 19.0E-3 kg/sec

7b Micron Glass Beads
Horizontal Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>284</td>
<td>11.60</td>
<td>4.59</td>
<td>15.8E-3</td>
<td>44.05</td>
<td>34.43</td>
<td>9993</td>
<td>.547</td>
</tr>
<tr>
<td>285</td>
<td>11.29</td>
<td>3.37</td>
<td>16.4E-3</td>
<td>44.58</td>
<td>32.83</td>
<td>9990</td>
<td>.563</td>
</tr>
<tr>
<td>286</td>
<td>10.83</td>
<td>3.39</td>
<td>18.4E-3</td>
<td>40.24</td>
<td>29.82</td>
<td>9996</td>
<td>.619</td>
</tr>
<tr>
<td>287</td>
<td>9.87</td>
<td>7.03</td>
<td>18.8E-3</td>
<td>34.88</td>
<td>25.94</td>
<td>9995</td>
<td>.682</td>
</tr>
<tr>
<td>288</td>
<td>9.20</td>
<td>8.38</td>
<td>18.8E-3</td>
<td>33.17</td>
<td>22.96</td>
<td>9996</td>
<td>.731</td>
</tr>
<tr>
<td>289</td>
<td>8.00</td>
<td>4.48</td>
<td>17.4E-3</td>
<td>26.91</td>
<td>17.97</td>
<td>9992</td>
<td>.889</td>
</tr>
<tr>
<td>290</td>
<td>5.87</td>
<td>4.48</td>
<td>8.3E-3</td>
<td>18.13</td>
<td>10.44</td>
<td>9998</td>
<td>.567</td>
</tr>
</tbody>
</table>

Temp: 35.6 C **Humidity:** 19.1 **Mass Rate:** 15.4E-3 kg/sec
70 Micron Glass Beads
Horizontal Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>305</td>
<td>10.28</td>
<td>5.00</td>
<td>22.9E-3</td>
<td>44.48</td>
<td>27.98</td>
<td>.9981</td>
<td>.891</td>
</tr>
<tr>
<td>306</td>
<td>8.87</td>
<td>4.68</td>
<td>23.7E-3</td>
<td>38.67</td>
<td>20.67</td>
<td>.9992</td>
<td>1.082</td>
</tr>
<tr>
<td>307</td>
<td>6.20</td>
<td>2.28</td>
<td>28.5E-3</td>
<td>35.34</td>
<td>18.74</td>
<td>.9977</td>
<td>1.254</td>
</tr>
<tr>
<td>308</td>
<td>7.34</td>
<td>2.75</td>
<td>28.5E-3</td>
<td>20.50</td>
<td>15.42</td>
<td>.991</td>
<td>1.443</td>
</tr>
<tr>
<td>309</td>
<td>5.83</td>
<td>2.75</td>
<td>15.1E-3</td>
<td>20.55</td>
<td>10.34</td>
<td>.9887</td>
<td>1.244</td>
</tr>
<tr>
<td>310</td>
<td>8.00</td>
<td>7.18</td>
<td>28.2E-3</td>
<td>32.02</td>
<td>17.97</td>
<td>.9883</td>
<td>1.310</td>
</tr>
<tr>
<td>311</td>
<td>8.22</td>
<td>3.83</td>
<td>28.0E-3</td>
<td>32.90</td>
<td>18.85</td>
<td>.9887</td>
<td>1.262</td>
</tr>
</tbody>
</table>

