STATISTICS ON AIRCRAFT GAS TURBINE ENGINE ROTOR FAILURES THAT OCCURRED IN (U) NAVAL AIR PROPULSION CENTER TRENTON NJ PROPULSION ENGINEERING

UNCLASSIFIED R A DELUCIA ET AL MAR 87 NAPC-PE-154C F/G 21/5 NL
Statistics on Aircraft Gas Turbine Engine Rotor Failures that Occurred in U.S. Commercial Aviation During 1981

R.A. DeLucia
J.T. Salvina
T. Russo

Naval Air Propulsion Center
Trenton, New Jersey

March 1987
Final Report

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

U.S. Department of Transportation
Federal Aviation Administration
NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.
Title and Subtitle
STATISTICS ON AIRCRAFT GAS TURBINE ENGINE ROTOR FAILURES THAT OCCURRED IN U.S. COMMERCIAL AVIATION during 1981.

Author(s)
- R. A. DELUCIA
- J. T. SALVINO
- T. RUSSO

Performing Organization Name and Address
Commanding Officer
Naval Air Propulsion Center
PO Box 7176
Trenton, NJ 08628-0176

Sponsoring Agency Name and Address
Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City International Airport, NJ 08405

Abstract
This report presents statistical information relating to gas turbine engine rotor failures which occurred during 1981 in commercial aviation service use. The predominant failure involved blade fragments, 83 percent of which were contained. Three disk failures occurred and all were uncontained. Fifty-seven percent of the 136 failures occurred during the takeoff and climb stages of flight.

This service data analysis is prepared on a calendar year basis and published yearly. The data is useful in support of flight safety analysis, proposed regulatory actions, certification standards and cost benefit analysis.

Key Words
- Air Transportation
- Aircraft Hazards
- Aircraft Safety
- Gas Turbine Engine Rotor Failures
- Containment

Distribution Statement
This Document is available to the U.S. Public through the National Technical Information Service, Springfield, Virginia 22161

Security Classification (of this report)
NAC-P-154C

Security Classification (of this page)
NAC-P-154C

Number of Pages
23

Price
$0.72
ACKNOWLEDGEMENTS

We thank the following Federal Aviation Administration personnel and offices for their cooperative effort in the preparation of this report:

- Mr. Bruce Fenton, Project Manager, Engine/Fuel Safety Branch, ACT-320, for his technical assistance.

- New England Region, Burlington, MA for providing verification of the uncontained engine rotor failure occurrences during calendar year 1981.

- Flight Standards National Field Office, Oklahoma City, OK, for providing the basic data used to prepare this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>vii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>RESULTS</td>
<td>1</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>3</td>
</tr>
<tr>
<td>FIGURES 1 THROUGH 11</td>
<td>4</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A - DATA OF ENGINE ROTOR FAILURES IN U.S.</td>
<td>A-1</td>
</tr>
<tr>
<td>COMMERCIAL AVIATION FOR 1981</td>
<td></td>
</tr>
<tr>
<td>B - GAS TURBINE ENGINE FAILURE RATES ACCORDING TO ENGINE MODEL AND TYPE</td>
<td>B-1</td>
</tr>
<tr>
<td>C- DISTRIBUTION LIST</td>
<td>C-1</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Incidence of Engine Rotor Failure in U.S. Commercial Aviation - 1981</td>
</tr>
<tr>
<td>2</td>
<td>Gas Turbine Engine Fleet Operating Hours in U.S. Commercial Aviation</td>
</tr>
<tr>
<td></td>
<td>According to Number of Engines in Service - 1981</td>
</tr>
<tr>
<td>3</td>
<td>Component and Fragment Type Distributions for Contained and</td>
</tr>
<tr>
<td></td>
<td>Uncontained Rotor Engine Failures (Failures that Produced Fragments) - 1981</td>
</tr>
<tr>
<td>4</td>
<td>The Incidence of Engine Rotor Failure in U.S. Commercial</td>
</tr>
<tr>
<td></td>
<td>Aviation According to Engine Type Affected - 1981</td>
</tr>
<tr>
<td>5</td>
<td>Turbofan Engine Failure Rate According to Engine Model - 1981</td>
</tr>
<tr>
<td>6</td>
<td>Turboprop Engine Failure rate According to Engine Model - 1981</td>
</tr>
<tr>
<td>7</td>
<td>Turboshaft and Turboprop Engine Failure Rate According to Engine Model - 1981</td>
</tr>
<tr>
<td>8</td>
<td>Engine Rotor Failure Cause Categories - 1981</td>
</tr>
<tr>
<td>9</td>
<td>Flight Condition at Engine Rotor Failure - 1981</td>
</tr>
<tr>
<td>10</td>
<td>Uncontained Engine Rotor Failure Distributions According to</td>
</tr>
<tr>
<td>11</td>
<td>The Incidence of Uncontained Engine Rotor Failures in U.S.</td>
</tr>
<tr>
<td></td>
<td>Commercial Aviation - 1962 through 1981</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

This service data analysis is prepared on a calendar basis and published yearly. The data are useful in support of flight safety analyses, proposed regulatory actions, certification standards and cost benefit analyses. The following statistics are based on gas turbine engine rotor failures that have occurred in U.S. commercial aviation during 1981.

One hundred and thirty-six rotor failures occurred in 1981. These failures accounted for approximately 2.7 percent of the 5095 shutdowns experienced by the U.S. commercial fleet. Rotor fragments were generated in 84 of the failures and, of these 16 were uncontained. This represents an uncontained failure rate of 2.1 per million gas turbine engine powered aircraft flight hours, or 0.8 per million engine operating hours. Approximately 7.5 million and 20.7 million aircraft flight and engine operating hours, respectively, were logged in 1981.

Turbine rotor fragment producing failures were approximately four times greater than that of the compressor rotor fragment producing failures; 62 and 15 respectively, of the total. Fan rotor failures accounted for 7 of the fragment producing failures experienced.

Blade failures were generated in 78 of the rotor failures; 13 of these were uncontained. The remaining 6 fragment generating failures were produced by disk, rim, or seal.

Total uncontained engine failure rates per million engine type flight hours were: turbofan 0.7 and turboprop 1.5. No uncontained rotor failures were reported for turboshaft and turbojet engines in 1981.

Of the 92 known causes of failures (because of the high percentage of unknown causes of rotor failures, the percentages were based on the total number of known causes), the causal factors were: (1) Secondary Causes 38 (41.3 percent); (2) Foreign Object Damage 35 (38.0 percent); (3) Design and Life Prediction Problems 16 (17.4 percent); and (4) Other 3 (3.3 percent). Seventy-eight (57.4 percent) of the 136 rotor failures occurred during the takeoff and climb stages of flight. Fifty-two (61.9 percent) of the 84 rotor fragment producing failures and 9 (56.3 percent) of the 16 uncontained rotor failures occurred during these same stages of flight.

