Nonlinear and Random Phenomena in Electromagnetic and Acoustic Wave Propagation

The acoustoelastic effect is the dependence of sound speed upon stress in an elastic solid due to nonlinearity. This effect can be used for nondestructive testing of structural components of aircraft, vehicles, etc. A theory of the effect was developed which involved analyzing acoustic wave propagation in random anisotropic solids. A related theory of the effective elastic constants of solids composed of aggregates of polycrystals was also developed.

For anisotropic composite materials reciprocal relations satisfied by their effective thermal or electrical conductivity tensors were discovered. In the case of scalar materials such relations have been very useful, so the new ones may be useful too. It has also been shown how the elastic properties of the ground could be determined from seismic scattering data. This method used the Born approximation, and led to results involving Fourier transforms.
NONLINEAR AND RANDOM PHENOMENA IN ELECTROMAGNETIC AND ACOUSTIC WAVE PROPAGATION

JOSEPH B. KELLER

MARCH 14, 1987

U. S. ARMY RESEARCH OFFICE

CONTRACT NUMBER - DAAG 29-85-K0024

STANFORD UNIVERSITY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
1. INTRODUCTION

Research on nonlinear and random phenomena in wave propagation was conducted during the period covered by this report, January 15, 1985 to January 14, 1987. This research was quite successful, leading to a variety of new results. They are outlined in section 2 and presented in detail in the publications listed in section 3. The personnel participating in the work are listed in section 4.

2. MAIN RESULTS

The acoustoelastic effect is the dependence of sound speed upon stress in an elastic solid due to nonlinearity. This effect can be used for nondestructive testing of structural components of aircraft, vehicles, etc. Dr. Bonilla and Professor Keller developed a theory of the effect which involved analyzing acoustic wave propagation in random anisotropic solids. Dr. Bonilla also developed a related theory of the effective elastic constants of solids composed of aggregates of polycrystals.

For anisotropic composite materials, Dr. Nevard and Professor Keller discovered reciprocal relations satisfied by their effective thermal or electrical conductivity tensors. In the case of scalar materials such relations have been very useful, so the new ones may be useful too.

Dr. Boyse and Professor Keller showed how the elastic properties of the ground could be determined from seismic scattering data. Their method used the Born approximation, and led to results involving Fourier transforms.
3. PUBLICATIONS

A. By J. B. Keller and co-authors


B. By other authors


4. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT

Dr. Tomas P. Girnius
Dr. Paul K. Newton
Dr. Isaak Rubinstein
END
7-87
DTIC