TEMP = 21.5 °C HUMIDITY = 53.4% MASS RATE = 24.1E-3 kg/sec

70 Micron Glass Beads
Horizontal Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY m/sec</th>
<th>SOLIDS VELOCITY m/sec</th>
<th>SOLIDS FLOW kg/sec</th>
<th>PRESS Pa/m</th>
<th>AIR PRESS Pa/m</th>
<th>VOIDAGE</th>
<th>LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>291</td>
<td>11.39</td>
<td>9.88</td>
<td>24.7E-3</td>
<td>47.39</td>
<td>33.34</td>
<td>.9995</td>
<td>.887</td>
</tr>
<tr>
<td>292</td>
<td>10.28</td>
<td>4.34</td>
<td>26.5E-3</td>
<td>44.46</td>
<td>27.88</td>
<td>.9988</td>
<td>1.030</td>
</tr>
<tr>
<td>293</td>
<td>9.78</td>
<td>3.93</td>
<td>25.7E-3</td>
<td>44.68</td>
<td>25.63</td>
<td>.9987</td>
<td>1.051</td>
</tr>
<tr>
<td>294</td>
<td>8.64</td>
<td>3.44</td>
<td>26.7E-3</td>
<td>41.80</td>
<td>21.37</td>
<td>.9984</td>
<td>1.209</td>
</tr>
<tr>
<td>295</td>
<td>6.17</td>
<td>4.03</td>
<td>15.6E-3</td>
<td>20.33</td>
<td>11.40</td>
<td>.9992</td>
<td>1.013</td>
</tr>
<tr>
<td>296</td>
<td>9.22</td>
<td>6.65</td>
<td>25.7E-3</td>
<td>38.68</td>
<td>23.05</td>
<td>.9993</td>
<td>1.115</td>
</tr>
<tr>
<td>297</td>
<td>8.11</td>
<td>2.66</td>
<td>26.5E-3</td>
<td>36.03</td>
<td>18.41</td>
<td>.9980</td>
<td>1.305</td>
</tr>
</tbody>
</table>

TEMP = 36.8 °C HUMIDITY = 18.5% MASS RATE = 24.5E-3 kg/sec
450 Micron Glass Beads
Horizontal Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>319</td>
<td>14.09</td>
<td>10.48</td>
<td>18.8E-3</td>
<td>49.88</td>
<td>68.38</td>
<td>.9996</td>
<td>.836</td>
</tr>
<tr>
<td>320</td>
<td>10.94</td>
<td>7.28</td>
<td>18.8E-3</td>
<td>43.81</td>
<td>61.04</td>
<td>.9995</td>
<td>.691</td>
</tr>
<tr>
<td>321</td>
<td>10.38</td>
<td>4.88</td>
<td>18.3E-3</td>
<td>41.00</td>
<td>28.23</td>
<td>.9992</td>
<td>.744</td>
</tr>
<tr>
<td>322</td>
<td>8.54</td>
<td>5.90</td>
<td>18.8E-3</td>
<td>35.44</td>
<td>20.12</td>
<td>.9993</td>
<td>.830</td>
</tr>
<tr>
<td>323</td>
<td>7.89</td>
<td>4.75</td>
<td>20.4E-3</td>
<td>34.64</td>
<td>16.77</td>
<td>.9981</td>
<td>1.082</td>
</tr>
<tr>
<td>324</td>
<td>6.89</td>
<td>3.44</td>
<td>21.2E-3</td>
<td>29.16</td>
<td>13.83</td>
<td>.9988</td>
<td>1.228</td>
</tr>
</tbody>
</table>

Temp: 25.2°C **Humidity:** 56.3% **Mass Rate:** 19.8E-3 kg/sec

450 Micron Glass Beads
Horizontal Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity (m/sec)</th>
<th>Solids Velocity (m/sec)</th>
<th>Solids Flow (kg/sec)</th>
<th>Press (Pa/m)</th>
<th>Air Press (Pa/m)</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>312</td>
<td>12.71</td>
<td>8.71</td>
<td>18.1E-3</td>
<td>59.56</td>
<td>40.41</td>
<td>.9986</td>
<td>.801</td>
</tr>
<tr>
<td>313</td>
<td>12.09</td>
<td>8.36</td>
<td>18.1E-3</td>
<td>59.99</td>
<td>37.01</td>
<td>.9995</td>
<td>.832</td>
</tr>
<tr>
<td>314</td>
<td>10.19</td>
<td>8.69</td>
<td>18.1E-3</td>
<td>42.77</td>
<td>27.45</td>
<td>.9996</td>
<td>.749</td>
</tr>
<tr>
<td>315</td>
<td>10.85</td>
<td>8.89</td>
<td>18.1E-3</td>
<td>42.08</td>
<td>30.60</td>
<td>.9993</td>
<td>.704</td>
</tr>
<tr>
<td>316</td>
<td>8.78</td>
<td>8.69</td>
<td>18.8E-3</td>
<td>41.56</td>
<td>21.13</td>
<td>.9993</td>
<td>.804</td>
</tr>
<tr>
<td>317</td>
<td>8.00</td>
<td>5.04</td>
<td>19.8E-3</td>
<td>38.40</td>
<td>17.87</td>
<td>.9992</td>
<td>.892</td>
</tr>
<tr>
<td>318</td>
<td>6.42</td>
<td>5.16</td>
<td>20.7E-3</td>
<td>26.26</td>
<td>12.22</td>
<td>.9992</td>
<td>1.284</td>
</tr>
</tbody>
</table>