CONCLUSION:

Although the incidence of engine rotor failures producing fragments has declined 20 percent (84 in 1981 compared to a 1975 through 1980 average of 105), the uncontained engine rotor failure rate has remained constant (16 in 1981 compared to a 1975 through 1980 average of 16).
INTRODUCTION

This report is sponsored by the Department of Transportation (DOT), Federal Aviation Administration (FAA), Technical Center, Engine/Fuel Safety Branch, located at the Atlantic City International Airport, New Jersey.

This service data analysis is prepared on a calendar year basis and published yearly. The data are useful in support of flight safety analyses, proposed regulatory actions, certification standards and cost benefit analyses.

The intent and purpose of this report is to present data as objectively as possible on rotor failure occurrences in U. S. commercial aviation.

Presented in this report are statistics on gas turbine engine failures that have occurred in U. S. commercial aviation during 1981. These statistics are based on data compiled from the Flight Standards Service Difficulty Reports that were published by the DOT, FAA. Independent cross checks to other accident data sources, such as the FAA New England Region Directorate, were made to substantiate the exact nature of an engine failure incident (i.e., contained or uncontained). The compiled data were analyzed to establish:

1. The incidence of rotor failures and the incidence of contained and uncontained rotor fragments; (An uncontained rotor failure is defined as a rotor failure that produces fragments which penetrate and escape the confines of the engine casing).
2. The distribution of rotor failures with respect to engine rotor components, i.e., fan, compressor or turbine rotors and their rotating attachments or appendages such as spacers and seals.
3. The type of rotor fragment (disk, rim or blade) typically generated at failure.
4. The cause of failure.
5. The engines involved by model (JT8D, JT9D, etc.) and by engine type (turboshaft/turboprop, and turbofan).
6. The flight conditions at the time of failure.
7. Engine failure rate according to engine fleet hours.

RESULTS

1. The data used for analysis are contained in appendix A. The results of these analyses are shown in Figures 1 through 8.

 a. Figure 1 shows that 136 rotor failures occurred in 1981. These rotor failures accounted for approximately 2.7 percent of the 5095 shutdowns experienced by the gas turbine powered U. S. commercial aircraft fleet during 1981. Rotor fragments were generated in 84 of the failures experienced and, of these, 16 (19.0 percent of the fragment producing failures) were uncontained. This represents an uncontained failure rate of 2.1 per million gas turbine engine powered aircraft flight hours, or 0.8 per million engine operating hours. Approximately 7.5 million and 20.7 million aircraft flight and engine operating hours, respectively, were logged by the U. S. commercial aviation fleet in 1981. Gas turbine engine fleet
operating hours according to the number and type of engines in use is shown in Figure 2.

b. Figure 3 shows the distribution of rotor failures that produced fragments according to the engine component involved (fan, compressor, turbine), the types of fragments that were generated, and the percentage of uncontained failures according to the type of fragment generated. These data indicate that:

(1) The incidence of turbine rotor fragment producing failures was approximately four times greater than that of the compressor rotor fragment producing failures; these corresponded to 62 (73.8 percent) and 15 (17.9 percent), respectively, of the total number of rotor failures. Fan rotor failures accounted for 7 (8.3 percent) of the fragment producing failures experienced.

(2) Blade fragments were generated in 78 (92.9 percent) of the rotor failures; 13 (16.7 percent) of these were uncontained. The remaining 6 (7.1 percent) rotor fragment failures were produced by disk, rim, or seal.

c. Figure 4 shows the rotor failure distribution among the engine models that were affected, and the total number of the models in use.

d. Figures 5, 6, and 7 illustrate engine failure rates per million engine flight hours according to engine model, engine type, and containment condition. The total engine failure rate per million engine type flight hours are: turbofan 3.7, turboprop 11.8, turboshaft 34.2, and turbojet 27.0. Total uncontained engine failure rates per million engine type flight hours were: turbofan 0.7 and turboprop 1.5. No uncontained rotor failures were reported for turboshaft and turbojet engines in 1981.

The data used to generate figures 5, 6, and 7 is contained in appendix B, page B-1.

e. Figure 8 shows what caused the rotor failures to occur. Of the 92 known causes of failure (because of the high percentage of unknown causes of rotor failure, the percentages were based on the total number of known causes), the causal factors were: (1) Secondary Causes 38 (41.3 percent); (2) Foreign Object Damage 35 (38.0 percent); (3) Design and Life Prediction Problems 16 (17.4 percent); and Other 3 (3.3 percent).

f. Figure 9 indicates the flight conditions that existed when the various rotor failures occurred. Seventy-eight (57.4 percent) of the 136 rotor failures occurred during the takeoff and climb stages of flight. Fifty-two (61.9 percent) of the rotor fragment producing failures and 9 (56.3 percent) of the uncontained rotor failures occurred during these same stages of flight. The highest number of uncontained rotor failures, 7 (43.8 percent) was experienced during climb.

g. Figure 10 is a cumulative tabulation that describes the distribution of uncontained rotor failures according to fragment type, engine component involved, cause category, and flight condition (takeoff and climb are defined as "high power," all other conditions are defined as "low power") for the years 1976 through 1981. This figure is expanded yearly to include all subsequent uncontained rotor failures. These data indicate that: for "secondary causes," the number of uncontained failures was approximately 8 times greater at "high" power than "low" power (namely 23 and 3). For "Design and Life Prediction Problems" the number of
"high" power uncontained failures was approximately three times greater than "low" power (namely 19 and 6); and for "Foreign Object Damage" the number of uncontained failures was six times greater at "high" power than "low" power (namely 6 and 1). This tabulation also indicates that of the 95 total uncontained incidences, blade failures accounted for 75.8 percent, disks failures 10.5 percent, rim failures 7.4 percent, and seal/spacer failures 6.3 percent.

h. Figure 11 shows the annual incidence of uncontained rotor failures in commercial aviation for the years 1962 through 1981. During 1981, the incidence of uncontained rotor failure increased by five over the previous year, 1980. Over the past six years, 1976 through 1981, an average of 16 uncontained rotor failures per year have occurred. During the same time period, the rate of uncontained rotor failures has remained relatively constant at an average of approximately one per million engine operating hours.

The high incidences of uncontained rotor failures in calendar years 1967 through 1973 (except for 1968) were probably due to the introduction of newly developed engines entering the commercial aviation fleet such as the JT9D and CF6 engines.

Structural life prediction and verification is being improved by the increased use of spin chamber testing by government and industry as a means of obtaining failure data for statistically significant samples. In addition, increased development and application of high sensitivity non-destructive inspection methods, should increase the probability of cracks being detected prior to failure. The capability to reduce the causes of failures from secondary effects, also is being addressed through technology development programs. However, causes due to foreign object damage still appear to be beyond the control or scope of present technology.

