This was an equipment purchase grant under the DoD-URIP program. The objective was to equip the Lab to cover signal generation and measuring in the UHF band, and provide an antenna test facility. The necessary hardware was acquired, installed, and tested. The Lab is now functional.
When the actual amount of money available became known, it was decided that a compromise between frequency range and functional coverage was necessary. It was determined that a broader range of research topics could be served by narrowing the frequency range and broadening functionality as much as possible. To this end, the UHF band was chosen as the focus frequency range. Equipment was selected and acquired, for the most part, which has some degree of capability in this band. For support purposes, some pieces which only function at HF or below were also acquired.

This grant was solely for equipment purchase, so no research was conducted under it, and none is hereby reported. However, the Lab has already been used to support M.S. research projects.

The period over which this work has extended was much longer than expected. Two main reasons for this are excessive paper delay in procedures which require detailed authorization before a purchase rather than accountability afterwards, and a scarcity of qualified personnel to do the antenna positioner installation. This installation, which was completed in January, 1987, required placing steel beams in the lab building roof to withstand the 10,000 ft.-lb. torque rating of the positioner.

All proposed equipment has now been acquired, tested, and installed. A prospectus for the Lab was written last year, and is attached. Also attached are lists of the equipment purchased with the grant, and equipment donated and purchased with University money for the matching requirement under the grant agreement.

D. B. Miron
# Grant Funds

Total: $203,254.00

<table>
<thead>
<tr>
<th>Date</th>
<th>Equipment with description</th>
<th>Company</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/5/85</td>
<td>High frequency oscilloscope system</td>
<td>Tektronix</td>
<td>605.00</td>
</tr>
<tr>
<td></td>
<td>(1) voltage probe (demo)</td>
<td></td>
<td>21,570.00</td>
</tr>
<tr>
<td></td>
<td>(1) 7104 oscilloscope (demo)</td>
<td></td>
<td>2,630.00</td>
</tr>
<tr>
<td></td>
<td>(1) 7A29 plug-in unit (demo)</td>
<td></td>
<td>2,240.00</td>
</tr>
<tr>
<td></td>
<td>(1) 7B10 &quot; &quot; &quot; &quot;</td>
<td></td>
<td>1,380.00</td>
</tr>
<tr>
<td></td>
<td>(1) 7A22 &quot; &quot; &quot; &quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/19/85</td>
<td>(1) voltage probe 010-6201-01</td>
<td>Tektronix</td>
<td>1,210.00</td>
</tr>
<tr>
<td></td>
<td>transportation</td>
<td></td>
<td>5.15</td>
</tr>
<tr>
<td>3/5/85</td>
<td>(1) time base plug-in unit 7B15</td>
<td>Watkins-Johnson</td>
<td>2,695.00</td>
</tr>
<tr>
<td></td>
<td>(1) amplifier &quot; &quot; &quot; 7A29-04</td>
<td></td>
<td>2,855.00</td>
</tr>
<tr>
<td></td>
<td>(1) signal delay transportation</td>
<td></td>
<td>415.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21.02</td>
</tr>
<tr>
<td>7/22/85</td>
<td>(1) HF Receiver WJ8718A</td>
<td>Watkins-Johnson</td>
<td>6,080.00</td>
</tr>
<tr>
<td>11/6/85</td>
<td>(1) VHF/UHF Receiver WJ 86178</td>
<td>Watkins-Johnson</td>
<td>28,210.00</td>
</tr>
<tr>
<td></td>
<td>Following items from</td>
<td>Scientific Atlanta</td>
<td>51,545.00</td>
</tr>
<tr>
<td>12/2/85</td>
<td>(1) antenna positioner 53230-17</td>
<td></td>
<td>4,610.00</td>
</tr>
<tr>
<td></td>
<td>(1) positioner controller NSP H116 B-10</td>
<td></td>
<td>18,480.00</td>
</tr>
<tr>
<td></td>
<td>(1) antenna pattern recorder NSP 1581-3-6-9</td>
<td></td>
<td>4,310.00</td>
</tr>
<tr>
<td></td>
<td>(1) Two axis synchron. display NSP 1844-2</td>
<td></td>
<td>848.00</td>
</tr>
<tr>
<td></td>
<td>(1) '2' cable 5051</td>
<td></td>
<td>168.00</td>
</tr>
<tr>
<td></td>
<td>(1) cable 092436</td>
<td></td>
<td>341.00</td>
</tr>
<tr>
<td></td>
<td>(1) cable 162962</td>
<td></td>
<td>463.70</td>
</tr>
<tr>
<td></td>
<td>freight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/6/86</td>
<td>Following items from</td>
<td>Hewlett-Packard</td>
<td>890.00</td>
</tr>
<tr>
<td></td>
<td>(1) Manual 10 DB Step attenuator option 001</td>
<td></td>
<td>1,050.00</td>
</tr>
<tr>
<td></td>
<td>(1) VHF coaxial step attenuator 355D</td>
<td></td>
<td>350.00</td>
</tr>
<tr>
<td></td>
<td>(1) VHF coaxial step attenuator 355C</td>
<td></td>
<td>8,145.00</td>
</tr>
<tr>
<td></td>
<td>(1) coaxial dir. coupler 11692D</td>
<td></td>
<td>2,850.00</td>
</tr>
<tr>
<td></td>
<td>(1) RF plug in 83525A</td>
<td></td>
<td>13,540.00</td>
</tr>
<tr>
<td></td>
<td>(1) sweep oscillator 8350B</td>
<td></td>
<td>4,565.00</td>
</tr>
<tr>
<td></td>
<td>(1) synth. signal generator 8656B</td>
<td></td>
<td>6,500.00</td>
</tr>
<tr>
<td></td>
<td>(1) high stability time base option 001</td>
<td></td>
<td>850.00</td>
</tr>
<tr>
<td></td>
<td>(1) network analyzer 8410C</td>
<td></td>
<td>6,997.50</td>
</tr>
<tr>
<td></td>
<td>(2) DC power supply 6234A</td>
<td></td>
<td>900.00</td>
</tr>
<tr>
<td></td>
<td>(1) DC power supply 6286A</td>
<td></td>
<td>1,050.00</td>
</tr>
<tr>
<td></td>
<td>(4) DC power supply 6216B</td>
<td></td>
<td>1,480.00</td>
</tr>
<tr>
<td>2/6/86</td>
<td>(3) step attenuators</td>
<td></td>
<td>2,670.00</td>
</tr>
</tbody>
</table>
## MATCHING FUNDS

