UH-60A EXPANDED GROSS WEIGHT AND CENTER OF GRAVITY EVALUATION

ROBERT A. WILLIAMS
CW4, USA
PROJECT OFFICER/PILOT

GARY L. SKINNER
PROJECT ENGINEER

ROBERT MACMULLIN
MAJ, AV
PROJECT PILOT

ROBERT M. BUCKAUK
PROJECT ENGINEER

JOSEPH C. MIESS
CW4, USA
PROJECT PILOT

MICHAEL K. HERBST
PROJECT ENGINEER

EDWARD J. TAVARES
MAJ, AV
PROJECT PILOT

AUGUST 1985

FINAL REPORT

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

US ARMY AVIATION ENGINEERING FLIGHT ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA 93523 - 5000
DISCLAIMER NOTICE

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.
Testing was conducted to obtain performance and handling qualities at the limits of the expanded gross weight and center of gravity (cg) envelope of the UH-60A helicopter. A total of 38.5 productive flight hours were flown at Edwards Air Force Base, California between 9 June and 22 November 1983. Equivalent flat plate area was minimum with the cg at a fuselage station (FS) of approximately 34.6 and increased at a more forward and aileron tested (FS 347 and 366). One deficiency, three shortcomings, and three Price Item Development Specification
noncompliances were identified. One shortcoming, neutral stick-fixed static longitudinal stability in intermediate rated power climb, was associated with envelope expansion. The 4-per-rotor-revolution vibration characteristics, previously identified as a shortcoming, generally were unaffected by increasing gross weight but were aggravated by moving the longitudinal cg further aft. Except for the shortcoming pertaining to neutral static longitudinal stability, the handling qualities were essentially unchanged from those previously reported.
TABLE OF CONTENTS

INTRODUCTION

- Background
- Test Objectives
- Description
- Test Scope
- Test Methodology

RESULTS AND DISCUSSION

- General
- Level Flight Performance
- Handling Qualities
- Control Positions in Trimmed Forward Flight
- Static Longitudinal Stability
- Level and Descending Flight
- Intermediate Rated Power Climb
- Static Lateral-Directional Stability
- Maneuvering Stability
- Dynamic Stability
- Controllability
- Low Speed Flight Characteristics
- Aircraft System Failures
- Simulated Engine Failures
- Automatic Flight Control System Failures
- Vibration Characteristics
- Airspeed Calibration

CONCLUSIONS

RECOMMENDATIONS

APPENDIXES

- A. References
- B. Aircraft Description
- C. Instrumentation
- D. Test Techniques and Data Analysis Methods
- E. Test Data

DISTRIBUTION
INTRODUCTION

BACKGROUND

1. The Airworthiness and Flight Characteristics (A&FC) test of the production UH-60A, was completed in September 1981 by the US Army Aviation Engineering Flight Activity (USAAEFA). Testing during the A&FC ranged from primary mission gross weight of 16,260 pounds (lb) to the maximum alternate gross weight of 20,250 lb. Since the completion of the A&FC, a mission has developed requiring additional testing up to 22,000 lb and at a center of gravity (cg) outside the current envelope limits. Sikorsky Aircraft (SA) Division of United Technologies conducted structural, dynamics, flying qualities and height-velocity testing at the expanded gross weight and cg conditions. To evaluate the effects of the SA proposed envelope, additional handling qualities and performance testing was required. In October 1981, USAAEFA was tasked by the US Army Aviation Research and Development Command (ref 1, app A) to plan, conduct, and report on the handling qualities and performance of the UH-60A in the proposed configurations. Due to the priorities of other UH-60A programs, this evaluation was not begun until June 1983.

TEST OBJECTIVES

2. The objectives of this evaluation were as follows:

 a. To obtain sufficient performance data in the proposed expanded cg and gross weight envelope for inclusion in the operator's manual.

 b. To obtain sufficient handling qualities data for inclusion in the operator's manual.

 c. To determine compliance with the applicable paragraphs of the Prime Item Development Specification (PIDS) (ref 2, app A).

DESCRIPTION

3. The test helicopter, UH-60A US Army S/N 77-22716 is a first year production Black Hawk and is a twin engine, single main rotor helicopter with nonretractable wheel-type landing gear capable of transporting cargo, il combat troops, and weapons during day, night, visual meteorological conditions, and instrument meteorological conditions (IMC). Primary mission gross weight is 16,260 lb and the present maximum alternate gross weight is 20,250 lb. The proposed maximum gross weight is increased to 22,000 lb and the cg expanded aft as shown in figure 1,
appendix B. The UH-60A is powered by two General Electric T700-GE-700 turboshaft engines each having an installed power available (30 minute limit) of 1553 shaft horsepower (SHP) (power turbine speed of 20,900 revolutions per minute (rpm)) at sea level, standard-day static conditions. Installed dual-engine power is transmission limited to 2828 SHP. The T700-GE-700 engine incorporates a history recorder, automatic turbine gas temperature limiter, power turbine speed limiter, gas generator speed limiter, automatic torque-matching capability, and various diagnostic systems. The aircraft also has an automatic flight control system (AFCS) and a command instrument system. The test aircraft incorporated prototype airspeed and stabilator modifications developed during USAFEA Project No. 82-09 (ref 3, app A) to improve the UH-60A airspeed system. A more detailed description of the UH-60A is included in appendix B and additional descriptions can be found in the operator's manual (ref 4).

TEST SCOPE

4. All flight testing was conducted at Edwards Air Force Base, California (2302 feet). A total of 38 flights were conducted between 9 June and 22 November 1983 for a total of 60.0 flight hours of which 36.5 were productive. USAFEA calibrated and maintained all the test instrumentation and performed all required maintenance on the helicopter. Flight restrictions and operating limitations observed during the evaluation are contained in the operator's manual (ref 4, app A) and the airworthiness release (ref 5). Testing was conducted in accordance with the test plan (ref 6) at the conditions shown in table 1.

TEST METHODOLOGY

5. A detailed listing of the test instrumentation is contained in appendix C. Established flight test techniques and data reduction procedures were used (refs 7 and 8, app A) and are described in appendix D. Level flight performance results from USAFEA Project No. 83-24 (ref 9) were used to augment test data. A Handling Qualities Rating Scale (HQRS) (fig. 1, app D) was used to augment pilot comments relative to aircraft handling qualities. The flight test data were obtained from test instrumentation displayed on the instrument panel and recorded by onboard magnetic tape recording equipment. Real-time telemetry monitoring of selected data parameters was used during certain tests.
<table>
<thead>
<tr>
<th>Type</th>
<th>Average Gross Weight (lb)</th>
<th>Average Longitudinal Center of Gravity (FS)</th>
<th>Average Density Altitude (ft)</th>
<th>Trim Airspeed (knots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Flight Performance</td>
<td>14,470 to 21,690</td>
<td>347.1</td>
<td>6610 to 13,840</td>
<td>51 to 160</td>
</tr>
<tr>
<td></td>
<td>18,790 to 21,620</td>
<td>350.1</td>
<td>9430 to 11,420</td>
<td>52 to 158</td>
</tr>
<tr>
<td></td>
<td>16,500</td>
<td>366.7</td>
<td>6790 to 13,210</td>
<td>50 to 164</td>
</tr>
<tr>
<td></td>
<td>21,500</td>
<td>347.7</td>
<td>4400 to 9500</td>
<td>75, 90, 117, 140</td>
</tr>
<tr>
<td>Control Positions</td>
<td>15,920 and 21,660</td>
<td>347.2</td>
<td>8720 and 11,500</td>
<td>35 to 136</td>
</tr>
<tr>
<td>in Trimed</td>
<td>21,260</td>
<td>360.1</td>
<td>9460</td>
<td>45 to 110</td>
</tr>
<tr>
<td>Forward Flight</td>
<td>16,480</td>
<td>354.9</td>
<td>10,220</td>
<td>46 to 139</td>
</tr>
<tr>
<td>Static Longitudinal</td>
<td>21,700</td>
<td>350.5</td>
<td>6000</td>
<td>77 and 109</td>
</tr>
<tr>
<td>Stability</td>
<td>16,660</td>
<td>365.1</td>
<td>6500</td>
<td>80 and 121</td>
</tr>
<tr>
<td>Static Lateral</td>
<td>21,700</td>
<td>360.3</td>
<td>6000</td>
<td>80 and 141</td>
</tr>
<tr>
<td>Directional Stability</td>
<td>16,800</td>
<td>365.7</td>
<td>6500</td>
<td></td>
</tr>
<tr>
<td>Maneuvering Stability</td>
<td>21,100</td>
<td>350.4</td>
<td>6600</td>
<td>77 and 107</td>
</tr>
<tr>
<td></td>
<td>16,650</td>
<td>365.3</td>
<td>6900</td>
<td></td>
</tr>
<tr>
<td>Dynamic Stability and</td>
<td>16,600</td>
<td>363.8</td>
<td>2100 and 6300</td>
<td>0, 80, 122</td>
</tr>
<tr>
<td>Controllability</td>
<td>21,600</td>
<td>363.0</td>
<td>6000</td>
<td>77 and 110</td>
</tr>
<tr>
<td>Low Speed Flight</td>
<td>15,900</td>
<td>363.6</td>
<td>2100</td>
<td>0 to 35</td>
</tr>
<tr>
<td>System Failures</td>
<td>16,250</td>
<td>355.5</td>
<td>6700</td>
<td>75 and 142</td>
</tr>
<tr>
<td>Vibration</td>
<td>16,200</td>
<td>347.1</td>
<td>13,660</td>
<td>45 to 125</td>
</tr>
<tr>
<td></td>
<td>16,560</td>
<td>355.4</td>
<td>13,320</td>
<td>44 to 149</td>
</tr>
<tr>
<td></td>
<td>21,380</td>
<td>347.1</td>
<td>6620</td>
<td>46 to 120</td>
</tr>
<tr>
<td></td>
<td>21,330</td>
<td>360.2</td>
<td>9380</td>
<td>45 to 109</td>
</tr>
</tbody>
</table>

NOTES:

1. Tests conducted in the normal utility configuration, approximate mid lateral center of gravity, automatic flight control system ON, and 100 percent main rotor speed. The pitch bias actuator was locked and centered for handling qualities conducted at heavy weight.
2. Tests conducted at a referred rotor speed of 258 rpm.
RESULTS AND DISCUSSION

GENERAL

6. Tests were conducted on the UH-60A helicopter to evaluate performance and handling qualities at the limits of the expanded gross weight and cg envelope. Equivalent flat plate area (F_e) was minimum with the cg at a fuselage station (FS) of approximately 360 and increased at FS 347 and 366. One deficiency, three shortcomings, and three PIDS noncompliances were identified. One shortage, neutral stick-fixed static longitudinal stability in intermediate rated power (IRP) climb, was associated with envelope expansion. Except for the shortage pertaining to neutral static longitudinal stability, the handling qualities were essentially unchanged from those previously reported. The 4-per-rotor-revolution (4/rev) vibration characteristics, previously identified as a shortage, generally were unaffected by increasing gross weight but were aggravated by moving the longitudinal cg further aft.

LEVEL FLIGHT PERFORMANCE

7. Level flight performance tests were conducted at the conditions in table 1 to determine power required for airspeeds, altitudes and gross weights at the limits of the expanded cg envelope. The data were obtained in ball-centered flight and corrected for estimated drag of external test instrumentation and instrumentation electrical load.

8. Nondimensional test results are presented in figures 1 through 3, appendix E. The curves on these figures were obtained by converting the nondimensional test results of the sixth year production aircraft presented in USAAEFA Report No. 83-24 (ref 9, app A) to the first year production aircraft utilized during this evaluation. Change in F_e (ΔF_e) of five square feet (ft^2) was subtracted. This value of ΔF_e was previously determined to be valid at the referred rotor speed (N/\sqrt{R}) used in these tests. This difference is summarized as:

$$\text{ist yr prod A/C = 6th year prod A/C - ESSS fairsings (2.5 ft}^2)$$
$$- \text{N-130 & AN/ALQ-144(Y) brackets (1.5 ft}^2)$$
$$- \text{external drag differences (1 ft}^2)$$

Dimensional level flight test results are presented in figures 4 through 15, appendix E. Test data at an average cg of FS 360.1 indicate a decrease in power required when compared to the nondimensional family of curves at an average cg of FS 347.1. This difference in power required equates to a ΔF_e of 2 ft² and substantiates the test results presented in USAAEFA Report
No. 77-17 (ref 10, app A) for a similar change in cg. The decrease in ΔF_e of 2 ft2 allows reduction in power required of 55 SHP and still maintain cruise speed at 145 knots true airspeed (KTAS) (fig. 10, app E). Test data at an average cg of FS 366.7 indicate no change in power required when compared to the nondimensional curves at a FS of 347.1. Therefore, F_e was minimal at a FS of approximately 360 and increased at FS 347.1 and 366.7. Inherent sideslip (figs. 16 and 17) represents the resultant angle of sideslip associated with ball-centered level flight and was developed using level flight performance data presented in this report (figs. 18 and 19) and in USAAEFA Report No. 83-24. The inherent sideslip family of curves was used as the basis for correction in determining ball-centered flight as described in appendix D.

9. Tests were conducted during this evaluation and during USAAEFA Project No. 83-24 to ascertain the relationship of ΔF_e with sideslip. The data are presented in figure 20, appendix E. Drag changes from zero sideslip are independent of airspeed but vary with C_T. The data indicate that minimum F_e occurs between 4.5 and 7 degrees left sideslip depending on C_T. Coordinated level flight, however, results in a maximum left sideslip of approximately 1 degree.

HANDLING QUALITIES

Control Positions in Trimmed Forward Flight

10. Control positions in trimmed ball-centered forward flight were obtained in conjunction with level flight performance testing at the conditions in table 1. Selected results are presented in figures 21 and 22, appendix E.