CONCLUSION

Although the incidence of engine rotor failures producing fragments has declined 20 percent (84 in 1981 compared to a 1975 through 1980 average of 105), the uncontained engine rotor failures has remained constant (16 in 1981 compared to a 1975 through 1980 average of 16).
NUMBER OF ROTOR FAILURES

FIGURE 1: INCIDENCE OF ENGINE ROTOR FAILURE IN U. S. COMMERCIAL AVIATION 1981
Figure 2: Gas turbine engine fleet operating hours in U.S. commercial aviation according to number of engines in service - 1981

Note: (1) Derived from yearly average of aircraft in use at end of each month
<table>
<thead>
<tr>
<th>ENGINE ROTOR COMPONENT</th>
<th>DISK</th>
<th>RIM</th>
<th>BLADE</th>
<th>SEAL</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TF</td>
<td>UCF</td>
<td>TF</td>
<td>UCF</td>
<td>TF</td>
</tr>
<tr>
<td>FAN</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TURBINE</td>
<td>2</td>
<td>2</td>
<td>59</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>78</td>
</tr>
</tbody>
</table>

(1) FAILURES THAT PRODUCED FRAGMENTS

TF - TOTAL FAILURES
UCF - UNCONTAINED FAILURES

FIGURE 3: COMPONENT AND FRAGMENT TYPE DISTRIBUTIONS FOR CONTAINED AND UNCONTAINED ROTOR ENGINE FAILURES
(FAILURES THAT PRODUCED FRAGMENTS) - 1981
FIGURE 4: THE INCIDENCE OF ENGINE ROTOR FAILURE IN U.S. COMMERCIAL AVIATION ACCORDING TO ENGINE TYPE AFFECTED - 1981

NOTES:
1. FAILURES THAT PRODUCED FRAGMENTS
2. YEARLY AVERAGE OF ENGINES IN USE AT END OF EACH MONTH
3. SEAL/SPACER FAILURES INCLUDED IN DISK/RIM COMPILATION
Figure 5: Turbofan Engine Failure Rate According to Engine Model - 1981

<table>
<thead>
<tr>
<th>Engine Model</th>
<th>JT8D</th>
<th>JT9D</th>
<th>JT9D</th>
<th>CF6</th>
<th>RB211</th>
<th>Spey</th>
<th>CF7</th>
<th>JT150</th>
<th>TFE731</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Flight Hours x 10^6</td>
<td>11.5</td>
<td>1.64</td>
<td>2.13</td>
<td>1.34</td>
<td>0.944</td>
<td>0.148</td>
<td>0.063</td>
<td>0.006</td>
<td>0.001</td>
<td>17.77</td>
</tr>
</tbody>
</table>

Key:
- **Total**
- **Not contained**
- **Contained**
- **No fragments generated**

Notes:
- The chart illustrates the engine failure rates per million engine flight hours for various engine models in 1981.
Figure 6: Turboprop engine failure rate according to engine model - 1981
Figure 7: Turboshaft and Turbojet Engine Failure Rate According to Engine Model - 1981
FIGURE 8: ENGINE ROTOR FAILURE CAUSE CATEGORIES - 1981
FIGURE 9: FLIGHT CONDITION AT ENGINE ROTOR FAILURE - 1981
<table>
<thead>
<tr>
<th>FLIGHT CONDITION</th>
<th>HI</th>
<th>LOW</th>
<th>UNK</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISK</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>FAN</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>4</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>TUR</td>
<td>3</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>RIM</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>FAN</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>TUR</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BLADE</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>FAN</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>19</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>5</td>
<td></td>
<td>3</td>
<td>5</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TUR</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SEAL</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>FAN</td>
<td></td>
</tr>
<tr>
<td>COM</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>TUR</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>19</td>
<td>6</td>
<td>0</td>
<td>23</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td>27</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>7</td>
<td>2</td>
<td>73</td>
<td>17</td>
<td>95</td>
</tr>
</tbody>
</table>

(1) TAKE OFF AND CLIMB ARE DEFINED AS "HIGH POWER" AND ALL OTHER CONDITIONS ARE DEFINED AS "LOW POWER".

FIGURE 10: UNCONTAINED ENGINE ROTOR FAILURE DISTRIBUTIONS
APPENDIX A

Data of Engine Rotor Failures in U. S. Commercial Aviation for 1981. Compiled from the Federal Aviation Administration Service Difficulty Reports.

DATA COMPILATION KEY

Component Code:
- F - Fan
- C - Compressor
- T - Turbine

Fragment Type Code:
- D - Disk
- R - Rim
- B - Blade
- S - Seal
- N - None

Cause Code:
1 - Design and Life Prediction Problems
2 - Secondary Causes
3 - Foreign Object Damage
4 - Quality Control
5 - Operational
6 - Assembly and Inspection Error
7 - Unknown

Containment Condition Code:
- C - Contained
- NC - Not Contained
- N - No Fragments Generated

Flight Condition Code:
1 - Insp/Maint
2 - Taxi/Grnd Hdl
3 - Takeoff
4 - Climb
5 - Cruise
6 - Descent
7 - Approach
8 - Landing
9 - Hovering
10 - Unknown
CHARACTERISTICS OF ROTOR FAILURES - 1981

<table>
<thead>
<tr>
<th>SUB NO.</th>
<th>SUBMITTER</th>
<th>AIRCRAFT</th>
<th>ENGINE</th>
<th>COMPONENT</th>
<th>FRAGMENT</th>
<th>TYPE</th>
<th>CAUSE</th>
<th>CONDITION</th>
<th>CONTAINMENT</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>03181036</td>
<td>EAL</td>
<td>B727</td>
<td>JT8D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06261020</td>
<td>ACL</td>
<td>B737</td>
<td>JT8D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07161032</td>
<td>PAA</td>
<td>B727</td>
<td>JT8D</td>
<td>F</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01291032</td>
<td>AFL</td>
<td>B737</td>
<td>JT8D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09111032</td>
<td>OZA</td>
<td>DC9</td>
<td>JT8D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09171031</td>
<td>OZA</td>
<td>DC9</td>
<td>JT8D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02111037</td>
<td>EAL</td>
<td>B727</td>
<td>JT8D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03121037</td>
<td>ACL</td>
<td>B737</td>
<td>JT8D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05281025</td>
<td>USA</td>
<td>B727</td>
<td>JT8D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09211030</td>
<td>NWA</td>
<td>B727</td>
<td>JT8D</td>
<td>C</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09151024</td>
<td>AFL</td>
<td>B737</td>
<td>JT8D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01261033</td>
<td>AAL</td>
<td>B737</td>
<td>JT8D</td>
<td>C</td>
<td>S</td>
<td>2</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12071025</td>
<td>ACL</td>
<td>B737</td>
<td>JT8D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04241025</td>
<td>ACL</td>
<td>B737</td>
<td>JT8D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02131036</td>
<td>CAL</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08141033</td>
<td>AFL</td>
<td>B737</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08221028</td>
<td>PSA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08271024</td>
<td>PSA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09041023</td>
<td>PSA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09041024</td>
<td>PSA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09041025</td>
<td>PSA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03031036</td>
<td>ACL</td>
<td>B737</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11101024</td>
<td>FDE</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09251030</td>
<td>AFL</td>
<td>DC9</td>
<td>JT8D</td>
<td>F</td>
<td>B</td>
<td>3</td>
<td>C</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10091030</td>
<td>EAL</td>
<td>DC9</td>
<td>JT8D</td>
<td>C</td>
<td>D</td>
<td>1</td>
<td>NC</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12181024</td>
<td>HAL</td>
<td>DC9</td>
<td>JT8D</td>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02121019</td>
<td>AAL</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02181013</td>
<td>TXI</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03231040</td>
<td>OZA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05231026</td>
<td>FAL</td>
<td>B737</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06231034</td>
<td>REP</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06241031</td>
<td>NWA</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06241032</td>
<td>BNF</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07071030</td>
<td>FAL</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07231032</td>
<td>ACL</td>
<td>B737</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>NC</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07301009</td>
<td>PSA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08211029</td>
<td>REP</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0941033</td>
<td>PSA</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0191031</td>
<td>BNF</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10261030</td>
<td>REP</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10281025</td>
<td>ACL</td>
<td>B737</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11031016</td>
<td>MID</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11121025</td>
<td>FDE</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>NC</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11111020</td>
<td>DAL</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12531026</td>
<td>MID</td>
<td>DC9</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12091024</td>
<td>NWA</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHARACTERISTICS OF ROTOR FAILURES - 1981