<table>
<thead>
<tr>
<th>Item Name</th>
<th>Model Number</th>
<th>Inventory Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Analyzer</td>
<td>8410A</td>
<td>D12654</td>
<td>4760</td>
</tr>
<tr>
<td>Interface &amp; Polar Display</td>
<td>8419A</td>
<td>D13455</td>
<td>910</td>
</tr>
<tr>
<td></td>
<td>8414A</td>
<td></td>
<td>2705</td>
</tr>
<tr>
<td>Sweep Oscillator</td>
<td>8690B</td>
<td>D13452</td>
<td>1275</td>
</tr>
<tr>
<td>S-Parameter test set</td>
<td>8745A</td>
<td>D13453</td>
<td>6251</td>
</tr>
<tr>
<td>Oscilloscope (less plugin)</td>
<td>7704</td>
<td>D13182</td>
<td>3150</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>7504</td>
<td></td>
<td>3262</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3000</td>
</tr>
<tr>
<td>Plug in unit(2)</td>
<td>7A11</td>
<td></td>
<td>3400</td>
</tr>
<tr>
<td>2 plug in units</td>
<td>7A15</td>
<td></td>
<td>917</td>
</tr>
<tr>
<td>Multimeter</td>
<td>HP3478A</td>
<td>D11405</td>
<td>1375</td>
</tr>
<tr>
<td>Frequency Converter</td>
<td>HP8411A</td>
<td></td>
<td>2,500</td>
</tr>
<tr>
<td>Phase Magnitude Display</td>
<td>HP8412B</td>
<td></td>
<td>3,699</td>
</tr>
<tr>
<td>Slotted Line General Radio</td>
<td>38419</td>
<td></td>
<td>354</td>
</tr>
<tr>
<td>Scope Mobile Model</td>
<td>38419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500A Tektrmix</td>
<td>38419</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>6 Benches</td>
<td>@200</td>
<td></td>
<td>1,200</td>
</tr>
<tr>
<td>3 Shelves</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1 Rol-a-Lab storage cabinet</td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>5 Padded laboratory stools</td>
<td>@100</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>1 Metal laboratory stool</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Frequency Counter</td>
<td>D10483</td>
<td>HP 5340A</td>
<td>7,702</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,500)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>47,480</td>
</tr>
</tbody>
</table>