11. The variation of longitudinal control position with airspeed during trimmed level flight generally required increasing forward cyclic control with increasing airspeed. At airspeeds below 60 knots calibrated airspeed (KCAS) the variation was neutral to slightly negative (aft cyclic required with increasing airspeed), but not objectionable. Maximum longitudinal trim variation was nearly two inches over the entire airspeed range. At both heavy and light gross weight, maximum changes in longitudinal control position (1-1/2 inches), lateral control position (1/2 inch), and pitch at attitude (4 degrees) were minimal for a large cg shift (13 to 18 inches). Control positions (except collective) were mostly unaffected by changes in gross weight. Directional and lateral control positions were essentially unaffected by changes in cg and gross weight. The gradient of directional control position
with airspeed was moderately steep from 40 to 80 KCAS (approximately 0.035 inches/knot). Above 80 KCAS the gradient was shallow and maximum directional trim variation was less than 1/4 inch. Adequate control margins existed in all control axes in trimmed forward flight. Trim pitch attitude remained nearly constant from 40 to 80 KCAS and then decreased linearly approximately 0.05 degree/knot above 80 KCAS. Pitch attitude changes with airspeed were unnoticeable to the pilot. The control positions in forward flight are satisfactory.

12. During the control position and level flight performance evaluations, the yaw trim would randomly drive the right pedal forward significantly increasing the pilot workload to maintain trimmed flight. This problem is not unique to this aircraft (USA S/N 77-22716) but was noted on other UH-60A aircraft including a sixth year production version (USA S/N 82-23748). During IMC this uncommanded directional control input in trimmed flight will require frequent, large (approximately 1/2 inch) pedal inputs making precise heading control (±3 degrees) unattainable (HQRS 7) and is a deficiency which was previously reported (Preliminary Airworthiness Evaluation III, April 1979 (ref 11, app A), A&FC September 1981 (ref 10); and External Stores Support System A&FC, December 1983 (ref 12)).

Static Longitudinal Stability

13. Static longitudinal stability was evaluated at the conditions shown in table 1. The helicopter was stabilized in ball-centered flight at the desired trim airspeed and flight condition. With the collective control held fixed and rotor speed maintained constant, the helicopter was stabilized at incremental airspeeds about trim. Test results are presented in figures 23 through 26, appendix E.

Level and Descending Flight:

14. Static longitudinal stick-fixed stability, as indicated by the variation of longitudinal cyclic control position with airspeed, was positive (aft longitudinal control displacement at airspeeds slower than trim) except at 144 KCAS in level flight at light weight/aft cg. The gradient of control displacement versus airspeed was steepest near the trim point and generally became shallow or neutral at airspeeds greater than 10 knots from trim. Qualitatively, the pilot had adequate control force cues of airspeed changes about trim. The maximum variation of lateral cyclic and directional pedal control position from trim was approximately 3/4 inch, but was not objectionable to the pilot. Pitch attitude remained essentially constant except in level
flight at light weight/aft cg (trim airspeed 144 KCAS) where the pitch attitude decreased with increasing airspeed. The pilot was able to maintain airspeed within ±2 knots with minimal effort (HQRS 2). The static longitudinal stability at 144 KCAS in level flight at light weight/aft cg failed to meet the requirement of paragraph 10.3.3.1.3 of the PIDS. However, the static longitudinal stability in level flight and 1000 foot per minute (fpm) descents within 10 knots of trim is satisfactory.

Intermediate Rated Power Climb:

15. Static longitudinal stability was neutral in IRP climbs at 81 KCAS at light weight/aft cg with the pitch bias actuator (PBA) operational (fig. 25). However, at heavy gross weight (21,480 lb) with the PBA centered and locked, the static longitudinal stick-fixed stability was positive (fig. 26). Force cues were minimal at both loadings. Due to collective bias, stabilator programming was noticeably different between the two gross weights in that at heavy weight/aft cg the stabilator programed about 10 deg more trailing edge (TE) down than at light weight/aft cg as airspeed was decreased below trim. Airspeed was easier to maintain at heavy weight (HQRS 3) than at light weight. At light weight (16,600 lb), airspeed was moderately difficult to maintain (+5 knots) in that continuous longitudinal cyclic control inputs (+1/4 inch every 5 seconds) were required (HQRS 4). The lack of force and position cues with variation in airspeed about trim will increase pilot workload in IMC. The neutral stick-fixed static longitudinal stability at light weight/aft cg in IRP climb is a shortcoming. The aircraft failed the positive stability requirements of para 10.3.3.1.3 of the PIDS in that at light weight/aft cg the longitudinal static stability in the IRP climb condition was neutral.

STATIC LATERAL-DIRECTIONAL STABILITY

16. Static lateral-directional stability characteristics were evaluated at the conditions and configurations indicated in table 1. Tests were conducted by trimming the aircraft in ball-centered flight at the desired conditions. With the collective fixed, the aircraft was then stabilized at incremental sideslip angles up to limit sideslip on both sides of trim while maintaining a steady heading at the trim airspeed. Test results are presented in figures 27 through 30, appendix E.

17. Static directional stability, as indicated by the variation of directional control position with sideslip, was positive (increasing left directional control with increasing right
sideslip) at all test conditions and configurations. The directional control variation with sideslip was essentially linear; however, the average directional control gradient was shallower during descents than during climbs (0.05 versus 0.07 inches/degree). The directional stability characteristics of the UH-60A met the requirements of the PIDS (para 10.3.4.1.7) and are satisfactory.

18. Dihedral effect, as indicated by the variation of lateral control position with sideslip was positive (increasing right cyclic control with increasing right sideslip) and essentially linear for all test conditions and configurations. The gradient of lateral cyclic control position versus sideslip was steeper at high speeds (121 and 141 KCAS) than at the other conditions, but was not objectionable. There were no discontinuities in force or position cues and good out-of-trim cues were present. The dihedral effect of the UH-60A met the requirements of the PIDS (para 10.3.4.1.7) and is satisfactory.

19. Sideforce characteristics, as indicated by the variation in bank angle with sideslip, were weak but positive (increasing right bank angle with increasing right sideslip) for all low speed (76 to 83 KCAS) conditions and configurations tested. Because of the control position and force cues, the reduced sideforce cues did not significantly increase the pilot workload. As airspeed was increased to 121 and 141 KCAS, the sideforce cues increased. The sideforce cues, though weak at low airspeeds, were satisfactory and met the requirements of paragraph 10.3.4.1.7 of the PIDS.

20. A pitch-due-to-sideslip coupling was evident in all conditions and configurations. In all conditions, except high speed (141 KCAS), the longitudinal cyclic position versus sideslip trend was essentially the same (increasing forward longitudinal cyclic control with increasing right sideslip). In high speed flight, this trend reversed itself (increasing aft longitudinal cyclic control with increased right sideslip), but was not noted by the pilots during flight. The pitch-due-to-sideslip coupling was not objectionable.

21. The UH-60A exhibited inherent sideslip angles of approximately 5 degrees right during ball-centered IRP climbs and approximately 5 degrees left during ball-centered 1000 fps descents. In level flight at all airspeeds above 90 KTAS, the inherent sideslip angle varied from 1 degree left to 2 degrees right sideslip depending upon C_T.
Maneuvering Stability

22. Maneuvering stability was evaluated for two aircraft configurations, lightweight/aft cg and heavyweight/aft cg at the conditions presented in Table I. The maneuvering stability tests were accomplished by initially stabilizing the helicopter in ball-centered level flight at the trim airspeed and then incrementally increasing the load factor by increasing the bank angles in left and right turns. Constant collective control position was maintained in the maneuvers and the pilot attempted to maintain a constant airspeed. Test results are presented in figures 31 and 32, Appendix E.

23. The stick-fixed maneuvering stability, as indicated by the variation of longitudinal control position with normal acceleration (g), in the lightweight configuration was positive (increasing aft cyclic control with increasing g) at 2.6 g's at 77 KCAS and essentially neutral for all g levels at 1.6 KCAS (approximately 5 knots airspeed in level flight). Between 1.6 and 1.4 g's at 77 KCAS the stick-fixed maneuvering stability was neutral (no change in longitudinal control position with increasing g). During left turns at both trim airspeeds, there was a linear requirement for more left cyclic control as the g levels were increased. In right turns the lateral control position was essentially constant up to 1.6 g's. At g levels above 1.6 for both airspeeds in right turns, the requirement for right cyclic control increased dramatically (approximately 2.5 inches/g) and as a result pilot induced oscillations increased significantly.

24. The heavy weight configuration at 77 KCAS exhibited longitudinal control characteristics similar to the lightweight configuration except that the stick-fixed maneuvering stability became negative (increasing forward longitudinal cyclic control with increasing g) at 1.4 g's. At 107 KCAS (approximate never-exceeded airspeed minus 10 knots), the stick-fixed maneuvering stability was essentially neutral during left turns and slightly positive during right turns up to the maximum g level tested (1.4 g). In left turns at both trim airspeeds, the lateral cyclic control characteristics were unchanged from those seen in the lightweight configuration. During right turns the lateral cyclic control reversal occurred at approximately 1.4 g's and the control gradient at 107 KCAS increased to 5 inches/g.

25. The time histories presented in figures 33 through 35, Appendix E are representative of the maneuvering stability tests performed during this evaluation. At bank angles less than 40 degrees (Fig. 33), the pilot was able to maintain precise airspeeds (+1 knot) and bank angles (+1 degree) with minimal
pilot compensation (HOGS 3). As peak angles were increased above 40 degrees, pilot workload increased significantly. Airspeed could only be maintained within 5 knots, bank angle within 4 degrees, and pitch attitude within 5 degrees at both 1.4 and 3.2 times airspeeds during execution of the maneuvering stability tests (Figs. 34 and 35). The longitudinal cyclic control force never became a push force, however, the reduction of the pull force was perceivable and the reduced control force was degraded the UH-60A's flying qualities. Maneuvering stability characteristics at load factors above 1.4 will become more significant with the advent of helicopter air-to-air missions and various evasive maneuvers. Effectiveness of the UH-60A to perform these missions will be limited due to the degraded maneuvering stability characteristics above 1.4 g's. The maneuvering stability of the UH-60A failed to meet the requirements of paragraphs 17.3.3.1.4 and 10.3.3.6.1 of the FIDS so that the UH-60A does not exhibit positive stick-fixed or stick-free maneuvering stability in steady turning flight.

Dynamic Stability

26. Short and long-term dynamic stability was evaluated at the conditions listed in Table 1. The short-term response was simulated in all control axes by making single-axis, 1 inch pulse inputs which were held for approximately 0.5 second, and by releases from steady heading side-slip during static lateral-directional tests. The longitudinal long-term response was qualitatively evaluated during other tests and in meteorological conditions ranging from calm to moderate turbulence as defined in the Flight Information Handbook (Ref 13, App A).

27. The short-term response of the aircraft with WCS ON was heavily damped, as shown in Figures 36 through 38, Appendix I. Single axis disturbances in all axes were damped to one-half amplitude within one cycle. The pilot was able to correct for attitude disturbances in level flight and in hover with minimal control inputs (HOGS 2). The short-term response with AFCS ON met the requirement of the FIDS and is satisfactory.

28. The long-term response with AFCS ON was not excited by normal mission maneuvers or turbulent flight conditions. The aircraft maintained attitude (±2 deg), heading (±2 deg), and airspeed (±2 knots) during "hands off" flight for extended periods of time (over 1 minute) in light to moderate turbulence. Other than normal transient altitude fluctuations, attitude and airspeed in cruise flight required minimal or no pilot control inputs (HOGS 2). The long-term response with AFCS ON met the requirement of the FIDS and is satisfactory.

29. Lateral-directional oscillatory responses were highly damped during releases from steady-heading side-slip as indicated in
figure 39, appendix E. Flight in light to moderate turbulence also exhibited a damped lateral-directional response which required no pilot compensation. The lateral-directional gust response with AFCS ON met the requirement of the FIDS and is satisfactory.

30. Adverse/proverse yaw was imperceptible to the pilot during rapid cyclic only turns. No directional pedal input was required to bank the helicopter into a turn. The adverse/proverse yaw characteristics met the requirements of the FIDS (paras 10.3.4.18 and 10.3.4.1.9) and are satisfactory.

31. Controllability tests were conducted in hover and forward flight at light and heavy gross weights at an aft cg at the conditions listed in table 1. Controllability was measured as a function of aircraft attitude displacement in a given time (control power), angular rate (control response), and angular acceleration (control sensitivity) about each aircraft axis following a control input (step) of a measured size. Following the input, an attempt was made to hold controls fixed until a maximum rate was established or until recovery was necessary. The magnitude of the inputs was varied by using an adjustable rigid control fixture.

32. Longitudinal controllability characteristics are presented in figures 40 through 42, appendix E and in table 2. Representative time histories of step inputs are presented in figures 43 through 45. The magnitude of control power and control response did not change appreciably with change in airspeed, gross weight, or direction of input. Control sensitivity increased with increased airspeed, especially above approximately 80 KCAS. At heavy weight in forward flight, the Stabilty Augmentation System (SAS) became saturated after inputs of greater than one inch in either direction resulting in an increase in pitch rate during the maneuver (figs. 44 and 45). However, the increased pitch rate was not noticeable or objectionable to the pilot unless the input was held for several seconds. This effect was not observed at light gross weight. Control coupling was imperceptible in the longitudinal axis. Quick and precise attitude adjustments required in high speed low level flight were easily accomplished by the pilot. The longitudinal controllability met the linearity requirements of paragraph 10.3.3.4.1 of the FIDS and is satisfactory.

