TRAY PACK
PROTOTYPE
PLANT DESIGN

BY

J. MacGREGOR SMITH

UNIVERSITY OF MASSACHUSETTS
AMHERST, MA 01003

JUNE 1986
FINAL REPORT
JANUARY 1985-AUGUST 1985

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

PREPARED FOR
UNITED STATES ARMY NATICK
RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
NATICK, MASSACHUSETTS 01760-5000
FOOD ENGINEERING DIRECTORATE
Disclaimers

The findings contained in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of trade names in this report does not constitute an official endorsement or approval of the use of such items.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.1-R, Chapter IX or DoD 5220.22-M, "Industrial Security Manual," paragraph 19. For unclassified documents, destroy by any method which precludes reconstruction of the document.
This project report describes the engineering design of a prototype production facility for the automated manufacture and assembly of Tray Pack foods for Army field feeding use. The plant was designed to produce 44 menu items for a total production rate of 17 million Tray Packs/year on automated assembly lines designed to operate at 20 cpm. The report describes the schematic engineering design of the entire facility which includes the following activity areas: I. Receiving Warehouse, II. Preparation Area, III. Filling Lines, IV. Sterilization Area, V. Packaging and Labelling Area, VI. Shipping Warehouse, and VII. Administrative/Staffing Areas. The overall size of the plant is 210,081 square feet. A cost analysis of the plant, personnel and equipment together with appendices describing equipment suppliers, specialized automation equipment, and related software products is also included.
PREFACE

Tray Pack foods are one of the primary ration sources for the new Army Combat Field Feeding System. Presently, there is a very small commercial market for Tray Pack foods and a very limited production base. The total production of the companies manufacturing Tray Pack foods have a maximum annual capacity of 5 to 6 million trays per year. This production rate falls far short of the projected Army requirements of 10 million Tray Packs in FY 1987 and subsequent years. Mobilisation needs would even be more demanding.

The purpose of this study was to draft plans for a plant to produce Tray Packs at high speeds in an efficient and effective manner to meet future production demands. The University of Massachusetts Department of Industrial Engineering and Operations Research was charged to conduct the study. The work was performed under Project 1L162724AH94, Joint Services Food/Nutrition Technology Task Area B5 – Subsistence Technology, Technical Effort – Food Processing and Preservation Techniques, Producibility of Thermostabilised Combat Rations. The Project Officer was Joseph W. Sceceblowski.
ACKNOWLEDGEMENTS

I wish to thank Joe Sscseblowski, Curt Blodgett, Wayne Swantak and the other staff members of Natick Research Development & Engineering Center (NRDEC) for their support, comments, directions and criticism throughout this project. I also wish to thank all the manufacturers who have donated their time, information and comments as the design of the Tray Pack facility unfolded. Also special thanks go to Chet Lisak, Seth Hall, Ashook Vishnu and Tarik Abou-Raya of the Engineering Computer Station of the University of Massachusetts who helped with the computer graphics drawings, which became essential to the final project report.

J. MacGregor Smith
Department of Industrial Engineering
and Operations Research
University of Massachusetts
Amherst, MA 01003
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
</tbody>
</table>

PART I: FACILITY DESIGN

1 INTRODUCTION

- A. Overview .. 1
- B. Project Objectives 1
- C. Basic Assumptions 2
 1. Men: Breakdown 2
 2. Number of Filling Lines 4
 3. Ten Day Menu Cycle 4
 4. Batch Plant Operation 7

2. FACILITY OVERVIEW

- A. Activity Description 8
- B. Activity Relationships 8
- C. Schematic Plant Layout 9