---

page 3
<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Vendor</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/13/86</td>
<td>(3) crystal detectors 423A</td>
<td>Hewlett Packard</td>
<td>660.00</td>
</tr>
<tr>
<td></td>
<td>phone calls</td>
<td></td>
<td>17.97</td>
</tr>
<tr>
<td>6/9/86</td>
<td>x 1&quot; oscilloscope probes</td>
<td>Tektronix</td>
<td>56.66</td>
</tr>
</tbody>
</table>
THE RF COMMUNICATIONS LABORATORY
AT SOUTH DAKOTA STATE UNIVERSITY

A Prospectus

In 1984, SDSU received a DoD-URIP grant to renew our RF Communications Lab. This project will be completed by Fall, 1986. The outcome of the effort will be a facility capable of performing many functional tests on circuits and antennas in the VHF-UHF range. The equipment acquired under the grant, and some previously donated, includes signal and sweep generators, receivers, analyzers, a frequency counter, a gigahertz 'scope system, 50 ohm detectors, directional couplers, step attenuators, miscellaneous bench power supplies, and an antenna positioner and pattern recording system. This equipment is listed and briefly described in an attached table, and the frequency coverage is shown in an attached figure. In addition, we have some older, but still useful, items such as sampling and vector voltmeters, slotted lines, an rf bridge, a Q meter, octave directional couplers, etc. The EE Dept. also has a Hybrid Microelectronics Laboratory in which thick- and thin-film circuits can be built.

The principle faculty member for the RF Lab is Dr. Douglas B. Miron. His background in electrical engineering is very broad, including some experience in broadband rf design, antenna arrays, electrically small and active antennas, and numerical methods. In addition, other faculty members available to support projects in connection with the Lab are Dr. Robert G. Finch and Dr. Guang-Wen Pan. Dr. Finch has a background in hardware design and communications theory. Dr. Pan has recent experience in numerical solution of scattering problems and electromagnetic effects in Very-High-Speed Integrated Circuits. He is joining us this Fall. The resumes of these faculty are attached.

We offer these facilities and faculty to serve you in almost any arrangement you may desire. We welcome complete projects, joint or cooperative development, or subcontracts. Write or call at any time:

Dr. Douglas B. Miron 605-688-4016, campus office
EE Dept. 2220 605-688-4526, EE Dept.
SDSU 605-692-7977, home
Brookings, SD 57007
**EQUIPMENT**

HP8656B-001 Signal Generator
0.1-990 MHz. -127 to +13 dBm in 0.1 dB steps. Internal AM and FM. High-stability time base. Programmable.

HP8350B/83525A Sweep Generator
0.01-8.4 GHz. Leveled power from -2 to +13 dBm. External AM and FM. Internal crystal or external markers. Start-stop or delta-frequency sweep modes.

WJ8718A HF Receiver
5 kHz-30 MHz. Detectors; AM, FM, CW, USB, LSB, ISB. Five IFs; 0.3, 1, 3.2, 6, 16 kHz. BFO. Synthesized tuning, 10 Hz min. step.

WJ8617B HF-UHF Receiver
2-1100 MHz. Detectors; AM, FM, CW, PLS, SSB. IFs; 3.2, 50, 300, 8 MHz. Synthesized tuning, 10 Hz min. step. BFO. Separate antenna inputs and front ends split at 500 MHz. Programmable. Spectrum display and connector output.

Scientific Atlanta 53230A-17 Antenna Positioner
Azimuth over elevation. 10,000 ft-lb torque, 10,000 lb. direct load. Rotary joint, 40-line slip rings, rf switches.

Scientific Atlanta
4116A-10 Positioner Controller
1844-2 Two-axis Synchro Display
1580-3-6-9 Antenna Pattern Recorder

HP8410C/8411A/8412B Network Analyzer
0.11-12.4 GHz. Magnitude range on test channel -10 to -75 dBm. Phase/magnitude display. Resolution 1 dB/cm and 1 deg/cm.

