NOTES ON A PARACHUTE OPENING FORCE ANALYSIS APPLIED TO A VERTICAL TOWARD-THE-EARTH TRAJECTORY

BY WILLIAM P. LUDTKE
UNDERWATER SYSTEMS DEPARTMENT

28 MAY 1987

Approved for public release, distribution is unlimited.
Recovery of payloads from high altitude often requires the deployment of parachutes on trajectories that are essentially vertical and toward the earth. The parachute opening shock force developed by a parachute deployed in this manner exceeds the opening shock force of the same parachute system deployed horizontally at the same altitude and velocity. As the deployment trajectory angle varies from horizontal to vertical, the opening shock force increases to a maximum. Hence, the vertical trajectory has special significance. This report develops an analysis to permit the calculation of opening shock forces in vertical deployment. The validity of the rule of thumb that "the vertical deployment opening shock force exceeds the horizontal shock force by one "4" is tested, and criteria are developed.

Examples are used to demonstrate applications of the approach, and a method of calculating the inflation time of Solid Cloth parachutes in vertical fall developed.
Recovery of payloads from high altitude often requires the deployment of parachutes on trajectories that are essentially vertical and toward the earth. The parachute opening shock force developed by a parachute deployed in this manner exceeds the opening shock force of the same parachute system deployed horizontally at the same altitude and velocity. As the deployment trajectory angle varies from horizontal to vertical, the opening shock force increases to a maximum. Hence, the vertical trajectory has special significance. This report develops an analysis to permit the calculation of opening shock forces in vertical deployment. The validity of the rule of thumb that "the vertical deployment opening shock force exceeds the horizontal shock force by one "g" is tested, and criteria are developed.

Examples are used to demonstrate applications of the approach and a method of calculating the inflation time of solid cloth parachutes in vertical fall is developed.

The author wishes to express his appreciation to Mr. Hensel Brown of the Strategic Systems Department for his valuable assistance. Mr. Brown developed the computer programs and conducted numerous background calculations for this report.

Approved by:

Dr. J. E. GOELLER, Head
Underwater Weapons Division
CONTENTS

INTRODUCTION .. 1
APPROACH .. 3
SUMMARY AND CONCLUSIONS .. 23
REFERENCES ... 25
APPENDIX A--AIAA PAPER NO. 73-477, "A TECHNIQUE FOR THE
 CALCULATION OF THE OPENING-SHOCK FORCES FOR SEVERAL TYPES
 OF SOLID CLOTH PARACHUTES" A-1
APPENDIX B--A GUIDE FOR THE USE OF APPENDIX A B-1
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VERTICAL TRAJECTORY POINT MASS FORCE SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>VARIATION OF THE INFLATION REFERENCE TIME AS A FUNCTION OF SYSTEM WEIGHT FOR THE FLAT CIRCULAR SOLID CLOTH PARACHUTE OF EXAMPLE ONE.</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>OPENING SHOCK FORCE IN THE HORIZONTAL AND VERTICAL DEPLOYMENT MODES AS A FUNCTION OF INFLATION REFERENCE TIME FOR A SYSTEM WEIGHT OF 200 POUNDS.</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>OPENING SHOCK FORCES AT THE INFLATION REFERENCE TIME $t=t_0$ IN THE HORIZONTAL AND VERTICAL DEPLOYMENT MODES AS A FUNCTION OF INFLATION REFERENCE TIME FOR A SYSTEM WEIGHT OF 2000 POUNDS.</td>
<td>20</td>
</tr>
<tr>
<td>Table</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INSTANTANEOUS DRAG AREA, VELOCITY, OPENING SHOCK FORCE, AND DISTANCE OF FALL OF A PARACHUTE DEPLOYED IN VERTICAL FALL</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>SUMMARY OF THE FLAT CIRCULAR SOLID CLOTH PARACHUTE VERTICAL TRAJECTORY CALCULATIONS FOR A VALUE OF TIME INCREMENT $dt = t_0/100000$</td>
<td>16</td>
</tr>
</tbody>
</table>
INTRODUCTION

Parachutes are used to reduce the impact velocity of many falling objects. Often the parachute systems are initiated while moving in a trajectory which is parallel to the earth's surface. Many methods of calculating parachute opening shock force use the horizontal attitude as a basis for analysis. However, in the recovery of systems which have been allowed to free fall from high altitudes, the trajectory deviates markedly from the horizontal and approaches the vertical direction. The opening shock force of a vertically toward-the-earth deployed system is known to exceed the horizontal deployment shock force for the identical system and operational altitude and velocity.

Vertical trajectories are of special interest since the opening shock force is a maximum value. The purpose of this report is to develop a method for calculating the drag area, velocity and shock factor profiles, opening shock force, time of occurrence of the shock force during canopy inflation, and the distance of fall for parachutes deployed in a vertical toward-the-earth trajectory. This report is an extension of Reference 1, NSWC TR86-142, "Notes on a Generic Parachute Opening Force Analysis", which describes a technique of calculating the opening shock force of several types of horizontally deployed parachutes. In the interest of clarity readers should familiarize themselves with Reference 1, as it is to be used extensively in this report.

A method of calculating the inflation time of solid cloth parachutes in vertical fall is developed and horizontal and vertical inflation times for identical deployment conditions are compared. Criteria required for inflation time analysis of other types of parachutes are presented.

There is a rule of thumb used in calculating the opening shock force of vertically deployed parachutes. The rule states that "the vertical mode opening shock force is equal to the horizontal mode opening shock force, plus one g". Examples demonstrate that the vertical deployment mode inflation reference time is less than the horizontal deployment mode inflation reference time for the same system, velocity and altitude. The theory indicates that the vertical deployment mode opening shock forces exceed the rule of thumb.
The analysis is based upon the application of Newton's second law of motion to particle trajectories of inflating parachutes in the horizontal and toward-the-earth vertical modes. Equations for the horizontal deployment of parachutes with dynamic drag-area signatures of the form $C_D S / C_D S_0 = (1 - \tau) \left(t / t_0 \right) + \tau$ were developed in Reference 1. The same dynamic drag-area signatures are to be incorporated into the vertical deployment analysis. The exponent j determines the type of parachute. A value of $j=1$ is indicative of geometrically porous ribbon and ring slot types of canopies. Solid cloth parachutes have a value of $j=6$.

\[
\sum F_y = m a_y
\]

\[
W - \frac{1}{2} \rho V^2 C_D S = \frac{W}{g} \frac{dV}{dt} = \frac{W}{g} V \frac{dV}{dS}
\]

(1)
DEVELOPMENT OF THE VELOCITY - TIME EQUATIONS

With reference to Figure 1.

\[dV = \left(g - \frac{g\rho V^2 C_D s}{2W} \right) dt \]

\[\frac{C_D S}{C_D S_0} = (1 - \tau) \left(\frac{t}{t_0} \right) + \tau \]

(2)

\[dV = \left(g - \frac{g\rho V^2 C_D S_0}{2W} \right) \times \frac{V_{st0}}{V_{st0}} \left((1 - \tau) \left(\frac{t}{t_0} \right) + \tau \right) dt \]

where the quantity \(2W/(\rho g V_{st0} C_D S_0) \) has been shown in Reference 1 to be a ballistic mass ratio scale factor.

Let \(M = \frac{2W}{\rho g V_{st0} C_D S_0} \)

(3)

\[\sum dV = \sum_{v=v_s, t=0}^{V} \left(g - \frac{V^2}{MV_{st0}} \left((1 - \tau) \left(\frac{t}{t_0} \right) + \tau \right) \right) dt \]

(4)

DEVELOPMENT OF THE DISTANCE-TIME EQUATION.

Application of the variable dynamic drag area and ballistic mass ratio equations to the velocity distance form of equation (1) yields.

\[\sum dS = \sum_{s=0}^{V} \frac{V dV}{\frac{V^2}{MV_{st0}} \left((1 - \tau) \left(\frac{t}{t_0} \right) + \tau \right)} \]

(5)

At any instant during the inflation process the shock factor has been shown to be:

\[\chi_s = \left(\frac{V}{V_s} \right)^2 \frac{C_D S}{C_D S_0} \]

(6)
and the instantaneous shock force is:

\[F_i = X_i F_s \]

(7)

where \(F_s \) is the steady-state drag force of the fully open parachute at the line stretch velocity, \(V_s \).

\[F_s = \frac{1}{2} \rho V_s^2 C_d S_0 \]

(8)

The opening shock performance in the vertical and horizontal deployment modes shall be demonstrated by examples.

Example 1: Compare the horizontal and vertical deployment mode opening shock forces for a flat circular solid cloth parachute of 35 feet \(D_0 \) diameter and 30 gores. Deployment conditions are:

a. System weight = 200 lb.
b. Density altitude = 3,000 ft.
c. Line stretch velocity = 340 fps.
d. Drag coefficient = 0.75
e. Dynamic drag area exponent, \(j=6 \)
f. Initial drag area, \(r=0 \)

HORIZONTAL OPENING SHOCK FORCE

a. Parachute surface area

\[S_o = \frac{\pi}{4} D_0^2 \]

\[S_o = \frac{\pi}{4} (35)^2 \]

\[S_o = 962.1 \text{ ft}^2 \]
b. Parachute drag area:

\[C_{DS_o} = 0.75 \times 962.1 \]
\[C_{DS_o} = 721.6 \text{ ft}^2 \]

c. Air density, \(\rho = 0.0021753 \text{ slugs/ft}^3 \)

d. Steady-state drag force

\[F_s = \frac{1}{2} \rho V_o^2 C_{DS_o} \]
\[F_s = \frac{1}{2} \times 0.0021753 \times (340)^2 \times 721.6 \]
\[F_s = 90726.7 \text{ lb.} \]

e. In order to determine the ballistic mass ratio, the inflation time \(t_o \) must be known. Two methods for calculation of the horizontal deployment reference time are available. One is via equation (9) from page A-7 of Appendix A and the other via equation (10) from page 5-61 of Reference 2.

\[t_o = \frac{2W}{\rho g V_o C_{DS_o}} \left[\frac{C_{DS_o}}{A_{M_0} - A_{S_0} k \left(\frac{C P \rho}{2} \right)^{1.2}} \right] \] \(\cdot (9) \)

From Table 2, page A-15 of Appendix A, the following inflated shape data were obtained for a 30-gore solid cloth flat circular parachute. See Figure 24 of Appendix A for shape nomenclature. Steady-state inflated canopy radius:

\[\frac{2a}{D_o} = 0.668; \frac{N}{a} = 0.827; \frac{b}{a} = 0.6214; \frac{b'}{a} = 0.7806 \]
\[a = 0.668 \times 35 \]
\[a = 11.69 \text{ ft.} \]
Steady-state mouth area:

\[A_{M0} = \pi \bar{a}^2 \left[1 - \left(\frac{\sqrt{N/\bar{a}} - b/\bar{a}}{b'/\bar{a}} \right)^2 \right] \]

\[A_{M0} = \pi (11.69)^2 \left[1 - \left(\frac{0.827 - 0.6214}{0.7806} \right)^2 \right] \]

\[A_{M0} = 399.53 \text{ ft}^2 \]

Steady-state canopy volume of air to be collected, \(V_o \) geometric.

\[V_o = \frac{2}{3} \pi \bar{a}^3 \left[\frac{b}{\bar{a}} + \frac{b'}{\bar{a}} \right] \]

\[V_o = \frac{2}{3} \pi (11.69)^3 \left[0.6214 + 0.7807 \right] \]

\[V_o = 4690.83 \text{ ft}^3 \]

The MIL-C-7020, type III canopy cloth airflow constant is \(k = 1.46 \) and the average pressure coefficient is taken to be C.P. = 1.7 then:

\[t_o = \frac{14 \times 200}{0.0021753 \times 32.2 \times 340 \times 721.58} \left[4^{K1} - 1 \right] \]

\[K1 = \frac{32.2 \times 0.0021753 \times 4690.33}{2 \times 200} \left[\frac{721.58}{399.53 - 962.1 (1.46) \left(\frac{0.0021753 \times 1.7}{2} \right)^{1/2}} \right] \]

\[t_o = 0.773 \text{ sec.} \]

Knacke, Reference 2, presents the inflation time as

\[t_r = \frac{nD_o}{V_o} \]

\[t_r = \frac{8 \times 35}{340} \]

\[t_r = 0.824 \text{ sec.} \]

where \(n = 8 \) for solid cloth parachutes.
While equation (10) is more convenient than (9) to use, equation (9) gives the effects of altitude, mass, and cloth rate of airflow; both values are estimates of the inflation time. Equation (9) was theoretically derived. Equation (10) was empirically developed by other experimenters from numerous field test data. The parachute system of Example 1 for standard air density at an altitude of 1000 feet yields values of $t_0=0.839$ seconds and $t_f=0.824$ seconds. The closeness of the theoretical t_0 and the empirical t_f values indicates that the application of the criterion listed below is a reasonable approach to the inflation time calculation.

a. Average pressure coefficient
b. Cloth permeability
c. The trajectory velocity is taken as the canopy inflow velocity
d. The ratio of the instantaneous mouth area to the steady-state mouth area is equal to the instantaneous drag-area ratio
e. The ratio of the instantaneous pressurized canopy area to the canopy surface area, S_C, is equal to the instantaneous drag-area ratio
f. The volume of air to be collected during the inflation process is represented by V_0.

As a demonstration of the cloth rate of airflow effects in equation (9), replacement of the canopy cloth of example 1 with a high rate of airflow, three momme silk cloth ($K=7.43$) yields an inflation reference time of $t_0=99.76$ sec. under the example 1 operational conditions. This time exceeds the time of fall from 3,000 feet and the system would appear to an observer as a partial inflation. The same system deployed horizontally at 20,000 feet, at constant dynamic pressure, has an inflation reference time of $t_0=1.5$ sec. When the area term

\[A_m - A_{sk} \left(\frac{C_P A}{2} \right)^{1/2} = 0 \]

equals zero, the inflation reference time is infinite, (eq. 9). As the area term approaches zero, t_0 increases exponentially. It is possible for the inflation time to be extended to the point that the parachute system is not practical even though the area ratio is not zero. Parachute canopies without cloth airflow, $K=0$, always inflate.
Figure 2. Variation of the inflation reference time as a function of system weight for the flat circular solid cloth parachute of example one.
When using generalized expressions such as equation (10), it is important to know the mode of operation for which the formula was determined. The identical parachute used in finite mass, intermediate mass, or infinite mass systems experiences a variation in inflation time due to its mode of use. At the time to all inflations have collected the same volume of air. Finite mass inflations experience a significant velocity reduction during the inflation process which limits the rate of airflow into the canopy and extends the inflation time. Infinite mass deployments, on the other hand, can be nearly constant velocity which maintains a higher rate of mass flow into the canopy and decreases the inflation time. Actual constant velocity infinite mass operation produces the minimum inflation time. The inflation reference times, for the parachute of Example 1, are plotted in Figure 2 as a function of weight-to-drag-area ratio for equation (9). The finite mass and infinite mass limiting ballistic mass ratios for solid cloth parachutes are referenced on the graph.