Temp: 30.8°C **Humidity:** 16.3% **Mass Rate:** 19.5E-3 kg/sec
450 Micron Glass Beads

Horizontal Orientation

High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>326</td>
<td>9.04</td>
<td>6.35</td>
<td>27.7E-3</td>
<td>48.77</td>
<td>25.78</td>
<td>.9991</td>
<td>1.127</td>
</tr>
<tr>
<td>327</td>
<td>9.06</td>
<td>4.72</td>
<td>28.2E-3</td>
<td>45.31</td>
<td>22.32</td>
<td>.9988</td>
<td>1.248</td>
</tr>
<tr>
<td>328</td>
<td>7.78</td>
<td>4.82</td>
<td>28.7E-3</td>
<td>40.08</td>
<td>17.11</td>
<td>.9987</td>
<td>1.529</td>
</tr>
<tr>
<td>329</td>
<td>7.61</td>
<td>4.82</td>
<td>30.2E-3</td>
<td>36.90</td>
<td>16.47</td>
<td>.9987</td>
<td>1.589</td>
</tr>
<tr>
<td>331</td>
<td>10.11</td>
<td>6.11</td>
<td>28.7E-3</td>
<td>48.23</td>
<td>27.08</td>
<td>.9991</td>
<td>1.058</td>
</tr>
<tr>
<td>332</td>
<td>10.72</td>
<td>8.88</td>
<td>27.4E-3</td>
<td>40.18</td>
<td>30.00</td>
<td>.9992</td>
<td>1.024</td>
</tr>
</tbody>
</table>

Temp: 28.4°C **Humidity:** 58.2% **Mass Rate:** 28.6E-3 kg/sec

Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>417</td>
<td>11.90</td>
<td>7.86</td>
<td>28.5E-3</td>
<td>65.38</td>
<td>36.01</td>
<td>.9993</td>
<td>.959</td>
</tr>
<tr>
<td>418</td>
<td>10.09</td>
<td>7.96</td>
<td>28.8E-3</td>
<td>57.81</td>
<td>28.97</td>
<td>.9982</td>
<td>1.180</td>
</tr>
<tr>
<td>419</td>
<td>8.75</td>
<td>9.33</td>
<td>29.8E-3</td>
<td>49.11</td>
<td>21.02</td>
<td>.9989</td>
<td>1.366</td>
</tr>
<tr>
<td>420</td>
<td>7.91</td>
<td>4.23</td>
<td>31.0E-3</td>
<td>41.88</td>
<td>17.62</td>
<td>.9985</td>
<td>1.567</td>
</tr>
<tr>
<td>421</td>
<td>7.27</td>
<td>4.49</td>
<td>31.2E-3</td>
<td>119.80</td>
<td>15.19</td>
<td>.9988</td>
<td>1.718</td>
</tr>
</tbody>
</table>

Temp: 38.8°C **Humidity:** 18.4% **Mass Rate:** 32.3E-3 kg/sec
125 Micron Glass Beads