HP8410A Network Analyzer System
0.1-4 GHz. Polar display.

HP8745A S-Parameter Test Set
0.1-2 GHz. Transistor fixtures.

HP5340A Frequency Counter
10 Hz-18 GHz. Min. signal level -35 dBm. Max. power 1 W into 50 ohms.

Tektronix 7104 Oscilloscope System
4 bay, 1 GHz mainframe.
7A22 Diff. Amp. 10 uV/cm, 1 MHz
7A29 Single channel, 5 mV/cm, 1 GHz.
7A29-04 As above, with variable delay line.
7B10 Time base.
7B15 Delayed time base.
Two FET probes, 500 MHz.
HP423B Crystal Detectors
Three, 50 ohm type N rf terminating. 0.01-12.4 GHz.
>0.5 mV/uW sensitivity. 0.2 W max. input.

HP778D Dual Directional Couplers
Three, 0.1-2 GHz, -20 dB coupling. 50 W.

HP11692D Dual Directional Couplers
Three, 2-18 GHz, -22 dB coupling. 50 W.

HP355C,D Step Attenuators
0-1 GHz. 0.5 W. One 1 dB/step, two 10 dB/step.

HP8494B/8496B Step Attenuators
0-18 GHz. 1 W. One 1 dB/step, two 10 dB/step.
<table>
<thead>
<tr>
<th>Item</th>
<th>Frequency Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP8656B Signal Generator</td>
<td>0 0.1 1 10 100MHz 1GHz 10</td>
</tr>
<tr>
<td>HP8350B/835E5A Sweep Generator</td>
<td></td>
</tr>
<tr>
<td>WJ8718A HF Receiver</td>
<td>5kHz</td>
</tr>
<tr>
<td>WJ8617B MF-UHF Receiver</td>
<td></td>
</tr>
<tr>
<td>HP8410C/8411A Network Analyzer</td>
<td></td>
</tr>
<tr>
<td>HP8410A Network Analyzer System</td>
<td></td>
</tr>
<tr>
<td>HP8745A S-Parameter Test Set</td>
<td></td>
</tr>
<tr>
<td>HP340A Frequency Counter</td>
<td>10Hz</td>
</tr>
<tr>
<td>Tek 7104 'Scope System</td>
<td></td>
</tr>
<tr>
<td>HP423B Detectors</td>
<td></td>
</tr>
<tr>
<td>HP778D Directional Couplers</td>
<td></td>
</tr>
<tr>
<td>HP11692D Directional Couplers</td>
<td></td>
</tr>
<tr>
<td>HP356C, D Step Attenuators</td>
<td></td>
</tr>
<tr>
<td>HP849xB Step Attenuators</td>
<td></td>
</tr>
</tbody>
</table>
RESUME

Miron, Douglas Bernard 9 June 1986

EDUCATION

Yale University 9/57-6/63 B.E. (E.E.) 1962
New Haven, Connecticut M.E. (Controls) 1963

U. of Conn. 9/67-5/77 Ph.D. (Controls) 1977
Storrs, Connecticut

MEMBERSHIPS

IEEE, Eta Kappa Nu, Registered Professional Engineer in South Dakota.

LANGUAGES

Currently using English, IBM PC BASIC, FORTRAN, APL. Used to know French, Russian, German, IBM 1620 and HP 9100 machine languages, PL/1, various BASICS.

EMPLOYMENT

6/63-8/65 Pratt and Whitney Aircraft Division
United Aircraft Corp.
East Hartford, Connecticut

Duties: The Scientific Staff was a consulting group for other engineering groups engaged in advanced power systems research. As a result, I worked on a wide range of problems from circuit design through analysis of gas flow controls to analysis of the dynamics of a nuclear power heat transfer system.

9/65-7/67 Electric Boat Division, General Dynamics Corp.
Groton, Connecticut

Duties: The Underwater Development Section was mainly concerned with small research submarines. We also designed trainers and rendered assistance to other engineering groups. Problems handled here were such things as coordinate transformations for sonar, underwater visibility, motor control, battery gas testing, etc. The largest project was one for a proposal. I designed a computer program which simulated the design of a search and rescue submarine, ran it through a test mission and evaluated its cost/effectiveness. I supervised two programmers and coaxed scaling and performance information out of numerous engineers. The program worked, but Lockheed got the contract.