The trends of Figure 2 show that the principal variation of the inflation reference time occurs in the finite mass mode of operation. By the transition from finite mass to low intermediate mass a near minimum inflation reference time is reached. This quickly converges to an essentially constant value for the high end of the intermediate mass and infinite mass regimes. Similar trends for other types of parachutes are a reasonable extension of the premise since it is based on variable rates of flow filling a constant volume.

Ballistic Mass Ratio for $t_o = 0.773$ sec.

$$M = \frac{2W}{\rho g V_{st} C_D S_o}$$

$$M = \frac{2 \times 200}{0.0021753 \times 32.2 \times 340 \times 0.773 \times 721.58}$$

$$M = 0.0301$$

Since the ballistic mass ratio is less than the limiting value of 0.1907, the inflation performance is in the finite mass range of operation and $t_o = t_f$. The following formulae were obtained from Table 12 of Reference 1 for values of $j=6$ and $r = 0$.
The time of occurrence of the maximum shock force during canopy inflation:

\[\frac{t}{t_0} \text{ at } X_{i,\text{max}} = \left(\frac{21M}{4} \right)^{1.7} \]

\[\frac{t}{t_0} \text{ at } X_{i,\text{max}} = \left(\frac{21 \times 0.0301}{4} \right)^{1.7} \]

\[\frac{t}{t_0} \text{ at } X_{i,\text{max}} = 0.7685 \]

The maximum shock factor:

\[X_{i,\text{max}} = \frac{16}{49} \left(\frac{21M}{4} \right)^{6.7} \]

\[X_{i,\text{max}} = \frac{16}{49} \left(21 \times 0.0301 \right)^{6.7} \]

\[X_{i,\text{max}} = 0.0672 \]

Maximum shock force in the horizontal mode of deployment.

\[F_{\text{max}} = X_{i,\text{max}} F_s \]

\[F_{\text{max}} = 0.0672 \times 90,726.7 \]

\[F_{\text{max}} = 61 \]

The magnitude of the opening shock force varies with the inflation reference time of the parachute in the finite mass regime of operation. In the field there is often a variation in the measured inflation time from the nominal calculated value, which results in a variation in opening shock force. A survey of horizontal opening shock forces was made via the foregoing technique for assigned values of \(t_0 \) from 0.5 through 1.0. The results are plotted in Figure 3 for the horizontal deployment mode forces and the "1g added" rule of thumb. The particular values of \(t_0 \) and \(t_f \) for example (1) mark the range of the nominal expected performance.
A method of calculating "\(t_o\)" in the vertical mode of deployment is required so that the horizontal and vertical inflation reference times can be compared for identical systems deployed at the same altitude and velocity.

The inflation reference time "\(t_o\)" in the vertical deployment mode can be determined from the basic mass flow equation used to calculate the horizontal deployment "\(t_o\)". Following the method of Section IV of Appendix A for solid cloth parachutes.

\[\frac{d_m}{dt} = m_{\text{inflow}} - m_{\text{outflow}} \]

\[\rho \frac{dV}{dt} = \rho VA_m - \rho A_s P \]

Instantaneous canopy mouth area.

\[A_m = A_m(t) \left(\frac{t}{t_o} \right)^6 \quad \text{FOR } t = 0 \]

Instantaneous pressurized canopy cloth area.

\[A_s = A_s(t) \left(\frac{t}{t_o} \right)^6 \quad \text{FOR } t = 0 \]

Instantaneous cloth rate of airflow.

\[P = k \left(\frac{C_p}{2} \right)^n V^{2n} \quad \text{C.F.S./FT}^2 \]

Where the instantaneous velocity is determined by equation (4) for \(t = 0 \).

\[V = \frac{V_0}{t} - \frac{1}{t} \left(\frac{V^2}{2} \left(\frac{1}{t_o} \right)^6 \right) \]
The calculated canopy volume, V_0^{calc}, is determined from equation (11).

$$V_0^{\text{calc}} = \int_{V=0}^{V_0} \left[V A_m \left(\frac{t}{t_0} \right)^{-6} - A_o \left(\frac{t}{t_0} \right)^6 k \left(\frac{C_p \rho}{2} \right)^n \right] dt$$

(11)

A program for calculating t_0 for solid cloth parachutes and the opening shock force profile during the inflation of several parachute types is provided in Table 1. Equations (4), (11), and (12) are programmed together with the vertical deployment opening shock equations (2) through (8) in FORTRAN IV language. The included examples were calculated via the program using a VAX 780 computer. The program operates in two modes. Mode 1, for solid cloth parachutes, calculates the vertical deployment reference time t_0 for the parachute system parameters and operational deployment data, and then calculates the opening shock profile during inflation. A typical data print out is shown in Table 2. It is necessary to estimate an initial value of "t_0". The program calculates the canopy volume for the estimated time and compares the V_0^{calc} to the volume derived from the canopy geometry. If the calculated volume is not within specified limits, the program adjusts "t_0" by equation (12) and reiterates the program until the calculated volume is within the specified limits.

$$t_0 = t_0 \left(\frac{V_0^{\text{geometric}}}{V_0^{\text{calc}}} \right)$$

(12)

Mode 2 of the program calculates opening shock profiles for input values of t_0. Mode 2 analysis of other types of parachutes is possible by the selection of the proper values of "j" (1/2, 1, 2, 3, 4, 5, or 6) and "r". The opening shock force variation for examples (1) and (2) are plotted in Figures 3 and 4. The nominal t_0 for $n=0.632$ was calculated by the program in mode 1 and the force-time survey was calculated in mode 2.

Figure 3 illustrates that parachutes deployed in a vertical toward-the-earth trajectory inflate faster than the same system deployed horizontally at the same altitude and velocity.

Inflation reference times for parachute types other than solid cloth canopies can be developed from the mass flow equation. This requires that the flow through the canopy be expressed in a form similar to the solid cloth canopy cloth permeability, P, where the rate of flow per unit area is a function of the pressure differential across the cloth or grid.
TABLE 1. INSTANTANEOUS DRAG AREA, VELOCITY, OPENING SHOCK FORCE, AND DISTANCE OF FALL OF A PARACHUTE DEPLOYED IN VERTICAL FALL.

THIS PROGRAM CALCULATES THE INSTANTANEOUS DRAG AREA, VELOCITY, OPENING SHOCK FORCE, AND DISTANCE OF FALL OF A PARACHUTE DEPLOYED IN VERTICAL FALL.

THE PROGRAM OPERATES IN TWO MODES:

MODE 1 – CALCULATES THE INFLATION TIME AND PERFORMANCE PROFILES FOR SOLID CLOTH PARACHUTES (TO INPUT AS INITIAL ESTIMATE) (IOPT = 1)

MODE 2 – CALCULATES THE PERFORMANCE PROFILES FOR VARIOUS TYPES OF PARACHUTES (J).

INFLATION TIME INPUT IS REQUIRED (IOPT = 2)

INPUT IOPT – 1 (FOR MODE 1)
- 2 (FOR MODE 2)

INPUT NEEDED FOR BOTH MODES

- RHO – AIR DENSITY AT GIVEN ALTITUDE (SLUGS/FT3)
- VS – VELOCITY AT SUSPENSION LINE STRETCH (FT/SEC)
- CDSO – DESIGN DRAG AREA (FT2)
- TO – IOPT=1 INITIAL GUESS FOR INFLATION REF. TIME (SEC)
 IOPT=2 ACTUAL INFLATION REFERENCE TIME (SEC)
- W – WEIGHT (L14S)
- J – #6 FOR FLAT CIRCULAR PARACHUTE
 =1 FOR RIBBON TYPE OF PARACHUTE

INPUT NEEDED FOR IOPT = 1 ONLY

- AMO – STEADY-STATE MOUTH AREA. (FT2)
- ASO – CANOPY DESIGN SURFACE AREA. (FT2)
- K – CLOTH PERMEABILITY CONSTANT
- CP – PRESSURE COEFFICIENT.
- N – CLOTH PERMEABILITY EXPONENT
- VO – GEOMETRIC VOLUME (FT3)

REAL*4 N
TODEN=100000
5 PRINT *, 'INPUT IOPT'
READ(5, *, END=100) IOPT
PRINT *, 'INPUT RHO, VS, CDSO, TO, W, J'
READ(5, *) RHO, VS, CDSO, TO, W, J
IF(IOPT.EQ.2) GO TO 3
PRINT *, 'INPUT AMO, ASO, XK, CP, N, VO'
READ(5, *) AMO, ASO, XK, CP, N, VO
3 DT=TO/TODEN
TAU=0
G=32 2
S=0
X=TAU
CDS=TAU*CDSO
FS=.5*RHO*VS**2*CDSO
F=TAU*FS
VOL=0
IPASS=0
TABLE 1. (CONT.)

1. \(\text{DT} = 10 \cdot \text{DT} \)
2. IF (ILOPT.EQ.2) GO TO 8
3. \(V = VS \)
4. \(\text{VOL} = 0 \)
5. \(T = 0 \)
6. \(XM = (2 \cdot W) / (RHO \cdot Q \cdot CDS \cdot VS \cdot TO) \)
7. \(DV = (G - V \cdot 2 \cdot (XM \cdot VS \cdot TO) \cdot (T / TO) \cdot J) \cdot DT \)
8. \(D \text{VOL} = (V \cdot AMO \cdot (T / TO) \cdot J - ASO \cdot (T / TO) \cdot J \cdot XK \cdot (CP \cdot RHO / 2)) \cdot DT \)
9. \(V = V + DV \)
10. \(T = T + DT \)
11. IF (T.GE."TO") GO TO 4
12. GO TO 6
13. IF (VOL.GT."(VU-10") AND VOL.LT."(VO+10") GO TO 8
14. TO = TO \((VU / \text{VOL}) \)
15. IF (IPASS.LE.50) STOP
16. IPASS = IPASS + 1
17. GO TO 7
18. CONTINUE
19. IF (T.EQ."0") STOP
20. \(\text{T} = 0 \)
21. \(\text{V} = VS \)
22. \(\text{DT} = \text{DT} / 10 \)
23. WRITE (6, 10) RHO, VS, CDS, W, TO, XM, J, FS
24. FORMAT (1H1, \'DENSITY=\'1PE12 5.2X, \'V(S)=\'OPFB 1.2X, \'CDS=\'1PE12 5.2X, \'J=\'1PE12 2.1X)
25. \(2 \cdot FS = \'1PE12 5 \)"
26. IF (ILOPT.EQ.1) WRITE (6, 11) AMO, ASO, XK, CP, N, VO, VOL
27. FORMAT (1H0, 4X, \'AMO=\', OPFB 2.7X, \'ASO=\', OPFB 2.5X, \'K=\', OPFB 3.1X, \'CP=\', OPFB 3.5X, \'N=\', OPFB 3.1X, \'VO=\', 1PE12 5.7X, \'VOL=\'1PE12 5 \)
29. WRITE (6, 20)
30. FORMAT (1H0, 2X, \'TIME=\', OPFB 2.7X, \'TIME RATIO=\', OPFB 2.5X, \'VEL RATIO=\', OPFB 3.1X, \'SHOCK FACTOR=\', OPFB 3.5X, \'SHOCK FORCE=\', OPFB 3.1X, \'DIST. OF FALL=\', OPFB 3.1X)
31. FORMAT (1H0, 2F12.5, 1P827, A0', \'OF\', \'X\', \'COUNT35\', 1, 1)
32. IF (LCOUNT.LT 51) GO TO 5
33. IF (LCOUNT.LT 54) GO TO 38
34. WRITE (6, 37)
35. FORMAT (1H1)
36. WRITE (6, 20)
37. LCOUNT = 3
38. LCOUNT = LCOUNT + 1
39. WRITE (6, 30) T, T/TO, V/VS, CDS/CDSO, X, F, S
40. TOLD = T + DT
41. IF (T.GT."(TOLD) GO TO 40
42. TOLD = T + DT
43. TOLD = TOLD
44. DVTO = (1 - TAU) \cdot (T / TO) \cdot J + TAU
45. CDS = CDSO \cdot DVTO
46. \(DV = (G - V \cdot 2 \cdot \text{DVTO} / (XM \cdot VS \cdot TO)) \cdot DT \)
47. DS = V \cdot DV / (G - V \cdot 2 \cdot \text{DVTO} / (XM \cdot VS \cdot TO))
48. \(V = V + DV \)
49. S = S + DS
50. X = (V/VS) \cdot 2 \cdot CDS/CDSO
51. F = X \cdot FS
52. IF (T LT TOLD) GO TO 40
53. STOP
54. END
TABLE 2. SUMMARY OF THE FLAT CIRCULAR SOLID CLOTH PARACHUTE VERTICAL TRAJECTORY CALCULATIONS FOR A VALUE OF TIME INCREMENT $dt = t_0/100,000$

DEPLOYMENT CONDITIONS

- **Altitude** = 3,000 ft
- **Density** = 0.0021753 slugs/ft3
- **Velocity**, V_0 = 340.0 f.p.s.
- D_0 = 35 ft
- i = 60
- τ = 0

SYSTEM PARAMETERS

- **Steady State Drag Area**, $C_D S_0$ = 721.58 ft2
- **Weight**, W = 200 lb
- **Inflation Time**, t_0 = 0.907 seconds
- **Steady State Drag Force**, F_s = 90725.9 lb
- M = 0.02587
- n = 0.832