<table>
<thead>
<tr>
<th>SR NO.</th>
<th>SUBMITTER</th>
<th>AIRCRAFT</th>
<th>ENGINE</th>
<th>COMPONENT</th>
<th>TYPE</th>
<th>CAUSE</th>
<th>CONDITION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01191024</td>
<td>NWA</td>
<td>B727</td>
<td>JT8D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>01261032</td>
<td>CAL</td>
<td>DC10</td>
<td>CF6</td>
<td>F</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>03101038</td>
<td>PAA</td>
<td>DC10</td>
<td>CF6</td>
<td>F</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>03031035</td>
<td>CAL</td>
<td>DC10</td>
<td>CF6</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>09161029</td>
<td>UAL</td>
<td>DC10</td>
<td>CF6</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>01191023</td>
<td>AFL</td>
<td>DC10</td>
<td>CF6</td>
<td>C</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>07211030</td>
<td>WRL</td>
<td>DC10</td>
<td>CF6</td>
<td>F</td>
<td>B</td>
<td>3</td>
<td>NC</td>
<td>4</td>
</tr>
<tr>
<td>06231033</td>
<td>UAL</td>
<td>DC10</td>
<td>CF6</td>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>07071029</td>
<td>PAA</td>
<td>DC10</td>
<td>CF6</td>
<td>C</td>
<td>B</td>
<td>3</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>05061026</td>
<td>PAA</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>04231029</td>
<td>UAL</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>04161034</td>
<td>WAL</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>07211029</td>
<td>UAL</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>07271030</td>
<td>CAL</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>10021027</td>
<td>PAA</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>R</td>
<td>7</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>10081033</td>
<td>PAA</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>10091029</td>
<td>AFL</td>
<td>DC10</td>
<td>CF6</td>
<td>T</td>
<td>D</td>
<td>3</td>
<td>NC</td>
<td>3</td>
</tr>
<tr>
<td>05131029</td>
<td>TWA</td>
<td>DC8</td>
<td>JT3D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td>04171033</td>
<td>UAC</td>
<td>DC8</td>
<td>JT3D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>10021028</td>
<td>CAP</td>
<td>DC8</td>
<td>JT3D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>06241028</td>
<td>STD</td>
<td>DC8</td>
<td>JT3D</td>
<td>T</td>
<td>B</td>
<td>5</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>02231039</td>
<td>ILA</td>
<td>DC8</td>
<td>JT3A</td>
<td>T</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>03231039</td>
<td>ABX</td>
<td>SN601</td>
<td>JT15D</td>
<td>C</td>
<td>B</td>
<td>3</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>06181019</td>
<td>TWA</td>
<td>B747</td>
<td>JT9D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>07161033</td>
<td>UAL</td>
<td>B747</td>
<td>JT9D</td>
<td>F</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td>07421032</td>
<td>PAA</td>
<td>B747</td>
<td>JT9D</td>
<td>F</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>10131033</td>
<td>NWA</td>
<td>DC10</td>
<td>JT9D</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>10091031</td>
<td>FTL</td>
<td>B747</td>
<td>JT9D</td>
<td>F</td>
<td>B</td>
<td>1</td>
<td>NC</td>
<td>4</td>
</tr>
<tr>
<td>08171031</td>
<td>WRL</td>
<td>B747</td>
<td>JT9D</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>07171022</td>
<td>PAA</td>
<td>B747</td>
<td>JT9D</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>NC</td>
<td>2</td>
</tr>
<tr>
<td>01211012</td>
<td>NWA</td>
<td>B747</td>
<td>JT9D</td>
<td>T</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

THE FOLLOWING INCIDENCES DID NOT OCCUR IN THE UNITED STATES BUT INVOLVED U.S. REGISTERED AIRCRAFT SUBMITTED BY FAA

<table>
<thead>
<tr>
<th>DATE</th>
<th>SUBMITTER</th>
<th>AIRCRAFT</th>
<th>ENG/ENG/SN</th>
<th>COMPONENT</th>
<th>TYPE</th>
<th>CAUSE</th>
<th>CONDITION</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/31/81</td>
<td>NWA</td>
<td>DC10</td>
<td>JT9D/686165</td>
<td>F</td>
<td>B</td>
<td>7</td>
<td>NC</td>
<td>7</td>
</tr>
<tr>
<td>10/14/81</td>
<td>FTL</td>
<td>B747</td>
<td>JT9D/689156</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>NC</td>
<td>7</td>
</tr>
<tr>
<td>11/11/81</td>
<td>UNKNOWN</td>
<td>B747</td>
<td>JT9D/685764</td>
<td>F</td>
<td>B</td>
<td>3</td>
<td>NC</td>
<td>7</td>
</tr>
<tr>
<td>11/17/81</td>
<td>NWA</td>
<td>DC10</td>
<td>JT9D/618870</td>
<td>F</td>
<td>B</td>
<td>3</td>
<td>NC</td>
<td>7</td>
</tr>
</tbody>
</table>
CHARACTERISTICS OF ROTOR FAILURES - 1981