33. Lateral controllability characteristics are presented in figures 46 through 48, appendix E and in table 3. Representative time histories are presented in figures 49 and 50. Control power
Table 2. Longitudinal Controllability

<table>
<thead>
<tr>
<th>Average Gross Weight (lb)</th>
<th>Average Center of Gravity (aft FS)</th>
<th>Average Trim Airspeed (KCAS)</th>
<th>Average Density Altitude (ft)</th>
<th>Control Power (deg/in.)</th>
<th>Control Response (deg/sec/in.)</th>
<th>Control Sensitivity (deg/sec²/in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND²</td>
<td>ND</td>
<td>NU</td>
</tr>
<tr>
<td>16,900</td>
<td>363.6</td>
<td>0</td>
<td>2100</td>
<td>5.0</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>16,840</td>
<td>363.7</td>
<td>80</td>
<td>6100</td>
<td>5.0</td>
<td>7.0</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>16,900</td>
<td>363.8</td>
<td>143</td>
<td>6600</td>
<td>5.5</td>
<td>6.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td>22,000</td>
<td>360.4</td>
<td>78</td>
<td>6000</td>
<td>5.5</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>21,900</td>
<td>360.2</td>
<td>109</td>
<td>5900</td>
<td>6.0</td>
<td>9.0</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

1. Measured after 1 second.
2. Aircraft nose-down.
3. Aircraft nose-up.
<table>
<thead>
<tr>
<th>Average Ground Weight (lb)</th>
<th>Average Center of Gravity (aft FS)</th>
<th>Average Trim Airspeed (KCAS)</th>
<th>Average Static Altitude (ft)</th>
<th>Control Power (deg/in.)<sup>1</sup></th>
<th>Control Response (deg/sec/in.)</th>
<th>Control Sensitivity (deg/sec²/in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LT</td>
<td>RT</td>
<td>LT</td>
<td>RT</td>
<td>LT</td>
<td>RT</td>
</tr>
<tr>
<td>16,660</td>
<td>363.6</td>
<td>0</td>
<td>2080</td>
<td>3.5</td>
<td>10.5</td>
<td>10.0</td>
</tr>
<tr>
<td>16,500</td>
<td>363.9</td>
<td>80</td>
<td>6100</td>
<td>3.0</td>
<td>9.5</td>
<td>44</td>
</tr>
<tr>
<td>16,600</td>
<td>363.8</td>
<td>141</td>
<td>6300</td>
<td>4.0</td>
<td>11.0</td>
<td>44</td>
</tr>
<tr>
<td>21,360</td>
<td>360.3</td>
<td>77</td>
<td>5900</td>
<td>3.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>21,660</td>
<td>360.3</td>
<td>109</td>
<td>5900</td>
<td>4.0</td>
<td>11.0</td>
<td>35</td>
</tr>
</tbody>
</table>

NOTE:

¹Maneuver after 0.5 second.
and control response generated from left inputs were independent of changes in airspeed and gross weight. Right inputs resulted in equal or lower magnitudes of control power, response, and sensitivity when compared to left inputs except at lightweight (16,600 lb) and high airspeed (141 KCAS). There was no perceptible yaw or pitch coupling with lateral inputs. Time histories of lateral step inputs depict roll rate peaking in less than 1/2 second and then decreasing in magnitude about 50 percent approximately 2 seconds after achieving maximum roll rate (figs. 49 and 50). This decrease in roll rate was not objectionable to the pilot. Precise bank angles (±2 deg) could be quickly commanded during all phases of maneuvering flight with no tendencies to overcontrol (HORS 3). Noted as a shortcoming in USAAEA Report No. 77-17 (ref 10, app A), lateral controllability characteristics met the requirements of paragraphs 10.3.4.2.5 and 10.3.4.2.7 of the PIDS and were considered satisfactory during this evaluation.

Directional controllability is presented in figures 51 through 53, appendix E and in table 4. Representative time histories of directional step inputs are presented in figures 54 and 55. Control power decreased slightly with increased airspeed. The variation in the magnitude of control response was similar to that of control power except that at a hover maximum yaw rate was not achieved before recovery. Control sensitivity varied with direction of input at a hover but was independent of direction, airspeed, and gross weight in forward flight. Most all directional controllability was affected by an unintentional lateral control input varying from 1/4 to 3/4 inch within 1/2 second of the directional input. This characteristic has been documented in three Black Hawks (prototype, first and sixth year production) and attempts to negate this input were unsuccessful. In hover and forward flight at approximately 80 KCAS at heavy and light gross weights, the unwanted lateral input was to the right for all directional inputs. At the higher airspeeds, the lateral input was in the opposite direction to that of the directional input (figs. 54 and 55). This variation in direction of lateral input can be detected in the directional controllability results as a difference in the magnitude of control power and control response. Lateral inputs in the same direction as directional inputs tended to generate greater control effectiveness. This difference was not noticeable to the pilot. During precision hovering and low speed tasks, the pilot was able to obtain and maintain yaw attitude (±3 degrees) with minimal pilot compensation (HORS 3). The directional controllability characteristics met the requirements of paragraphs 10.3.4.1.4 and 10.3.4.2.5 of the PIDS and are satisfactory.
Table 4. Directional Controllability

<table>
<thead>
<tr>
<th>Average Gross Weight (lb)</th>
<th>Average Center of Gravity (aft FS)</th>
<th>Average Trim Airspeed (KCAS)</th>
<th>Average Density Altitude (ft)</th>
<th>Control Power (deg/in.(^1))</th>
<th>Control Response (deg/sec/in.)</th>
<th>Control Sensitivity (deg/sec^2/in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,300</td>
<td>363.6</td>
<td>0</td>
<td>2100</td>
<td>7.0</td>
<td>20.0^2</td>
<td>25</td>
</tr>
<tr>
<td>16,200</td>
<td>364.0</td>
<td>79</td>
<td>6100</td>
<td>6.0</td>
<td>11.0</td>
<td>15.0</td>
</tr>
<tr>
<td>16,300</td>
<td>363.9</td>
<td>142</td>
<td>6400</td>
<td>6.0</td>
<td>11.0</td>
<td>11.5</td>
</tr>
<tr>
<td>21,000</td>
<td>360.4</td>
<td>77</td>
<td>5900</td>
<td>5.0</td>
<td>10.0</td>
<td>13.5</td>
</tr>
<tr>
<td>21,260</td>
<td>360.3</td>
<td>110</td>
<td>6000</td>
<td>5.0</td>
<td>10.0</td>
<td>28</td>
</tr>
</tbody>
</table>

NOTES:

1. Measured after 1 second.
2. Yaw rate at 1.5 seconds.
Low Speed Flight Characteristics

35. The low speed flight characteristics of the UH-60A were evaluated at the conditions in table 1 to determine control margins and handling qualities. Testing was performed at speeds up to approximately 35 KTAS in rearward and right sideward flight utilizing a ground pace vehicle as a speed reference. The helicopter was flown in-ground effect at a wheel height of approximately 25 feet. The low speed flight test data are presented in figures 56 and 57, appendix E.

36. The variation of lateral cyclic control position during right sideward flight was conventional (increasing right lateral cyclic control with increasing right sideward airspeed). As the right sideward flight speed was increased, more forward longitudinal cyclic control was required. There was a total change of 1.5 inches of longitudinal cyclic control over the speed range tested. Adequate margins remained for all flight controls. Flight control trends were nearly linear and only minimal pilot compensation was required to maintain heading within ±1 degree. The low speed flight characteristics in right sideward flight remained essentially unchanged from previous evaluations and are satisfactory.

37. During rearward flight, the UH-60A exhibited a slightly positive control position gradient (increasing aft longitudinal cyclic control with increasing rearward airspeed). This shallow gradient, which resulted in limited flight control position and force cues, did not adversely affect the pilot's ability to control the helicopter because of adequate outside visual cues. As rearward airspeed increased, lateral cyclic control changes of nearly 2 inches were required. Adequate control margins remained in all flight controls, however, density altitude was only 2180 feet. The low speed flight characteristics in rearward flight remained essentially unchanged from previous evaluations and are satisfactory.

Aircraft System Failure

38. Aircraft system failures were investigated at the conditions in table 1. Simulated failures of the No. 1 engine and simulated hardovers of the No. 1 and No. 2 SAS, Flight Path Stabilization (FPS), PBA, and stabilator systems were conducted.

Simulated Engine Failures:

39. Sudden single engine failure from dual engine flight was simulated by rapidly retarding the No. 1 engine power control lever to the idle stop. The aircraft response was evaluated.
during level flight at lightweight/aft cg (approximately 16,300 lb/365.6 inches) at airspeeds of 75 and 143 KCAS. Flight controls were held fixed following the power loss for approximately 2 seconds or until excessive aircraft angular rates were reached. Representative time histories of simulated single engine failures are presented in figures 58 and 59, appendix E.

40. Aircraft response to a sudden single-engine failure from stabilized dual-engine level flight was mild. At 143 KCAS (fig. 58, app E) the primary reaction of the aircraft was a 4 degree left yaw, a 5 degree left roll, and a very slight nose-down pitch. The primary cockpit indications of a single-engine failure were reduction of power turbine speed into the red zone, reduction of torque, and rotor droop below 95 percent rpm activating the aural warning system. At this airspeed, pilot cues were adequate for timely corrective action. No unusual or rapid control application was necessary except an 8 percent reduction in collective was required after rotor speed decayed below the warning limit value of 95 percent. The aircraft reaction at 75 KCAS (fig. 59) was a slight perturbation in pitch, roll, yaw, and rotor speed with no collective reduction required. At lower airspeed/power settings, the response cues were very mild and the engine out aural warning system (activated at 55 percent engine gas generator speed) would be the major cue of engine failure. The single-engine failure characteristics from dual-engine flight are satisfactory.

Automatic Flight Control System Failures:

41. Single axis SAS hardovers in all axes and nose-up PBA hardovers were conducted in forward flight at 75 and 145 knots indicated airspeed (KIAS) on the ship airspeed system at light weight/aft cg. No. 1 and No. 2 SAS hardovers in all three axes resulted in mild attitude changes which were easily compensated for by the pilot. Hardover failure in the longitudinal axis resulted in a maximum pitch attitude change of 15 degrees nose-up in approximately 5 seconds at 145 KIAS. In the roll axis, SAS hardovers resulted in maximum roll rates of approximately 5 degrees/second generating stabilized bank angles of 10 to 15 degrees. Directional hardovers caused heading changes of 2 degrees (at 75 KIAS) to 4 degrees (at 145 KIAS). No perceivable differences in handling characteristics were noted between failures of the No. 1 and No. 2 SAS systems. Nose-up failure of the PBA resulted in illumination of the PITCH KIAS FAIL caution light in conjunction with a very mild pitch attitude change of approximately 5 degrees. The single axis hardover characteristics of the SAS and PBA systems met the requirements of the PIDS and are satisfactory.
42. The FPS system failures were evaluated at 75 and 145 KIAS in level flight by switching off the FPS switch on the AFCS panel. In addition, the FPS system was evaluated in conjunction with other handling qualities tests. The disengagement of the FPS switch resulted in illumination of the MASTER CAUTION, FLT PATH STAB, and TRIM FAIL caution lights in addition to loss of attitude and airspeed hold functions. No unusual attitude change or rate buildup occurred subsequent to FPS failure and met the requirement of the FIDS. However, during controllability tests it was noted that forward longitudinal inputs greater than 1/2 inch consistently caused failure of the FPS system which required resetting the MASTER CAUTION, FPS, and TRIM switches. This characteristic would cause failure of the FPS system during nap-of-the-earth and maneuvering flight and is an annoying distraction which will increase crew workload. The consistent failure of the FPS during forward longitudinal inputs greater than 1/2 inch is a shortcoming. The above shortcoming appears similar to the shortcoming previously reported in USAEEA Report No. 77-17 (ref 10, app A).

43. Stabilator TE up (TEUP) hardover failures were tested in level flight at 75 and 145 KIAS. The failure was conducted through the hardover box installed in the AFCS system and resulted in the stabilator moving nearly 5 degrees TEUP within 2 seconds. Following the hardover, an attempt was made to hold controls fixed. A representative time history is presented in figure 60, appendix E. At 145 KIAS, stabilator TEUP hardover failures resulted in a moderate nose-up pitch of approximately 10 degrees from trim with a maximum nose-up pitch rate of about 3 degrees/second. Ten seconds after the failure was initiated, airspeed decayed approximately 12 knots and the aircraft gained 200 ft in altitude. At 70 KIAS, the aircraft reaction was slightly more mild. The relatively mild reactions of the aircraft within the airspeed range tested to a TEUP stabilator hardover would be easily recognized by the pilot and require minimal compensation to maintain desired airspeed and altitude (HQR3 3). The stabilator TEUP hardover characteristics are satisfactory.

VIBRATION CHARACTERISTICS

44. Vibration characteristics were qualitatively evaluated throughout the test program and quantitatively evaluated at the conditions listed in table 1. Vibration accelerometers were installed at the aircraft cg, the pilot's seat, and the pilot's floor (app C). Main rotor harmonics of 1/rev, 4/rev and 8/rev are presented in figures 61 through 72, appendix E.

45. The 1/rev vibratory accelerations were similar at all the stations and all axes. Neither change in gross weight nor cg
location changed the amplitude of the 1/rev vibratory accelerations significantly. The highest 1/rev vibratory accelerations (.02 to .03 g's) were generally observed in the vertical and lateral axes. The 1/rev vibration characteristics met the PID requirements and are satisfactory.

46. The 4/rev lateral vibratory accelerations measured at the pilot seat were highest (approximately 0.2 to 0.4 g) at airspeeds less than 80 KCAS in the aft cg configurations. The lateral 4/rev vibratory accelerations measured at the pilot's floor increased in amplitude (approximately 0.15 to 0.30 g) as did the pilot seat at similar test conditions. The 4/rev vibration characteristics appeared independent of change in gross weight. Both the pilot's seat and floor lateral vibration characteristics failed to meet the requirements of paragraph 3.2.1.3.1.4 of the PIDS in that the amplitudes were greater than 0.15 g. Generally, the 4/rev vibratory accelerations measured at the floor near the aircraft cg were lower than those measured at the other two locations. The highest amplitudes (approximately 0.15 to 0.30 g) were usually at airspeeds near 45 KCAS in the vertical and longitudinal axes. The vertical and longitudinal cg vibration characteristics failed to meet the requirements of paragraph 3.2.1.1.3.1.4 of the PIDS in that the amplitudes were greater than 0.15 g's at 45 KCAS. The 4/rev vibration characteristics were aggravated by aft movement of the cg. The excessive 4/rev vibrations remain a shortcoming that should have a high priority for correction and have been documented in several previous USAAEFA reports.