<table>
<thead>
<tr>
<th>TIME SEC</th>
<th>TIME RATIO</th>
<th>VELOCITY RATIO</th>
<th>DRAG AREA RATIO</th>
<th>SHOCK FACTOR</th>
<th>SHOCK FORCE (LB)</th>
<th>DISTANCE OF FALL (FT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.00000</td>
<td>0.000000</td>
<td>0.00000E+00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02206</td>
<td>1.00198</td>
<td>0.00000</td>
<td>1.1577E-10</td>
<td>1.0504E-05</td>
<td>6.81</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04412</td>
<td>1.00395</td>
<td>0.00000</td>
<td>7.4390E-09</td>
<td>6.7493E-04</td>
<td>13.63</td>
</tr>
<tr>
<td>0.06</td>
<td>0.06619</td>
<td>1.00593</td>
<td>0.00000</td>
<td>8.5069E-08</td>
<td>7.1819E-03</td>
<td>20.47</td>
</tr>
<tr>
<td>0.08</td>
<td>0.08825</td>
<td>1.00790</td>
<td>0.00000</td>
<td>7.4985E-07</td>
<td>4.5364E-02</td>
<td>27.32</td>
</tr>
<tr>
<td>0.10</td>
<td>0.11031</td>
<td>1.00988</td>
<td>0.00000</td>
<td>1.8376E-06</td>
<td>1.6673E-01</td>
<td>34.19</td>
</tr>
<tr>
<td>0.12</td>
<td>0.13237</td>
<td>1.01185</td>
<td>0.00000</td>
<td>1.5087E-06</td>
<td>4.9980E-02</td>
<td>41.06</td>
</tr>
<tr>
<td>0.14</td>
<td>0.15444</td>
<td>1.01378</td>
<td>0.00000</td>
<td>1.3943E-05</td>
<td>1.2651E+00</td>
<td>47.95</td>
</tr>
<tr>
<td>0.16</td>
<td>0.17650</td>
<td>1.01577</td>
<td>0.00000</td>
<td>3.1179E-05</td>
<td>2.8289E+00</td>
<td>54.86</td>
</tr>
<tr>
<td>0.18</td>
<td>0.19856</td>
<td>1.01777</td>
<td>0.00000</td>
<td>3.4341E-05</td>
<td>7.5552E+00</td>
<td>61.77</td>
</tr>
<tr>
<td>0.20</td>
<td>0.22062</td>
<td>1.01976</td>
<td>0.00000</td>
<td>1.1978E-04</td>
<td>1.0867E+01</td>
<td>68.70</td>
</tr>
<tr>
<td>0.22</td>
<td>0.24269</td>
<td>1.02176</td>
<td>0.00000</td>
<td>2.1295E-04</td>
<td>1.9320E+01</td>
<td>75.64</td>
</tr>
<tr>
<td>0.24</td>
<td>0.26475</td>
<td>1.02375</td>
<td>0.00000</td>
<td>3.6008E-04</td>
<td>2.6695E+01</td>
<td>82.59</td>
</tr>
<tr>
<td>0.26</td>
<td>0.28681</td>
<td>1.02574</td>
<td>0.00000</td>
<td>5.8377E-04</td>
<td>3.9648E+01</td>
<td>89.55</td>
</tr>
<tr>
<td>0.28</td>
<td>0.30887</td>
<td>1.02773</td>
<td>0.00000</td>
<td>9.4890E-04</td>
<td>2.8283E+01</td>
<td>96.51</td>
</tr>
<tr>
<td>0.30</td>
<td>0.33094</td>
<td>1.02972</td>
<td>0.00000</td>
<td>1.8634E-03</td>
<td>2.3501E+02</td>
<td>103.48</td>
</tr>
<tr>
<td>0.32</td>
<td>0.35300</td>
<td>1.03171</td>
<td>0.00000</td>
<td>2.0394E-03</td>
<td>1.8073E+02</td>
<td>110.45</td>
</tr>
<tr>
<td>0.34</td>
<td>0.37506</td>
<td>1.03370</td>
<td>0.00000</td>
<td>2.9297E-03</td>
<td>1.6613E+02</td>
<td>117.43</td>
</tr>
<tr>
<td>0.36</td>
<td>0.39712</td>
<td>1.03569</td>
<td>0.00000</td>
<td>4.1385E-03</td>
<td>7.4151E+02</td>
<td>124.39</td>
</tr>
<tr>
<td>0.38</td>
<td>0.41919</td>
<td>1.03768</td>
<td>0.00000</td>
<td>5.6783E-03</td>
<td>1.0221E+03</td>
<td>131.35</td>
</tr>
<tr>
<td>0.40</td>
<td>0.44115</td>
<td>1.03967</td>
<td>0.00000</td>
<td>7.6983E-03</td>
<td>1.6592E+03</td>
<td>138.30</td>
</tr>
<tr>
<td>0.42</td>
<td>0.46312</td>
<td>1.04166</td>
<td>0.00000</td>
<td>1.0160E-02</td>
<td>2.5435E+03</td>
<td>145.26</td>
</tr>
<tr>
<td>0.44</td>
<td>0.48509</td>
<td>1.04365</td>
<td>0.00000</td>
<td>1.3218E-02</td>
<td>3.3168E+03</td>
<td>152.23</td>
</tr>
<tr>
<td>0.46</td>
<td>0.50708</td>
<td>1.04564</td>
<td>0.00000</td>
<td>1.6884E-02</td>
<td>4.0318E+03</td>
<td>159.19</td>
</tr>
<tr>
<td>0.48</td>
<td>0.52906</td>
<td>1.04763</td>
<td>0.00000</td>
<td>2.1168E-02</td>
<td>4.7504E+03</td>
<td>166.15</td>
</tr>
<tr>
<td>TIME SEC</td>
<td>TIME RATIO</td>
<td>VELOCITY RATIO</td>
<td>DRAG AREA RATIO</td>
<td>SHOCK FACTOR</td>
<td>SHOCK FORCE (LB)</td>
<td>DISTANCE OF FALL (FT)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>0.50</td>
<td>0.55156</td>
<td>0.96174</td>
<td>0.0281548</td>
<td>2 60413E-02</td>
<td>2 36269E+03</td>
<td>172 16</td>
</tr>
<tr>
<td>0.52</td>
<td>0.57362</td>
<td>0.93406</td>
<td>0.0356248</td>
<td>3 14109E-02</td>
<td>2 84987E+03</td>
<td>178 62</td>
</tr>
<tr>
<td>0.54</td>
<td>0.59568</td>
<td>0.91149</td>
<td>0.0446781</td>
<td>3 71192E-02</td>
<td>3 36777E+03</td>
<td>184 70</td>
</tr>
<tr>
<td>0.56</td>
<td>0.61775</td>
<td>0.89702</td>
<td>0.0555725</td>
<td>4 79293E-02</td>
<td>3 89281E+03</td>
<td>190 99</td>
</tr>
<tr>
<td>0.58</td>
<td>0.63981</td>
<td>0.88460</td>
<td>0.0659563</td>
<td>4 85838E-02</td>
<td>4 40811E+03</td>
<td>196 94</td>
</tr>
<tr>
<td>0.60</td>
<td>0.66187</td>
<td>0.79952</td>
<td>0.0804696</td>
<td>5 37401E-02</td>
<td>4 8757E+03</td>
<td>202 41</td>
</tr>
<tr>
<td>0.62</td>
<td>0.68393</td>
<td>0.75334</td>
<td>0.1013486</td>
<td>5 86857E-02</td>
<td>5 27002E+03</td>
<td>207 59</td>
</tr>
<tr>
<td>0.64</td>
<td>0.70600</td>
<td>0.70388</td>
<td>0.1238239</td>
<td>6 13498E-02</td>
<td>5 56617E+03</td>
<td>212 64</td>
</tr>
<tr>
<td>0.66</td>
<td>0.72806</td>
<td>0.65216</td>
<td>0.1489344</td>
<td>6 33430E-02</td>
<td>5 74702E+03</td>
<td>217 25</td>
</tr>
<tr>
<td>0.68</td>
<td>0.75012</td>
<td>0.59930</td>
<td>0.1781496</td>
<td>5 39840E-02</td>
<td>5 80517E+03</td>
<td>221 50</td>
</tr>
<tr>
<td>0.70</td>
<td>0.77218</td>
<td>0.54647</td>
<td>0.2119920</td>
<td>5 33063E-02</td>
<td>5 74368E+03</td>
<td>225 39</td>
</tr>
<tr>
<td>0.72</td>
<td>0.79424</td>
<td>0.49473</td>
<td>0.2510304</td>
<td>5 14423E-02</td>
<td>5 57457E+03</td>
<td>228 93</td>
</tr>
<tr>
<td>0.74</td>
<td>0.81631</td>
<td>0.44503</td>
<td>0.2958840</td>
<td>6 86016E-02</td>
<td>5 31683E+03</td>
<td>232 12</td>
</tr>
<tr>
<td>0.76</td>
<td>0.83837</td>
<td>0.39811</td>
<td>0.3472264</td>
<td>5 50316E-02</td>
<td>4 99294E+03</td>
<td>234 98</td>
</tr>
<tr>
<td>0.78</td>
<td>0.86043</td>
<td>0.35447</td>
<td>0.4058775</td>
<td>5 09856E-02</td>
<td>4 62585E+03</td>
<td>237 53</td>
</tr>
<tr>
<td>0.80</td>
<td>0.88249</td>
<td>0.31442</td>
<td>0.4723577</td>
<td>4 66967E-02</td>
<td>4 23672E+03</td>
<td>239 80</td>
</tr>
<tr>
<td>0.82</td>
<td>0.90456</td>
<td>0.27808</td>
<td>0.5477901</td>
<td>4 23613E-02</td>
<td>3 84338E+03</td>
<td>241 91</td>
</tr>
<tr>
<td>0.84</td>
<td>0.92662</td>
<td>0.24544</td>
<td>0.6330046</td>
<td>3 81320E-02</td>
<td>3 45965E+03</td>
<td>243 59</td>
</tr>
<tr>
<td>0.86</td>
<td>0.94869</td>
<td>0.21634</td>
<td>0.7289903</td>
<td>3 41174E-02</td>
<td>3 09542E+03</td>
<td>245 16</td>
</tr>
<tr>
<td>0.88</td>
<td>0.97074</td>
<td>0.19056</td>
<td>0.8368103</td>
<td>3 03874E-02</td>
<td>2 75700E+03</td>
<td>246 54</td>
</tr>
<tr>
<td>0.90</td>
<td>0.99281</td>
<td>0.16785</td>
<td>0.9576039</td>
<td>2 69798E-02</td>
<td>2 44784E+03</td>
<td>247 75</td>
</tr>
<tr>
<td>0.92</td>
<td>1.01487</td>
<td>0.14792</td>
<td>1.0925910</td>
<td>2 39078E-02</td>
<td>2 16912E+03</td>
<td>248 82</td>
</tr>
<tr>
<td>0.94</td>
<td>1.03693</td>
<td>0.13049</td>
<td>1.2430770</td>
<td>2 11673E-02</td>
<td>1 92048E+03</td>
<td>249 77</td>
</tr>
<tr>
<td>0.96</td>
<td>1.05899</td>
<td>0.11527</td>
<td>1.4104518</td>
<td>1 87425E-02</td>
<td>1 70048E+03</td>
<td>250 60</td>
</tr>
</tbody>
</table>
FIGURE 3. OPENING SHOCK FORCE IN THE HORIZONTAL AND VERTICAL DEPLOYMENT MODES AS A FUNCTION OF INFLATION REFERENCE TIME FOR SYSTEM WEIGHT OF 200 POUNDS
The various t_0 and t_f times noted on the graph are the particular solutions for the deployment conditions of example 1. All of the ballistic mass ratios, M, in the calculations are less than the limiting value ($M_L=0.1907$) for finite mass operation. Also, the calculated opening shock forces are less than the suspension line constructed strength ($F_C=16,500$ lb) which indicates a practical system for the opening shock requirement. Examination of the inflation times for equations (9) and (11) for $n=0.5$ demonstrates that the vertical deployment parachute inflation time is reduced even though the system parameters of deployment altitude and velocity were identical. The reason for this is that parachutes are energy dissipators. In the horizontal deployment mode the additional added potential energy of the system weight falling a short distance during inflation is not included in the calculations. In the vertical mode considerably more potential energy is absorbed into the system resulting in less trajectory velocity reduction during inflation and hence a shorter inflation reference time.

In field tests the inflation reference time often varies from the calculated value. One cause of this is the variation of airflow through the cloth as it is manufactured and/or handled. The cloth airflow constants (k, n) would have to be true average values for each parachute which requires so many fabric tests as to be unreasonable. The effects of varying n for a constant k are shown in Figure 3 for equation (11). As n increases from 0.5 the rate of cloth airflow is augmented, extending the inflation reference time and reducing the opening shock force.

For any constant inflation reference time, the vertical deployment mode opening shock force exceeds the "rule of thumb" value.

Example 2: Investigate the feasibility of retarding a 2000-lb. payload using the parachute system of example 1.

Figure 4 presents a horizontal deployment analysis using the methods of example 1 for assigned values of t_0 from 0.3 to 0.8 seconds. The vertical deployment analysis, using the program modes of Table 1 was conducted using the same t_0 range. The particular inflation reference times for the conditions of example 2 was computed by equation (9) and equation (11). The increased system weight caused a reduction in all values of t_0 as expected from Figure 2. The inflation time calculated from equation (10) is unchanged from Figure 3 since equation 10 does not adjust for weight variation.
NOTE: ALL OPENING SHOCK FORCES AT $t = t_0$ EXCEED THE SUSPENSION LINE CONSTRUCTED STRENGTH OF 16,500 LBS.

FIGURE 4. OPENING SHOCK FORCES AT THE INFLATION REFERENCE TIME $t = t_0$ IN THE HORIZONTAL AND VERTICAL DEPLOYMENT MODES AS A FUNCTION OF INFLATION REFERENCE TIME FOR A SYSTEM WEIGHT OF 2000 POUNDS
The analysis ballistic mass ratios exceed the finite mass limiting value \(M_l = 0.1907 \). This indicates that the maximum opening shock force occurs during the over inflation phase of deployment. Calculation of the opening shock force at \(t = t_0 \) produces shock magnitudes in excess of the suspension line constructed strength resulting in system failure prior to reaching the calculated \(t_0 \). The parachute of example 1 is not a practical application for the heavier weight of example 2.
SUMMARY AND CONCLUSIONS

A method of calculating the opening shock force of vertically deployed, toward-the-earth parachutes has been developed. The analysis utilizes a dynamic drag-area signature of the form $C_D S/C_D S_0 = (1-\tau) (t/t_0) + \tau$ and is applicable to several types of parachutes. Unlike the closed form analysis of Reference 1, a furnished computer program is required for solution. The program has two modes of operation. Mode 1 is for the solid cloth canopy family of parachutes. The particular inflation reference time for the system and deployment condition is computed, and this value is used to calculate the instantaneous drag area, velocity, force profile, and distance of fall during the inflation process. Mode 2 requires inflation reference time as input data, and is used for all types of parachutes. This mode is convenient for conducting surveys to evaluate expected opening shock force variation as a function of inflation time. Vertical opening shock forces calculated by this technique exceed the rule of thumb. A time step of $dt = t_0/100000$ in the program gives acceptable results.

The inflation reference time of a parachute system in vertical fall is less than the inflation time of the same system deployed horizontally at the identical altitude and velocity.

The inflation reference time of a given parachute system, for constant launch conditions, depends upon the system weight. For low weight finite mass assemblies the inflation reference time is extended due to the trajectory velocity reduction during inflation. The inflation reference time reduces rapidly as the system weight increases. After the finite mass to intermediate mass transition most of the inflation reference time decrease has been realized. As the system approaches the infinite mass condition the inflation reference time approaches a constant value.