9/70-8/72 Bio-Engineering Institute
University of New Brunswick
Fredericton, New Brunswick
Canada

Duties: Circuit design for latest generation of myoelectric instrumentation.
9/72-1/73  South Norwalk Electric Works  
South Norwalk, Connecticut

Duties: SNEW is a generation and distribution system owned by the people of South Norwalk. As their latest piece of generation arrived, their consulting electrical engineer was hurt in a tractor accident. I was hired to supervise the installation and checkout of the electrical and control systems for a new diesel-driven 5 MW unit. It was their first pushbutton startup unit and has many automatic features. There were several vendors, so it was necessary to examine drawings and equipment for compatibility. In addition, I did some buy-or-generate strategy and contract studies, designed a load-shedding system, and wired an emergency start-up generator.

4/74-7/79  Hermes Electronics Ltd.  
Dartmouth, Nova Scotia  
Canada

Duties: At Hermes, I was mainly concerned with applications and improvements of high-frequency active receiving loop antennas. During my stay, I designed the interface circuits for a circular array; developed algorithms for calculating the responses of ideal and nonideal circular arrays; and applied modern data processing methods to the art of HF direction finding. I was also occupied with production and customer support.

10/79-present  Department of Electrical Engineering  
South Dakota State University  
Brookings, South Dakota  57007

Rank: Associate Professor. I regularly teach the courses in Electromagnetic Fields, RF Electronics, and Linear Control Systems. I have also taught the circuits, electronics, and basic systems courses. My current research interest is in current density calculations on broad-surface antennas. I am also supervising graduate students working on the Vector Processor, and voltage-controlled oscillator development.

Summer 1981  E. F. Johnson Co.  
Waseca, Minnesota

Duties: Developed an internal antenna for the 850 MHz band hand-held radiotelephone.

Summer 1984  IBM Corp.  
Rochester, Minnesota

Duties: Extend an existing math model for predicting the bit-error rate for a magnetic disk data storage system.
PUBLICATIONS

"Circular Array Response; Theory and Calculations" Hermes Technical Report TR 75/1, 1975


"Application of Supergain to Hermes Linear Arrays" Hermes Technical Report TR 76/14, 1976

"Noise Calculation for Active Receiving Antennas" Hermes Technical Note TN 76/34, 1976

"Effect of Ground Reflections on Active Receiving Antenna" Hermes Technical Note TN 77/7, 1977


"N to One Hybrid Converters" Hermes Technical Note TN 79/19, 1979

"Low Noise Amplifier for Myoelectric Measurements" Medical and Biological Engineering, January, 1973

"Image Motion on the Retina" Am J. of Optometry and Physiological Optics, Vol. 53, No. 8, August, 1976


"Digital Data Processing Applied to HF DF by Phase Measurement" Canadian Electrical Engineering Journal, April 1978


ROBERT G. FINCH

Office Telephone: 605-688-5217

EDUCATION

Ph.D. Purdue University 1974
   Major: Electrical Engineering
   Minor: Mathematics
   Area of Specialization: Communications
   Thesis Title: Spectrum Utilization Efficiency
   Thesis Advisor: Dr. George R. Cooper

M.S.E.E. Michigan State University 1960

B.S.E.E. Michigan State University 1958

TEACHING EXPERIENCE

Professor 1984-
Associate Professor 1978-1984
Assistant Professor 1974-1978
South Dakota State University
Graduate Courses Taught - communications, digital signal processing, fiber optics
Undergraduate Courses Taught - communications, signal and system analysis, probabilistic methods, integrated circuits, electronics, linear circuits, electromagnetic field theory, basic electrical engineering

Graduate Instructor 1967-1974
Purdue University
Taught undergraduate electrical engineering lecture courses in the areas of signal and system analysis, probabilistic methods, and linear circuits. Also, taught in a self-paced circuits program.

ENGINEERING EXPERIENCE

Engineer Summer-1983,84
IBM Corporation - Rochester, MN
Conducted a study of methods used for simulating and testing VLSI circuits with emphasis on mixed technology (analog/digital).