45 Degree Orientation

High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>375</td>
<td>9.87</td>
<td>5.55</td>
<td>18.3E-3</td>
<td>38.71</td>
<td>25.94</td>
<td>.9993</td>
<td>.743</td>
</tr>
<tr>
<td>376</td>
<td>9.42</td>
<td>6.41</td>
<td>19.1E-3</td>
<td>38.70</td>
<td>23.93</td>
<td>.9994</td>
<td>.810</td>
</tr>
<tr>
<td>377</td>
<td>8.98</td>
<td>6.87</td>
<td>19.9E-3</td>
<td>34.76</td>
<td>21.99</td>
<td>.9994</td>
<td>.842</td>
</tr>
<tr>
<td>378</td>
<td>8.14</td>
<td>7.98</td>
<td>19.3E-3</td>
<td>30.25</td>
<td>18.50</td>
<td>.9995</td>
<td>.948</td>
</tr>
<tr>
<td>379</td>
<td>7.42</td>
<td>5.74</td>
<td>19.5E-3</td>
<td>30.57</td>
<td>15.78</td>
<td>.9993</td>
<td>1.049</td>
</tr>
<tr>
<td>380</td>
<td>6.36</td>
<td>4.86</td>
<td>19.5E-3</td>
<td>28.61</td>
<td>12.01</td>
<td>.9992</td>
<td>1.225</td>
</tr>
<tr>
<td>381</td>
<td>4.85</td>
<td>3.44</td>
<td>13.0E-3</td>
<td>31.99</td>
<td>7.47</td>
<td>.9992</td>
<td>1.077</td>
</tr>
</tbody>
</table>

Temp: 28.3 C Humidity: 56.4 Mass Rate: 18.2E-3 kg/sec

Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>381</td>
<td>10.18</td>
<td>9.30</td>
<td>19.5E-3</td>
<td>43.99</td>
<td>27.39</td>
<td>.9996</td>
<td>.728</td>
</tr>
<tr>
<td>382</td>
<td>9.88</td>
<td>5.37</td>
<td>18.3E-3</td>
<td>48.18</td>
<td>26.45</td>
<td>.9993</td>
<td>.735</td>
</tr>
<tr>
<td>383</td>
<td>9.69</td>
<td>7.26</td>
<td>18.7E-3</td>
<td>49.39</td>
<td>25.13</td>
<td>.9995</td>
<td>.772</td>
</tr>
<tr>
<td>384</td>
<td>8.18</td>
<td>5.95</td>
<td>19.1E-3</td>
<td>41.68</td>
<td>19.88</td>
<td>.9994</td>
<td>.834</td>
</tr>
<tr>
<td>385</td>
<td>7.47</td>
<td>3.93</td>
<td>19.3E-3</td>
<td>42.74</td>
<td>15.93</td>
<td>.9990</td>
<td>1.033</td>
</tr>
<tr>
<td>386</td>
<td>6.45</td>
<td>4.89</td>
<td>19.5E-3</td>
<td>52.15</td>
<td>12.31</td>
<td>.9992</td>
<td>1.208</td>
</tr>
<tr>
<td>387</td>
<td>4.89</td>
<td>3.06</td>
<td>11.0E-3</td>
<td>138.81</td>
<td>7.59</td>
<td>.9993</td>
<td>.897</td>
</tr>
</tbody>
</table>

Temp: 38.6 C Humidity: 10.0 Mass Rate: 17.8E-3 kg/sec
450 Micron Glass Beads
45 Degree Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>347</td>
<td>11.91</td>
<td>9.88</td>
<td>18.5E-3</td>
<td>55.22</td>
<td>30.07</td>
<td>.9996</td>
<td>.622</td>
</tr>
<tr>
<td>348</td>
<td>11.11</td>
<td>9.60</td>
<td>18.3E-3</td>
<td>52.38</td>
<td>31.93</td>
<td>.9994</td>
<td>.680</td>
</tr>
<tr>
<td>349</td>
<td>10.82</td>
<td>6.41</td>
<td>18.7E-3</td>
<td>52.20</td>
<td>30.49</td>
<td>.9994</td>
<td>.691</td>
</tr>
<tr>
<td>350</td>
<td>10.00</td>
<td>8.17</td>
<td>18.1E-3</td>
<td>48.26</td>
<td>26.56</td>
<td>.9994</td>
<td>.763</td>
</tr>
<tr>
<td>351</td>
<td>9.28</td>
<td>5.04</td>
<td>18.7E-3</td>
<td>48.98</td>
<td>23.34</td>
<td>.9992</td>
<td>.846</td>
</tr>
<tr>
<td>352</td>
<td>7.38</td>
<td>4.72</td>
<td>20.6E-3</td>
<td>48.78</td>
<td>15.80</td>
<td>.9991</td>
<td>1.117</td>
</tr>
</tbody>
</table>