Parachutes of light construction, such as personnel designs, depend upon the reduction of trajectory velocity during inflation for successful operation. As the system weight is increased the velocity reduction is not realized and the opening shock forces will eventually exceed the parachute constructed strength, resulting in failure.

A closed form inflation reference time equation for horizontal deployment is presented. This equation demonstrates that the inflation distance V_{st0} is a function of altitude, canopy cloth permeability, and system mass and area ratios. The particular inflation reference time solution for example (1) is in close agreement with the empirical approach. While more complicated, the theory accounts for more variables and is worthwhile as in the example of the use of the three momme silk
cloth at sea level and 20,000 feet. Usually, the inflation distance is considered only as a velocity-time effect. The closeness of the theoretical and empirical inflation time values at low altitudes indicates that the method of application of the following parameters, in the filling time calculation, are reasonable:

a) Use of the trajectory velocity as the canopy inflow velocity

b) Use of the cloth permeability, \(P \), to determine instantaneous cloth airflow rates

c) Correlation of the instantaneous mouth inflow area, and instantaneous pressurized canopy surface area with the drag area ratio variation

d) Canopy volume of air, \(V_0 \), which is to be collected in the inflation process.

As the cloth rate of airflow exponent "n" increases from 0.5, the rate of cloth airflow increases and the canopy inflation time is extended.
REFERENCES

A TECHNIQUE FOR THE CALCULATION OF THE OPENING-SHOCK FORCES FOR SEVERAL TYPES OF SOLID CLOTH PARACHUTES

by
W. P. LUDTKE
Naval Ordnance Laboratory
Silver Spring, Maryland

AIAA 4th Aerodynamic Deceleration Systems Conference
PALM SPRINGS, CALIFORNIA / MAY 21-23, 1973
TECHNIQUE FOR THE CALCULATION OF THE OPENING-SHOCK FORCES FOR
SOLID CLOTH PARACHUTES

W. F. Lusky
Naval Ordnance Laboratory
Silver Spring, Maryland

Abstract

An analytical method of calculating parachute opening-shock forces based upon
wind-tunnel derived drag area ratio signatures of several solid cloth parachute
types in conjunction with a scale factor and retardation system steady-state parameters has been developed. Methods of analyzing the inflation time, geometry, cloth airflow properties and materials elasticity are included. The effects of mass ratio and altitude on the magnitude and time of occurrence of the maximum opening shock are consistent with observed field test phenomena.

I. Introduction

In 1965, the Naval Ordnance Laboratory (NOL) was engaged in a project which utilized a 35-foot-diameter, 10-percent extended-skirt parachute (type T-10) as the second stage of a retraction system for a 250-pound payload. Deployment of the T-10 parachute was to be accomplished at an altitude of 100,000 feet. In that rarefied atmosphere, the problem was to determine the second stage deployment conditions for successful operation. A search of available field test information indicated a lack of data on the use of solid cloth parachutes at altitudes above 30,000 feet.

The approach to this problem was as follows: Utilizing existing wind-tunnel data, low-altitude field test data, and reasonable assumptions, a unique engineering approach to the inflation time and opening-shock problem was evolved that provided satisfactory results. Basically, the method combines a wind-tunnel derived drag area ratio signature as a function of deployment time with a scale factor and Newton's second law of motion to analyze the velocity and force profiles during deployment. The parachute deployment sequence is divided into two phases. The first phase, called "unfolding phase," where the canopy is undergoing changes in shape, is considered to be inelastic as the parachute inflates initially to its steady-state aerodynamic size for the first time. At this point, the "elastic phase" is entered where it is considered that the elasticity of the parachute materials enters the problem and resists the applied forces until the canopy has reached full inflation.

The developed equations are in agreement with the observed performance of solid cloth parachutes in the field, such as the duration of inflation time as altitude increases, effects of altitude on opening-shock force, flawless initial mass operation, and inflation distance.

II. Development of Velocity Ratio and Force Ratio Equations During
the Unfolding Phase of Parachute Deployment

The parachute deployment would take place in a horizontal attitude in accordance with Newton's second law of motion.

\[F = ma \]

\[-\frac{1}{2} \rho V^2 C_D S = \frac{W}{g} \int \frac{dV}{V^2} \] (1)

It was recognized that other factors, such as included air mass, apparent mass, and their derivatives, also contribute forces acting on the system. Since definition of these parameters was difficult, the analysis was conducted in the simplified form shown above. Comparison of calculated results and test results indicated that the omitted terms have a small effect.

\[\int_{t_0}^{t} C_D S dt = -\frac{2W}{\rho g} \int_{V_s}^{V} \frac{dV}{V^2} \] (1)

Multiplying the right-hand side of equation (1) by

\[l = \frac{V_t C_D S_0}{V_s t_0 C_D S_0} \]

and rearranging

\[\int_{t_0}^{t} \frac{C_D S}{C_D S_0} dt = \frac{1}{l} \int_{V_s}^{V} \frac{dV}{V^2} \] (2)

In order to integrate the left-hand term of equation (2), the drag area ratio must be defined for the type of parachute under

A-2
Figure 1 illustrates a typical solid cloth parachute wind-tunnel infinite mass force-time history after snatch. In infinite mass deployment, the maximum size and maximum shock force occur at the time of full inflation, \(t_f\). However, \(t_f\) is inappropriate for analysis since it is dependent upon the applied load, structural strength, and materials elasticity. The reference time, \(t_0\), where the parachute has attained its steady-state aerodynamic size for the first time, is used as the basis for performance calculations.

At any instant during the unfolding phase, the force ratio \(F/F_S\) can be determined as a function of the time ratio, \(t/\tau_C\).

\[
F = \frac{1}{2} \rho v^2 C_D S
\]

\[
F_S = \frac{1}{2} \rho v_s^2 C_D S_0
\]

Since the wind-tunnel velocity and density are constant during infinite mass deployment

\[
F = \frac{C_D S}{F_S} C_D S_0
\]

Infinite mass opening-shock signatures of several types of parachutes are presented in Figures 2 through 6. Analysis of these signatures using the force ratio, \(F/F_S\) - time ratio, \(t/\tau_P\), technique indicated a similarity in the performance of the various solid cloth types of
parachutes which were examined. The geometrically porous ring slot parachute displayed a completely different signature, as was expected. These data are illustrated in Figure 7. If an initial boundary condition of \(C_{DS}/C_{DS_o} = 0 \) at time \(t/t_0 = 0 \) is assumed, then, the data can be approximated by fitting a curve of the form:

\[
\frac{C_{DS}}{C_{DS_o}} = \left(\frac{t}{t_0} \right)^6
\]

(3)

A more realistic drag area ratio expression was determined which includes the effect of initial area at line stretch:

\[
\frac{C_{DS}}{C_{DS_o}} = \left[\left(1 - \eta \right) \left(\frac{t}{t_0} \right)^2 + \eta \right]^2
\]

(4)

where \(\eta \) is the ratio of the projected roof area at line stretch to the steady-state projected frontal area. Expanding equation (4):

\[
\frac{C_0 S}{C_{DS_o}} = \left(1 - \eta \right)^2 \left(\frac{1}{t_0} \right)^4 + 2\eta \left(1 - \eta \right) \left(\frac{1}{t_0} \right)^2 + \eta^2
\]

(5)

At the time that equation (5) was ascertained, it suggested that the geometry of the deploying parachute was independent of density and velocity. It was also postulated that although this expression had been determined for the infinite mass condition, it would also be true for the finite mass case. This phenomenon has since been independently observed and confirmed by Herndt and De Neese in reference (2).

Since the drag area ratio was determined from actual parachute deployments, it was assumed that the effects of apparent mass and included mass on the deployment force history were accommodated.

The right-hand term of equation (2) contains the expression:

\[
\frac{2\Phi}{\rho g V_0 t_o C_{DS_o}} = \lambda
\]

(6)

This term can be visualized as shown in Figure 8 to be a ratio of the retarded mass (including the parachute) to an associated mass of atmosphere contained in a right circular cylinder which is generated by moving an inflated parachute of area \(C_{DL_o} \) for a distance equal to the product of \(V/o \) through an atmosphere of density, \(\rho \).

The mass ratio, \(\lambda \), is the scale factor which controls the velocity and force profiles during parachute deployment. Substituting \(\lambda \) and \(C_{DS}/C_{DS_o} \) into equation (2), integrating, and solving for \(V/o \):

\[
\frac{V}{V_0} = \frac{1}{\lambda} \left[\left(1 - \eta \right)^2 \left(\frac{1}{t_0} \right)^2 + 2\eta \left(1 - \eta \right) \left(\frac{1}{t_0} \right)^2 + \eta^2 \right]^{1/2}
\]

(7)
The instantaneous shock factor is defined as

\[
x_1 = \frac{1}{2} \frac{p \gamma^2 C_D s}{F_S} - \frac{1}{2} \rho v_s^2 C_D S_0
\]

If the altitude variation during deployment is small, then the density may be considered as constant

\[
x_1 = \frac{C_D S}{C_D S_0} \left(\frac{v}{v_s} \right)^2
\]

from equations (5) and (7)

\[
x_1 = \frac{(1 - \eta)^2 \left(\frac{t}{t_0} \right)^6 + 2 \eta (1 - \eta) \left(\frac{t}{t_0} \right)^3 + \eta^2}{1 + \frac{1}{7} \left(\frac{t}{t_0} \right)^7} (8)
\]

III. Maximum Shock Force and Time of Occurrence During the Unfolding Phase

The time of occurrence of the maximum instantaneous shock factor, \(x_1 \), is difficult to determine for the general case. However, for \(\eta = 0 \), the maximum shock factor and time of occurrence are readily calculated. For \(\eta = 0 \)

\[
x_1 = \frac{1}{2} \frac{C_D S}{C_D S_0} \left(\frac{v}{v_s} \right)^2
\]

Setting the derivative of \(x_1 \) with respect to time equal to zero and solving for \(t/t_0 \) at \(x_1 \) max

\[
\left(\frac{t}{t_0} \right)_{x_1 \text{ max}} = \left(\frac{211}{4} \right) \frac{1}{7} (9)
\]

and the maximum shock factor is

\[
x_1 \text{ max} = 16 \left(\frac{211}{4} \right) \frac{6}{49} (10)
\]

Equations (9) and (10) are valid for values of \(H \leq \frac{5}{21} \) (0.19), since for larger values of \(H \), the maximum shock force occurs in the elastic phase of inflation.

Figures 9 and 10 illustrate the velocity and force profiles generated from equations (7) and (8) for initial projected area ratios of \(\eta = 0 \) and 0.2 with various mass ratios.

IV. Methods for Calculation of the Reference Time, \(t_0 \)

The ratio concept is an ideal method to analyze the effects of the various parameters on the velocity and force profiles of the opening parachutes; however, a means of calculating \(t_0 \) is required before specific values can be computed. Methods for computing the varying mass flow into the inflating canopy mouth, the varying mass flow out through the varying inflated canopy surface area, and the volume of air, \(v_s \), which must be collected during the inflation process are required.

Figure 11 represents a solid cloth-type parachute canopy at some instant during inflation. At any given instant, the parachute drag area is proportional to the maximum inflated diameter. Also, the maximum diameter in conjunction with the suspension lines determine the inflow mouth area (A-A) and the pressurized canopy area (B-B). This observation provided the basis for the following assumptions. The actual canopy shape is of minor importance.

a. The ratio of the instantaneous mouth inlet area to the steady-state mouth area is in the same ratio as the instantaneous drag area.

\[
\frac{A_{m}}{A_0} = \frac{C_D S}{C_D S_0}
\]

b. The ratio of the instantaneous pressurized cloth surface area to the canopy surface area is in the same ratio as the instantaneous drag area.

\[
\frac{S_m}{S_0} = \frac{C_D S}{C_D S_0}
\]

c. Since the suspension lines in the unpressurized area of the canopy are straight, a pressure differential has not developed, and, therefore, the net airflow in this zone is zero.

Based on the foregoing assumptions, the mass flow equation can be written

\[
dm = m \text{ inflow} - m \text{ outflow}
\]

\[
\rho \frac{dv}{dt} = \rho VN_{in} - \rho A_o \frac{dP}{dt}
\]
FIG. 9 EFFECT OF INITIAL AREA AND MASS RATIO ON THE SHOCK FACTOR AND VELOCITY RATIO DURING THE UNFOLDING PHASE FOR η = 0.

FIG. 10 EFFECT OF INITIAL AREA AND MASS RATIO ON THE SHOCK FACTOR AND VELOCITY RATIO DURING THE UNFOLDING PHASE FOR η = 0.2.
\[
\rho \frac{dV}{dt} = \rho \gamma A_{Ino} \frac{C_{D_S}}{C_{D_S}} - \rho A_{So} \frac{C_{D_S}}{C_{D_S}} P
\]

\[(11)\]

Integrating:

\[
\begin{align*}
V(t) &= A_{Ko} \gamma t \left[\frac{1}{1 + \frac{1}{T_k} \left(\frac{t}{t_o} \right)^n} \right] \\
&= A_{Ko} \gamma t \left[\frac{1}{1 + \frac{1}{T_k} \left(\frac{t}{t_o} \right)^n} \right]^{2n} dt \\
&= A_{Ko} \gamma \left[\frac{1}{1 + \frac{1}{T_k} \left(\frac{t}{t_o} \right)^n} \right]^{2n} \\
\end{align*}
\]

Equation (14) expresses the unfolding reference time, \(t_o \), in terms of mass, altitude, snatch velocity, airflow characteristics of the cloth, and the steady-state parachute geometry. Note that the term \(\frac{g \rho \gamma}{C_{D_S}} \) is the ratio of the included air mass to the mass of the retarded hardware. Multiplying both sides of equation (14) by \(V_o \) demonstrates that

\[
V_o t_o = \frac{2W}{g \rho \gamma C_{D_S}}
\]

\[
\begin{align*}
V_o t_o &= \frac{2W}{g \rho \gamma C_{D_S}} \\
&= \frac{K_1}{2} \left[\frac{C_{D_S}}{A_{Ko} - A_{So} \left(\frac{C_{D_S}}{\gamma} \right)^{1/2}} \right] \\
&= \frac{14W}{g \rho \gamma C_{D_S}} \left[e^{K_1} - 1 \right] \]
\end{align*}
\]

Equations (12) and (13) indicate the parachute unfolding time and unfolding distance for values of \(\beta = 1/2 \) and \(\beta = 0.033/\gamma \). Note the variation and convergence with rising altitude. The opening shock force is strongly influenced by the inflation time. Because of this, the
value of t_o calculated by using a realistic value of r should be used in the lower atmosphere.

