UNCLASSIFIED: Correlation of Spectroscopic and Magnetic Data of Two Charge Transfer Compounds of TCNQ with Cationic Copper Chelates

Michael Schwartz and William E. Hatfield

Technical Report

FROM To 1987 July 10

Spectral data for \([\text{Cu(en)}_2]_2[\text{TCNQ}]_2\) reveal a TCNQ charge transfer band at 1220 nm. With \(t = 0.2, U = 1.3\) eV from \(\Delta E(CT) = (U - \sqrt{2}t)\), then \(\Delta E_{st} = 4t/U\). The lack of a contribution of paramagnetism from TCNQ to that of \([\text{Cu(en)}_2]_2[\text{TCNQ}]_2\) is understood since a system with \(E_m\) of 0.12 eV would exhibit a magnetic susceptibility of \(10^{-5}\) emu/mole at 300 K. The magnetic susceptibility of \([\text{Cu(en)}_2]_2[\text{TCNQ}]_2\) indicates that one-third an electron is transferred from TCNQ to \([\text{Cu(phen)}_2]^{2+}\), and \(E = 0.17\) eV. Since \(E\) and \(t\) are comparable in magnitude, the bandwidth is appreciable, and high electrical conductivities and low activation energies are expected, and observed.
CORRELATION OF SPECTROSCOPIC AND MAGNETIC DATA OF TWO CHARGE TRANSFER COMPOUNDS OF TCNQ WITH CATIONIC COPPER CHELATES

by

Michael Schwartz and William E. Hatfield

Department of Chemistry
The University of North Carolina
Chapel Hill, North Carolina 27514

Prepared for publication in
"Organic and Inorganic Crystalline Materials"
NATO ASI Series Volume
P. Delhaes and M. Drillon, Editors

Reproduction in whole or in part is permitted for any purpose of the United States Government

*This document has been approved for public release and sale, its distribution is unlimited.

*This statement should also appear in Item 3 of Document Control Data - DD Form 1473. Copies of the form available from cognizant contract administrator.
Correlation of Spectroscopic and Magnetic Data of Two Charge Transfer Compounds of TCNQ with Cationic Copper Chelates

Michael Schwartz and William E. Hatfield

Department of Chemistry, The University of North Carolina
Chapel Hill, North Carolina 27514

Introduction

In view of the initial work\(^1\) on charge transfer compounds of TCNQ, one of the advantages of using copper(II) chelates as acceptors in charge transfer compounds with TCNQ would appear to be the high probability of forming stacked TCNQ\(^+\) separated chains in preference to mixed CuL\(_2\)-TCNQ stacked chains. Such cationic copper chelate-TCNQ charge transfer compounds have unusual properties and have continued to attract attention.\(^2\)-\(^6\)

Experimental

Solid state electronic absorption spectra were obtained by using powdered samples mixed with KBr and pressed into pellets.\(^7\) Magnetic susceptibility data were obtained by using a Faraday balance system. The balance was calibrated with HgCo(NCS)\(_4\)\(^8\) and with Gd\(_2\)O\(_3\).\(^9\) A value of \(-1.21 \times 10^{-4}\) emu mol\(^{-1}\) was used as the diamagnetic correction for TCNQ,\(^10\) Pascal's constants were used for diamagnetic corrections,\(^8\) and a value of \(60 \times 10^{-6}\) emu mol\(^{-1}\) was used for TIP of copper(II).

Results

Electronic spectral data for [Cu(en)\(_2\)]\([\text{TCNQ}]_2\) and [Cu(phen)\(_2\)]\([\text{TCNQ}]_2\) along with assignments are given in Table I. Features in the electronic spectra of the [Cu(L)\(_2\)]\([\text{TCNQ}]_2\) compounds may be understood in terms of the electronic structures of [TCNQ]\(_n\)^\(q\) (\(q = 0, 1, 2; n = 1, 2\). The spectral features probably arise from transitions at defects and chain ends, and from TCNQ\(^+\) + TCNQ\(^-\) \(\rightarrow\) TCNQ\(^0\) + TCNQ\(^2\)- and TCNQ\(^-\) + TCNQ\(^0\) \(\rightarrow\) TCNQ\(^0\) + TCNQ\(^-\) charge transfer.

An SCF-LCAO-MO calculation of TCNQ\(^-\) by Lowitz\(^11\) provides the features necessary to understand the absorption spectrum of isolated TCNQ. More sophisticated calculations, such as those by Jonkman and Kommandeur\(^12\) support the spectral assignments.