TEMP = 30.0 C **HUMIDITY = 55.7** **MASS RATE = 18.6E-3 kg/sec**

450 Micron Glass Beads
45 Degree Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Velocity m/sec</th>
<th>Solids Flow kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>333</td>
<td>10.89</td>
<td>5.90</td>
<td>18.4E-3</td>
<td>75.51</td>
<td>30.82</td>
<td>.9994</td>
<td>.677</td>
</tr>
<tr>
<td>334</td>
<td>9.82</td>
<td>4.59</td>
<td>20.0E-3</td>
<td>62.76</td>
<td>25.74</td>
<td>.9991</td>
<td>.816</td>
</tr>
<tr>
<td>335</td>
<td>9.29</td>
<td>5.33</td>
<td>20.7E-3</td>
<td>67.50</td>
<td>23.34</td>
<td>.9992</td>
<td>.892</td>
</tr>
<tr>
<td>336</td>
<td>8.85</td>
<td>5.37</td>
<td>19.8E-3</td>
<td>61.84</td>
<td>21.42</td>
<td>.9993</td>
<td>.897</td>
</tr>
<tr>
<td>337</td>
<td>8.16</td>
<td>3.59</td>
<td>20.2E-3</td>
<td>63.28</td>
<td>18.59</td>
<td>.9999</td>
<td>.992</td>
</tr>
<tr>
<td>338</td>
<td>7.16</td>
<td>4.37</td>
<td>20.2E-3</td>
<td>88.84</td>
<td>14.78</td>
<td>.9991</td>
<td>1.130</td>
</tr>
</tbody>
</table>

TEMP = 39.8 C **HUMIDITY = 21.9** **MASS RATE = 20.3E-3 kg/sec**
<table>
<thead>
<tr>
<th>RUN</th>
<th>GAS VELOCITY (m/sec)</th>
<th>SOLIDS VELOCITY (m/sec)</th>
<th>AIR PRESSURE (Pa)</th>
<th>VOIDAGE (%)</th>
<th>LOADING (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>354</td>
<td>11.87</td>
<td>8.67</td>
<td>2.77E-3</td>
<td>81.46</td>
<td>1.14</td>
</tr>
<tr>
<td>356</td>
<td>10.72</td>
<td>7.88</td>
<td>2.36E-3</td>
<td>79.72</td>
<td>0.8</td>
</tr>
<tr>
<td>357</td>
<td>9.08</td>
<td>6.80</td>
<td>2.25E-3</td>
<td>80.83</td>
<td>0.91</td>
</tr>
<tr>
<td>358</td>
<td>8.72</td>
<td>6.60</td>
<td>3.07E-3</td>
<td>81.88</td>
<td>0.98</td>
</tr>
<tr>
<td>359</td>
<td>7.72</td>
<td>6.80</td>
<td>3.01E-3</td>
<td>81.88</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Temp = 29.8°C, Humidity = 53.8%, Mass Rate = 29.1E-3 kg/sec
79 Micron Glass Beads
45 Degree Orientation
High Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Flow Kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>403</td>
<td>10.05</td>
<td>7.18</td>
<td>18.1E-3</td>
<td>44.28</td>
<td>26.76</td>
<td>.9995</td>
</tr>
<tr>
<td>404</td>
<td>9.78</td>
<td>8.11</td>
<td>18.1E-3</td>
<td>45.00</td>
<td>25.53</td>
<td>.9994</td>
</tr>
<tr>
<td>405</td>
<td>9.05</td>
<td>5.20</td>
<td>18.0E-3</td>
<td>45.63</td>
<td>22.28</td>
<td>.9993</td>
</tr>
<tr>
<td>406</td>
<td>8.45</td>
<td>7.26</td>
<td>18.1E-3</td>
<td>35.33</td>
<td>18.75</td>
<td>.9995</td>
</tr>
<tr>
<td>407</td>
<td>7.22</td>
<td>2.71</td>
<td>18.1E-3</td>
<td>32.54</td>
<td>15.03</td>
<td>.9987</td>
</tr>
<tr>
<td>408</td>
<td>7.02</td>
<td>2.39</td>
<td>18.1E-3</td>
<td>33.77</td>
<td>14.31</td>
<td>.9985</td>
</tr>
<tr>
<td>409</td>
<td>6.78</td>
<td>3.35</td>
<td>18.1E-3</td>
<td>36.80</td>
<td>13.45</td>
<td>.9989</td>
</tr>
</tbody>
</table>