As an example of this method of opening-shock analysis, let us examine the effect of altitude on the opening-shock force of a T-10-type parachute retarding a 200-pound weight from a snatch velocity of $V_s = 400$ feet per second at sea level. Conditions of constant velocity and constant dynamic pressure are investigated. The results are presented in Figure 14. At low altitudes, the opening-shock force is less than the steady-state drag force; however, as altitude rises, the opening shock eventually exceeds the steady-state drag force at some altitude. This trend is in agreement with field test observations.

V. **Correction of t_o for Initial Area Effects**

The unfolding reference time, t_o, calculated by the previous methods assumes that the parachute inflates from zero drag area. In reality, a parachute has a drag area at the beginning of inflation. Once t_o has been calculated, a correction can be applied, based upon what is known about the initial conditions.

Fig. 12 Effect of altitude on the unfolding time t_o at constant velocity and constant dynamic pressure for $n = 1/2$ and $n = 0.63246$

Fig. 13 Effect of altitude on the unfolding distance at constant velocity and constant dynamic pressure for $n = 1/2$ and $n = 0.63246$

Fig. 14 Variation of steady state drag F_s and maximum opening shock F_{MAX} with altitude for constant velocity and constant dynamic pressure
Case A - When the initial projected area is known
\[\frac{C_{D_1}}{C_{D_0}} = \left(\frac{t_1}{t_0} \right)^6 \]
\[t_1 = \left(\frac{C_{D_1}}{C_{D_0}} \right)^{1/6} \]
\[t_{\text{corrected}} = \frac{1}{1 - \left(\frac{C_{D_1}}{C_{D_0}} \right)^{1/6}} \] \[t_{\text{corrected}} = \left[1 - \left(\frac{C_{D_1}}{C_{D_0}} \right)^{1/6} \right] t_{\text{calculated}} \]

Case B - When the initial drag area is known
\[\frac{C_{D_1}}{C_{D_0}} = \left(\frac{t_1}{t_0} \right)^6 \]
\[t_1 = \left(\frac{C_{D_0}}{C_{D_1}} \right)^{1/6} \]
\[t_{\text{corrected}} = \frac{1}{1 - \left(\frac{C_{D_0}}{C_{D_1}} \right)^{1/6}} \] \[t_{\text{corrected}} = \left[1 - \left(\frac{C_{D_0}}{C_{D_1}} \right)^{1/6} \right] t_{\text{calculated}} \]

The mass ratio should now be adjusted for the corrected \(t_0 \) before velocity and force profiles are determined.

VI. Opening-Shock Force, Velocity Ratio, and Inflation Time During the Elastic Phase of Parachute Inflation

The mass ratio, \(M \), is an important parameter in parachute analysis. For values of \(M < 4/21 \), the maximum opening-shock force occurs early in the inflation process, and the elastic properties of the canopy are not significant. As the mass ratio approaches \(M = 4/21 \), the magnitude of the opening-shock force increases, and the time of occurrence happens later in the deployment sequence. For mass ratios \(M > 4/21 \), the maximum shock force will occur after the reference time, \(t_0 \). Parachutes designed for high mass ratio operation must provide a structure of sufficient constructed strength, \(F_c \), so that the actual elongation of the canopy under load is less than the maximum extensibility, \(c_{\text{max}} \), of the materials.

Development of the analysis for the elastic phase of inflation is similar to the technique used in the unfolding phase. Newton's second law of motion is used, together with the drag area ratio signature and mass ratio
\[\frac{C_{D^S}}{C_{D^o}} = \left(\frac{t^S}{t^o} \right)^6 \]
which is still valid, as shown in Figure 7
\[\frac{1}{M_0} \int_0^t \left(\frac{t^S}{t^o} \right)^6 \, dt = \gamma \int_{V_0}^V \frac{\, d\gamma}{\gamma^7} \]

Integrating and solving for \(\frac{V}{V_0} \)
\[\frac{V}{V_0} = \frac{V_0}{V_0 + \frac{1}{M} \left[\left(\frac{t^S}{t^o} \right)^7 - 1 \right]} \] \[\frac{V}{V_0} = \frac{1}{1 + \frac{1}{M} \left[\frac{(1 - \eta)^2 + \eta(1 - \eta) + \frac{\eta^2}{2}}{2} \right]} \]

The instantaneous shock factor in the elastic phase becomes
\[x_1 = \frac{C_{D^S}}{C_{D^o}} \left(\frac{V}{V_0} \right)^2 \]
\[x_1 = \frac{\left(\frac{t^S}{t^o} \right)^6}{\left[\frac{V}{V_0} + \frac{1}{M} \left[\left(\frac{t^S}{t^o} \right)^7 - 1 \right] \right]} \]

The end point of the inflation process depends upon the applied loads, elasticity of the canopy, and the constructed strength of the parachute. A linear load elongation
The relationship is utilized to determine the maximum drag area.

\[\varepsilon = \frac{\varepsilon_{\text{max}}}{F} \]

\[\varepsilon = \frac{F \varepsilon_{\text{max}}}{F_c} \quad (20) \]

The force, \(F \), is initially the instantaneous force at the end of the unfolding process.

\[F = X_0 F_s \quad (21) \]

where \(X_0 \) is the shock factor of the unfolding phase at \(t = t_0 \).

\[X_0 = \frac{1}{1 + \frac{1}{M} \left[\frac{(1 - \eta)^2}{7} + \eta(1 - \eta) + \eta^2 \right]^2} \quad (22) \]

Since the inflated shape is defined, the drag coefficient is considered to be constant, and the instantaneous force is proportional to the dynamic pressure and projected area. The maximum projected area would be developed if the dynamic pressure remained constant during the elastic phase. Under very high mass ratios, this is nearly the case over this very brief time period; but as the mass ratio decreases, the velocity decay has a more significant effect. The simplest approach for all mass ratios is to determine the maximum drag area of the canopy as if elastic inflation had occurred at constant dynamic pressure. Then utilizing the time ratio determined as an end point, intermediate shock factors can be calculated from equation (19) and maximum force assessed.

The initial force, \(X_0 F_s \), causes the canopy to increase in projected area. The new projected area in turn increases the total force on the canopy which produces a secondary projected area increase. The resulting series of events are resisted by the parachute materials. The parachute must, therefore, be constructed of sufficient strength to prevent the elongation of the materials from exceeding the maximum elongation.

\[\varepsilon_0 = \frac{X_0 F_s}{F_c} \varepsilon_{\text{max}} \quad (23) \]

The next force in the series at constant \(q \)

\[F_1 = X_0 F_s \frac{A_1}{k_c} \]

where

\[\frac{A_1}{k_c} = (1 + \varepsilon_0)^2 \]

Subsequent elongations in the system can be shown to be

\[\varepsilon_1 = \varepsilon_0 (1 + \varepsilon_0)^2 \]

\[\varepsilon_r = \varepsilon_0 (1 + \varepsilon_0 (1 + \varepsilon_0)^2)^2 \]

The required canopy constructed strength can be determined for a given set of deployment conditions. The limiting value of the series \((\varepsilon_t) \) determines the end point time ratio.

\[\left(\frac{t_f}{t_o} \right)^2 = \left(\frac{C_{D_{\text{max}}}}{C_{D_0}} \right) = (1 + \varepsilon_t)^2 \]

\[\left(\frac{t_c}{t_o} \right) = \left(\frac{C_{D_{\text{max}}}}{C_{D_0}} \right)^{1/3} = (1 + \varepsilon_t)^{1/3} \quad (24) \]

Figure 15 illustrates the maximum drag area ratio as a function of \(\varepsilon_0 \).
VII. Application of Cloth Permeability to the Calculation of the Inflation Time of Solid Cloth Parachutes

The mass outflow through the pressurized region of an inflating solid cloth parachute at any instant is dependent upon the canopy area which is subjected to airflow and the rate of airflow through that area. The variation of pressurized area as a function of reference time, \(t_0 \), was earlier assumed to be proportional to the instantaneous drag area ratio, leaving the rate-of-airflow problem to solve. The permeability parameter of cloth was a natural choice for determining the rate of airflow through the cloth as a function of pressure differential across the cloth. Heretofore, these data have been more of a qualitative, rather than quantitative, value. A new method of analysis was developed wherein a generalized curve of the form \(P = k(\Delta P)^n \) was fitted to cloth permeability data for a number of different cloths and gives surprisingly good agreement over the pressure differential range of available data. The pressure differential was then related to the trajectory conditions to give a generalized expression which can be used in the finite mass ratio range, as well as the infinite mass case. The permeability properties were transformed into a mass flow ratio, \(M' \), which shows agreement with the effective porosity concept.

Measured and calculated permeability pressure data for several standard cloths are illustrated in Figure 16. This method has been applied to various types of cloth between the extremes of a highly permeable 3-monme silk to a relatively impervious parachute pack container cloth with reasonably good results, see Figure 17.

The canopy pressure coefficient, \(C_p \), is defined as the ratio of the pressure differential across the cloth to the dynamic pressure of the free stream.

\[
C_p = \frac{\Delta P}{q} = \frac{P(\text{internal}) - P(\text{external})}{1/2 \rho V^2}
\]

(25)

where \(V \) is based on equation (7).

The permeability expression, \(P = k(\Delta P)^n \), becomes

\[
P = k(C_p \frac{\rho V^2}{2})^n
\]

(25)

Although some progress has been made by Milzig and others on the measurement of the variation of the pressure coefficient on an actual inflating canopy, this dimension and its variation with time are still dark areas at the time of this writing. At the present time, a constant average value of pressure coefficient is used in these calculations. Figure 18 presents the effect of pressure coefficient and altitude on the unfolding time for constant deployment conditions.

It is well known that the inflation time of solid cloth parachutes decreases as the operational altitude increases. This effect can be explained by considering the ratio of the mass outflow through a unit cloth area to the mass inflow through a unit mouth area.

\[
M' = \frac{\text{mass flow ratio}}{\text{mass inflow}} = \frac{\text{mass outflow}}{\text{mass inflow}}
\]

where

\[
\text{mass outflow} = \rho \frac{\text{slugs}}{\text{ft}^2 \text{sec}} \quad \text{(per ft}^2 \text{cloth area)}
\]

and

\[
\text{mass inflow} = \frac{\text{slugs}}{\text{ft}^2 \text{sec}} \quad \text{(per ft}^2 \text{inflow area)}
\]

Figure 18. Nominal Porosity of Parachute Material vs Differential Pressure.
Therefore, the mass flow ratio becomes

\[M' = \frac{\dot{m}}{\dot{m}_0} = \frac{P}{\dot{V}_0} \frac{\dot{V}}{V} \]

\[M' = k \left(\frac{C_p \rho}{2} \right)^{\frac{n}{2}} (2n-1) \] \hspace{1cm} (7)

Effective porosity, \(C \), is defined as the ratio of the velocity through the cloth, \(u \), to a fictitious theoretical velocity, \(v \), which will produce the particular \(\Delta P = 1/20^a \).

Comparison of the mass flow ratio and previously published effective porosity data is shown in Figure 19. The effects of altitude and velocity on the mass flow ratio are presented in Figures 20 and 21 for constant velocity and constant altitude. The decrease of cloth permeability with altitude is evident.

The permeability constants \(k \) and \(n \) can be determined from the permeability pressure differential data as obtained from an instrument such as a Frazier Permeameter. Two data points, \('A' \) and \('B' \),
"B," are selected in such a manner that point "A" is in a low-pressure zone below the knee of the curve, and point "B" is located in the upper end of the high-pressure zone, as shown in Figure 22.

The two standard measurements of 1/2 inch of water and 20 inches of water appear to be good data points if both are available on the same sample. Substituting the data from points "A" and "B" into $P = k(\Delta P)^n$

$$n = \frac{\ln \left(\frac{P_B}{P_A}\right)}{\ln \left(\frac{\Delta P_B}{\Delta P_A}\right)}$$

$$k = \frac{P_A}{(\Delta P_A)^n} = \frac{P_B}{(\Delta P_B)^n}$$

VIII. Determination of the Parachute Included Volume and Associated Air Mass

Before the reference time, t_r, and inflation time, t_f, can be calculated, the volume of atmosphere, V_C, which is to be collected during the inflation process must be accurately known. This requirement dictates that a realistic inflated canopy shape and associated volume of atmosphere be determined. Figure 23 was reproduced from reference (5). The technique of using lampblack coated plates to determine the airflow patterns around metal models of inflated canopy shapes was used by the investigator of reference (5) to study the stability characteristics of contemporary parachutes, i.e., 1943. A by-product of this study is that it is clearly shown that the volume of air within the canopy bulges out of the canopy mouth (indicated by arrows) and extends ahead of the canopy hem. This volume must be collected during the inflation process. Another neglected, but significant, source of canopy volume exists in the billowed portion of the gore panels.
Table I and II are summaries of test results reproduced from references (6) and (7), respectively, for the convenience of the reader.