Where there is overlap, the magnetic data are in good agreement with the data reported by Inoue and coworkers.\(^4\) The data for [Cu(en)\(_2\)]\([\text{TCNQ}]_2\) may be fit by the Curie-Weiss law with \(S = 1/2\), \(g = 2.10\), and \(\Theta = 8.32\). Since contributions from TCNQ\(^-\) molecules are not necessary to explain the
Table I. Electronic Spectral Data

<table>
<thead>
<tr>
<th>[Cu(en)$_2$][TCNQ]$_2$</th>
<th>[Cu(phen)$_2$][TCNQ]$_2$</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT 77 K</td>
<td>RT 77 K</td>
<td></td>
</tr>
<tr>
<td>365 i 355 i</td>
<td>370 i 415 sh 500 500</td>
<td>$^2B_{2g} \rightarrow ^2A_u$</td>
</tr>
<tr>
<td>617 i 612 i</td>
<td>610 i 685 773 780</td>
<td>$^2B_{2g} \rightarrow ^2A_u$</td>
</tr>
<tr>
<td>850 i 850 i</td>
<td>875 i 1000 sh 985 sh</td>
<td>$^2B_{2g} \rightarrow ^2B_{1u}$</td>
</tr>
<tr>
<td>1220 vb 1220 vb</td>
<td>1170 2500 vb 2500 vb</td>
<td>TCNQ$^-\rightarrow$ TCNQ$_0^-\rightarrow$ CT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCNQ$^-\rightarrow$ TCNQ$_0^-\rightarrow$ CT</td>
</tr>
</tbody>
</table>

*Abbreviations: RT - room temperature; i - intense; sh - shoulder; vb - very broad; CT - charge transfer; band positions given in nm.

observed data, it may be concluded that the TCNQ$^-$ molecules are strongly coupled. The magnitude of the effective magnetic moment indicates that a negligible amount of electron transfer has occurred from TCNQ to the copper(II) cations.

[Cu(phen)$_2$][TCNQ]$_2$ was assumed to consist of copper(I) and copper(II) complex cations and TCNQ0 and TCNQ$^-$ molecules within clusters or chains. The low values for the magnetic moments indicate that a substantial amount of electron transfer has occurred. If there is site preference for the electrons on the TCNQ chain, then the cluster models may be appropriate. The simplest cluster model consists of a pair, and the appropriate equation for the magnetic susceptibility is

$$X = 2(\rho - 0.5)(C/T) + \rho' \frac{2N_p B^g}{3kT} \left[1 + \frac{1}{3} \exp\left(-\frac{2J}{kT}\right) \right]$$

where the first term is the Curie contribution of the copper(II) complex cations, C is the Curie constant, and ρ is the degree of band filling. The quantity $2(\rho - 0.5)$ represents the fraction of copper(II) in the sample. The g value in the first term was held constant at the experimental value of 2.07. The second term is the contribution from the TCNQ clusters (pairs) with an energy gap of $2J = \Delta E_{ST}$. The g value was taken to be 2.0 for the organic radicals. The exchange coupling constant is given by the following expression:

$$J = \left[\frac{t^2}{-U + (4t/\pi)\sin\pi \rho} \right] \left[1 - \frac{\sin2\pi \rho}{2\pi \rho} \right]$$

where U and t are Coulomb and transfer integrals. This model was applied yielding $\rho = 0.71$ and $2J = -0.077$ eV. Fitting calculations were made with non-linear least squares fitting program.
Discussion

The experimental results suggest strong intermolecular interactions between the TCNQ molecules in both copper complexes. If these molecules stack to form chains, as is common in TCNQ charge transfer compounds, then strong intermolecular interactions may not be confined to pairs of TCNQ molecules. The Hubbard model\(^1\) may be used to account for both delocalization and electron-electron repulsions (Coulomb correlations) associated with the formation of doubly occupied sites. In this model, delocalization effects are accounted for by the \(t\) term, and localization effects through the \(U\) term.

Band Structure in \([\text{Cu(en)}_2][\text{TCNQ}]_2\). The Hubbard model does not take site energy differences into consideration, and it should apply to \([\text{Cu(en)}_2][\text{TCNQ}]_2\), since, by stoichiometry, all sites have one electron. Tanaka, et al.\(^1\) have shown that the energy of the charge transfer transition is given by \((U - J^2\)t). With this relationship, the energy of the charge transfer transition (1.02 eV), and results of the calculations of \(t = 0.2\) for a variety of TCNQ compounds,\(^1\) a value of 1.3 eV may be estimated for \(U\). The effect of \(U\) is to cause a band gap at the Fermi level. Hubbard\(^1\) has determined that the gap develops for values of \(4t/U < 1.15\). \([\text{Cu(en)}_2][\text{TCNQ}]_2\] meets this criterion since \(4t/U = 0.62\).

Soos and Strebel\(^1\) have determined that the singlet-triplet splitting is given by \(4t^2/U\). Using the values of \(t\) and \(U\), \(\Delta E_{\text{ST}}\) is estimated to be 0.12 eV. A system with a \(\Delta E_{\text{ST}}\) of 0.12 eV would exhibit a magnetic susceptibility on the order of \(10^{-5}\) emu/mole at 300 K. A susceptibility this small could not be detected in the presence of the molar magnetic susceptibility of the \(S = 1/2\) copper complex cation.