Communication Systems Analyst Summer-1977,78,81
TRW Defense & Space Systems Group - Redondo Beach, CA
Worked as a systems analyst on the Tracking and Data Relay Satellite System. Specific areas investigated were antenna
placement, cycle slipping of phase-locked loops, phase noise, effect of RFI pulses on automatic level control system, modeling of a TWT amplifier to study AM-to-AM and AM-to-PM effects resulting from RFI pulses, interference between users in a multiple-access system, and doppler error due to phase noise.

NASA-ASEE Summer Faculty Fellow  
Johnson Space Center - Houston, TX  
Worked on the analysis of a spread spectrum communication system for the Space Shuttle Orbiter. Also conducted tests on a prototype spread spectrum receiver.

Research Assistant, Research Associate  
Radio Astronomy Laboratory, University of Michigan  
Worked on the design of low-noise radiometers that were flown as part of rocket and satellite experimental packages. Served as project engineer for the radiometer flown on the OGO-E satellite. Duties included circuit design, mechanical design of package, specification and procurement of components to insure high reliability, environmental testing, and liaison with Goddard Space Flight Center, and TRW Systems during integration of package onto the spacecraft.

Design Engineer  
Bendix Systems Division - Ann Arbor, MI  
Worked on the design of high frequency bandpass amplifiers and varactor frequency multipliers.

PROFESSIONAL DEVELOPMENT

Fiber Optic Communication Systems Short Course  
University of California at Santa Barbara  
1983

Mini-sabbatical  
University of Connecticut  
1976

HONORS AND ACTIVITIES

Professional Societies:  
IEEE - Information Theory Group  
Communications Society  
Acoustics, Speech, and Signal Processing Society  
Education Society  
ASEE

Honor Societies:  
Eta Kappa Nu
GUANG-WEN (George) PAN

Tel. (605) 688-4223 (W),...

EDUCATION:

1984 Ph.D in Electrical Engineering, University of Kansas
(with GPA=4.0/4.0)

1982 M.S. in Electrical Engineering, University of Kansas
(with GPA=3.98/4.0)

1967 B.E. in Mechanical Engineering, Peking Institute of Petroleum Technology

EXPERIENCES:

August 1986 - Present
1. Associate Professor in Electrical Engineering
   Department, South Dakota State University

2. Technical Consultant, Mayo Foundation

May 1985 - August 1986
Research Engineer in Mayo Foundation:

Theoretical Modeling and Computer Simulation of High Speed LSI/VLSI and Interconnections
1. The Transmission Line Approximation (Quasi-TEM Assumption) for Two- and Three-Dimensional Multi-conductor/Multilayered Dielectric Systems

2. The Wave-Scattering Approaches with Higher Modes i.e.,Non-TEM Modes Considered

3. Transient Analysis and Wavefront Simulation of Coupled Lossy and Dispersive Transmission Lines

Oct. 1984 - May 1985
Post Doctoral Fellow, The University of Texas at Arlington:
1. Airborne Radome Design and Analysis
   (1) Ray Tracing Method
   (2) Surface Integration Method
   (3) Plane Wave Spectrum Analysis
   (4) Numerical Techniques: Finite Element Method

2. Electromagnetic Wave Scattering from Randomly Rough Surfaces: the Fung-Pan Approximation

1980 - 1984
Graduate Research Assistant with Space Technology Center (NASA Contractor), University of Kansas:

1. Radiometric and Radar Remote Sensing
   (1) Inverse Techniques
   Least-Square Solution
   Constrained Linear Inversion
   Optimal Estimation Method
   Statistical Inversion Method
   Buckius-Gilbert Synthetic-Average Inversion
   (2) Atmospheric Sounding by Satellite Radiometers
   (3) Atmospheric Profile Retrieval from Ground-Based Observation

2. Electromagnetics
   (1) Field Computation by the Method of Moments
   (2) Rough Surface Scattering
   Integral Equation Method
   Huyghen's Approximation (Physical-Optics)
   Small Elevation Model (Fresnel Model)
   Estimation Inversion Method
   Statistical Fourier Transform Method
   (3) Volume Scattering
   Fold Approximation
   Renormalization Method
   Diagram Method
   (4) Radar System Design
   Side-looking Airborne Radar (SLAR)
   Synthetic Aperture Radar (SAR)