IX. References

3. "Theoretical Parachute Investigations," Progress Report No. 4, Project No. 5, WADC Contract AF 33(616)-3955, University of Minnesota
TABLE I SUMMARY OF PARACHUTE SHAPE TEST RESULTS
FOR 12-GORE AND 16-GORE CONFIGURATIONS

<table>
<thead>
<tr>
<th>Parachute Type</th>
<th>No of Gores</th>
<th>Suspension Line Length</th>
<th>Velocity</th>
<th>Scale Factor 2</th>
<th>Scale Factor 3</th>
<th>N</th>
<th>Axi Ratio</th>
<th>Volume</th>
<th>V_m</th>
<th>V_C</th>
<th>V_o</th>
<th>V_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Circular</td>
<td>12</td>
<td>34</td>
<td>50 73</td>
<td>645 650</td>
<td>856</td>
<td>4676</td>
<td>4481 6980</td>
<td>1.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>34</td>
<td>50 73</td>
<td>663 669</td>
<td>820</td>
<td>4450</td>
<td>4100 7225</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% Extended</td>
<td>12</td>
<td>34</td>
<td>100 147</td>
<td>663 652</td>
<td>881</td>
<td>3925</td>
<td>4400 6783</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>16</td>
<td>34</td>
<td>100 147</td>
<td>694 640</td>
<td>785</td>
<td>4051</td>
<td>3820 6187</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethical</td>
<td>12</td>
<td>34</td>
<td>75 110</td>
<td>918</td>
<td>812</td>
<td>3322</td>
<td>5456</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>34</td>
<td>75 110</td>
<td>875</td>
<td>800</td>
<td>3276</td>
<td>4409</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemispherical</td>
<td>12</td>
<td>34</td>
<td>125 183</td>
<td>996</td>
<td>1185</td>
<td>5921</td>
<td>8370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>34</td>
<td>75 110</td>
<td>994</td>
<td>1185</td>
<td>5921</td>
<td>8370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augment</td>
<td>12</td>
<td>34</td>
<td>25 37</td>
<td>607 654</td>
<td>853</td>
<td>3800</td>
<td>3650 5903</td>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16% Geometric</td>
<td>12</td>
<td>34</td>
<td>100 147</td>
<td>663 652</td>
<td>927</td>
<td>3800</td>
<td>4198 6162</td>
<td>1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parachute</td>
<td>16</td>
<td>34</td>
<td>100 147</td>
<td>694 640</td>
<td>881</td>
<td>3925</td>
<td>4400 6783</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>34</td>
<td>100 147</td>
<td>694 640</td>
<td>785</td>
<td>4051</td>
<td>3820 6187</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribon</td>
<td>24% Geometric</td>
<td>12</td>
<td>25 37</td>
<td>586 632</td>
<td>859</td>
<td>3800</td>
<td>3714 6163</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parachute</td>
<td>12</td>
<td>34</td>
<td>100 147</td>
<td>663 652</td>
<td>837</td>
<td>3800</td>
<td>4260 6683</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>34</td>
<td>100 147</td>
<td>694 640</td>
<td>881</td>
<td>3925</td>
<td>4400 6783</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross Chute</td>
<td>34</td>
<td>34</td>
<td>25 37</td>
<td>710</td>
<td>543</td>
<td>1928</td>
<td>3768 5798</td>
<td>3.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X - 264</td>
<td>34</td>
<td>34</td>
<td>25 37</td>
<td>607 654</td>
<td>853</td>
<td>3800</td>
<td>3650 5903</td>
<td>1.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>34</td>
<td>100 147</td>
<td>663 652</td>
<td>927</td>
<td>3800</td>
<td>4198 6162</td>
<td>1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>34</td>
<td>100 147</td>
<td>694 640</td>
<td>881</td>
<td>3925</td>
<td>4400 6783</td>
<td>1.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE II SUMMARY OF PARACHUTE SHAPE TEST RESULTS
FOR 24-GORE AND 30-GORE CONFIGURATIONS

<table>
<thead>
<tr>
<th>Parachute Type</th>
<th>No of Gores</th>
<th>Suspension Line Length</th>
<th>Velocity</th>
<th>Scale Factor 2</th>
<th>Scale Factor 3</th>
<th>N</th>
<th>Axi Ratio</th>
<th>Volume</th>
<th>V_m</th>
<th>V_C</th>
<th>V_o</th>
<th>V_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Circular</td>
<td>24</td>
<td>34</td>
<td>50 73</td>
<td>677 679</td>
<td>795</td>
<td>5758</td>
<td>8176 13884</td>
<td>4.36</td>
<td>6501</td>
<td>7277</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>34</td>
<td>17 25</td>
<td>666 669</td>
<td>827</td>
<td>6214</td>
<td>7866 14020</td>
<td>4.34</td>
<td>6462</td>
<td>7027</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>10% Extended+</td>
<td>24</td>
<td>34</td>
<td>100 147</td>
<td>665 648</td>
<td>834</td>
<td>5949</td>
<td>8771 14720</td>
<td>4.77</td>
<td>6701</td>
<td>9546</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>Shell</td>
<td>30</td>
<td>34</td>
<td>17 25</td>
<td>650 623</td>
<td>825</td>
<td>6250</td>
<td>7562 15157</td>
<td>4.17</td>
<td>6701</td>
<td>7277</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>24% Geometric</td>
<td>24</td>
<td>34</td>
<td>25 37</td>
<td>662 665</td>
<td>824</td>
<td>5800</td>
<td>9053 14853</td>
<td>3.91</td>
<td>3878</td>
<td>6031</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>Parachute</td>
<td>24</td>
<td>34</td>
<td>100 147</td>
<td>680 682</td>
<td>819</td>
<td>5800</td>
<td>9053 14853</td>
<td>3.91</td>
<td>4079</td>
<td>6510</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>34</td>
<td>200 293</td>
<td>694 696</td>
<td>809</td>
<td>5800</td>
<td>9053 14853</td>
<td>3.91</td>
<td>4270</td>
<td>6924</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>34</td>
<td>100 147</td>
<td>684 685</td>
<td>807</td>
<td>5800</td>
<td>9053 14853</td>
<td>3.91</td>
<td>4382</td>
<td>6924</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>Ribbon</td>
<td>24% Geometric</td>
<td>24</td>
<td>25 37</td>
<td>671 673</td>
<td>770</td>
<td>5980</td>
<td>8187 14167</td>
<td>3.91</td>
<td>3878</td>
<td>6031</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>Parachute</td>
<td>24</td>
<td>34</td>
<td>100 147</td>
<td>676 678</td>
<td>813</td>
<td>5980</td>
<td>8187 14167</td>
<td>3.91</td>
<td>3927</td>
<td>6972</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>34</td>
<td>200 293</td>
<td>687 689</td>
<td>804</td>
<td>5980</td>
<td>8187 14167</td>
<td>3.91</td>
<td>4061</td>
<td>6289</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>34</td>
<td>100 147</td>
<td>680 682</td>
<td>809</td>
<td>5800</td>
<td>9053 14853</td>
<td>3.91</td>
<td>4270</td>
<td>6924</td>
<td>1.93</td>
<td></td>
</tr>
</tbody>
</table>

Since this parachute was breathing during the test, several photographs were taken at each speed. The data were reduced from the photographs which most reasonably appeared to represent the equilibrium state.

REPRODUCED FROM REFERENCE (6)
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_c</td>
<td>Steady-state projected area of the inflated parachute, ft2</td>
</tr>
<tr>
<td>A_{t1}</td>
<td>Instantaneous canopy mouth area, ft2</td>
</tr>
<tr>
<td>A_{t0}</td>
<td>Steady-state inflated mouth area, ft2</td>
</tr>
<tr>
<td>a</td>
<td>Acceleration, ft/sec2</td>
</tr>
<tr>
<td>$2a$</td>
<td>Maximum inflated parachute diameter of gore mains, ft</td>
</tr>
<tr>
<td>b</td>
<td>Minor axis of the ellipse bounded by the major axis $(2a)$ and the vent of the canopy, ft</td>
</tr>
<tr>
<td>b'</td>
<td>Minor axis of the ellipse which includes the skirt hem of the canopy, ft</td>
</tr>
<tr>
<td>C</td>
<td>Effective porosity</td>
</tr>
<tr>
<td>C_D</td>
<td>Parachute coefficient of drag</td>
</tr>
<tr>
<td>C_p</td>
<td>Parachute pressure coefficient, relates internal and external pressure (A_P) on canopy surface to the dynamic pressure of the free stream</td>
</tr>
<tr>
<td>D_0</td>
<td>Nominal diameter of the aerodynamic decelerator $= \sqrt{4S_0/r}$, ft</td>
</tr>
<tr>
<td>F</td>
<td>Instantaneous force, lbs</td>
</tr>
<tr>
<td>F_s</td>
<td>Steady-state drag force that would be produced by a fully open parachute at velocity V_s, lbs</td>
</tr>
<tr>
<td>F_c</td>
<td>Constructed strength of the parachute, lbs</td>
</tr>
<tr>
<td>F_{max}</td>
<td>Maximum opening-shock force, lbs</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration, ft/sec2</td>
</tr>
<tr>
<td>k</td>
<td>Permeability constant of canopy cloth</td>
</tr>
<tr>
<td>m</td>
<td>Mass, slugs</td>
</tr>
<tr>
<td>M</td>
<td>Mass ratio - ratio of the mass of the retarded hardware (including parachute) to a mass of atmosphere contained in a right circular cylinder of length (V_{s0}), face area $(C_D S_0)$, and density (ρ)</td>
</tr>
<tr>
<td>M'</td>
<td>Mass flow ratio - ratio of atmosphere flowing through a unit cloth area to the atmosphere flowing through a unit inlet area at arbitrary pressure</td>
</tr>
<tr>
<td>n</td>
<td>Permeability constant of canopy cloth</td>
</tr>
<tr>
<td>P</td>
<td>Cloth permeability - rate of air-flow through a cloth at an arbitrary differential pressure, ft3/ft2/sec</td>
</tr>
<tr>
<td>Q</td>
<td>Dynamic pressure, lbf/ft2</td>
</tr>
<tr>
<td>S</td>
<td>Instantaneous inflated canopy surface area, ft2</td>
</tr>
<tr>
<td>S_0</td>
<td>Canopy surface area, ft2</td>
</tr>
<tr>
<td>t</td>
<td>Instantaneous time, sec</td>
</tr>
<tr>
<td>t_o</td>
<td>Reference time when the parachute has reached the design drag area for the first time, sec</td>
</tr>
<tr>
<td>t_f</td>
<td>Canopy inflation time when the inflated canopy has reached its maximum physical size, sec</td>
</tr>
<tr>
<td>u</td>
<td>Air velocity through cloth in effective porosity, ft/sec</td>
</tr>
<tr>
<td>v</td>
<td>Fictitious theoretical velocity used in effective porosity, ft/sec</td>
</tr>
<tr>
<td>V</td>
<td>Instantaneous system velocity, ft/sec</td>
</tr>
<tr>
<td>V_s</td>
<td>System velocity at the time $t = t_o$, ft/sec</td>
</tr>
<tr>
<td>V_b</td>
<td>System velocity at the end of suspension line stretch, ft/sec</td>
</tr>
<tr>
<td>V_{so}</td>
<td>Volume of air which must be collected during the inflation process, ft3</td>
</tr>
<tr>
<td>W</td>
<td>Hardware weight, lb</td>
</tr>
<tr>
<td>X_t</td>
<td>Instantaneous shock factor</td>
</tr>
<tr>
<td>X_o</td>
<td>Shock factor at the time $t = t_o$, lbf/ft2</td>
</tr>
<tr>
<td>ρ</td>
<td>Air density, slugs/ft3</td>
</tr>
<tr>
<td>η</td>
<td>Ratio of parachute projected mouth area at line stretch to the steady-state projected area</td>
</tr>
<tr>
<td>ϵ</td>
<td>Instantaneous elongation</td>
</tr>
<tr>
<td>ϵ_{max}</td>
<td>Maximum elongation</td>
</tr>
<tr>
<td>ϵ_0</td>
<td>Initial elongation at the beginning of the elastic phase of inflation</td>
</tr>
<tr>
<td>S.F.</td>
<td>Parachute safety factor $= P_c/F_{max}$</td>
</tr>
</tbody>
</table>
Appendix B

A GUIDE FOR THE USE OF APPENDIX A

At first reading, Appendix A may appear to be a complicated system of analysis because of the many formulae presented. Actually, once understood, the technique is straightforward and uncomplicated. The author has attempted to simplify the algebra wherever possible. This appendix presents, in semi-outline form, a guide to the sequence of calculations because the analysis does require use of formulae from the text, not necessarily in the order in which they were presented. Also, the user can be referred to graphs of performance to illustrate effects.

In order to compute t_0, other parameters must be obtained from various sources.

I. Determine System Parameters

1. $C_D S_0$, drag area, ft^2 obtained from design requirement.
2. V_s, fps, velocity of system at suspension line stretch.
3. ρ, slugs/ft3, air density at deployment altitude.
4. W, lb, system weight (including weight of the parachute) from design requirements.
5. V_o, ft3, this volume of air, which is to be collected during inflation, is calculated from the steady-state inflated shape geometry of the particular parachute type. The nomenclature is described in Figure 24, p.A-14. When D_0 or D_P is known, $\tilde{\alpha}$ can be calculated from data in Table I and Table II, p. A-15, for various parachute types and number of gores. Then the geometric volume V_o can be calculated by Equation (31), p. A-14, with appropriate values of $b/\tilde{\alpha}$ and $b'/\tilde{\alpha}$ from the tables.
6. A_{MO}, ft2, steady-state canopy mouth area

\[
A_{MO} = \pi \tilde{\alpha}^2 \left[1 - \left(\frac{N/\tilde{\alpha} - b/\tilde{\alpha}}{b'/\tilde{\alpha}} \right)^2 \right]
\]

\[(B-1)\]
where \(N/\bar{a}, b/\bar{a}, \) and \(b'/\bar{a} \) are available from Tables I and II for the particular type of parachute and number of gores.

7. \(A_{50}, \) ft\(^2\), canopy surface area = \(\pi D_0^2/4 \)

8. \(C_p' \), pressure coefficient, see Figure 18, p. A-12. A constant \(C_p = 1.7 \) for all altitudes seems to yield acceptable results.

9. Constants \(k \) and \(n \) are derived from measurements of the air flow through the cloth. Only \(k \) is needed for Equation (14), but \(n \) is also required for Equation (13). These parameters can be determined for any cloth using the technique described beginning on p. A-12. The two-point method is adequate if the \(\Delta P \) across the cloth is in the range of \(\Delta P \) for actual operation. Check-points of cloth permeability can be measured and compared to calculated values to verify agreement. If the data are to be extrapolated to operational \(\Delta P ' s \) greater than measured, a better method of determining \(k \) and \(n \) from the test data would be a least squares fit through many data points. This way errors due to reading either of the two points are minimized.

II. Step 1

Calculate the reference time \(t_o \) by use of Equations (13) or (14), p. A-7. If the deployment altitude is 50,000 feet or higher, Equation (14) is preferred due to its simplicity. For altitudes from sea level to 50,000 feet, Equation (13) is preferred. Figure 12, p. A-8, shows the effect of altitude on \(t_o \) and can be taken as a guide for the user to decide whether to use Equation (13) or (14). One should keep in mind that the opening shock force can be a strong function of inflation time, so be as realistic as possible. If Equation (13) is elected, the method in use at the NSWC/WO is to program Equation (13) to compute the parachute volume, \(V_o \), for an assumed value of \(t_o \). Equation (14), because of its simplicity, can be used for a first estimate of \(t_o \) at all altitudes. The computed canopy volume is then compared to the canopy volume calculated from the geometry of the parachute as per Equation (31), p. A-14. If the volume computed from the mass flow is within the volume computed from the geometry within plus or minus a specified delta volume, the time \(t_o \) is printed out. If not within the specified limits, \(t_o \) is adjusted, and a new volume calculated. For a 35-foot \(D_0 \), T-10 type canopy, I use plus or minus 10 cubic feet in the volume comparison. The limit would be reduced for a parachute of smaller \(D_0 \).

If \(V_o \) calculated = \(V_o \) geometry \(\pm 10 \), then print answer.

If \(V_o \) calculated \(\neq V_o \) geometry \(\pm 10 \), then correct \(t_o \) as follows:

\[
\frac{V_o \text{ geometry}}{V_o \text{ calculated}}
\]

\(t_o = t_o \frac{V_o \text{ geometry}}{V_o \text{ calculated}} \) (B.2)

B-2
The new value of t_0 is substituted in the 'do loop' and the volume recomputed. This calculation continues until the required volume is within the specified limits.