Band Structure of \([\text{Cu(phen)}_2][\text{TCNQ}]_2\). When there is less than one electron per site, conductivity can occur without the formation of doubly occupied sites. Because of electron transfer from TCNQ to the copper(II) complex, TCNQ\(^0\) sites are created, and \([\text{Cu(phen)}_2][\text{TCNQ}]_2\) should exhibit properties consistent with empty-site statistics. The key to understanding the electronic structure and conductivity is provided by the low energy absorption band which arises from TCNQ \(\rightarrow\) TCNQ\(^0\) \(\rightarrow\) TCNQ\(^0\) + TCNQ\(^-\) charge transfer. The presence of this transition reflects a site preference, and when double occupation can be neglected, the difference in site energies dominates the conductivity process.

Soos and Klein\(^2\) have modified the Hubbard model to take into account site energy differences. The modified Hubbard model yields a band structure in terms of \(t\) and \(E\). In the case of \(t \gg E\), cosine dispersion curves are obtained. In the case of \(E \gg t\), the bands are flat with a gap dependent on \(E\). The percentage of copper(II) in \([\text{Cu(phen)}_2][\text{TCNQ}]_2\), as determined from the magnetic susceptibility measurements, shows that, on the average, there is about two-thirds of an electron per site. As an approximation, for this site occupancy, the energy of the charge transfer is \(3E\), and therefore the site energy difference in \([\text{Cu(phen)}_2][\text{TCNQ}]_2\) is 0.17 eV (0.5 eV/3). Because \(E\) and \(t\) are comparable in magnitude in \([\text{Cu(phen)}_2][\text{TCNQ}]_2\), the bandwidth is still appreciable, and high electrical conductivity and a low activation energy are expected, and observed.\(^3\)

Thus, the energies of the charge transfer bands TCNQ\(^-\) \(\rightarrow\) TCNQ\(^0\) \(+\) TCNQ\(^0\) \(\rightarrow\) TCNQ\(^0\) \(+\) TCNQ\(^-\) yield data which provide an explanation of the magnetic properties of \([\text{Cu(en)}_2][\text{TCNQ}]_2\) and
\[\text{[Cu(phen)\textsubscript{2}][TCNQ\textsubscript{2}] in terms of the Hubbard model and its modified variation.} \]

Acknowledgements

This work was supported in part by the Office of Naval Research.

References

(b) Nedler, J. P.; Mead, R. Computer J. 1965, 7, 308.
Office of Naval Research	2	Dr. David Young
Attn: Code 1113		Code 334
800 N. Quincy Street		NORDA
Arlington, Virginia 22217-5000		NSTL, Mississippi 39529
Dr. Bernard Duida	1	Naval Weapons Center
Naval Weapons Support Center		Attn: Dr. Ron Atkins
Code 50C		Chemistry Division
Crane, Indiana 47522-5050		China Lake, California 93555
Naval Civil Engineering Laboratory	1	Scientific Advisor
Attn: Dr. R. W. Drisko, Code L52		Commandant of the Marine Corps
Port Hueneme, California 93401		Code RD-1
U.S. Army Research Office	1	Washington, D.C. 20380
Defense Technical Information Center	12	high
Building 5, Cameron Station	high	quality
Alexandria, Virginia 22314		
DTNSRDC	1	Mr. John Boyle
Attn: Dr. H. Singerman		Materials Branch
Applied Chemistry Division		Naval Ship Engineering Center
Annapolis, Maryland 21401		Philadelphia, Pennsylvania 19112
Dr. William Tolles	1	Naval Ocean Systems Center
Superintendent		Attn: Dr. S. Yamamoto
Chemistry Division, Code 6100		Marine Sciences Division
Naval Research Laboratory		San Diego, California 91232
Washington, D.C. 20375-5000		
ABSTRACTS DISTRIBUTION LIST 053

Dr. M. F. Hawthorne
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. J. Zuckerman
Department of Chemistry
University of Oklahoma
Norman, Oklahoma 73019

Professor O. T. Beachley
Department of Chemistry
State University of New York
Buffalo, New York 14214

Professor R. Neilson
Department of Chemistry
Texas Christian University
Fort Worth, Texas 76129

Dr. W. Hatfield
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Professor M. Newcomb
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Professor R. Wells
Department of Chemistry
Duke University
Durham, North Carolina 27706

Professor L. Miller
Department of Chemistry
University of Minnesota
Minneapolis, Minnesota 55455

Professor K. Neidenzu
Department of Chemistry
University of Kentucky
Lexington, Kentucky 40506

Professor K. O. Christie
Rockwell International
Canoga Park, California 91304

Dr. Herbert C. Brown
Department of Chemistry
Purdue University
West Lafayette, IN 47907

Dr. Margaret C. Etter
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455
END
8-8
DTIC