Temp = 24.8 C **Humidity = 52.8** **Mass Rate = 18.1E-3 kg/sec**

79 Micron Glass Beads
45 Degree Orientation
Low Humidity

<table>
<thead>
<tr>
<th>RUN</th>
<th>Gas Velocity m/sec</th>
<th>Solids Flow Kg/sec</th>
<th>Press Pa/m</th>
<th>Air Press Pa/m</th>
<th>Voidage</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>389</td>
<td>11.05</td>
<td>8.81</td>
<td>11.2E-3</td>
<td>39.18</td>
<td>31.75</td>
<td>.9997</td>
</tr>
<tr>
<td>390</td>
<td>10.38</td>
<td>4.13</td>
<td>17.6E-3</td>
<td>44.03</td>
<td>36.23</td>
<td>.9991</td>
</tr>
<tr>
<td>391</td>
<td>9.52</td>
<td>5.69</td>
<td>17.5E-3</td>
<td>38.28</td>
<td>24.34</td>
<td>.9994</td>
</tr>
<tr>
<td>392</td>
<td>8.05</td>
<td>7.50</td>
<td>18.1E-3</td>
<td>36.73</td>
<td>18.15</td>
<td>.9995</td>
</tr>
<tr>
<td>393</td>
<td>7.80</td>
<td>8.11</td>
<td>18.0E-3</td>
<td>35.01</td>
<td>18.43</td>
<td>.9994</td>
</tr>
<tr>
<td>394</td>
<td>6.80</td>
<td>5.16</td>
<td>17.8E-3</td>
<td>35.25</td>
<td>13.52</td>
<td>.9993</td>
</tr>
</tbody>
</table>

Temp = 38.0 C **Humidity = 18.5** **Mass Rate = 18.5E-3 kg/sec**
APPENDIX E.
MISCELLANEOUS
Figure E-1: Sample Data Acquisition Form
Figure E-2: Particle Analysis for 79μm Glass Beads Before Experiments

<table>
<thead>
<tr>
<th>SIZE RANGE (μm)</th>
<th>NO.</th>
<th>WEIGHT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 - 4.0</td>
<td>10</td>
<td>0.001</td>
</tr>
<tr>
<td>4.0 - 6.3</td>
<td>8</td>
<td>0.006</td>
</tr>
<tr>
<td>6.3 - 10.0</td>
<td>3</td>
<td>0.008</td>
</tr>
<tr>
<td>10.0 - 12.6</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>12.6 - 15.8</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>15.8 - 19.9</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>19.9 - 25.1</td>
<td>1</td>
<td>0.050</td>
</tr>
<tr>
<td>25.1 - 31.6</td>
<td>1</td>
<td>1.17</td>
</tr>
<tr>
<td>31.6 - 39.8</td>
<td>6</td>
<td>1.396</td>
</tr>
<tr>
<td>39.8 - 50.1</td>
<td>25</td>
<td>11.611</td>
</tr>
<tr>
<td>50.1 - 63.1</td>
<td>26</td>
<td>25.962</td>
</tr>
<tr>
<td>63.1 - 79.4</td>
<td>13</td>
<td>24.046</td>
</tr>
<tr>
<td>79.4 - 100.0</td>
<td>0</td>
<td>0.000</td>
</tr>
<tr>
<td>100.0 - 125.8</td>
<td>5</td>
<td>36.795</td>
</tr>
</tbody>
</table>