47. The 8/rev vibratory accelerations were generally independent of changes in gross weight and cg. The pilot seat 8/rev vibratory characteristics were increased in amplitude when compared to the other two floor locations, especially in the lateral axis. Amplitudes up to 0.3 g, the specification limit, were measured in the vertical axis at 45 KCAS. The 8/rev vibration characteristics met the PIDS requirements and are satisfactory.

AIRSPEED CALIBRATION

48. The standard ship airspeed system incorporated changes developed during USAAEFA Project No. 82-09 (ref 3, app A) and is similar to the current production system. Calibrations generated during USAAEFA Project No. 82-09 were verified through use of a calibrated T-28 pace aircraft and a calibrated trailing bomb, and subsequently used as a basis in this evaluation. A normalized curve of the forward and aft cg calibrations depicting ship airspeed system position error in level flight was generated and is presented in figure 73, appendix E.
CONCLUSIONS

GENERAL

49. Based on this evaluation, the following conclusions were reached about the expanded gross weight and center of gravity (cg) envelope of the UH-60A in the normal utility configuration.

a. Equivalent flat plate area was minimum with the cg at fuselage station (FS) of approximately 360 and increased at a more forward and aft cg tested (FS 347.1 and 347.7).

b. Generally, 4-per-rotor-revolution (4/rev) vibration characteristics were unaffected by increasing gross weight but were aggravated by moving the longitudinal cg aft.

c. One deficiency, three shortcomings and three specification noncompliances were noted, of which, one shortcoming was associated with envelope expansion, and one previously noted shortcoming was made worse due to envelope expansion.

d. Except for the shortcoming pertaining to neutral stick-fixed longitudinal stability in intermediate rated power (IRP) climb, the handling qualities were essentially unchanged from those previously reported.

DEFICIENCY

50. The uncommanded directional control input in trimmed forward flight is a deficiency, unrelated to the expanded gross weight and cg envelope, that was identified during a previous evaluation and still exists (para 12).

SHORTCOMINGs

51. The following shortcomings were identified and are listed in decreasing order of importance.

a. The excessive 4/rev vibrations during certain flight conditions (para 46).

b. The neutral stick-fixed static longitudinal stability in a light gross weight and aft cg configuration at IRP in climb (para 15).

*Reported during previous evaluation

#Associated with envelope expansion
c. The consistent failure of the flight path stabilization system during longitudinal inputs greater than 1/2 inch (para 42).*

SPECIFICATION NONCOMPLIANCES

52. The UH-60A helicopter failed to meet the following requirements of the PIDS.

a. Paragraph 3.2.1.3.1.4 - The 4/rev vibration levels during certain flight conditions exceeded the requirements of this paragraph (para 46).*

b. Paragraph 10.3.3.1.3 - The longitudinal static stability is neutral instead of positive at 144 KIAS in level flight and in IRP climbs at light gross weight and aft cg (para 14 and 15).#

c. Paragraph 10.3.3.1.4 - The maneuvering stability is not positive stick-fixed or stick-free at all bank angles during steady turning flight (para 25).*

*Reported during previous evaluation

#Associated with envelope expansion
RECOMMENDATION

53. The deficiency and shortcomings reported in paragraphs 50 and 51 should be corrected.
APPENDIX A. REFERENCES

APPENDIX B. AIRCRAFT DESCRIPTION

GENERAL

1. The Sikorsky UH-60A (Black Hawk) is a twin turbine engine, single main rotor helicopter capable of transporting 11 combat troops plus a crew of three. It is equipped with 3 nonretractable conventional wheel-type landing gear. A movable horizontal stabilator is located on the lower portion of the tail rotor pylon. The main and tail rotors are both four-bladed with a capability of manual main rotor blade and tail pylon folding. The cross-beam tail rotor with composite blades is attached to the right side of the pylon and is canted 20 degrees upward from the horizontal. A complete description of the aircraft is contained in the operator’s manual (ref 4, app A) and the aircraft general information manual (ref 14). The proposed expansion of the gross weight and center of gravity envelope is shown in figure 1.

ENGINES

2. The primary power plants for the UH-60A helicopter are General Electric T700-GE-700 front drive turboshaft engines, each rated at 1553 shaft horsepower (SHP) (30 minute limit) at a power turbine speed of 20,900 revolutions per minute (rpm) (sea level, standard day installed). The engines are mounted in nacelles on either side of the main transmission. Each engine has four modules: cold section, hot section, power turbine section, and accessory section. Design features include an axial-centrifugal flow compressor, a through-flow combustor, a two-stage uncooled high pressure gas generator turbine, a two-stage uncooled power turbine, and self contained lubrication and electrical systems. Pertinent engine data are shown below.

<table>
<thead>
<tr>
<th>Model</th>
<th>T700-GE-700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Turboshaft</td>
</tr>
<tr>
<td>Rated power</td>
<td>1553 SHP installed at sea level, standard-day static conditions at 20,900 rpm</td>
</tr>
<tr>
<td>Compressor</td>
<td>Five axial stages, 1 centrifugal stage</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>Single annular chamber with axial flow</td>
</tr>
<tr>
<td>Gas generator stages</td>
<td>2</td>
</tr>
<tr>
<td>Power turbine stages</td>
<td>2</td>
</tr>
<tr>
<td>Direction of engine rotation (aft looking fwd)</td>
<td>Clockwise</td>
</tr>
<tr>
<td>Weight (dry)</td>
<td>415 pounds max</td>
</tr>
<tr>
<td>Length</td>
<td>47 in.</td>
</tr>
<tr>
<td>Maximum diameter</td>
<td>25 in.</td>
</tr>
<tr>
<td>Fuel</td>
<td>MIL-T-5624 grade JP-4 or JP-5</td>
</tr>
</tbody>
</table>
NOTE: SHADED AREA DENOTES PROPOSED EXPANSION
BASIC AIRCRAFT INFORMATION

3. General data of the UH-60A helicopter are as follows:

Gross Weight

Maximum alternate gross weight* 20,250 pounds
Empty weight Approximately 10,620 pounds
Primary Mission gross weight 16,260 pounds
Fuel capacity (measured) 360 gallons

*See figure 1 for current and proposed gross weight and center of gravity information

Main Rotor

Number of blades 4
Diameter 52 ft, 8 in.
Blade chord 1.73/1.75 ft
Blade twist -18 deg (equivalent linear)
Blade tip sweep 20 deg aft
Blade area (one blade) 46.7 sq ft
Airfoil
section (root to tip designation) SC1095/SC1095R8
thickness (percent chord) 9.5 percent
Main rotor mast tilt (forward) 3 deg

Tail Rotor

Number of blades 4
Diameter 11 ft
Blade chord 0.81 ft
Blade twist (equivalent linear) -18 deg
Blade area (one blade) 4.46 sq ft

Airfoil
section (root to tip designation) SC1095/SC1095RS
thickness (percent chord) 9.5 percent
Cant angle 20 deg

Gear Ratios

<table>
<thead>
<tr>
<th>Main Transmission</th>
<th>Input RPM</th>
<th>Output RPM</th>
<th>Ratio</th>
<th>Teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input bevel</td>
<td>20,900.0</td>
<td>5747.5</td>
<td>3.6364</td>
<td>(80/22)</td>
</tr>
<tr>
<td>Main bevel</td>
<td>5747.5</td>
<td>1206.3</td>
<td>4.7647</td>
<td>(81/17)</td>
</tr>
<tr>
<td>Planetary</td>
<td>1206.3</td>
<td>257.9</td>
<td>4.6774</td>
<td>(228 + 62)</td>
</tr>
<tr>
<td>Tail takeoff</td>
<td>1206.3</td>
<td>4115.5</td>
<td>0.2931</td>
<td>(34/116)</td>
</tr>
<tr>
<td>Accessory bevel</td>
<td>5747.5</td>
<td>11,605.7</td>
<td>0.4868</td>
<td>(37/75)</td>
</tr>
<tr>
<td>Accessory spur</td>
<td>11,805.7</td>
<td>7186.1</td>
<td>1.6429</td>
<td>(92/56)</td>
</tr>
<tr>
<td>Intermediate Gearbox</td>
<td>4115.5</td>
<td>3318.9</td>
<td>1.2400</td>
<td>(31/25)</td>
</tr>
<tr>
<td>Tail Gearbox</td>
<td>3318.9</td>
<td>1189.8</td>
<td>2.7895</td>
<td>(53/19)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine to main rotor</td>
<td>20,900.0</td>
<td>257.9</td>
<td>81.0419</td>
<td></td>
</tr>
<tr>
<td>Engine to tail rotor</td>
<td>20,900.0</td>
<td>1189.8</td>
<td>17.5658</td>
<td></td>
</tr>
<tr>
<td>Tail rotor to main rotor</td>
<td>1189.8</td>
<td>257.9</td>
<td>4.6136</td>
<td></td>
</tr>
</tbody>
</table>

AIRSPEED/STABILATOR MODIFICATIONS

4. The airspeed/stabilator system on the test aircraft included five modifications from the original production aircraft in an attempt to eliminate pitch oscillations during takeoff, improve climb handling qualities, and reduce large position error during various airspeed regimes. Three changes were incorporated in the pitot-static pressure systems and two changes were electrical circuit modifications to the stabilator amplifiers in the stabilator system. Major features of this system are described in
detail in the Preliminary Airworthiness Evaluation of UH-60A with an Improved Airspeed System, USAAEFA Report No. 82-09, (ref 3, app A).
APPENDIX C. INSTRUMENTATION

GENERAL

1. The test instrumentation was installed, calibrated and maintained by the US Army Aviation Engineering Flight Activity personnel. A test airspeed boom with swiveling pitot-static head connected to an airspeed indicator and altimeter were installed at the nose of the aircraft. Equipment required only for specific tests was installed when needed and is discussed in the section on special equipment. Data was obtained from calibrated instrumentation and displayed or recorded as indicated below.

Pilot Position

Airspeed (boom system)
Altitude (boom system)
Altitude (radar-dual range)*
Rate of climb*
Rotor speed (sensitive)
Engine torque**
Turbine gas temperature (T₄₅)* **
Engine gas generator speed * **
Control positions
 Longitudinal
 Lateral
 Pedal
 Collective
Stabilator position
Angle of sideslip
Center of gravity normal acceleration
Sensitive bank angle (center of gravity lateral acceleration)
Event switch

Copilot/Engineer Station

Airspeed (ship's system)
Altitude (ship's system)
Rotor speed*
Engine torque* **
Total air temperature
Fuel used (totalizer)
Ballast cart position

*Ship's system/not calibrated
**Both engines
Time code display
Run number
Event switch

Digital (PCM) Data Parameters

Airspeed (ship's system)
Airspeed (boom system)
Altitude (boom system)
Altitude (ship's system)
Altitude (radar)
Total air temperature
Rotor speed
Engine torque**
Turbine gas temperatures (T4.5)**
Engine gas generator speed**
Engine power turbine speed**
Engine fuel flow**
Engine fuel used**
Engine fuel temperature (at fuel used transducer)**
Auxiliary Power Unit (APU) fuel used
APU fuel temperature (at fuel used transducer)
Main rotor shaft torque (3)
Main rotor shaft bending (2)
Tail rotor shaft torque
Tail rotor imprest pitch
Stabilator position
Ballast cart position
Control positions
 Longitudinal
 Lateral
 Pedal
 Collective
Power available spindle position**
Stability augmentation system output position
 Longitudinal
 Lateral
 Directional
Control mixer input position
 Longitudinal
 Lateral
 Directional
Angle of attack
Angle of sideslip

Both engines
Aircraft attitude
 Pitch
 Roll
 Yaw

Aircraft angular rate
 Pitch
 Roll
 Yaw

Linear acceleration
 Center of gravity normal
 Center of gravity lateral
 Center of gravity longitudinal

Time of day
Run number
Data status words
Pilot event
Engineer event

Analog (FM) Data Parameters

Vibration
 Pilot seat vertical
 Pilot seat lateral
 Pilot seat longitudinal
 Center of gravity vertical
 Center of gravity lateral
 Center of gravity longitudinal
 Pilot floor vertical
 Pilot floor lateral

Loads
 Main rotor longitudinal star load

2. Provision was made for telemetry transmission of parameters.

Airspeed Calibration

3. The standard ship airspeed system and test boom airspeed system were calibrated previously during USAAEFA Project No. 82-09 (ref 3, app A) in level flight, climb, and autorotation. A check of these calibrations was performed utilizing a calibrated T-28 pace aircraft and a calibrated trailing bomb (finned pitot-static system). The resultant curves depicting position error of the boom airspeed system are presented in figures 1 and 2.
FIGURE 1

BOOM SYSTEM AIRSPEED CALIBRATION IN C/E FLIGHT
LH-68A USA S/N 77-22718

NOTE: BASIS FOR CURVE IS USAAEFA REPORT NO. 62-08
REFINED FOR THIS PROJECT

CALIBRATED AIRSPEED (KNOTS)

CORR. TO BE ADDED (KNOTS)

20
40
60
80
100
120
140
160
180
200

LINE OF ZERO ERROR

NOT FOR HANDBOOK USE

BOOM SYSTEM INDICATED AIRSPEED (KNOTS)
NOTES:
1. BASES FOR CURVES VS. USAF/FA
2. SOLID LINE DENOTES CLIMB
3. LONG DASHED LINE DENOTES DESCENT

NOT FOR HANDBOOK USE
SPECIAL EQUIPMENT

Control Fixtures

4. Cyclic and pedal mechanical fixtures were utilized at the copilot station to obtain a desired control input size about the longitudinal, lateral, and directional axes at the pilot station.

Ground Pace Vehicle

5. A vehicle utilizing a calibrated fifth wheel to determine accurate ground speed was used in conjunction with wind speed and direction to provide a precise airspeed reference for the test aircraft during low speed tests.

Weather Station

6. A portable weather station, consisting of an anemometer, sensitive temperature gage, and barometer, was used to record wind speed, wind direction, ambient temperature, and pressure altitude during low speed tests.
APPENDIX D. TEST TECHNIQUES AND DATA ANALYSIS METHODS

GENERAL

1. Performance data were obtained using the basic methods described in Army Materiel Command Pamphlet AMCP 706-204 (ref 7, app A). Performance testing was conducted in coordinated (ball-centered) flight. Handling qualities data were evaluated using standard test methods described in Naval Air Test Center Flight Test Manual FTM No. 101 (ref 8).