<table>
<thead>
<tr>
<th>SER NO.</th>
<th>SUBMITTER</th>
<th>AIRCRAFT</th>
<th>ENGINE</th>
<th>COMPONENT</th>
<th>FRAGMENT TYPE</th>
<th>CAUSE</th>
<th>CONDITION</th>
<th>CONTAINMENT</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10221033</td>
<td>TWA</td>
<td>L1011</td>
<td>RB211</td>
<td>C</td>
<td>N</td>
<td>6</td>
<td>N</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>08031030</td>
<td>TWA</td>
<td>L1011</td>
<td>RB211</td>
<td>T</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>06301030</td>
<td>EAI</td>
<td>L1011</td>
<td>RB211</td>
<td>F</td>
<td>B</td>
<td>3</td>
<td>C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>04091034</td>
<td>TWA</td>
<td>L1011</td>
<td>RB211</td>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>05240124</td>
<td>EAL</td>
<td>L1011</td>
<td>RB211</td>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>10071024</td>
<td>TWA</td>
<td>L1011</td>
<td>RB211</td>
<td>C</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>11201028</td>
<td>EAL</td>
<td>L1011</td>
<td>RB211</td>
<td>C</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>02040134</td>
<td>EAL</td>
<td>L1011</td>
<td>RB211</td>
<td>C</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>08031031</td>
<td>TWA</td>
<td>L1011</td>
<td>RB211</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>08281032</td>
<td>DAL</td>
<td>L1011</td>
<td>RB211</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>N</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>09231031</td>
<td>TWA</td>
<td>L1011</td>
<td>RB211</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>08031032</td>
<td>DAL</td>
<td>L1011</td>
<td>RB211</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>08251032</td>
<td>DAL</td>
<td>CL44</td>
<td>TYNE</td>
<td>C</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>08121033</td>
<td>ZAN</td>
<td>G159</td>
<td>DART</td>
<td>C</td>
<td>N</td>
<td>1</td>
<td>N</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>03111032</td>
<td>PAL</td>
<td>YS11A</td>
<td>DART</td>
<td>T</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>02031034</td>
<td>RAM</td>
<td>STC24</td>
<td>DART</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>N</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>03171040</td>
<td>RAM</td>
<td>SWT</td>
<td>DART</td>
<td>T</td>
<td>B</td>
<td>1</td>
<td>C</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>08271026</td>
<td>SWT</td>
<td>CV600</td>
<td>DART</td>
<td>C</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>08041014</td>
<td>USA</td>
<td>BA111</td>
<td>SPEY</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10221032</td>
<td>USA</td>
<td>BA111</td>
<td>SPEY</td>
<td>C</td>
<td>R</td>
<td>7</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>03111031</td>
<td>USA</td>
<td>BA111</td>
<td>SPEY</td>
<td>C</td>
<td>B</td>
<td>3</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>04031033</td>
<td>USA</td>
<td>BA111</td>
<td>SPEY</td>
<td>C</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>04031034</td>
<td>USA</td>
<td>BA111</td>
<td>SPEY</td>
<td>C</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>07071033</td>
<td>USA</td>
<td>BA111</td>
<td>SPEY</td>
<td>C</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>06261022</td>
<td>USA</td>
<td>BA111</td>
<td>SPEY</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>09241055</td>
<td>BRT</td>
<td>99</td>
<td>PT6A</td>
<td>C</td>
<td>B</td>
<td>3</td>
<td>C</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>07161038</td>
<td>PLG</td>
<td>99</td>
<td>PT6A</td>
<td>C</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>09251048</td>
<td>BRT</td>
<td>99</td>
<td>PT6A</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>09201052</td>
<td>BRT</td>
<td>99</td>
<td>PT6A</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>N</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>10221031</td>
<td>MMA</td>
<td>DC7</td>
<td>PT6A</td>
<td>T</td>
<td>N</td>
<td>5</td>
<td>N</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>04201037</td>
<td>MTR</td>
<td>SD330</td>
<td>PT6A</td>
<td>T</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10051058</td>
<td>AWA</td>
<td>DHC7103</td>
<td>PT6A</td>
<td>T</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10201034</td>
<td>COH</td>
<td>SA226</td>
<td>TPE331</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>06161047</td>
<td>SUN</td>
<td>SA226</td>
<td>TPE331</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>04091048</td>
<td>RIO</td>
<td>SA226</td>
<td>TPE331</td>
<td>T</td>
<td>D</td>
<td>1</td>
<td>N</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>11061030</td>
<td>RIO</td>
<td>SA226</td>
<td>TPE331</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10221059</td>
<td>RIO</td>
<td>SA226</td>
<td>TPE331</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>10521060</td>
<td>RIO</td>
<td>SA226</td>
<td>TPE331</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>09211031</td>
<td>TIA</td>
<td>L382</td>
<td>501</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>06161030</td>
<td>TIA</td>
<td>L382</td>
<td>501</td>
<td>C</td>
<td>N</td>
<td>7</td>
<td>N</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>07241030</td>
<td>TIA</td>
<td>L382</td>
<td>501</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
CHARACTERISTICS OF ROTOR FAILURES - 1981

<table>
<thead>
<tr>
<th>SDR NO.</th>
<th>SUBMITTER</th>
<th>AIRCRAFT ENGINE</th>
<th>COMPONENT</th>
<th>TYPE</th>
<th>CAUSE</th>
<th>CONDITION</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>05061024</td>
<td>FIA</td>
<td>L188 501</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td>08171030</td>
<td>REP</td>
<td>STCAP60 501</td>
<td>C</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>04061004</td>
<td>ISA</td>
<td>CV340 501</td>
<td>T</td>
<td>N</td>
<td>2</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td>03191013</td>
<td>AIA</td>
<td>L382 501</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>03201019</td>
<td>AIA</td>
<td>L382 501</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>03271026</td>
<td>SRA</td>
<td>L382 501</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>03301036</td>
<td>SRA</td>
<td>L382 501</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>8</td>
</tr>
<tr>
<td>08211025</td>
<td>TIA</td>
<td>L382 501</td>
<td>T</td>
<td>B</td>
<td>2</td>
<td>NC</td>
<td>4</td>
</tr>
<tr>
<td>08261038</td>
<td>AIG</td>
<td>206 250C20</td>
<td>T</td>
<td>B</td>
<td>7</td>
<td>C</td>
<td>5</td>
</tr>
</tbody>
</table>
APPENDIX B

GAS TURBINE ENGINE FAILURE RATES ACCORDING TO ENGINE MODEL AND TYPE

<table>
<thead>
<tr>
<th>MODEL</th>
<th>NO. IN USE</th>
<th>AVG FLIGHT HOURS X10^6</th>
<th>NO. OF FAILURES</th>
<th>FAILURE RATES PER 10^6 ENGINE FLIGHT HRS.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>NC</td>
</tr>
<tr>
<td>TURBOFAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JT8D</td>
<td>4484</td>
<td>11.5</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>JT3D</td>
<td>958</td>
<td>1.64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>JT9D</td>
<td>621</td>
<td>2.13</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>CF6</td>
<td>451</td>
<td>1.34</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>RB211</td>
<td>298</td>
<td>0.944</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>CF7</td>
<td>77</td>
<td>0.063</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SPEY</td>
<td>70</td>
<td>0.148</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>JT15D</td>
<td>11</td>
<td>0.006</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TFE731</td>
<td>4</td>
<td>0.001</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6974</td>
<td>17.772</td>
<td>53</td>
<td>12</td>
</tr>
<tr>
<td>TURBOPROP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT6A</td>
<td>682</td>
<td>1.27</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>501</td>
<td>478</td>
<td>0.685</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>TPE331</td>
<td>229</td>
<td>0.45</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>DART</td>
<td>186</td>
<td>0.216</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>BASTAN</td>
<td>28</td>
<td>0.046</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>250B</td>
<td>19</td>
<td>0.021</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TYNE</td>
<td>11</td>
<td>0.018</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1633</td>
<td>2.706</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>TURBOSHAFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST14</td>
<td>14</td>
<td>0.028</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>250C</td>
<td>4</td>
<td>0.0008</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T58</td>
<td>1</td>
<td>0.0004</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19</td>
<td>0.0292</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TURBOJET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JT4A</td>
<td>73</td>
<td>0.0351</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AVON</td>
<td>6</td>
<td>0.002</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>79</td>
<td>0.0371</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B-1
APPENDIX C

DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Civil Aviation Authority</th>
<th>DOT-FAA AEU-500 (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviation House</td>
<td>American Embassy</td>
</tr>
<tr>
<td>129 Kingsway</td>
<td>APO New York, NY 09667</td>
</tr>
<tr>
<td>London WC2B 6NN England</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Embassy of Australia</th>
<th>University of California (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Air Attache</td>
<td>Service Dept Institute of</td>
</tr>
<tr>
<td>1601 Mass. Ave. NW</td>
<td>Transportation Standard Lib</td>
</tr>
<tr>
<td>Washington, DC 20036</td>
<td>412 McLaughlin Hall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scientific & Tech. Info FAC (1)</th>
<th>British Embassy (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN: NASA Rep.</td>
<td>Civil Air Attache ATS</td>
</tr>
<tr>
<td>P.O. Box 8757 BWI Airport</td>
<td>3100 Mass Ave. NW</td>
</tr>
<tr>
<td>Baltimore, MD 21240</td>
<td>Washington, DC 20008</td>
</tr>
</tbody>
</table>

Northwestern University (1)	Director DuCentre Exp DE LA (1)
----------------------------------	Navigation Aerineene
Trisnet Repository	941 Orly, France
Transportation Center Library	
Evanston, ILL 60201	

ANE-40 (2)	ACT-61A (2)
ASO-52C4 (2)	AAL-400 (2)
APM-13 Nigro (2)	M-493.2 (5)
AEA-61 (3)	Bldg. 10A
ADL-32 North (1)	APM-1 (1)
AES-3 (1)	APA-300 (1)
ANM-60 (2)	AGL-60 (2)
	ASW-53B (2)
	AAC-64D (2)
	ACE-66 (2)
	ADL-1 (1)
	ALG-300 (1)
	ACT-5 (1)

C-1
FAA, Chief, Civil Aviation Assistance Group (1)
Madrid, Spain
c/o American Embassy
APO-New York 09285-0001

Dick Tobiason (1)
ATA of America
1709 New York Avenue, NW
Washington, DC 20006

Al Astorga (1)
Federal Aviation Administration (CAAC)
American Embassy, Box 38
APO-New York 09285-0001

Burton Chesterfield, DMA-603 (1)
DOT Transportation Safety Inst.
6500 South McArthur Blvd.
Oklahoma City, OK 73125

Dick Tobiason (1)
ATA of America
1709 New York Avenue, NW
Washington, DC 20006

Al Astorga (1)
Federal Aviation Administration (CAAC)
American Embassy, Box 38
APO-New York 09285-0001

Burton Chesterfield, DMA-603 (1)
DOT Transportation Safety Inst.
6500 South McArthur Blvd.
Oklahoma City, OK 73125

Dick Tobiason (1)
ATA of America
1709 New York Avenue, NW
Washington, DC 20006

Al Astorga (1)
Federal Aviation Administration (CAAC)
American Embassy, Box 38
APO-New York 09285-0001

Burton Chesterfield, DMA-603 (1)
DOT Transportation Safety Inst.
6500 South McArthur Blvd.
Oklahoma City, OK 73125
APPENDIX C

Civil Aviation Authority (5)
Aviation House
129 Kingsway
London WC2B 6NN
ENGLAND

Embassy of Australia
Civil Air Attache
1601 Massachusetts Avenue, NW.
Washington, DC 20036

Scientific and Technical Information FAC
ATTN: NASA Representative
P.O. Box 8757 BWI Airport
Baltimore, MD 21240

Northwestern University
Trisnet Repository
Transportation Center Library
Evanston, IL 60201

DOT/Federal Aviation Administration (5)
AEU-500
American Embassy
APO New York, NY 09667

University of California
Service Department Institute of
Transportation Standard Lab
412 McLaughlin Hall
Berkeley, CA 94720

British Embassy
Civil Air Attache ATS
3100 Massachusetts Avenue, NW.
Washington, DC 20008

DOT/Federal Aviation Administration (5)
ANE-40
12 New England Executive Park
Burlington, MA 01803

DOT/Federal Aviation Administration (5)
ASO-52C4
P.O. Box 20636
Atlanta, GA 30320

DOT/Federal Aviation Administration (5)
ANM-60
17900 Pacific Highway South
C-68966
Seattle, WA 98168

DOT/Federal Aviation Administration (5)
AMS-3
800 Independence Avenue, SW.
Washington, DC 20591

DOT/Federal Aviation Administration (5)
APM-1
800 Independence Avenue, SW.
Washington, DC 20591

Department of Transportation (5)
Office of the Secretary
M-493.2, Building 10A
400 7th Street, SW.
Washington, DC 20590

DOT/Federal Aviation Administration (5)
APM-13
800 Independence Avenue, SW.
Washington, DC 20591

DOT/Federal Aviation Administration (5)
APM-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/Federal Aviation Administration (5)
APM-1
800 Independence Avenue, SW.
Washington, DC 20591
DOT/FAA National Headquarters
APA-300
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Great Lakes Region (2)
AGL-60
O'Hare Office Center
2300 East Devon Avenue
Des Plaines, IL 60018

DOT/FAA Southwest Region (2)
ASW-53B
P.O. Box 1689
Fort Worth, TX 76101

DOT/FAA Mike Monroney Aeronautical Center (2)
AAC-64D
P.O. Box 25082
Oklahoma City, OK 73125

DOT/FAA Central Region (2)
ACE-66
601 East 12th Street
Federal Building
Kansas City, MO 64106

DOT/FAA National Headquarters
ADL-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ALG-300
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA Technical Center
Public Affairs Staff, ACT-5
Atlantic City Int'l Airport, NJ 08405

DOT/FAA National Headquarters
ASF-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ASF-100
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ASF-200
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ASF-300
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AST-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ADL-2A
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AVS-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AFS-1
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
ASF-200
800 Independence Avenue, SW.
Washington, DC 20591