Dimensions:
- **Length Diameter:** 45.6 μm
- **Volume Diameter:** 57.6 μm
- **Surface Diameter:** 52.9 μm
- **Surface-Volume Diameter:** 70.0 μm
- **Weight Diameter:** 79.1 μm
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH MEAN SIZE:</td>
<td>0.9</td>
</tr>
<tr>
<td>VOLUME MEAN SIZE:</td>
<td>20.5</td>
</tr>
<tr>
<td>SURFACE MEAN SIZE:</td>
<td>10.1</td>
</tr>
<tr>
<td>SURFACE-VOLUME MEAN SIZE:</td>
<td>70.3</td>
</tr>
<tr>
<td>RELU MEAN SIZE:</td>
<td>90.8</td>
</tr>
</tbody>
</table>

LENGTH-MEAN DIA. = 3.3459
LENGTH-SURF DIA. = 45.5540
SURFACE-VOL DIA. = 59.4621
VOLUME-MASS DIA. = 67.7688

Figure E-3: Particle Analysis for 79µm Glass Beads After Experiments
<table>
<thead>
<tr>
<th>SIZE</th>
<th>NO. %</th>
<th>WEIGHT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td>RANGE</td>
<td>RANGE</td>
</tr>
<tr>
<td>2.0-4.0</td>
<td>7515</td>
<td>0.00</td>
</tr>
<tr>
<td>4.0-6.0</td>
<td>827</td>
<td>0.02</td>
</tr>
<tr>
<td>6.0-10.0</td>
<td>132</td>
<td>0.01</td>
</tr>
<tr>
<td>10.0-12.5</td>
<td>356</td>
<td>0.16</td>
</tr>
<tr>
<td>12.5-15.8</td>
<td>936</td>
<td>0.32</td>
</tr>
<tr>
<td>15.8-19.9</td>
<td>846</td>
<td>0.41</td>
</tr>
<tr>
<td>19.9-25.1</td>
<td>678</td>
<td>0.24</td>
</tr>
<tr>
<td>25.1-31.6</td>
<td>156</td>
<td>0.04</td>
</tr>
<tr>
<td>31.6-39.8</td>
<td>156</td>
<td>0.04</td>
</tr>
<tr>
<td>39.8-50.1</td>
<td>136</td>
<td>0.03</td>
</tr>
<tr>
<td>50.1-63.1</td>
<td>468</td>
<td>1.12</td>
</tr>
<tr>
<td>63.1-75.4</td>
<td>185</td>
<td>10.49</td>
</tr>
<tr>
<td>75.4-100.0</td>
<td>185</td>
<td>20.94</td>
</tr>
<tr>
<td>100.0-125</td>
<td>500</td>
<td>13.42</td>
</tr>
<tr>
<td>125.0-150</td>
<td>936</td>
<td>35.66</td>
</tr>
<tr>
<td>150.0-200</td>
<td>1734</td>
<td>17.89</td>
</tr>
</tbody>
</table>

LENGTH DIAMETER = 52.2
VOLUME DIAMETER = 82.0
SURFACE DIAMETER = 70.3
SURFACE-VOLUME DIAMETER = 112.7
WEIGHT DIAMETER = 125.0

Figure E-4: Particle Analysis for 125μm Glass Beads Before Experiments
LENGTH-MEAN SIZE: 14.5
VOLUME MEAN SIZE: 4.05
SURFACE MEAN SIZE: 2.11
SURFACE-VOLUME MEAN SIZE: 10.6
WEIGHT MEAN SIZE: 133.8