AIRCRAFT RIGGING

2. A flight controls engineering rigging check was performed on the main and tail rotors to insure compliance with established limits and representative handling qualities information. The stabilator control system was adjusted to conform as close as possible to the modified production schedule to prevent improper drag characteristics affecting level flight performance.

AIRCRAFT WEIGHT AND BALANCE

3. The aircraft was weighed in the instrumented configuration with full oil and all fuel drained prior to the start of the program. The initial weight of the aircraft was 11,989 pounds with the longitudinal center of gravity (cg) located at FS 351.9 with the cg of the empty ballast cart located at FS 301. In addition, the aircraft was weighed when configured for a test condition outside the then existing flight envelope. The fuel cells and an external sight gage were also calibrated. The measured fuel capacity using the gravity fueling method was 360 gallons. The fuel weight for each test flight was determined prior to engine start and after engine shutdown by using the external sight gage to determine the volume and measuring the specific gravity of the fuel. The calibrated cockpit fuel totalizer indicator was used during the test and at the end of each test was compared with the sight gage readings. Aircraft cg was controlled by a moveable ballast system which was manually positioned to maintain a constant cg while fuel was burned. The moveable ballast system was a cart (2000-pound capacity) attached to the cabin floor by rails and driven by an electric screw jack with a total longitudinal travel of 72.3 inches.

PERFORMANCE

4. Helicopter performance was generalized through the use of non-dimensional coefficients as follows using the 1968 US Standard Atmosphere:
a. Coefficient of Power (C_p):

$$C_p = \frac{\text{SHP (550)}}{\rho A (\Omega R)^3}$$

(1)

b. Coefficient of Thrust (C_T):

$$C_T = \frac{\text{GW}}{\rho A (\Omega R)^2}$$

(2)
c. Advance Ratio (μ):

$$\mu = \frac{\text{VT (i.6878)}}{\Omega R}$$

(3)

Where:

- **SHP** = Engine output shaft horsepower (both)
- **ρ** = Ambient air density (lb·sec2/ft4)
- **A** = Main rotor disc area = 2262 ft2
- **Ω** = Main rotor angular velocity (radians/sec)
- **R** = Main rotor radius = 26.833 ft
- **GW** = Gross weight (lb)
- **V_T** = True airspeed (kt) = \frac{V_E}{1.6878/\rho/\rho_0}
- **1.6878** = Conversion factor (ft/sec-kt)
- **ρ_0** = 0.0023769 (lb·sec2/ft4)
- **V_E** = Equivalent airspeed (ft/sec) = \left\{ \frac{7(70.7262 \rho_0)}{\rho_0} \left[\left(\frac{Q_C}{\rho_0} + \frac{1}{p_0} \right)^{2/7} - 1 \right] \right\} \frac{1}{2}$
70.7262 = Conversion factor (lb/ft²-in.-Hg)

\(Q_c = \text{Dynamic pressure (in.-Hg)} \)

\(P_a = \text{Ambient air pressure (in.-Hg)} \)

100% rotor speed = 257.9 revolutions per minute (rpm)

\(\Omega R = 724.69 \)

\((\Omega R)^2 = 525,168.15 \)

\((\Omega R)^3 = 380,581,411.2 \)

5. The engine output shaft torque was determined by use of the engine torque sensor. The power turbine shaft contains a torque sensor tube that mechanically displays the total twist of the shaft. A concentric reference shaft is secured by a pin at the front end of the power turbine drive shaft and is free to rotate relative to the power turbine drive shaft at the rear end. The relative rotation is due to transmitted torque, and the resulting phase angle between the reference teeth on the two shafts is picked up by the torque sensor. The torque sensor on both engines was calibrated in a test cell by the engine manufacturer. The output from the engine sensor was recorded on the on-board data recording system. The output SHP was determined from the engine's output shaft torque and rotational speed by the following equation.

\[
\text{SHP} = \frac{Q(Np)}{5252.113}
\]

Where:

\(Q = \text{Engine output shaft torque (ft-lb)} \)

\(N_p = \text{Engine output shaft rotational speed (rpm)} \)

5252.113 = Conversion factor (ft-lb-rev/min-SHP)

The output SHP required was assumed to include 13 horsepower for daylight operations of the aircraft electrical system, but was corrected for the effects of test instrumentation installation. A power loss of 1.82 horsepower was determined for electrical operation of the instrumentation. Reductions in power required were made for the effect of external instrumentation drag. This was determined by the following equation.
where:

\[F_e = 0.833 \text{ ft}^2 \text{ (estimated)} \]

\[96254 = \text{Conversion factor (ft}^2\text{-kt}^3/\text{SHP}) \]

6. Each speed power was flown in ball-centered flight by reference to a sensitive lateral accelerometer at a predetermined \(C_T \) and referred rotor speed \((N_R/\sqrt{\rho}) \). To maintain the ratio of gross weight to pressure ratio constant, altitude was increased as fuel was consumed. To maintain \(N_R/\sqrt{\rho} \) constant, rotor speed was decreased as temperature decreased. Power corrections for rate-of-climb and acceleration were determined (when applicable) by the following equations.

\[\text{SHP}_{R/C} = \frac{(R/CTL)(GW)}{33,000(K_T)} \]

(6)

\[\text{SHP}_{ACCEL} = 1.6098 \times 10^{-5} \left(\frac{\Delta V}{\Delta t} \right) (V_T) (GW) \]

(7)

where:

\[\frac{\Delta H}{\Delta t} = \text{Change in pressure altitude per unit time (ft/min)} \]

\[\Delta t \]

\[\text{OAT}_S = \text{Standard ambient temperature at pressure altitude} \]

\[\frac{\Delta H}{\Delta t} \]

was measured (°C)
\[K_p = 0.76 \]

\[1.6098 \times 10^{-4} = \text{Conversion factor (SHP-sec/kt}^2\text{-lb)} \]

\[\Delta V \quad = \text{Change in airspeed per unit time (kt/sec)} \]

\[\Delta t \]

A power correction to insure ball-centered test data complied with the inherent sideslip family of curves depicting the UH-60A in figures 16 and 17, appendix E, was determined from \(\Delta F_e \) as a function of sideslip angle (fig. 20) and equation 5 rewritten as follows.

\[\text{SHP}_{s/s} = \frac{(\Delta F_e \text{ in s/s} - \Delta F_e \text{ B-C}) (\rho/\rho_0) (V_T^3)}{96254} \quad (8) \]

Where:

\[\Delta F_e \text{ in s/s} = \text{Change in equivalent flat plate area based on UH-60A inherent sideslip.} \]

\[\Delta F_e \text{ B-C} = \text{Change in equivalent flat plate area based on the sideslip angle measured in ball-centered flight.} \]

*Based on change in engine shaft horsepower.

Power required for level flight at the test day conditions was determined using the following equation.

\[\text{SHP}_t = \text{SHP} + \text{SHP}_{R/C} + \text{SHP}_{ACCEL} + \text{SHP}_{s/s} - \text{SHP}_{\text{instr drag}} - 1.82 \quad (9) \]

7. Test day level flight data was corrected to average test day conditions by the following equations.

\[\text{SHP}_e = \frac{\text{SHP}_t}{(\delta_s/\delta_s) \left[\frac{N_R}{\sqrt{\sigma}} \right]^3_s} \]

\[\text{SHP}_e = \frac{\text{SHP}_t}{(\delta_t/\delta_t) \left[\frac{N_R}{\sqrt{\sigma}} \right]^3_t} \quad (10) \]
\[V_T = V_T \left(\frac{N_R}{\sqrt{\Theta}} \right)_t \left(\frac{N_R}{\sqrt{\Theta}} \right)_s \]

(11)

Where:

- \(N_R \) = Main rotor speed (rpm)
- \(t \) = Test day
- \(s \) = Average test day

Test data corrected for rate of climb, acceleration, instrumentation installation, and corrected to inherent sideslip, standard altitude, and ambient temperature are presented in figures 4 through 15, appendix E.

8. Level flight performance was determined by subtracting the difference in power required at \(N_R/\sqrt{\Theta} = 258 \) rpm noted in USAAEFA Report No. 83-24 (ref 9, app A) between the first and sixth year production aircraft in their respective normal utility configurations. Values of \(C_p \) of the sixth year Uh-60A were extracted from the family of curves of \(C_p \) versus \(N_R/\sqrt{\Theta} \) for lines of constant \(C_T \) at increments of \(\nu \) (ref 9) at the average \(C_T \) and \(N_R/\sqrt{\Theta} \) conditions of the flights conducted during this evaluation. Power required in level flight was obtained as follows.

\[C_p = C_p^{6th \ yr \ A/C} - \Delta C_p \]

(12)

Where:

\[\Delta C_p = \frac{\Delta F_e u^3}{2A} \]

(13)

\(\Delta F_e = 5 \text{ ft}^2 \) (change in equivalent flat plate area between the first and sixth year normal utility configured Uh-60A helicopters; ESSS fairings (2.5 ft²), H-130 and AN/ALQ-144(V) brackets (1.5 ft²), external drag differences (1 ft²))
Results of the sixth year production UH-60A carpet plot converted to a first year at the average N_p/\sqrt{h} for these tests and extrapolated to a C_T of 0.011007 are presented in figures 1 through 3, appendix E. Correlation of these curves with data flown during this evaluation is depicted in figures 4 through 9.

9. Changes in the ΔF_e due to change in aircraft cg were calculated from equation 13 solved for ΔF_e. The ΔC_p is the difference in C_p as derived from the nondimensional plots at the normal utility forward cg configuration and the C_p for the cg desired.

HANDLING QUALITIES

10. Conventional test techniques were used during the conduct of the handling qualities tests. All tests were conducted in ball-centered flight. A brief description of all test techniques are presented in respective paragraphs of the Results and Discussion section and detailed descriptions are contained in reference 8, appendix A. The basis for evaluation was the Handling Qualities Rating Scale shown in figure 1.

VIBRATION

11. Spectral plots of each vibration parameter were generated depicting frequencies versus single amplitude acceleration (g). The data were analyzed using a frequency range of zero to 50 Hz and frequency resolution of 0.5 Hz. In order to minimize random variation in acceleration amplitude, the data were averaged over a 20-second time interval. An analysis of the main rotor fundamental frequency and its second, fourth, and eighth harmonics was made. The second harmonic vibratory accelerations were insignificant in comparison to the fourth and eighth harmonics and, therefore, not presented.

DEFINITIONS

12. Results were categorized as deficiencies or shortcomings in accordance with the following definitions.

Deficiency: A defect or malfunction discovered during the life cycle of an item or equipment that constitutes a safety hazard to personnel; will result in serious damage to the equipment if operation is continued; or indicates improper design or other cause of failure of an item or part, which seriously impairs the equipment's operational capability.
Figure 1. Handling Qualities Rating Scale
Shortcoming: An imperfection or malfunction occurring during the life cycle of equipment, which must be reported and which should be corrected to increase efficiency and to render the equipment completely serviceable. It will not cause an immediate breakdown, jeopardize safe operation, or materially reduce the usability of the materiel or end product.
APPENDIX E. TEST DATA

INDEX

<table>
<thead>
<tr>
<th>Figure</th>
<th>Figure No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level Flight Performance</td>
<td>1 through 15</td>
</tr>
<tr>
<td>Inherent Sideslip</td>
<td>16 through 19</td>
</tr>
<tr>
<td>Change in Equivalent Flat Plate Area with Sideslip</td>
<td>20</td>
</tr>
<tr>
<td>Control Position in Trimmed Forward Flight</td>
<td>21 and 22</td>
</tr>
<tr>
<td>Collective-fixed Static Longitudinal Stability</td>
<td>23 through 26</td>
</tr>
<tr>
<td>Static Lateral-Directional Stability</td>
<td>27 through 30</td>
</tr>
<tr>
<td>Maneuvering Stability</td>
<td>31 through 35</td>
</tr>
<tr>
<td>Dynamic Stability</td>
<td>36 through 39</td>
</tr>
<tr>
<td>Controllability</td>
<td>40 through 55</td>
</tr>
<tr>
<td>Low Speed Flight Characteristics</td>
<td>56 and 57</td>
</tr>
<tr>
<td>Aircraft Systems Failures</td>
<td>58 through 60</td>
</tr>
<tr>
<td>Vibration Characteristics</td>
<td>61 through 72</td>
</tr>
<tr>
<td>Normalized Ship System Airspeed Calibration</td>
<td>73</td>
</tr>
</tbody>
</table>
FIGURE 1

NONDIMENSIONAL LEVEL FLIGHT PERFORMANCE

UH-60A USA S/N 77-22716

REFERRED ROTOR SPEED = 258.1

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. BALL CENTER TRIM CONDITION
3. AVERAGE LONGITUDINAL CENTER OF GRAVITY LOCATION AT FS 347.1
4. AVERAGE LATERAL CENTER OF GRAVITY LOCATION AT BL 0.1 LEFT
5. POINTS DERIVED FROM FIGURES 4 THRU 8

- Graph showing power coefficient and thrust coefficient relationships.
FIGURE 2
NONDIMENSIONAL LEVEL FLIGHT PERFORMANCE
UH-60A USA S/N 77-22716

REFERRED ROTOR SPEED = 258.1

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. BALL CENTER TRIM CONDITION
3. AVERAGE LONGITUDINAL CENTER OF GRAVITY LOCATION AT FS 347.1
4. AVERAGE LATERAL CENTER OF GRAVITY LOCATION AT BL 0.1 LEFT
5. POINTS DERIVED FROM FIGURES 4 THRU 9

\[\mu = 0.16 \]
\[\mu = 0.18 \]
\[\mu = 0.20 \]
FIGURE 4
LEVEL FLIGHT PERFORMANCE
UH-60A USA S/N 77-2710

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS WEIGHT (LBS)</td>
<td>14470</td>
<td>347.0</td>
<td>0.4</td>
<td>16200</td>
<td>14.5</td>
</tr>
</tbody>
</table>