PART II: FACILITY REQUIREMENTS

3. RECEIVING WAREHOUSE

- A. Activity Description 12
- B. Activity Relationships 12

4. PREPARATION AREA

- A. Activity Description 17
- B. Activity Relationships 17

5. ASSEMBLY AREA

- A. Activity Description 21
- B. Activity Relationships 21
- C. Activity Relationship Diagram 23
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Activity relationship diagram</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Schematic plant layout</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Receiving warehouse layout diagram</td>
<td>13</td>
</tr>
<tr>
<td>4.</td>
<td>Section through receiving warehouse</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>AS/RS and AGVS interface</td>
<td>16</td>
</tr>
<tr>
<td>6.</td>
<td>General layout of preparation area</td>
<td>18</td>
</tr>
<tr>
<td>7.</td>
<td>Retortable item preparation area</td>
<td>19</td>
</tr>
<tr>
<td>8.</td>
<td>Oven bake preparation area</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>General filling operations</td>
<td>24</td>
</tr>
<tr>
<td>10.</td>
<td>First stage assembly filling line</td>
<td>25</td>
</tr>
<tr>
<td>11.</td>
<td>Second stage assembly filling line</td>
<td>26</td>
</tr>
<tr>
<td>12.</td>
<td>Second & Third stage assembly filling line</td>
<td>27</td>
</tr>
<tr>
<td>13.</td>
<td>Gravity filler</td>
<td>28</td>
</tr>
<tr>
<td>14.</td>
<td>Piston and liquid fillers</td>
<td>29</td>
</tr>
<tr>
<td>15.</td>
<td>Lid placement and crimper</td>
<td>30</td>
</tr>
<tr>
<td>16.</td>
<td>Yaguchi layouts</td>
<td>31</td>
</tr>
<tr>
<td>17.</td>
<td>Oven bake line layout</td>
<td>32</td>
</tr>
<tr>
<td>18.</td>
<td>Oven bake filling operations</td>
<td>33</td>
</tr>
<tr>
<td>19.</td>
<td>Oven bake closing operations</td>
<td>34</td>
</tr>
<tr>
<td>20.</td>
<td>Oven trolley drying racks</td>
<td>35</td>
</tr>
<tr>
<td>21.</td>
<td>Sterilisation area layout</td>
<td>39</td>
</tr>
<tr>
<td>22.</td>
<td>UFS loading/unloading area</td>
<td>40</td>
</tr>
<tr>
<td>23.</td>
<td>UFS trolley discharge and cooling area</td>
<td>41</td>
</tr>
<tr>
<td>24.</td>
<td>Boiler room</td>
<td>42</td>
</tr>
<tr>
<td>25.</td>
<td>Packaging area layout</td>
<td>44</td>
</tr>
<tr>
<td>26.</td>
<td>Retort packaging line</td>
<td>45</td>
</tr>
<tr>
<td>27.</td>
<td>Oven bake packaging line</td>
<td>46</td>
</tr>
<tr>
<td>28.</td>
<td>Robotic palletiser w/ AGVS interface</td>
<td>47</td>
</tr>
<tr>
<td>29.</td>
<td>Shipping warehouse</td>
<td>50</td>
</tr>
<tr>
<td>30.</td>
<td>AGVS interface with packaging area</td>
<td>51</td>
</tr>
<tr>
<td>B1.</td>
<td>AS/RS aisles w/ AGVS interface</td>
<td>62</td>
</tr>
<tr>
<td>B2.</td>
<td>AS/RS aisles</td>
<td>63</td>
</tr>
<tr>
<td>B3.</td>
<td>AGVS products</td>
<td>64</td>
</tr>
<tr>
<td>B4.</td>
<td>Robotic palletizers</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ten-Day Cycle Production, 44 Main Menu Items</td>
<td>6</td>
</tr>
<tr>
<td>2. Sterilisation Process Specifications</td>
<td>36</td>
</tr>
<tr>
<td>3. Utility Requirements for Universal Food Steriliser</td>
<td>37</td>
</tr>
<tr>
<td>4. Activity and Cost Estimate</td>
<td>53</td>
</tr>
</tbody>
</table>
CHAPTER 1. Introduction

A. Overview

In an initial report to NRDEC, a team of researchers from The University of Massachusetts was asked by NRDEC to analyze the Producibility, Engineering and Planning (PEP) of Tray Pack foods for the Armed Services. The UMass PEP team observed, reviewed on-site, discussed and evaluated all but one of the seven current producers of Tray Packs for the military. A wide range of equipment and methods along with many common problem characteristics was found among the various production lines. All producers used manual methods to handle Tray Packs (empty and filled), none used automatic or machine-assisted fillers for transferring food materials to Tray Packs, and powered conveyors saw limited use, if ever. Almost all producers had definite feelings about production rates they could achieve. The limited opportunities to test their figures demonstrated that they were usually optimistic and sometimes they were way off the mark. There was no evidence that any production line observed had been designed in an engineering sense. The manufacturing expertise that existed at each location was used to set-up production lines, but no engineered lines existed, such as would occur with sophisticated fillers, conveyors, weighing apparatus, etc. normally found in high-speed canning lines.

In response to the findings of the PEP team, the following report is a preliminary examination of the requirements for a prototype facility to produce Tray Packs at a minimum line rate of 20 trays per minute. The design philosophy underlying this report is twofold. First of all, general design guidelines for an ideal or prototype Tray Pack facility will be developed. In this way, the prototype facility provides the system backdrop essential to the development of the high-speed line rates. Second, within the context of the ideal facility, specific engineering design drawings will be developed for the automated filling lines for Tray Packs. Together the design guidelines for the prototype facility along with the detailed engineering drawings provide a practical as well as stimulating backdrop for the planning, design and manufacturing of Tray Packs.