DOT/FAA National Headquarters
AWS-1
800 Independence Avenue, SW.
Washington, DC 20591
<table>
<thead>
<tr>
<th>Region</th>
<th>Address</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOT/FAA Northwest Mountain Region</td>
<td>17900 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atlanta ACO, 1075 Inner Loop Road, College Park, GA 30337</td>
</tr>
<tr>
<td>DOT/FAA Southern Region</td>
<td>1075 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boston ACO, 12 New England Executive Park, Burlington, MA 01803</td>
</tr>
<tr>
<td>DOT/FAA Southwest Region</td>
<td>1075 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brussels ACO, c/o American Embassy, APO New York, NY 09667</td>
</tr>
<tr>
<td>DOT/FAA Southwest Region</td>
<td>1075 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chicago ACO, Room 232, 2300 East Devon Avenue, Des Plaines, IL 60018</td>
</tr>
<tr>
<td>DOT/FAA Southwest Region</td>
<td>1075 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Denver ACO, 10455 East 25th Avenue, Suite 307, Aurora, CO 98168</td>
</tr>
<tr>
<td>DOT/FAA Southwest Region</td>
<td>1075 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Mr. Frank Taylor, 3542 Church Road, Ellicott City, MD 21043</td>
</tr>
<tr>
<td>DOT/FAA Southwest Region</td>
<td>1075 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anchorage ACO, 701 C Street, Box 14, Anchorage, AK 99513</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>1075 Pacific Highway South, C-68966, Seattle, WA 98168</td>
<td>Mr. A. R. Tobiason, ATA of America, 1709 New York Avenue, NW, Washington, DC 20006</td>
</tr>
<tr>
<td>Chief, Civil Aviation Assistance Group</td>
<td></td>
<td>Federal Aviation Assistance Group</td>
</tr>
<tr>
<td>Madrid, Spain</td>
<td></td>
<td>Madrid ACO, 3542 Church Road, Ellicott City, MD 21043</td>
</tr>
<tr>
<td>c/o American Embassy</td>
<td></td>
<td>American Embassy, 1709 New York Avenue, NW, Washington, DC 20006</td>
</tr>
<tr>
<td>APO New York</td>
<td></td>
<td>Box 14, Anchorage, AK 99513</td>
</tr>
<tr>
<td>DOT Transportation Safety Institute</td>
<td></td>
<td>Mr. Al Astorga, DOT Transportation Safety Institute, 1709 New York Avenue, NW, Washington, DC 20006</td>
</tr>
<tr>
<td>Mr. Burton Chesterfield</td>
<td></td>
<td>6500 South MacArthur Boulevard, Oklahoma City, OK 73125</td>
</tr>
<tr>
<td>DOT/FAA Southwest Region</td>
<td></td>
<td>701 C Street, Box 14, Anchorage, AK 99513</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td></td>
<td>701 C Street, Box 14, Anchorage, AK 99513</td>
</tr>
</tbody>
</table>
Dr. Allen E. Fuhs
Department of Aeronautics
Naval Post Graduate School
Monterey, CA 93940

Major Hudson
Air Force Inspection and Safety
SEDM
Norton Air Force Base, CA 92499

Y. Funatsu
All Nippon Airways
1-6-6, Tokyo International Airport
Ohta-KU, Tokyo 144
JAPAN

Mr. J. P. Jamieson
National Gas Turbine Establishment
Pyestock, Farnborough
Hants GU14 OLS
ENGLAND

Henry A. Gill
Lockheed California Company
Building 88, B-6
P.O. Box 551
Burbank, CA 91520

Dr. C. W. Kauffman
The University of Michigan
Gas Dynamics Laboratories
Aerospace Engineering Building
Ann Arbor, MI 48109

Mr. David J. Goldsmith
Eastern Airlines
Miami International Airport
Miami, FL 33148

FAA National Headquarters
Mr. H. Branting, AWS-120
800 Independence Avenue, SW.
Washington, DC 20591

Mr. Stanley Gray
Mechanical Technology Inc.
968 Albany Shaker Road
Latham, NY 12110

Mr. Richard J. Linn
American Airlines
MD 4H14
P.O. Box 61616
Dallas/Fort Worth Airport, TX 75261

G. Haigh
Air Canada
Air Canada Base, Montreal
International Airport
Quebec, CANADA H4Y 1 C2

Captain A. S. Mattox, Jr.
Allied Pilots Association
12723 Brewater Circle
Woodbridge, VA 22191

M. Hardy
United Airlines
SFOEG, MOC
San Francisco International Airport
California 94128

Mr. Charles McGuire
Department of Transportation
400 7th Street, SW. (P-5)
Washington, DC 20590

W. Hock
Grumman Aerospace Corporation
B 14 035
111 Stewart Avenue
Bethpage, NY 11714

J. J. O'Donnell
Airline Pilots Association
1625 Massachusetts Avenue, NW.
Washington, DC 20036

LCDR William Holland
Department of the Navy
NAVAIR 518
Naval Air Systems Command
Washington, DC 20361

Dean Oliva
Lockheed
Department 7475/Building 229A
P.O. Box 551, Plant 2
Burbank, CA 91520
Dr. Robert C. Oliver
Institute for Defense Analyses
1801 North Bauregard Street
Alexandria, VA 22311

Professor Valentinas Sernas
Rutgers University
College of Engineering
P.O. Box 909
Piscataway, NJ 08854

Mr. George Opdyke
AVCO Lycoming Division
550 South Main Street
Stratford, CT 06497

S. Sokolsky
Aerospace Corporation
P.O. Box 91957
Los Angeles, CA 90009

Dr. Robert H. Page
Texas A&M University
College of Engineering
College Station, TX 77884

Dr. Warren C. Strahle
Georgia Institute of Technology
School of Aerospace Engineering
Atlanta, GA 30332

Mr. Roy E. Pardue
Lockheed/Georgia Company
86 South Cubb Drive
Marietta, GA 30063

Mr. Dick Stutz
Sikorsky Aircraft
Engineering Department
Stratford, CT 06602

Mr. Tom Peacock
Douglas Aircraft Company
3855 Lakewood Boulevard
Longbeach, CA 90846

Mr. A. F. Taylor
Cranfield Institute of Technology
Cranfield, Bedford, MK 43 OAL
ENGLAND

Mr. William Rodenbaugh
General Electric Company
Manager, Operational Planning
1000 Western Avenue
Lynn, MA 01910

Dr. F. F. Tolle
Boeing Military Airplane Company
P.O. Box 3707
M/S 4152
Seattle, WA 98124

C. C. Randall, P.E.
Lockheed Georgia Company
D72-47 Zone 418
Marietta, GA 30063

M. Trimble
Delta Airlines
DEAT 568
Atlanta International Airport
Atlanta, GA 30320

M. Rippen
Pratt and Whitney Aircraft
Government Products Division
P.O. Box 2691
West Palm Beach, FL 33402

Mr. T. Ted Tsue
Boeing Aerospace Company
P.O. Box 3999
M/S 45-07
Seattle, WA 98124

E. T. Rookey
Northrop Corporation
Aircraft Division
One Northrop Avenue
Hawthorne, CA 90250

Trans World Airlines, Inc.
Kansas City International Airport
2-280
P.O. Box 20126
Kansas City, MO 64195
Mr. Harry L. Lemasters
Structures Technology, MS 163-09
Pratt and Whitney Aircraft
400 Main Street
East Hartford, CT 06108