III. Calculate t_0 corrected for initial area. The t_0 of Section II assumes that the parachute inflated from a zero initial area. If this is a reasonable assumption for the particular system under study, then the mass ratio can be determined from Equation (6), p. A-4. For $n = 0$ if the value of $M < 0.19$, then a finite state of deployment exists, and the time ratio of occurrence and the maximum shock factor can be determined from Equations (9) and (10), respectively, on p. A-5. If $n \neq 0$, then the limiting mass ratio for finite operations will rise slightly as described in Appendix C. Figures C-1 and C-2 illustrate the effects of initial area on limiting mass ratios and shock factors respectively. If the mass ratio is greater than the limiting mass ratio (M_L), then the maximum shock force occurs at a time greater than t_0 and the elasticity of the materials must be considered (see Section VI).

If $n \neq 0$, then the reference time, t_0, will be reduced, and the mass ratio will rise due to partial inflation at the line stretch. Figures 9 and 10, p. A-6, illustrate the effects of initial area on the velocities and shock factor during the "unfolding" inflation. Equation (15), p. A-9, can be used to correct t_0 calculated for the cases where $n = A_i/A_c$. If the initial value of drag area is known, Equation (16), p. A-9, can be used to correct t_0 and rechecked for limiting mass ratios versus n in Appendix C.

IV. Opening shock calculations in the elastic phase of inflation. It has been considered that from time $t = 0$ to $t = t_0$ the parachute has been inelastic. At the time $t = t_0$ the applied aerodynamic load causes the materials to stretch and the parachute canopy increases in size. The increased size results in an increase in load, which causes further growth, etc. This sequence of events continues until the applied forces have been balanced by the strength of materials. The designer must insure that the constructed strength of the materials is sufficient to resist the applied loads for the material elongation expected. Use of materials of low elongation should result in lower opening shock forces as $C_{D,i \cdot S_{\max}}$ is reduced.

When the mass ratio of the system is greater than the limiting mass ratio, the elasticity of the materials and material strength determine the maximum opening shock force. The maximum elongation ε_{\max} and the ultimate strength of the materials are known from tests or specifications. The technique begins on p. A-9.

At the time $t = t_0$, calculate the following quantities for the particular values of M and n.

b. \(X_0 \) from Equation (22), p. A-10.

c. \(\epsilon_0 \) from Equation (23), p. A-10.

d. Determine \(\frac{C_D S_{max}}{C_D S_0} \) from Figure 15, p. A-10.

e. Calculate the inflation time ratio \(t_f/t_0 \) from Equation (24), p. A-10.

g. Calculate the opening shock force \(F_{max} = X_f F_s \) where

\[
F_s = \frac{1}{2} \rho V^2 C_D s_0
\]

h. Calculate filling time, \(t_f(\text{sec}) \)

\[
t_f = t_0 \left(\frac{t_f}{t_0} \right)
\]

V. In order to simplify the required effort, the work sheets of Table B-1 are included on pages B-5 through B-9 to aid the engineer in systematizing the analysis. The work sheets should be reproduced to provide additional copies.
Table B-1. Opening Shock Force

CALCULATION WORK SHEETS

1. Parachute type -

2. System parameters
 a. System weight, \(W \) (lb)
 b. Gravity, \(g \) (ft/sec^2)
 c. Deployment altitude (ft)
 d. Deployment air density, \(\rho \) (slugs/ft^3)
 e. Velocity at line stretch, \(V_s \) (fps)
 f. Steady state canopy data
 (1) Diameter, \(D_0 \) (ft)
 (2) Inflated diameter, \(2a \) (ft); \(\frac{2a}{D_0} = * \)
 (3) Surface area, \(S_o \) (ft^2); \(\frac{\pi D_o^2}{4} \)
 (4) Drag area, \(C_D S_o \) (ft^2); \(C_D \times S_o \)
 (5) Mouth area, \(A_{MO} \) (ft^2)
 \[A_{MO} = \pi \left[1 - \left(\frac{N/3 - b/a}{b/a} \right)^2 \right] \]
 (6) Volume, \(V_o \) (ft^3)
 \[V_o = \frac{2}{3} \pi \left(\frac{b}{a} + \frac{b}{a} \right) \]

3. Cloth data
 (1) \(k \) Calculate using technique beginning on \(k \)
 (2) \(n \) p. A-12.
 Note: Permeability is usually measured as ft^3/ft^2/min. For these calculations permeability must be expressed as ft^3/ft^2/sec.

* Data for these calculations are listed in Tables 1 and 2, p. A-15.
Table 8-1. Opening Shock Force (cont'd)

(3) ε_{max}: determine maximum elongations from pull test data of joints, seams, lines, etc. Use minimum ε_{max} determined from tests.

(4) C_p: pressure coefficient

h. Steady state drag, F_s (lb), $F_s = \frac{1}{2} \rho V_s^2 C_D S_o$

i. Parachute constructed strength, F_c (lb); determined from data on efficiency of seams, joints, lines. Constructed strength is the minimum load required to fail a member times the number of members.

3. Force calculations

a. Calculate t_0 for $\eta = 0$; eq. 14, p. A-7.

$$t_0 = \frac{14W}{\rho g V_s C_D S_o} \left[\frac{C_D S_o}{2W} \left[\frac{A_{MO}}{A_{SO}} - \frac{k (C_p \rho)^{1/2}}{2} \right] \right]$$

Check Figure 13, p. A-8, for advisability of using eq. 13, p. A-7.

b. If $\eta = 0$, proceed with steps c through e. If $\eta \neq 0$, go to step f.

c. Mass ratio, M; eq. 6, p. A-4

$$M = \frac{2W}{\rho g V_s t_0 C_D S_o}$$

d. If $M \leq 4/21$ for $\eta = 0$, then finite mass deployment is indicated.

(1) Time ratio at x^1_{max}; eq. 9, p. A-5

$$\frac{1}{t_o \cdot x^1_{\text{max}}} = \left(\frac{21}{4} \right)^{1/7}$$

(2) Max shock factor, x^1_{max}; eq., 10, p. A-5

$$x^1_{\text{max}} = \frac{16}{49} \left(\frac{21}{4} \right)^{6/7}$$
Table B-1. Opening Shock Force

(3) Max shock force, F_{max} (lb)

$$F_{\text{max}} = \chi_{\text{max}} F_S$$

If $M > 4/21$, then intermediate mass or infinite mass deployment is indicated and the elasticity of materials is involved. Calculate the trajectory conditions at time $t = t_0$.

(1) Velocity ratio $\theta \tau = t_0$ for $n = 0$

$$\frac{V_o}{V_s} = \frac{1}{1 + \frac{1}{7M}}$$

(2) Shock factor $X_0 \theta \tau = t_0$ for $n = 0$

$$X_0 = \left(1 + \frac{1}{7M}\right)^2 \left(\frac{V_o}{V_s}\right)^2$$

(3) Initial elongation, ϵ_o; eq. 23, p. A-10

$$\epsilon_o = \frac{X_0 F_S}{F_c} \epsilon_{\text{max}}$$

(4) Determine $\frac{C_{D_S\text{max}}}{C_{D_S}}$ from Figure 15, p. A-10

(5) Calculate inflation time ratio, t_f; eq. 24, p. A-10

$$\frac{t_f}{t_0} = \left(\frac{C_{D_S\text{max}}}{C_{D_S}}\right)^{\frac{1}{6}}$$

(6) Calculate maximum shock factor, χ_{max}; eq. 19, p. A-9

$$\chi_{\text{max}} = \left(\frac{t_f}{t_0}\right)^6 \left[\frac{V_s}{V_o} + \frac{1}{7M} \left(\frac{t_f}{t_0}\right)^7 - 1\right]$$

(7) Calculate maximum shock force, F_{max} (lb)

$$F_{\text{max}} = \chi_{\text{max}} F_S$$
(8) Inflation time, sec = \(t_I = t_0 \left(\frac{t_f}{t_0} \right) \)

f. If \(\eta \neq 0 \), correct \(t_0 \) for initial area effects; eq. 16, p. A-9

\[
t_0 = \left[1 - \left(\frac{C_{D_S}}{C_{D_S_0}} \right)^{1/6} \right] t_0 \text{ calculated}
\]

g. Mass Ratio, \(M \), eq. 6, p. A-4

\[
M = \frac{2W}{g V_s t_0 C_{D_S_0}}
\]

h. Calculate limiting mass ratio, \(M_L \)

\[
M_L = \frac{1}{3(1-\eta)} - \left[\frac{9}{14} \eta^2 + \frac{3}{14} \eta + \frac{1}{7} \right]
\]

If \(M \leq M_L \), finite mass deployment is indicated and \(x_i \) max can be determined by eq. 8, p. A-3 by assuming values of \(t/t_0 \) and plotting the data using the methods of Appendix C.

i. If \(M > M_L \), then intermediate mass or infinite mass deployment is indicated and the elasticity of materials is involved. Calculate the trajectory conditions at time \(t = t_0 \).

(1) Velocity ratio @ \(t = t_0 \) for \(\eta \neq 0 \); eq. 18, p. A-9

\[
\frac{V_o}{V_s} = \frac{1}{1 + \frac{1}{M} \left[\frac{(1-\eta)^2}{7} + \eta \frac{(1-\eta)}{2} + \eta^2 \right]}
\]

(2) Shock factor \(X_o @ t = t_0 \) for \(\eta \neq 0 \); eq. 22, p. A-10

\[
X_o = \frac{1}{1 + \frac{1}{M} \left[\frac{(1-\eta)^2}{7} + \eta \frac{(1-\eta)}{2} + \eta^2 \right]^2} \left(\frac{V_o}{V_s} \right)^2
\]

(3) Initial elongation, \(\epsilon_o \); eq. 23, p. A-10

\[
\epsilon_o = \frac{X_o F_s}{F_c} \epsilon_{max}
\]

(4) Determine \(\frac{C_{D_{S_{max}}}}{C_{D_{S_0}}} \) from Figure 15, p. A-10
Table B-1. Opening Shock Force (Cont.)

(5) Calculate inflation time ratio, $\frac{t_f}{t_o}$; eq. 24, p. A-10

$$\frac{t_f}{t_o} = \left(\frac{C_{D_s} S_{max}}{C_{D_o} S_o} \right)^{\frac{1}{6}}$$

(6) Calculate maximum shock factor, $x_{i max}$; eq. 19, p. A-9

$$x_{i max} = \frac{\left(\frac{t_f}{t_o} \right)^6}{\left[\frac{V_b}{V_o} + 1 \right] \left[\left(\frac{t_f}{t_o} \right)^7 - 1 \right]^2}$$

(7) Calculate maximum shock force, F_{max} (lb)

$$F_{max} = x_{i max} F_s$$

(8) Calculate inflation time, t_f (sec)

$$t_f = t_o \left(\frac{t_f}{t_o} \right)$$
<table>
<thead>
<tr>
<th>Distribution</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commander Commander</td>
<td></td>
</tr>
<tr>
<td>Naval Air Systems Command Naval Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Library Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy Washington, DC 20361 William B. Shope</td>
<td></td>
</tr>
<tr>
<td>Commander David N. DeSimone</td>
<td></td>
</tr>
<tr>
<td>Naval Sea Systems Command Louis A. Daulerio</td>
<td></td>
</tr>
<tr>
<td>Attn: Library Thomas J. Popp</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20362 Maria C. Hura</td>
<td></td>
</tr>
<tr>
<td>Commander Warminster, PA 18974</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Naval Personnel Research and Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Development Center Attn: Library Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Attn: Library Mark T. Little</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20007 Crane, IN</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research Commander</td>
<td></td>
</tr>
<tr>
<td>Attn: Library Naval Ship Research and</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20360 Development Center Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Library Washington, DC 20360 Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research Structural Mechanics Branch 800 N. Quincy St.</td>
<td></td>
</tr>
<tr>
<td>Attn: Fluid Dynamics Branch Arlington, VA 22217 Attn: Technical Library,</td>
<td></td>
</tr>
<tr>
<td>Structural Mechanics Branch 800 N. Quincy St. Code N0322</td>
<td></td>
</tr>
<tr>
<td>2 Point Mugu, CA 93041</td>
<td></td>
</tr>
<tr>
<td>Director Director</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory Marine Corps Development and</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 2027 Education Command Development</td>
<td></td>
</tr>
<tr>
<td>Library, Code 2029 (ONRL) Center Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20375 Attn: Library</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Academy Marine Corps Liaison Officer</td>
<td></td>
</tr>
<tr>
<td>Attn: Library U.S. Army Natick Laboratories</td>
<td></td>
</tr>
<tr>
<td>Annapolis, MD 21402 Attn: Library (Code 0384) Natick, MA 01760</td>
<td></td>
</tr>
<tr>
<td>Superintendent Marine Corps Liaison Officer</td>
<td></td>
</tr>
<tr>
<td>U.S. Naval Postgraduate School U.S. Army Natick Laboratories</td>
<td></td>
</tr>
<tr>
<td>Attn: Library Monterey, CA 93940 Attn: Technical Library,</td>
<td></td>
</tr>
<tr>
<td>2 Code N0322</td>
<td></td>
</tr>
<tr>
<td>Monterey, CA 93940</td>
<td></td>
</tr>
</tbody>
</table>

(1)
DISTRIBUTION (Cont.)