NOTE: BALL CENTER TRIM CONDITION

FUEL ENGINE INOPERATIVE

ENGINE SHAFT HORSEPOWER REQUIRED

TRUE AIRSPEED (KNOTS)

CURVE DERIVED FROM FIGS. 1 THRU 3
FIGURE 5
LEVEL FLIGHT PERFORMANCE
UH-60A USA 5/17/77-22718

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS</td>
<td>C.G. LOCATION</td>
<td>DENSITY</td>
<td>G.A.T.</td>
<td>ROTOR</td>
<td>CT</td>
</tr>
<tr>
<td>(LB)</td>
<td>(F52)</td>
<td>(BL)</td>
<td>(FMI)</td>
<td>(DEG.C)</td>
<td>(RPM)</td>
</tr>
<tr>
<td>21690</td>
<td>347.3 (FWD)</td>
<td>0.11LT</td>
<td>8870</td>
<td>16:04</td>
<td>258:1</td>
</tr>
</tbody>
</table>

NOTE: BALL CENTER FROM CONDITION

SPECIFIC RANGE PER AIRFUEL (FUEL)

FUEL FLOW INOPERATIVE

ENGINE SHAT TINHORSEPOWER REQUIRED

CURVE DERIVED FROM FIGS. 1 THRU 3

TRUE AIRSPEED (KNOTS)

53
FIGURE 9: LEVEL FLIGHT PERFORMANCE
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS</td>
<td>C.G. LOCATION</td>
<td>DENSITY</td>
<td>O.A.T.</td>
<td>ROTOR</td>
<td>CT</td>
</tr>
<tr>
<td>WT</td>
<td>LONG</td>
<td>LAT</td>
<td>ALTITUDE</td>
<td>SPEED</td>
<td></td>
</tr>
<tr>
<td>21480</td>
<td>347.2 (FWD)</td>
<td>0.3LT</td>
<td>11400</td>
<td>8.5</td>
<td>258.0</td>
</tr>
</tbody>
</table>

NOTE: BALL CENTER TRIM CONDITION

- FUEL FLOW INOPERATIVE

ENGINE SHFT. HORSEPOWER REQUIRED

N/A

CURVE DERIVED FROM Figs. 1 THRU 3

TRUE AIRSPEED (KNOTS)
Figure 10

Level Flight Performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross C.G. Location</td>
<td>Density</td>
<td>O.A.T.</td>
<td>Rotor</td>
<td>CT</td>
<td>Configuration</td>
</tr>
<tr>
<td>18790</td>
<td>2 (CAFT)</td>
<td>0.1LT</td>
<td>10110</td>
<td>16.0</td>
<td>258.0</td>
</tr>
</tbody>
</table>

Note: Ball Center Trim Condition

Chart Details:

- **Specific Range Fuel:**
 - 0.30
 - 0.25
 - 0.20
 - 0.15
 - 0.10
 - 0.05

- **Fuel Flow Inoperative**

- **Engine Shaft Horsepower Required:**
 - 0.00
 - 500
 - 1000
 - 1500
 - 2000
 - 2500
 - 3000
 - 3500

- **True Airspeed (Knots):**
 - 0.00
 - 30
 - 60
 - 90
 - 120
 - 150
 - 170

Curves:

- Curve derived from Figs. 1 thru 3
- Dashed line with AFE = -2 ft
- Incorporated
Figure 11

Level Flight Performance

UH-60A USA S/N 77-22710

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS</td>
<td>C.G. LOCATION</td>
<td>DENSITY</td>
<td>O.A.T.</td>
<td>ROTOR</td>
<td>CONFIGURATION</td>
</tr>
<tr>
<td>(LB)</td>
<td>(FT)</td>
<td>(PSI)</td>
<td>(DEG F)</td>
<td>(DEG C)</td>
<td>(REMD)</td>
</tr>
<tr>
<td>21290</td>
<td>360</td>
<td>2(AFT)</td>
<td>0</td>
<td>1940</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Note: Ball center trim condition

Specific Range (AIR/HR/REL/FUEL)

- 0.38
- 0.36
- 0.34
- 0.32
- 0.30
- 0.28
- 0.26
- 0.24
- 0.22
- 0.20
- 0.18
- 0.16
- 0.14
- 0.12
- 0.10
- 0.08
- 0.06
- 0.04
- 0.02
- 0.00

Fuel Flow Inoperative

Curve Derived From

Figs. 1 thru 3

Engine Shaft Horsepower Required

- 3200
- 2800
- 2400
- 2000
- 1600
- 1200
- 800

True Airspeed (KNOTS)

- 30
- 50
- 70
- 90
- 110
- 130
- 150
- 170

Curve Derived From Dashed Line With ΔFE = -2 FT² Incorporated

56
Figure 12

Level Flight Performance

<table>
<thead>
<tr>
<th>AVG GROSS</th>
<th>AVG C.G. LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG O.A.T.</th>
<th>AVG Rotor Pitch</th>
<th>AVG CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LB)</td>
<td>(FTS)</td>
<td>(LB/FT³)</td>
<td>(°F)</td>
<td>(°)</td>
<td>(RPM)</td>
</tr>
<tr>
<td>21620</td>
<td>360</td>
<td>0</td>
<td>11420</td>
<td>10.5</td>
<td>258.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.010991</td>
</tr>
</tbody>
</table>

Note: Ball center trim condition

Specific Range

<table>
<thead>
<tr>
<th>Specific Range (MPH/MPH)</th>
<th>Fuel Flow Inoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.0</td>
</tr>
<tr>
<td>0.10</td>
<td>0.9</td>
</tr>
<tr>
<td>0.15</td>
<td>0.8</td>
</tr>
<tr>
<td>0.20</td>
<td>0.7</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>

Engine Shaft Horsepower Required

<table>
<thead>
<tr>
<th>True Airspeed (Knots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>170</td>
</tr>
</tbody>
</table>

Curves Derived From

- Figs. 1 thru 3
- Dashed Line with ΔF = -2 FT² Incorporated
NOTE: CURVES DERIVED FROM FIGURES 18 AND 19 AND USAEFA REPORT NO. 83-24
FIGURE 17
INHERENT SIDESLIP
LH-68A, USA S/N 77-22716 and S/N 82-23748

NOTE: CURVES DERIVED FROM FIGURES 18 AND 19
AND USAAEFA REPORT NO. 83-24
FIGURE 18.
SIDESLIP IN BALANCE CENTER LEVEL FLIGHT.
UH-60A USA S/N 77-22716.

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG</th>
<th>AVG CG LOCATION</th>
<th>DENSITY</th>
<th>QOT</th>
<th>AVG ROTOR SPEED</th>
<th>THRUST COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GROSS WEIGHT (LBS)</td>
<td>LONG (FT)</td>
<td>LAT (FT)</td>
<td>ALT (FT)</td>
<td>(rpm)</td>
<td>(kts)</td>
</tr>
<tr>
<td>□</td>
<td>21100</td>
<td>347.2(FWD)</td>
<td>0.1LT</td>
<td>11400</td>
<td>8.8</td>
<td>258.0</td>
</tr>
<tr>
<td>□</td>
<td>21600</td>
<td>347.3(FWD)</td>
<td>0.1LT</td>
<td>18970</td>
<td>16.0</td>
<td>258.1</td>
</tr>
<tr>
<td>△</td>
<td>18190</td>
<td>347.1</td>
<td>0.1LT</td>
<td>3845</td>
<td>7.0</td>
<td>258.0</td>
</tr>
<tr>
<td>◊</td>
<td>21370</td>
<td>347.1(FWD)</td>
<td>0.1LT</td>
<td>6610</td>
<td>22.0</td>
<td>258.1</td>
</tr>
<tr>
<td>★</td>
<td>15920</td>
<td>347.1</td>
<td>0.1LT</td>
<td>15520</td>
<td>14.5</td>
<td>258.2</td>
</tr>
<tr>
<td>+</td>
<td>14470</td>
<td>347.0</td>
<td>0.1LT</td>
<td>10200</td>
<td>14.5</td>
<td>258.0</td>
</tr>
</tbody>
</table>

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. CURVES OBTAINED FROM FIGURES 15 AND 17.
Figure 19:
SIDESLIP IN BALL CENTER LEVEL FLIGHT

<table>
<thead>
<tr>
<th>RUN</th>
<th>GROSS WEIGHT (LBS)</th>
<th>GROSS LOCATION (FT)</th>
<th>AVG LANDING DENSITY</th>
<th>AVG OAT (F)</th>
<th>AVG REFERENCE THRUST (LBS)</th>
<th>AVG THRUST COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>21620</td>
<td>360.0 (CAFT)</td>
<td>0.1LT 1.420</td>
<td>10.5</td>
<td>250.2</td>
<td>0.018328</td>
<td></td>
</tr>
<tr>
<td>21290</td>
<td>360.2 (CAFT)</td>
<td>0.1LT 0.430</td>
<td>17.5</td>
<td>250.1</td>
<td>0.016901</td>
<td></td>
</tr>
<tr>
<td>18790</td>
<td>360.2 (CAFT)</td>
<td>0.1LT 0.110</td>
<td>16.0</td>
<td>250.6</td>
<td>0.020024</td>
<td></td>
</tr>
<tr>
<td>16550</td>
<td>366.9 (CAFT)</td>
<td>0.1LT 12.10</td>
<td>8.5</td>
<td>250.0</td>
<td>0.009995</td>
<td></td>
</tr>
<tr>
<td>16560</td>
<td>366.6 (CAFT)</td>
<td>0.1LT 100.70</td>
<td>13.0</td>
<td>250.1</td>
<td>0.009953</td>
<td></td>
</tr>
<tr>
<td>16410</td>
<td>366.6 (CAFT)</td>
<td>0.1LT 67.00</td>
<td>20.0</td>
<td>250.1</td>
<td>0.009991</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Normal utility configuration
2. Curves obtained from Figures 16 and 17.
FIGURE 22
CONTROL POSITIONS IN TRIMMED FOWARD FLIGHT
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG CG LOCATION (Ft)</th>
<th>AVG DENSITY (Lb/ft³)</th>
<th>AVG OAT (DEG C)</th>
<th>AVG RPM</th>
<th>TRIM AFCS</th>
<th>GROSS LOCATION DENSITY OAT ROTOR FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21660</td>
<td>347.3 (FWD)</td>
<td>0.0</td>
<td>9095</td>
<td>16.0</td>
<td>259</td>
<td>LEVEL ON</td>
</tr>
<tr>
<td></td>
<td>21280</td>
<td>360.1 (AFT)</td>
<td>0.0</td>
<td>9460</td>
<td>17.5</td>
<td>259</td>
<td>LEVEL ON</td>
</tr>
</tbody>
</table>

NOTES: 1. PBA LOCKED IN CENTER POSITION
2. NORMAL UTILITY CONFIGURATION
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(In. from Full Fwd.)</td>
<td>(In. from Full Lt.)</td>
<td>(In. from Full Lt.)</td>
<td>(Deg)</td>
<td>(Deg)</td>
</tr>
<tr>
<td>Fwd</td>
<td>Aft</td>
<td>Lt</td>
<td>Nu</td>
<td>TEdN : TEdUp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

Figure 23

Collective-Fixed Static Longitudinal Stability

UH-60A USA S/N 77-22716

Sym. Avg. Gross Weight
16290 lb
16280 lb
252 lb

Avg. Long. Location
16820 ft
16820 ft

Avg. Alt. Density
21.060
21.060

Avg. Out. Rotor Speed
29.81
29.82
6000 ft

Avg. Out. Condition
24.5
24.5
6000 ft

Trim Avg. C.R.P.H
258
258

Level On

Configuration

NOTES:
1. Shaded symbols denote trim.
2. Normal utility configuration.

Calibrated Airspeed (Knots):

<table>
<thead>
<tr>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
</tr>
</tbody>
</table>
FIGURE 24
COLLECTIVE-FIXED STATIC LONGITUDINAL STABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG WEIGHT (LB)</th>
<th>AVG CG LOCATION (FS)</th>
<th>AVG DENSITY</th>
<th>AVG OAT (DEG C)</th>
<th>AVG ROTOR SPEED (RPM)</th>
<th>TRIM FLIGHT CONDITION</th>
<th>AFCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>21880</td>
<td>360.4(AFT)</td>
<td>0.0</td>
<td>5740</td>
<td>13.0</td>
<td>250</td>
<td>LEVEL ON</td>
</tr>
<tr>
<td>0.0</td>
<td>21980</td>
<td>360.5(AFT)</td>
<td>0.0</td>
<td>6520</td>
<td>18.0</td>
<td>260</td>
<td>LEVEL ON</td>
</tr>
</tbody>
</table>

NOTES:
1. SHADED SYMBOLS DENOTE TRIM.
2. PBA LOCKED IN CENTER POSITION.
3. NORMAL UTILITY CONFIGURATION.
Collective-Fixed Static Longitudinal Stability

UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Weight (lb)</td>
<td>Location (ft)</td>
<td>Density (bl)</td>
<td>Q. (ft)</td>
<td>Rotor Speed (rpm)</td>
<td>Flight Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16620</td>
<td>365.1</td>
<td>0.0</td>
<td>6840</td>
<td>21.5</td>
<td>258</td>
<td>IRP CLMB</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>16640</td>
<td>365.1</td>
<td>0.0</td>
<td>7680</td>
<td>20.5</td>
<td>258</td>
<td>1000 FPM DSCNT</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Shaded symbols denote trim.
2. Normal utility configuration.