Mr. A. B. Wassell
Rolls-Royce Ltd.
P.O. Box 31
Derby DE2 8BJ
ENGLAND

Mr. J. Fresco
Societe Turbomeca
Siege Social, Bureaux et Usine
Bordes, Bizanos
FRANCE 64320

Mr. T. Dickey
Stratford Division
Avco Lycoming
550 South Main Street
Stratford, CT 06497

Mr. Ronald G. Jackson
Product Support
Rolls-Royce, Inc.
1895 Phoenix Boulevard
Altanta, GA 30349

Dr. John R. Fagan, M.S. T15
Allison Gas Turbine Division
General Motors Corporation
P.O. Box 420
Indianapolis, IN 46210-0420

Mr. Kenneth M. Johnson, Jr.
Williamsport Division
Avco Lycoming
652 Oliver Street
Williamsport, PA 17701

Mr. Brad Stumpke
Mail Drop 34511
General Electric Company
1000 Western Avenue
Lynn, MA 01910

Mr. Alan J. Lea, 01MD4
Pratt and Whitney Canada, Inc.
P.O. Box 10
Longueuil, Quebec J4K4X9
CANADA

Mr. Richard Barnard
Sikorsky Aircraft Division
United Technologies Corporation
North Main Street
Stratford, CT 06602

Mr. Martyn Hexter
Pratt and Whitney Canada, Inc.
90 Dundas Street West
Mississauga, Ontario L5A 3Q4
CANADA

Mr. Chet Lewis
Boeing Commercial Airplane Company
Mail Stop 9W-61
P.O. Box 3707
Seattle, WA 98124

Mr. Martyn Hexter
Pratt and Whitney Canada, Inc.
90 Dundas Street West
Mississauga, Ontario L5A 3Q4
CANADA

Mr. Frank M. Shallene
Bell Helicopter Textron
P.O. Box 482
Fort Worth, TX 76101

Mr. John T. Moehring
General Electric Company
Flight Safety Section, Mail Drop J60
One Neuman Way
Cincinnati, OH 45215

Mr. Peter Dahm
Helicopter and Transport Division
Messerschmitt-Bolkon-Blohm GMBH
P.O. Box 801140 DX2, 8000 Munich 80
FEDERAL REPUBLIC OF GERMANY

Mr. Glenn Pittard
Garrett Turbine Engine Company
111 South 34th Street
P.O. Box 5217
Phoenix, AZ 85010

Mr. James B. Harbison
Boeing Vertol Company
MS 32-17
P.O. Box 16858
Philadelphia, PA 19142
Mr. Richard H. Johnson
Department E80, MC 36-41
Douglas Aircraft
3855 Lakewood Boulevard
Long Beach, CA 90846

Mr. John M. Kowalonek
Sikorsky Aircraft Division
United Technologies Corporation
North Main Street
Stratford, CT 06602

Mr. Emmett A. Witmer
Massachusetts Institute of Technology
Cambridge, MA 02139

Mr. P. B. Gardner
Industrial Ceramics Division
Norton Company
One New Bond Street
Worcester, MA 01606

Mr. Jack A. Mitteer
Product Support
McDonnell Douglas Helicopter Company
5000 East McDowell Road
Mesa, AZ 85205

Captain Edwin R. Arbon
Flight Operations Safety
Flight Safety Foundation, Inc.
5510 Columbia Pike
Arlington, VA 22204-3194

Mr. Donald F. Thielke
Vice President, Safety Engineering
Flight Engineers' International Assoc.
905 16th Street, NW.
Washington, DC 20006

Mr. Barry Scott
P.O. Box 25
Moffett Field, CA 94035

Mr. A. T. Weaver, M.S. 165-30
Pratt and Whitney Aircraft
Airworthiness Engineering Division
400 Main Street
East Hartford, CT 06108

Mr. Steve Clark
Rolls-Royce Inc.
1895 Phoenix Boulevard
Atlanta, GA 30349

Mr. William Burcham
Propulsion Branch, Code OFV
NASA Ames - Dryden
P.O. Box 273
Edwards, CA 93523

Mr. Ralph E. Kesler
Delta Air Lines, Inc.
Hartsfield Atlanta International Airport
Atlanta, GA 30320

Mr. P. B. Gardner
Commander
Naval Air Systems Command
AIR-330
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-330A
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-5017A
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-536
Department of the Navy
Washington, DC 20361

Commander
Naval Air Systems Command
AIR-5360
Department of the Navy
Washington, DC 20361
United Airlines, Inc.
ATTN: J. D. Smith
VP, Flight Safety and Industry Affairs
P.O. Box 66100
Chicago, IL 60666

Pratt and Whitney Aircraft
Division of United Technologies Corp.
ATTN: Technical Library
400 Main Street
East Hartford, CT 06108

Piper Aircraft Corporation
ATTN: Mr. Walter C. Jamouneau
Chief Engineer
Lock Haven, PA 17745

Rolls-Royce Limited
ATTN: D. McLean, Chief Design Engineer
Aero-Engine Division
Derby
ENGLAND

Canadian Air Transportation Admin.
ATTN: D. R. Hemming
No. 3 Temp. Building
Wellington Street, Ottawa, Ontario
CANADA

Rolls-Royce Limited
ATTN: S. Cox, Bristol Engine Division
P.O. Box 3 Filton House
Bristol BS12 7QX
ENGLAND

Northrop Corporation
Aircraft Division
3901 West Broadway
Hawthorne, CA 90250

Pan American World Airways
Pan American Building
ATTN: Mr. John G. Borger
Chief Engineer
New York, NY 10017

National Research Council
Assembly of Engineering
ATTN: Mr. John P. Taylor
2101 Constitution Avenue
Washington, DC 20418

North American Rockwell Corporation
Aerospace and Systems Group
ATTN: Technical Library
6633 Canoga Avenue
Canoga Park, CA 91304

British Aircraft Corporation, Ltd.
GPO Box 77, Filton House
ATTN: J. Wallin, Chief Prop. Engineer
Bristol BS99 7AR
ENGLAND

DOT/Federal Aviation Administration
Mike Monroney Aeronautical Center
AFS-581
P.O. Box 25082
Oklahoma City, OK 73125

DOT/Federal Aviation Administration
Mike Monroney Aeronautical Center
AFS-580
P.O. Box 25082
Oklahoma City, OK 73125

National Transportation Safety Board
Bureau of Aviation Safety
Engineering Division
ATTN: Mr. Martyn V. Clarke, Asst Chief
Washington, DC 20591

British Aircraft Corporation. Ltd.
ATTN: B. Fletcher
GPO Box 77, Filton House
Bristol BS99 7AR
ENGLAND

Civil Aviation Authority
ATTN: L. R. Wilson
Brabazon House
Redhill, Surrey
ENGLAND

Hawker Siddley Aircraft
ATTN: Technical Library
Hawskidair, Hatfield
ENGLAND

Ministry of Defense
W. J. Moschini, Engines T1, Room 151
St. Giles Court 1-13
St. Giles High St., London WC2H 8LD
ENGLAND
END
8-87
DTIC