<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding General</td>
<td>Commanding General</td>
</tr>
<tr>
<td>U.S. Army Mobility Equipment Research and Development Center</td>
<td>Harry Diamond Laboratories</td>
</tr>
<tr>
<td>Attn: Technical Document Center</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>Fort Belvoir, VA 22660</td>
<td>2890 Powder Mill Road</td>
</tr>
<tr>
<td></td>
<td>Adelphi, MD 20783</td>
</tr>
<tr>
<td>Commanding General</td>
<td>Commanding General</td>
</tr>
<tr>
<td>U.S. Army Aviation Systems Command</td>
<td>U.S. Army Ballistic Research Laboratories</td>
</tr>
<tr>
<td>Attn: Library</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>St. Louis, MO 63166</td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td></td>
<td>Aberdeen, MD 21005</td>
</tr>
<tr>
<td>Commanding General</td>
<td>Commanding General</td>
</tr>
<tr>
<td>U.S. Army Munitions Command</td>
<td>U.S. Army Foreign Science and Technology Center</td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>Stanely D. Kahn</td>
<td>220 Seventh Street, NE</td>
</tr>
<tr>
<td>Dover, NJ 07801</td>
<td>Federal Building</td>
</tr>
<tr>
<td></td>
<td>Charlottesville, VA 22312</td>
</tr>
<tr>
<td>Commanding General</td>
<td>Commanding General</td>
</tr>
<tr>
<td>U.S. Army Weapons Command Research and Development Directorate</td>
<td>U.S. Army Materiel Command</td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td>Attn: Library</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Rock Island, IL 61201</td>
<td>Washington, DC 20315</td>
</tr>
<tr>
<td>Commanding General</td>
<td>Commanding General</td>
</tr>
<tr>
<td>U.S. Army ARDEC</td>
<td>U.S. Army Test and Evaluation Command</td>
</tr>
<tr>
<td>Attn: Library</td>
<td>Attn: Library</td>
</tr>
<tr>
<td>Walt Koenig, SMAR-CET-A</td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td>Roy W. Kline, SMAR-CET-A</td>
<td>Aberdeen, MD 21005</td>
</tr>
<tr>
<td>Dover, NJ 07801</td>
<td>Commanding General</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Combat Developments Command</td>
</tr>
<tr>
<td></td>
<td>Attn: Library</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060</td>
</tr>
<tr>
<td>Army Research and Development Laboratories</td>
<td>Commanding General</td>
</tr>
<tr>
<td>Aberdeen Proving Ground</td>
<td>U.S. Army Combat Developments Command</td>
</tr>
<tr>
<td>Attn: Technical Library, Bldg. 313</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>Aberdeen, MD 21005</td>
<td>Carlisle Barracks, PA 17013</td>
</tr>
<tr>
<td>Commanding General</td>
<td>Commanding General</td>
</tr>
<tr>
<td>Edgewood Arsenal Headquarters Aero Research Group</td>
<td>U.S. Army Materiel Laboratories</td>
</tr>
<tr>
<td>Attn: Library</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aberdeen Proving Ground</td>
<td>Fort Eustis, VA 23604</td>
</tr>
<tr>
<td>U.S. Army Air Mobility R&D Laboratory</td>
<td>2 Copies</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Eustis Directorate</td>
<td></td>
</tr>
<tr>
<td>Attn: Systems and Equipment Division</td>
<td></td>
</tr>
<tr>
<td>Fort Eustis, VA 23604</td>
<td></td>
</tr>
<tr>
<td>President</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Airborne Communications and Electronic Board</td>
<td>2 Copies</td>
</tr>
<tr>
<td>Fort Bragg, NC 28307</td>
<td></td>
</tr>
<tr>
<td>U.S. Army CDC Institute of Land Combat</td>
<td></td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td>2</td>
</tr>
<tr>
<td>301 Taylor Drive</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td></td>
</tr>
<tr>
<td>Frankford Arsenal</td>
<td></td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td>2</td>
</tr>
<tr>
<td>301 Taylor Drive</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td></td>
</tr>
<tr>
<td>U.S. Missile Command</td>
<td></td>
</tr>
<tr>
<td>Redstone Scientific Information Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Library</td>
<td>2</td>
</tr>
<tr>
<td>Redstone Arsenal, AL 35809</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Natick Laboratories Liaison Office</td>
<td></td>
</tr>
<tr>
<td>Attn: Library</td>
<td>2</td>
</tr>
<tr>
<td>Wright Patterson AFB, OH 45433</td>
<td></td>
</tr>
<tr>
<td>Army Research Office</td>
<td></td>
</tr>
<tr>
<td>Attn: Library</td>
<td>2</td>
</tr>
<tr>
<td>Box CM, Duke Station</td>
<td></td>
</tr>
<tr>
<td>Durham, NC 27706</td>
<td></td>
</tr>
<tr>
<td>Office of the Chief of Research and Development</td>
<td></td>
</tr>
<tr>
<td>Attn: Library</td>
<td>2</td>
</tr>
<tr>
<td>Washington, DC 20310</td>
<td></td>
</tr>
</tbody>
</table>

<p>| U.S. Army Advanced Material Concepts Agency | 2 Copies |
| Department of the Army | |
| Attn: Library | 2 |
| Washington, DC 20315 | |
| Director | |
| U.S. Army Mobility R&D Laboratory | |
| Attn: AMES Research Center | 2 |
| Moffett Field, CA 94035 | |
| Commandant | |
| Quartermaster School | |
| Airborne Department | |
| Attn: Library | 2 |
| Fort Lee, VA 23801 | |
| U.S. Army Standardization Group, UK | |
| Attn: Research/General Material Representative | 2 |
| Box 65 | |
| FPO, NY 09510 | |
| Commanding Officer | |
| McCallan AFB | |
| Attn: Library | 2 |
| SA-ALC/MMIR | |
| McCallan AFB, CA 95652 | |
| Arnold Engineering Development Center (ARO, Inc.) | |
| Attn: Library/Documents | 2 |
| Arnold Air Force Station, TN 37389 | |
| NASA Lewis Research Center | |
| Attn: Library, Mail Stop 60-3 | 1 |
| 21000 Brookpark Road | |
| Cleveland, OH 44135 | |
| NASA John F. Kennedy Space Center | |
| Attn: Library, Code IS-CAS-42R | 1 |
| Kennedy Space Center, FL 32899 | |</p>
<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Manned Spacecraft Center</td>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td>Attn: Library, Code BM6</td>
<td>Cameron Station</td>
</tr>
<tr>
<td>2101 Webster Seabrook Road</td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>Houston, TX 77058</td>
<td></td>
</tr>
<tr>
<td>Attn: Library</td>
<td>Attn: Gift and Exchange Division</td>
</tr>
<tr>
<td>Huntsville, AL 25812</td>
<td>Washington, DC 20540</td>
</tr>
<tr>
<td>NASA Goddard Space Flight Center</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Wallops Island Flight Facility</td>
<td>Dept. of Aerospace Engineering</td>
</tr>
<tr>
<td>Attn: Library</td>
<td>Attn: Dr. W. L. Garrard</td>
</tr>
<tr>
<td>2</td>
<td>Minneapolis, MN 55455</td>
</tr>
<tr>
<td>Mr. Mendle Silbert</td>
<td>Sandia National Laboratories</td>
</tr>
<tr>
<td>1</td>
<td>Attn: Code 1632</td>
</tr>
<tr>
<td>Mr. Earl B. Jackson,</td>
<td>Library</td>
</tr>
<tr>
<td>Code 841.2</td>
<td>2</td>
</tr>
<tr>
<td>Mr. Dave Moltedo,</td>
<td>Dr. Dean Wolf</td>
</tr>
<tr>
<td>Code 841.2</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Anel Flores</td>
<td>Dr. Carl Peterson</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Wallops Island, VA 23337</td>
<td>R. Kurt Baca</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration</td>
<td>Ira T. Holt</td>
</tr>
<tr>
<td>Attn: Library</td>
<td>1</td>
</tr>
<tr>
<td>Headquarters, MTG</td>
<td>Donald W. Johnson</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>400 Maryland Avenue, SW</td>
<td>James W. Purvis</td>
</tr>
<tr>
<td>Washington, DC 20456</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Harold E. Widdows</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Defense Advanced Research Projects Agency</td>
<td>Albuquerque, NM 87185</td>
</tr>
<tr>
<td>Attn: Technical Library</td>
<td>Applied Physics Laboratory</td>
</tr>
<tr>
<td>2</td>
<td>The Johns Hopkins University</td>
</tr>
<tr>
<td>1400 Wilson Boulevard</td>
<td>Attn: Document Librarian</td>
</tr>
<tr>
<td>Arlington, VA 22209</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Johns Hopkins Road</td>
</tr>
<tr>
<td></td>
<td>Laurel, MD 20810</td>
</tr>
<tr>
<td>Director</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>Defense Research and Engineering</td>
<td>National Research Council /</td>
</tr>
<tr>
<td>Attn: Library (Technical)</td>
<td>Committee on Undersea Warfare</td>
</tr>
<tr>
<td>2</td>
<td>Attn: Library</td>
</tr>
<tr>
<td>The Pentagon</td>
<td>2</td>
</tr>
<tr>
<td>Washington, DC 20301</td>
<td>2101 Constitution Ave., N.W.</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20418</td>
</tr>
<tr>
<td></td>
<td>Sandia Corporation</td>
</tr>
<tr>
<td>Director of Defense Research and Engineering</td>
<td>Livermore Laboratory</td>
</tr>
<tr>
<td>Department of Defense</td>
<td>Attn: Technical Reference Library</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Washington, DC 20315</td>
<td>P. O. Box 969</td>
</tr>
<tr>
<td></td>
<td>Livermore, CA 94555</td>
</tr>
</tbody>
</table>
Lockheed Missiles and Space Co.
Attn: Mr. K. French
P.O. Box 504
Sunnyvale, CA 94086

Rockwell International Corporation
Space and Information Systems Div.
Attn: Technical Information Center
12214 S. Lakewood Boulevard
Downey, CA 90241

Pennsylvania State University
Applied Research Laboratory
Attn: Library
P.O. Box 30
State College, PA 16801

Honeywell, Incorporated
Attn: M. S. Sopczak
600 Second Street N.
Hopkins, MN 55343

National Bureau of Standards
Attn: Library
Washington, DC 20234

Internal Distribution:
U13 (C. J. Diehlmann)
U13 (W. P. Ludtke)
U13 (J. F. McNelia)
U13 (D. W. Fiske)
U13 (J. Murphy)
U13 (J. G. Velez)
U13 (M. L. Fender)
U13 (R. L. Pense)
U13 (M. L. Lana)
U43 (J. Rosenberg)
U43 (R. Nelre)
E231
E232
E31 (GIDEP)
To all holders of NSWC TR 87-96
Title: Notes on a Parachute Opening Force Analysis
Applied to a Vertical Toward-the-Earth Trajectory

This publication is changed as follows:

Remove the following pages and replace with new pages supplied:
13/14

Insert the following new pages supplied:
13/14

Dispose of the removed pages in accordance with applicable security regulations.

Insert this change sheet between the cover and the DD Form 1473 in your copy. Write on the cover "Change 1 inserted."

Approved by:

DR. J. E. GOELLER, Head
Underwater Weapons Division

87 10 1 366
The calculated canopy volume, V_{calc}, is determined from equation (11).

$$V_{\text{calc}} = \int_{V=0}^{V_{0}} \left[\frac{V_{0}}{t_0} \left(\frac{t}{t_0} \right)^6 - A_{0} \left(\frac{t}{t_0} \right)^4 k \left(\frac{c \rho \gamma}{2} \right)^{n} t^{2n} \right] dt$$

(11)

A program for calculating t_{0} for solid cloth parachutes and the opening shock force profile during the inflation of several parachute types is provided in Table 1. Equations (4), (11), and (12) are programmed together with the vertical deployment opening shock equations (2) through (8) in FORTRAN IV language. The included examples were calculated via the program using a VAX 780 computer. The program operates in two modes. Mode 1, for solid cloth parachutes, calculates the vertical deployment reference time t_{0} for the parachute system parameters and operational deployment data, and then calculates the opening shock profile during inflation. A typical data print out is shown in Table 2. It is necessary to estimate an initial value of t_{0}. The program calculates the canopy volume for the estimated time and compares the V_{0} calc to the volume derived from the canopy geometry. If the calculated volume is not within specified limits, the program adjusts t_{0} by equation (12) and reiterates the program until the calculated volume is within the specified limits.

$$t_{0} = t_{0} \left(\frac{V_{0 \text{ geometric}}}{V_{0 \text{ calc}}} \right)$$

(12)

Mode 2 of the program calculates opening shock profiles for input values of t_{0}. Mode 2 analysis of other types of parachutes is possible by the selection of the proper values of "j" (1/2, 1, 2, 3, 4, 5, or 6) and "r". The opening shock force variation for examples (1) and (2) are plotted in Figures 3 and 4. The nominal t_{0} for $n=0.632$ was calculated by the program in mode 1 and the force-time survey was calculated in mode 2.

Figure 3 illustrates that parachutes deployed in a vertical toward-the-earth trajectory inflate faster than the same system deployed horizontally at the same altitude and velocity.

Inflation reference times for parachute types other than solid cloth canopies can be developed from the mass flow equation. This requires that the flow through the canopy be expressed in a form similar to the solid cloth canopy cloth permeability, P, where the rate of flow per unit area is a function of the pressure differential across the cloth or grid.
NSWC TR 87-96

TABLE 1. INSTANTANEOUS DRAG AREA, VELOCITY, OPENING SHOCK FORCE, AND DISTANCE OF FALL OF A PARACHUTE DEPLOYED IN VERTICAL FALL.

THIS PROGRAM CALCULATES THE INSTANTANEOUS DRAG AREA, VELOCITY, OPENING SHOCK FORCE, AND DISTANCE OF FALL OF A PARACHUTE DEPLOYED IN VERTICAL FALL.

THE PROGRAM OPERATES IN TWO MODES:

MODE 1 - CALCULATES THE INFLATION TIME AND PERFORMANCE PROFILES FOR SOLID CLOTH PARACHUTES (TO INPUT AS INITIAL ESTIMATE) (IOPT = 1)

MODE 2 - CALCULATES THE PERFORMANCE PROFILES FOR VARIOUS TYPES OF PARACHUTES (J).

INFLATION TIME INPUT IS REQUIRED (IOPT = 2)

INPUT. IOPT = 1 (FOR MODE 1)
- 2 (FOR MODE 2)

INPUT NEEDED FOR BOTH MODES

- **RHO** - AIR DENSITY AT GIVEN ALTITUDE (SLUGS/FT^3)
- **VS** - VELOCITY AT SUSPENSION LINE STRETCH (FT/SEC)
- **CDSO** - DESIGN DRAG AREA (FT^2)
- **TO** - IOPT=1 INITIAL GUESS FOR INFLATION REFERENCE TIME (SEC)
- **IOPT=2** ACTUAL INFLATION REFERENCE TIME (SEC)
- **W** - WEIGHT (LBS)
- **J** - =6 FOR FLAT CIRCULAR PARACHUTE
 - =1 FOR RIBBON TYPE OF PARACHUTE

INPUT NEEDED FOR IOPT = 1 ONLY.

- **AMO** - STEADY-STATE MOUTH AREA (FT^2)
- **ASO** - CANOPY DESIGN SURFACE AREA (FT^2)
- **K** - CLOTH PERMEABILITY CONSTANT.
- **CP** - PRESSURE COEFFICIENT.
- **N** - CLOTH PERMEABILITY EXPONENT.
- **VO** - GEOMETRIC VOLUME (FT^3)

```
REAL*4 N
TODEN=100000
5 PRINT *, 'INPUT IOPT'
READ(5, *, END=100) IOPT
PRINT *, 'INPUT RHO, VS, CDSO, TO, W, J'
READ(5, *) RHO, VS, CDSO, TO, W, J
IF(IOPT.EQ.2) GO TO 3
PRINT *, 'INPUT AMO, ASO, K, CP, N, VO'
READ(5, *) AMO, ASO, K, CP, N, VO
3 DT=TO/TODEN
TAU=0.
Q=.32 2
S=0.
X=TAU
CDS=TAU*CDSO
FS= 5*RHO*VS**2*CDSO
F=TAU*FS
VOL=0
IPASS=0
```