Diagram:
- Stabilator position
- Pitch attitude
- Directional control from full left
- Lateral control from full left
- Longitudinal control from full aft

Calibrated Airspeed (Knots):

![Graph with data points and trend lines]
Figure 26
COLLECTIVE-FIXED STATIC LONGITUDINAL STABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG CG LOCATION (FS)</th>
<th>AVG DENSITY (LB/FT³)</th>
<th>AVG OAT °C</th>
<th>AVG ROTOR RPM</th>
<th>TRIM</th>
<th>AFCS FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21488</td>
<td>360.5 (KSAFT)</td>
<td>0.0</td>
<td>6440</td>
<td>12.0</td>
<td>257</td>
<td>TRIM C TMB</td>
</tr>
<tr>
<td>0</td>
<td>21420</td>
<td>360.5 (KSAFT)</td>
<td>0.0</td>
<td>5740</td>
<td>13.0</td>
<td>259</td>
<td>1200 FPM DSCNT ON</td>
</tr>
</tbody>
</table>

NOTES:
1. SHADED SYMBOLS DENOTE TRIM
2. PRA LOCKED IN CENTER POSITION
3. NORMAL UTILITY CONFIGURATION

![Diagram showing various stability factors and airspeed relationship](image-url)
Figure 27
STATIC LATERAL-DIRECTIONAL STABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM AVG</th>
<th>AVG CS GROSS</th>
<th>AVG LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG ALT</th>
<th>AVG ROTOR</th>
<th>AVG CALIBRATED SPEED</th>
<th>AVG ATSPREAD</th>
<th>AFCS CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT (LB)</td>
<td><FS> (BL)</td>
<td><FT> (FT)</td>
<td><DEG C> (RPM)</td>
<td><KT></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ 17668</td>
<td>365.5(AFT)</td>
<td>0.9</td>
<td>5748</td>
<td>26.5</td>
<td>258</td>
<td>78</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>□ 16848</td>
<td>364.8(AFT)</td>
<td>0.2</td>
<td>6658</td>
<td>27.0</td>
<td>258</td>
<td>141</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. TRIM FLIGHT CONDITION: LEVEL
2. SHADED SYMBOLS DENOTE TRIM
3. NORMAL UTILITY CONFIGURATION

Graphs showing roll, attitude, longitudinal control, lateral control, and directional control with corresponding data points.
FIGURE 28

STATIC LATERAL-DIRECTIONAL STABILITY

UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG CG (Ft)</th>
<th>AVG CG (Bl)</th>
<th>AVG DENSITY</th>
<th>AVG OAT</th>
<th>AVG ROTOR CALIBRATED SPEED</th>
<th>AVG AT SPED</th>
<th>AFCS</th>
<th>TRIM CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21300</td>
<td>380.3</td>
<td>0.0</td>
<td>6280</td>
<td>16.0</td>
<td>260</td>
<td>76</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>21960</td>
<td>380.3</td>
<td>0.0</td>
<td>6280</td>
<td>16.0</td>
<td>258</td>
<td>121</td>
<td>ON</td>
</tr>
</tbody>
</table>

NOTES:
1. TRIM FLIGHT CONDITION: LEVEL
2. SHADED SYMBOLS DENOTE TRIM
3. PBA LOCKED IN CENTER POSITION
4. NORMAL UTILITY CONFIGURATION

Graphs:
- Roll attitude (°) vs. angle of sideslip (°)
- Longitudinal position (°) vs. angle of sideslip (°)
- Lateral position (°) vs. angle of sideslip (°)
- Directional position (°) vs. angle of sideslip (°)
FIGURE 29
STATIC LATERAL—DIRECTIONAL STABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG</th>
<th>AVG CS</th>
<th>AVG long.</th>
<th>AVG LAT</th>
<th>AVG DENSITY</th>
<th>AVG OAT</th>
<th>AVG SPEED</th>
<th>AVG ROTOR</th>
<th>AVG CALIBRATED</th>
<th>TRIM</th>
<th>AFCS</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GROSS</td>
<td>LOCATION</td>
<td>Density</td>
<td>OAT</td>
<td>ALT</td>
<td>SPEED</td>
<td>ROTOR</td>
<td>CALIBRATED</td>
<td>TRIM</td>
<td>AFCS</td>
<td>CONDITION</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WEIGHT</td>
<td>(FS)</td>
<td>BL</td>
<td>(FT)</td>
<td>(DEG C)</td>
<td>(RPM)</td>
<td>(KT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(LB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05726</td>
<td>386.5</td>
<td>0.0</td>
<td>7120</td>
<td>24.5</td>
<td>258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>0548</td>
<td>385.8</td>
<td>0.0</td>
<td>6530</td>
<td>22.0</td>
<td>258</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
</tbody>
</table>

NOTES: 1. □ DENOTES IPF CLIMB
 □ DENOTES 1BL3 FPM DESCEND
2. SHADED SYMBOLS DENOTE TRIM
3. NORMAL UTILITY CONFIGURATION

ROLL ATTITUDE
LAT RT

LONGITUDINAL CONTROL POSN FROM FMD AFT

LATERAL CONTROL POSN FROM FULL LEFT RT

DIRECTIONAL CONTROL POSN FROM FULL LEFT RT

ANGLE OF SIDESLIP (DEGREES)
FIGURE 30
STATIC LATERAL-DIRECTIONAL STABILITY

<table>
<thead>
<tr>
<th>SYM</th>
<th>AVG CG</th>
<th>AVG LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG OAT</th>
<th>AVG ROTOR</th>
<th>CALIBRATED SPEED</th>
<th>AIRSPEED</th>
<th>AFCS CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AVG GROSS WEIGHT</td>
<td>AVG LONG LAT ALT</td>
<td>AVG (FT) (DEG C) (KNOTS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>21720 360.4(AFT)</td>
<td>0.0 6522 0.0 258</td>
<td>81</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>21040 360.3(AFT)</td>
<td>0.0 6600 10.0 258</td>
<td>77</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. □ DENOTES IRP CLIMB
2. □ DENOTES 1000 FPM DESCENT
3. SHAPED SYMBOLS DENOTE TRIM
4. PBA LOCKED IN CENTER POSITION
5. NORMAL UTILITY CONFIGURATION

- **ROLL ATTITUDE**
- **LONGITUDINAL POSN FROM AFT**
- **LATERAL POSN FROM FULL LEFT**
- **DIRECTONAL POSN FROM FULL LEFT**

ANGLER OF SIDESLIP (DEGREES)
FIGURE 31
MANEUVERING STABILITY
UH-60 A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM GROSS</th>
<th>AVG CG LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG ALT</th>
<th>AVG SPEED</th>
<th>AVG ROTOR</th>
<th>TRIM FLIGHT</th>
<th>TRIM CALIBRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>16580</td>
<td>365.8 (AFT)</td>
<td>0.8</td>
<td>5448</td>
<td>17.0</td>
<td>266</td>
<td>LEVEL 77</td>
</tr>
<tr>
<td>□</td>
<td>16720</td>
<td>365.1 (AFT)</td>
<td>0.8</td>
<td>7328</td>
<td>17.0</td>
<td>258</td>
<td>LEVEL 141</td>
</tr>
</tbody>
</table>

NOTES: 1. OPENED SYMBOLS DENOTE LEFT TURN
CROSSED SYMBOLS DENOTE RIGHT TURN
2. SHADED SYMBOLS DENOTE TRIM
3. AFCS CONDITION: ON
4. NORMAL UTILITY CONFIGURATION

STABILATOR POSITION
(°)

LATERAL CONTROL POSN (IN. FROM FULL LFT)
(LT) (RT)

LONGITUDINAL CONTROL POSN (IN. FROM FULL FWD) (AFT)
(FWD) (AFT)

0.8 1.2 1.6 2.0 0.8 1.2 1.6 2.0
CG NORMAL ACCELERATION (G)
FIGURE 32.

MANEUVERING STABILITY

UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>SYM AVG</th>
<th>AVG CS</th>
<th>AVG DENSITY</th>
<th>AVG ALT</th>
<th>AVG ROTOR</th>
<th>TRIM FLIGHT</th>
<th>TRIM CALIBRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS WEIGHT (LB)</td>
<td>LUNG (FPS)</td>
<td>LAT (BL)</td>
<td>ALT (FT)</td>
<td>SPEED (DEG)</td>
<td>RPM</td>
<td></td>
</tr>
<tr>
<td>□ 21400</td>
<td>380.3 (AFT)</td>
<td>0.0</td>
<td>6560</td>
<td>15.5</td>
<td>261</td>
<td>LEVEL</td>
</tr>
<tr>
<td>□ 22600</td>
<td>380.4 (AFT)</td>
<td>0.0</td>
<td>6740</td>
<td>15.0</td>
<td>280</td>
<td>LEVEL</td>
</tr>
</tbody>
</table>

NOTES:
1. OPENED SYMBOLS DENOTE LEFT TURN
2. CROSSED SYMBOLS DENOTE RIGHT TURN
3. SHADED SYMBOLS DENOTE TRIM
4. AFCS CONDITION: ON
5. PBA LOCKED: IN CENTER POSITION
6. NORMAL UTILITY CONFIGURATION

Diagram:
- Stabilator Position
- Lateral Control Pull Handle (Full-Left) RT
- Longitudinal Control Pull Handle (Front) AFT
- G's Normal Acceleration (G)
FIGURE 17
RFI ASI FROM S1 ADY GIDFS1 TP

<table>
<thead>
<tr>
<th>WIND DIRECTION</th>
<th>SHORT DASH</th>
<th>LONG DASH</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>15°</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5°</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0°</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20°</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>45°</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>60°</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>75°</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>90°</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>115°</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>140°</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>165°</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>190°</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>215°</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

NOTE: NORMAL UTILITY CONFIGURATION
<table>
<thead>
<tr>
<th>Gross Weight (lbs)</th>
<th>CG Location (ft)</th>
<th>Density (psf)</th>
<th>Alt (ft)</th>
<th>Rotors</th>
<th>Calibrated Speed (kt)</th>
<th>Airspeed (kt)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>22,000</td>
<td>360.4 (ft)</td>
<td>0.0</td>
<td>6000</td>
<td>15.0</td>
<td>258</td>
<td>78</td>
<td>ON</td>
</tr>
<tr>
<td>21,500</td>
<td>360.2 (ft)</td>
<td>0.0</td>
<td>5900</td>
<td>9.5</td>
<td>258</td>
<td>109</td>
<td>ON</td>
</tr>
</tbody>
</table>

Note: Normal utility configuration.
FIGURE 46
LATERAL CONTROLLABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG GROSS</th>
<th>AVG CG LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG ALT</th>
<th>AVG DAT</th>
<th>AVG ROTOR</th>
<th>AVG CALIBRATED</th>
<th>AVG A'CS</th>
<th>AVG TRIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LB)</td>
<td>(FS)</td>
<td>(BL)</td>
<td>(FT)</td>
<td>(DEG C)</td>
<td>(RPM)</td>
<td>(KTS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,600</td>
<td>363.6 (AFT)</td>
<td>0.8</td>
<td>2280</td>
<td>9.5</td>
<td>258</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Normal Utility Configuration
FIGURE 47
LATERAL CONTROLLABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG GROSS</th>
<th>AVG CG LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG ALT</th>
<th>AVG OAT</th>
<th>AVG ROTOR</th>
<th>CALIBERATED SPEED</th>
<th>AIRSPEED</th>
<th>AFCS CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,500</td>
<td>363.9 (AFT)</td>
<td>6100</td>
<td>14.0</td>
<td>258</td>
<td>80</td>
<td>CN</td>
<td>0</td>
<td>O</td>
</tr>
<tr>
<td>16,600</td>
<td>355.8 (AFT)</td>
<td>6330</td>
<td>14.5</td>
<td>258</td>
<td>141</td>
<td>CN</td>
<td>0</td>
<td>O</td>
</tr>
</tbody>
</table>

NOTE: NORMAL UTILITY CONFIGURATION
FIGURE 51: DIRECTIONAL CONTROLLABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS</td>
<td>CS LOCATION</td>
<td>DENSITY</td>
<td>Rotor</td>
<td>CALIBRATED</td>
</tr>
<tr>
<td>LB</td>
<td>(FS)</td>
<td>(FL)</td>
<td>(FT)</td>
<td>(DEG)</td>
</tr>
<tr>
<td>16,300</td>
<td>363.6</td>
<td>AFT</td>
<td>0.0</td>
<td>2200</td>
</tr>
</tbody>
</table>

Note: Normal utility configuration

TIME TO MAXIMUM YAW ACCEL. (SEC)

MAX YAW ACCEL. (DEG/SEC)

TIME TO YAW RATE 0.64 MAX (SEC)

MAXIMUM YAW RATE NOT ACHIEVED

YAW RATE AT 1.0 SEC

YAW ROTL. AT 1.0 SEC (UGR/SEC)

DIRECTONAL CONTROL DISPLACEMENT FROM PLUS INCHES
FIGURE 52
DIRECTIONAL CONTROL ABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG</th>
<th>AVE</th>
<th>AVG</th>
<th>AVG</th>
<th>TRIM</th>
<th>THRT</th>
<th>CONDITION</th>
<th>SYM</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS WEIGHT (LB)</td>
<td>16,200</td>
<td>364.0 (AFF)</td>
<td>0.9</td>
<td>6,000</td>
<td>14.5</td>
<td>258</td>
<td>79</td>
</tr>
<tr>
<td>16,300</td>
<td>303.9 (AFF)</td>
<td>0.9</td>
<td>6,000</td>
<td>15.0</td>
<td>258</td>
<td>142</td>
<td>OH</td>
</tr>
</tbody>
</table>

NOTE: NORMAL UTILITY CONFIGURATION

TIME TO MAXIMUM YAW ACCEL (SEC)

MAXIMUM YAW ACCEL (DEG/SEC²)

YAW RATE (DEG/SEC)

MAXIMUM YAW RATE (ROT/SEC)

DIRECTIONAL CONTROL DISPLACEMENT FROM TRIM
(TOGS)
FIGURE 53
DIRECTIONAL CONTROLLABILITY
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS WEIGHT (LB)</td>
<td>CG LOCATION (FT)</td>
<td>DENSITY (SL)</td>
<td>ALT (FT)</td>
<td>QAT (DEG C)</td>
<td>ROTOR SPEED (RPM)</td>
<td>CALIBRATED AIRSPEED (K)</td>
<td>CONDITION</td>
</tr>
<tr>
<td>21,000</td>
<td>350.4 (AFT)</td>
<td>0.0</td>
<td>5900</td>
<td>26.0</td>
<td>258</td>
<td>7</td>
<td>CA</td>
</tr>
<tr>
<td>21,250</td>
<td>350.3 (AFT)</td>
<td>0.0</td>
<td>6000</td>
<td>9.5</td>
<td>259</td>
<td>110</td>
<td>CA</td>
</tr>
</tbody>
</table>