In the first part of this report, Chapters 1 and 2, the overall design of the facility is examined, the major cluster areas of activities are identified and their interrelationships are specified. In the second half of this report, Chapters 3-9, the detailed requirements of the activities and equipment items that make up the facility are identified, quantified and presented. Finally, Chapter 10 presents a detailed cost estimate of the facility together with some additional recommendations and issues for further study and analysis.

B. Project Objectives

The objectives of this study within the design philosophy stated in the Overview section of this Chapter are essentially the following:

- Develop an engineering design for an ideal Tray Pack production facility including layout drawings, listing of personnel, activities, equipment, costs and services for its operation.
- Engineering drawings for the filling lines shall provide complete detail enabling major increases in production rates while keeping processing lines sufficiently versatile to handle a variety of food items.
- Production systems shall be capable of producing 44 basic items and 29 alternate items. The plant will be initially designed to produce 17 million trays per year.
C. Basic Assumptions

For this study, the following assumptions were postulated in order to set the groundwork for developing the facility requirements, both in terms of the size of the facility, number of personnel and equipment necessary to operate the facility.

1. Menu Breakdown

For functional reasons, the 44 main and 29 alternate items are segmented into four food categories based on their manufacturability requirements. These four food groups are the following:

- One Step Filling (19 food items)
- Two Step Filling (44 food items)
- Hand Placement (3 food items)
- Oven Baked (7 food items)

These basic food groups were derived from information available within NRDEC with regards to the manufacturability of the Tray Pack menu items. Obviously, the division of the menu items into the food groups may not be sacrosanct, however, it provides a useful morphological stepping stone and will serve as a useful guide to determining the number of filling lines requisite in the production facility. The four functional categories of items are displayed along with the actual items from the main and alternate menus in the tables below:

<table>
<thead>
<tr>
<th>Functional Category</th>
<th>Main Menu Items</th>
<th>Alternate Menu Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Step Filling</td>
<td>o Beef Stew</td>
<td>o Chili Con Carne</td>
</tr>
<tr>
<td></td>
<td>o BBQ Beef</td>
<td>o Chicken w/ Noodles</td>
</tr>
<tr>
<td></td>
<td>o Creamed Gr. Beef</td>
<td>o Chicken Stew w/Gravy</td>
</tr>
<tr>
<td></td>
<td>o Breakfast Bake</td>
<td>o Sweet Creamed Corn</td>
</tr>
<tr>
<td></td>
<td>o Eggs w/Ham</td>
<td>o Blueberry Dessert</td>
</tr>
<tr>
<td></td>
<td>o Chicken ala king</td>
<td>o Cherry Dessert</td>
</tr>
<tr>
<td></td>
<td>* Egg Loaf w/Mushrooms*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Potato Salad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Orange Nut Cake*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Cherry Nut Cake*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Apple Sauce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Apple Dessert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o Chocolate Pudding</td>
<td></td>
</tr>
<tr>
<td>Total One-Step Items</td>
<td>13 Main Menu Items</td>
<td>6 Alternate Items</td>
</tr>
<tr>
<td>Two Step Menu Items</td>
<td>o Beef Pepper Steak</td>
<td>o Pork Slices w/Gravy</td>
</tr>
<tr>
<td></td>
<td>o Turkey Sl.w/Gravy</td>
<td>o Swedish Meatballs</td>
</tr>
<tr>
<td></td>
<td>o Ham Slices</td>
<td>o Beef Pot Roast</td>
</tr>
<tr>
<td></td>
<td>o Franks in Brine</td>
<td>o Spaghetti w/Meatballs</td>
</tr>
<tr>
<td></td>
<td>o Meatloaf w/Gravy</td>
<td>o Swiss Steak</td>
</tr>
<tr>
<td></td>
<td>o Canadian Bacon</td>
<td>o BBQ Pork</td>
</tr>
<tr>
<td></td>
<td>o Pork Sausage Links</td>
<td>o Chicken Cacciatore</td>
</tr>
<tr>
<td></td>
<td>o Roast Beef w/Gravy</td>
<td>o Chicken Breasts</td>
</tr>
<tr>
<td></td>
<td>o Roast Chicken</td>
<td>o Beef Tips w/Gravy</td>
</tr>
<tr>
<td></td>
<td>* Egg Loaf w/Cheese*</td>
<td>o Beef and Macaroni</td>
</tr>
<tr>
<td></td>
<td>o Escalloped Potat.</td>
<td>o Spanish Rice</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Beans w/Pork</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macaroni/Cheese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttered Potat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttered Noodles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Rice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Potat.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Bean Salad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Beans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas/Mushrooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Kernel Corn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sliced Carrots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Vegetables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sliced Peaches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sliced Pears</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit Cocktail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macaroni Salad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potat/Chicken Sauce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazed Carrots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peas and Carrots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lima Beans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewed Tomatoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Main Menu Items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Alternate Items</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasagne</td>
<td></td>
</tr>
<tr>
<td>Stuffed Peppers</td>
<td></td>
</tr>
<tr>
<td>Stuffed Cabbage</td>
<td></td>
</tr>
<tr>
<td>0 Main Menu Items</td>
<td></td>
</tr>
<tr>
<td>3 Alternate Items</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spice Cake</td>
<td></td>
</tr>
<tr>
<td>Chocolate Cake</td>
<td></td>
</tr>
<tr>
<td>Apple Coffee Cake</td>
<td></td>
</tr>
<tr>
<td>Blueberry Cake</td>
<td></td>
</tr>
<tr>
<td>Marble Cake</td>
<td></td>
</tr>
<tr>
<td>Pound Cake</td>
<td></td>
</tr>
<tr>
<td>Fruit Cake</td>
<td></td>
</tr>
<tr>
<td>4 Main Menu Items</td>
<td></td>
</tr>
<tr>
<td>3 Alternate Items</td>
<td></td>
</tr>
</tbody>
</table>