LENGTH-MEAN DIA. = 9.7281
LENGTH-SURF DIA. = 48.6002
SURFACE-VOL DIA. = 76.0933
VOLUME-MASS DIA. = 100.7184

Figure E-5: Particle Analysis for 125μm Glass Beads After Experiments
<table>
<thead>
<tr>
<th>SIZE</th>
<th>NO.</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>6.024</td>
<td>0.000</td>
</tr>
<tr>
<td>1 - 5</td>
<td>12.046</td>
<td>0.000</td>
</tr>
<tr>
<td>5 - 10</td>
<td>15.663</td>
<td>0.001</td>
</tr>
<tr>
<td>10 - 15</td>
<td>7.229</td>
<td>0.001</td>
</tr>
<tr>
<td>15 - 20</td>
<td>6.474</td>
<td>0.002</td>
</tr>
<tr>
<td>20 - 25</td>
<td>6.434</td>
<td>0.003</td>
</tr>
<tr>
<td>25 - 30</td>
<td>4.619</td>
<td>0.004</td>
</tr>
<tr>
<td>30 - 35</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>35 - 40</td>
<td>1.205</td>
<td>0.015</td>
</tr>
<tr>
<td>40 - 45</td>
<td>3.615</td>
<td>0.091</td>
</tr>
<tr>
<td>45 - 50</td>
<td>4.019</td>
<td>0.243</td>
</tr>
<tr>
<td>50 - 60</td>
<td>1.205</td>
<td>0.121</td>
</tr>
<tr>
<td>60 - 70</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>70 - 80</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>80 - 90</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>90 - 100</td>
<td>7.229</td>
<td>0.507</td>
</tr>
<tr>
<td>100 - 120</td>
<td>6.024</td>
<td>1.297</td>
</tr>
<tr>
<td>120 - 140</td>
<td>6.474</td>
<td>3.110</td>
</tr>
<tr>
<td>140 - 160</td>
<td>2.410</td>
<td>3.376</td>
</tr>
</tbody>
</table>

LENGTH DIAMETER = 100.3
VOLUME DIAMETER = 241.6
SURFACE DIAMETER = 185.4
SURFACE-VOLUME DIAMETER = 416.8
WEIGHT DIAMETER = 446.3

Figure E-6: Particle Analysis for 450μm Glass Beads Before Experiments
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH MEAN SIZE:</td>
<td>40.2</td>
</tr>
<tr>
<td>VOLUME MEAN SIZE:</td>
<td>442.7</td>
</tr>
<tr>
<td>SURFACE MEAN SIZE:</td>
<td>51.9</td>
</tr>
<tr>
<td>SURFACE-VOLUME MEAN SIZE:</td>
<td>573.9</td>
</tr>
<tr>
<td>WEIUEI MEAN SIZE:</td>
<td>457.0</td>
</tr>
<tr>
<td>LENGTH-MEAN DIA.</td>
<td>31.2593</td>
</tr>
<tr>
<td>LENGTH-SURF DIA.</td>
<td>152.2733</td>
</tr>
<tr>
<td>SURFACE-VOL DIA.</td>
<td>288.4763</td>
</tr>
<tr>
<td>VOLUME-MASS DIA.</td>
<td>341.1080</td>
</tr>
</tbody>
</table>

Figure E-7: Particle Analysis for 450µm Glass Beads After Experiments
Figure E-8: Particle Analysis for 128 μm Plexiglas Beads Before Experiments
<table>
<thead>
<tr>
<th>Measurement Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Mean Size</td>
<td>120.7</td>
</tr>
<tr>
<td>Volume Mean Size</td>
<td>106.7</td>
</tr>
<tr>
<td>Surface Mean Size</td>
<td>119.3</td>
</tr>
<tr>
<td>Surface-Volume Mean Size</td>
<td>119.3</td>
</tr>
<tr>
<td>Weight Mean Size</td>
<td>119.3</td>
</tr>
</tbody>
</table>

LENGTH-MEAN DIA. = 10.7269
LENGTH-SURF DIA. = 84.8237
SURFACE-VOL DIA. = 95.0214
VOLUME-MASS DIA. = 100.8843

Figure E-9: Particle Analysis for 128μm Plexiglas Beads After Experiments
Figure E-10: Air Delivery Unit and Solids Feeder
Figure E-11: Vertical Test Section Showing Electrostatic Ring Probes
Figure E-12: Horizontal Test Section Showing Electrostatic Ring Probes
Bibliography

END

10-87

DTIC