3. Applied Mathematics and Numerical Techniques
   (1) Wiener Filtering
   (2) Fanoa Filtering (Fast Algorithm)
   (3) Polynomial Regression and Curve Fitting
   (4) Numerical Integration and Differentiation
4. Communication
   (1) Information Theory and Application
   (2) Digital Communication Systems
   (3) Microwave Communication Systems
   (4) Satellite Communication System Design
       K-Band SS-TDMA (Spacecraft-Switched Time Division Multiple Access)
       SCPC, FDMA/FM, CDMA

5. Digital Image Processing and Pattern Recognition
   (1) Image Restoration and Enhancement
       Adaptive Filtering; Constrained Least Square
   (2) Pattern Recognition: Feature Selection by
       Karhunen-Loeve Expansion and by Nonlinear Mapping; Nonparametric Estimation; Clustering

1970 - 1978
Engineer, Institute of Development and Research, 
Chang-Qing Oil Field, China

1. Analog Circuit Design
2. Digital Circuit Design

1967 - 1970
Associate Engineer, Yumen Oil Field, China
1. Mechanical Design

AWARDS AND ACTIVITIES:
1982 Calhoun Fellowship from Drexel University
1981 Chinese Representative in President Truman’s Memorial Feast
1978 New Invention Prize from Ministry of Petroleum Industry, China. (for leadership of the group that developed a digital remote fire system for oil seismic exploration.)
PUBLICATIONS AND PROPOSALS:


1. Airborne Radome Design and Analysis
   (1) Ray Tracing Method
   (2) Surface Integration Method
   (3) Plane Wave Spectrum Analysis
   (4) Numerical Techniques: Finite Element, Method of Moments

2. Electromagnetic Wave Scattering from Randomly Rough Surfaces: the Fano-Fan Approximation

1980 - 1984
Graduate Research Assistant with Space Technology Center (NASA Contractor), University of Kansas:

1. Radiometric and Radar Remote Sensing
   (1) Inverse Techniques
      Least-Square Solution
      Constrained Linear Inversion
      Optimal Estimation Method
      Statistical Inversion Method
      Buckus-Gilbert Synthetic-Average Inversion
   (2) Atmospheric Sounding by Satellite Radiometers
   (3) Atmospheric Profile Retrieval from Ground-Based Observation

2. Electromagnetics
   (1) Field Computation by the Method of Moments
   (2) Rough Surface Scattering
      Integral Equation Method
      Kirchhoff Approximation (Physical-Optics)
      Small Perturbation Model (Rice Model)
      Extinction Theorem Method
      Stochastic Fourier Transform Method
   (3) Volume Scattering
      Born Approximation
      Renormalization Method
      Diagram Method
   (4) Radar System Design
      Side-Looking Airborne Radar (SLAR)
      Synthetic Aperture Radar (SAR)

3. Applied Mathematics and Numerical Techniques
   (1) Wiener Filtering
   (2) Kalman Filtering (Fast Algorithm)
   (3) Polynomial Regression and Curve Fitting
   (4) Numerical Integration and Differentiation
4. Communication
   (1) Information Theory and Application
   (2) Digital Communication Systems
   (3) Microwave Communication Systems
   (4) Satellite Communication System Design
       K-Band SS-TDMA (Spacecraft-Switched Time Division Multiple Access)
       SCPC, FDMA/FM, CDMA

5. Digital Image Processing and Pattern Recognition
   (1) Image Restoration and Enhancement
       Adaptive Filtering; Constrained Least Square
   (2) Pattern Recognition: Feature Selection by Karhunen-Loeve Expansion and by Nonlinear Mapping; Nonparametric Estimation; Clustering

1970 - 1978
Engineer, Institute of Development and Research,
Chang-Qing Oil Field, China

1. Analog Circuit Design
2. Digital Circuit Design

1967 - 1970
Associate Engineer, Yumen Oil Field, China
1. Mechanical Design

AWARDS AND ACTIVITIES:

1982 Calhoun Fellowship from Drexel University

1981 Chinese Representative in President Truman's Memorial Feast

1978 New Invention Prize from Ministry of Petroleum Industry, China, (for leadership of the group that developed a digital remote fire system for oil seismic exploration.)
PUBLICATIONS AND PROPOSALS:


Gilbert, B., G.W. Pan and D. Schwab, A Plan of Study for High Speed GaAs IC's Electromagnetic Simulation, (Prepared with budget $841,000 for 3 years) Nov. 1985.