NOTE: NORMAL UTILITY CONFIGURATION

DIRECTIONAL CONTROL DISPLACEMENT FROM TRIM (INCHES)
FIGURE 57
REARWARD FLIGHT
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG LOCATION (FT)</th>
<th>AVG DENSITY (FS)</th>
<th>AVG QST (BL)</th>
<th>AVG ROTOR HEIGHT (FT)</th>
<th>AVG WHEEL SPEED (RPM)</th>
<th>AFCS CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15820</td>
<td>353.6 (AFT)</td>
<td>0.0</td>
<td>2180</td>
<td>11.5</td>
<td>259</td>
<td>25 ON</td>
</tr>
</tbody>
</table>

NOTES: 1. I DEnotes Control and Aircraft Excursions
2. Normal Utility Configuration
FIGURE 59
SIMULATED NO. 1 ENGINE FAILURE

<table>
<thead>
<tr>
<th>GROSS WEIGHT (LB)</th>
<th>CO LOCATION (Ft)</th>
<th>DENSITY ALTITUDE (Ft)</th>
<th>OAT (DEG C)</th>
<th>ENTRY AIRSPEED (KT)</th>
<th>ENTRY ENGINE TORQUE (PERCENT)</th>
<th>ENTRY FLIGHT CONDITION</th>
<th>AFCS CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10300</td>
<td>305.6(AFT)</td>
<td>0.0</td>
<td>0.10</td>
<td>20.0</td>
<td>76</td>
<td>33/34</td>
<td>LEVEL ON</td>
</tr>
</tbody>
</table>

NOTE: NORMAL UTILITY CONFIGURATION

TIME - SECONDS
FIGURE 61
PILOT SEAT VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG WEIGHT (LB)</th>
<th>AVG CG LONG (FT)</th>
<th>AVG LOCATION LAT (FT)</th>
<th>AVG DENSITY (PSI)</th>
<th>AVG ALT (FT)</th>
<th>AVG ROTOR RPM</th>
<th>TRIM DEG</th>
<th>AFCS</th>
<th>FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>16200</td>
<td>347.1 (FWD)</td>
<td>0.0</td>
<td>13860</td>
<td>7</td>
<td>254</td>
<td>LEVEL</td>
<td>DN</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. □ = 1/REV, ● = 4/REV, ▲ = B/REV
FIGURE 62
PILOT SEAT VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22718

<table>
<thead>
<tr>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG LONG LOCATION (FS)</th>
<th>AVG LAT LOCATION (BL)</th>
<th>AVG DENSITY (FT)</th>
<th>AVG ALT (FT)</th>
<th>AVG OAT (DEG C)</th>
<th>AVG ROTOR SPEED (RPM)</th>
<th>AVG TRIM</th>
<th>AVG AFCS LEVEL</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>16500</td>
<td>305.4 (AFT)</td>
<td>0.0</td>
<td>13220</td>
<td>8.5</td>
<td>255</td>
<td>1</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. ⊙ = 1/REV; □ = 4/REV; △ = 8/REV
FIGURE 63
PILOT SEAT VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG GROSS WEIGHT</th>
<th>AVG CG LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG OAT</th>
<th>AVG ROTOR RPM</th>
<th>TRIM</th>
<th>AFCS LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>21380 lb</td>
<td>347.1 (FWD)</td>
<td>0.0</td>
<td>6620 ft</td>
<td>22.0</td>
<td>261</td>
<td>ON</td>
</tr>
</tbody>
</table>

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. □ = 1/REV; □ = 4/REV; △ = 8/REV

SINGLE AMPLITUDE VIBRATORY ACCELERATION (G)
- LONGITUDINAL
- LATERAL
- VERTICAL

CALIBRATED AIRSPEED (KNOTS)
PILOT SEAT VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22716

FIGURE 64

<table>
<thead>
<tr>
<th>AVG</th>
<th>AVG CO</th>
<th>AVG DENSITY</th>
<th>OAT</th>
<th>AVG ROTOR</th>
<th>FLIGHT</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROSS WEIGHT (LB)</td>
<td>LOCATION (FS)</td>
<td>LAT ALT (Ft)</td>
<td>DEG C</td>
<td>RPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21380</td>
<td>360.2</td>
<td>0.0</td>
<td>9380</td>
<td>17.5</td>
<td>259</td>
<td></td>
</tr>
</tbody>
</table>

LEVEL. ON
NOTES: 1. NORMAL UTILITY CONFIGURATION
2. □ = 1/REV; ○ = 4/REV; Δ = 8/REV

SINGLE AMPLITUDE VIBRATORY ACCELERATION (G)
FIGURE 65
PILOT FLOOR VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG CG LOCATION (CFS)</th>
<th>AVG DENSITY</th>
<th>AVG OAT (°F)</th>
<th>AVG ROTOR SPEED (RPM)</th>
<th>AVG FLIGHT CONDITION</th>
<th>AFCS LEVEL</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10200</td>
<td>347.1 (FWD)</td>
<td>0.0</td>
<td>13080</td>
<td>7.0</td>
<td>254°</td>
<td>ON</td>
<td>LEVEL ON.</td>
</tr>
</tbody>
</table>

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. □ = 1/REV; ○ = 4/REV; △ = 8/REV
Pilot Floor Vibration Characteristics

UH-60A USA S/N 77-22718

<table>
<thead>
<tr>
<th>AVG GROSS</th>
<th>AVG CG LOCATION</th>
<th>AVG DENSITY</th>
<th>AVG OAT</th>
<th>AVG ROTOR SPEED</th>
<th>TRIM</th>
<th>AFCS FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(LB)</td>
<td>(FS)</td>
<td>(BL)</td>
<td>(FT)</td>
<td>(DEG C)</td>
<td>(RPM)</td>
<td>LEVEL ON</td>
</tr>
<tr>
<td>16500</td>
<td>385.4 (CAFT)</td>
<td>0.0</td>
<td>13220</td>
<td>8.5</td>
<td>255.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Normal Utility Configuration
2. **@** = 1/REV; **@** = 4/REV; **@** = 8/REV

Figure:

- **Single Amplitude Vibratory Acceleration (g)**
 - Vertical
 - Lateral
 - Calibrated Airspeed (knots)
 - Data points for various conditions are plotted on the graph.
PILOT FLOOR VIBRATION CHARACTERISTICS

UH-60A USA S/N 77-22718

AVG GROSS WEIGHT (LB) 21388
AVG DG LOCATION 347.1 (FWD)
AVG DENSITY (PFD) 0.0
AVG OAT (DEG C) 0620
AVG ROTOR SPEED (RPM) 22.0
TRIM LEVEL ON 261
AFCS CONDITION LEVEL ON

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. ○ = 1/REV; □ = 4/REV; △ = 8/REV

SINGLE AMPLITUDE VIBRATORY ACCELERATION (G)

VERTICAL
0.3
0.2
0.1
0.0

LATERAL
0.3
0.2
0.1
0.0

CALIBRATED AIRSPEED (KNOTS)
20 40 60 80 100 120 140 160 180
Pilot Floor Vibration Characteristics

<table>
<thead>
<tr>
<th>Avg Gross Weight (LB)</th>
<th>Avg CG Location (LFS)</th>
<th>Avg CG Location (BL)</th>
<th>Avg Density</th>
<th>Avg OAT (Deg C)</th>
<th>Avg Rotor Speed (KFT)</th>
<th>Avg Flight Condition</th>
<th>AFCS Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>21380</td>
<td>360.2 (AFT)</td>
<td>0.0</td>
<td>8380</td>
<td>17.5</td>
<td>250</td>
<td>Level ON</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Normal Utility Configuration
2. $\Theta = 4/\text{REV}$, $\Phi = 4/\text{REV}$, $\Delta = 8/\text{REV}$

Graph:
- **Title:** Single Amplitude Vibratory Acceleration (G)
- **Axes:**
 - Vertical Axis: 0.0 - 0.3
 - Horizontal Axis: 20 - 180
- **Legend:**
 - Symbols represent data points for different conditions.

Figure 68
CENTER OF GRAVITY VIBRATION CHARACTERISTICS

UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG GROSS WEIGHT (LB)</th>
<th>AVG CO LOCATION (FS)</th>
<th>AVG DENSITY (C)</th>
<th>AVG OAT (FT)</th>
<th>AVG ROTOR (DEG C)</th>
<th>AFCS SPEED (RPM)</th>
<th>TRIM LEVEL</th>
<th>COND</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>16200</td>
<td>347.1 (FWD)</td>
<td>0.0</td>
<td>13860</td>
<td>7.8</td>
<td>254</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. $\bullet = 1/REV; \bigcirc = 4/REV; \triangle = 8/REV

Figure 69:

- **Single Amplitude Vibratory Acceleration (G):**
 - **Longitudinal:**
 - 0.3
 - 0.2
 - 0.1
 - 0.0
 - **Lateral:**
 - 0.3
 - 0.2
 - 0.1
 - 0.0
 - **Vertical:**
 - 0.3
 - 0.2
 - 0.1
 - 0.0

- **Calibrated Airspeed (Knots):**
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120
 - 140
 - 160
 - 180
CENTER OF GRAVITY VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22716

AVG GROSS LOCATION DENSITY OAT ROTOR FLIGHT CONDITION
WEIGHT (LB) LONG (FS) LAT (BL) ALT (FT) DEG (C) SPEED (RPM)
16580 365.4 (AFT) 0.0 13220 8.5 255 LEVEL ON

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. $\phi = 1/\text{REV}; \theta = 4/\text{REV}; \Delta = 8/\text{REV}$
FIGURE 71:
CENTER OF GRAVITY VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>GROSS WEIGHT (LB)</th>
<th>AVG CG LOCATION (FS)</th>
<th>AVG LATITUDE (BL)</th>
<th>AVG ALTITUDE (FT)</th>
<th>AVG OAT (DEG C)</th>
<th>AVG ROTOR SPEED (RPM)</th>
<th>TRIM AFCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21380</td>
<td>247.1 (FWD)</td>
<td>0.0</td>
<td>6620</td>
<td>0.22</td>
<td>281</td>
<td>LEVEL ON</td>
</tr>
</tbody>
</table>

NOTES: 1. NORMAL UTILITY CONFIGURATION
2. □ = 1/REV; ○ = 4/REV; △ = 8/REV

SINGLE AMPLITUDE VIBRATORY ACCELERATION (G)

CALIBRATED AIRSPEED (KNOTS)
CENTER OF GRAVITY VIBRATION CHARACTERISTICS
UH-60A USA S/N 77-22716

<table>
<thead>
<tr>
<th>AVG</th>
<th>AVG CG</th>
<th>AVG DENSITY</th>
<th>AVG OAT</th>
<th>AVG ROTOR SPEED</th>
<th>TRIM</th>
<th>AFCS FLIGHT CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GROSS WEIGHT</td>
<td>LOCATION</td>
<td>LAT</td>
<td>ALT</td>
<td>(BL)</td>
<td>(FT)</td>
</tr>
<tr>
<td>21330</td>
<td>360.2 (AFT); 0.0</td>
<td>0</td>
<td>9360</td>
<td>17.5</td>
<td>250</td>
<td>LEVEL</td>
</tr>
</tbody>
</table>

NOTES:
1. NORMAL UTILITY CONFIGURATION
2. $\phi = 1/REV; \psi = 4/REV; \Delta = 8/REV$
FIGURE 73
SHIPS SYSTEM AIRSPEED CALIBRATION IN LEVEL FLIGHT
UH-60A USA S/N 77-22716

NOTE: BASIS FOR NORMALIZED CURVE IS USAAEFA REPORT NO. 82-09
DISTRIBUTION

HQDA (DALO-AV, DALO-FDQ, DAMO-HR, DAMA-PPM-T, DAMA-RA, DAMA-WSA) 6

US Army Materiel Command (AMCDE-SA, AMCDE-P, AMCQA-SA, AMCQA-ST) 4

US Army Training and Doctrine Command (ATCD-T, ATCD-V) 2

US Army Test and Evaluation Command (AMSTE-TE-V, AMSTE-TE-O) 2

US Army Logistics Evaluation Agency (DALO-LEI) 1

US Army Materiel Systems Analysis Agency (AMXSY-RV, AMXSY-MP) 8

US Army Operational Test and Evaluation Agency (CSTE-AVSD-E) 2

US Army Armor School (ATSB-CD-TE) 1

US Army Aviation Center (ATZQ-D-T, ATZQ-CDC-C, ATZQ-TSM-A, ATZQ-TE-S, ATZQ-TE-LH) 5

US Army Combined Arms Center (ATZL-TIE) 1

US Army Safety Center (PESC-SPA, PESC-SE) 2

US Army Cost and Economic Analysis Center (CACC-AM) 1

US Army Aviation Research and Technology Activity (AVSCOM) 3

Aviation Applied Technology Directorate (SAVRT-TY-DRT, SAVRT-TY-TSC (Tech Library)
US Army Aviation Research and Technology Activity (AVSCOM) 1
Aeroflightdynamics Directorate (SAVF-T-D)

US Army Aviation Research and Technology Activity (AVSCOM) 1
Propulsion Directorate (SAVKT-PN-D)

Defense Technical Information Center (FDAC) 2

US Military Academy, Department of Mechanics 1
(Aero Group Director)

ASD/AFXT, ASD/ENF 2

US Army Aviation Development Test Activity (STEBC-CT) 2
Assistant Technical Director for Projects, Code: CT-24
(Mr. Joseph Dunn) 2

n520 Test Group (ENML) 1

Commander, Naval Air Systems Command (AIR 515B, AIR 5301) 3

Defense Intelligence Agency (DIA-DT-2D) 1

US Army Aviation Systems Command (AMCPW-BH) 4

United Technologies Corporation, Sikorsky Aircraft
Division (Rch Gallagher) 1