*n.b. These starred items have been deleted from the program. Replacements are to be retested in the future, however, it will be assumed that comparable menu items will replace them.

These categories are essential to the manufacturing process because they begin to dictate the line design requirements, amounts of equipment and personnel necessary to satisfy the overall production demand of 17 million trays per year.

For the present, we will assume that the 44 main menu items are the number of essential items produced at the facility, in other words, the 29 alternate items simply act as substitutes in the above 44 main menu items. Thus, the number of lines, square footage allocations, equipment and staff are determined by the 44 main items.
2. Number of Filling Lines

Given the previous breakdown of menu items according to their functional classification, the following production volumes are required of the 44 main menu items:

<table>
<thead>
<tr>
<th>Line Type</th>
<th>Volume</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Step Filling Line</td>
<td>4,833,410 Tray Packs</td>
<td>(28%)</td>
</tr>
<tr>
<td>Two-Step Filling Line</td>
<td>9,333,380 Tray Packs</td>
<td>(55%)</td>
</tr>
<tr>
<td>Hand Placement</td>
<td>0 Tray Packs</td>
<td>(0%)</td>
</tr>
<tr>
<td>Oven Bake Filling Line</td>
<td>2,833,210 Tray Packs</td>
<td>(17%)</td>
</tr>
<tr>
<td>Total Volume</td>
<td>17,000,000 Tray Packs</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

The figure of 17,000,000 Tray Packs is a forecast for fiscal year 1988 that was based on data available in 1984. While the expected volume at the time of writing this report is expected to be somewhat lower than this 17 million figure, it will probably be in the neighborhood of 10.5 million, which is still a sizeable amount and one where the automated production of Tray Packs becomes critical.*

As we shall see, the technology of producing Tray Packs greatly affects the number of lines, line rates, and the production environment which will emerge. From the above analysis, there are two essential types of lines: 1) Retort line and 2) Oven Bake line. The Retort line should be capable of handling the One-Step and Two-Step menu items described above. The retort line is configured to handle the different types of filling equipment necessary for the One-Step and Two-Step menu items. As the report will demonstrate, one highly automated retort filling line operating at 40 cans per minute (cpm) will be able to produce the total retortable menu items demand. The other line will accommodate the oven bake production requirements.

This preliminary analysis does not include the possibility of machine breakdowns, spillage and wastage, production overruns or other factors which directly affect production of the required number of trays. For instance, even though no hand-placed items are contemplated in the 44 main menu items, in the foreseeable future, production of these items could certainly occur. Thus, engineers must design the line layouts so that hand-placement items could be produced. In the upcoming section of this report where the line layouts are presented, some of this line design flexibility is incorporated.

3. Ten Day Menu Cycle

In order to assess the quantities of food items to be stored in both the Receiving and Shipping Warehouses, an assumption must be made with regards to the type of production schedule at which the plant will operate. Demand for Tray Packs currently revolves around a 10 day menu cycle, so production of items should naturally follow demand. Therefore, the 10 day menu cycle will be adopted as the key production cycle. There are some additional constraints on the Shipping Warehouse because a 20 day incubation period is required for production lots prior to shipment according to USDA standards. While there is some flexibility with regards to this 20 day holding period, the author has designed the plant for this maximum incubation period.

Weekend — [Monday - Friday] — Weekend — [Monday - Friday] — Weekend — 5 working days — [Monday - Friday] — 5 working days

* For a reference to this 10.5 million procurement figure, see the recent forecast by Capt. Donald S. Parsons in Reference #2.
Thus, the 44 items produced during a production cycle (i.e. 10 working days), arguably should follow the percentages required by the 10 day menu cycle. For example, the number of Beef Stew Trays produced during a 10 day menu cycle, would be 14,529 trays or around 6 hours of production on a line of 40 cpm. This 10 day production cycle will also regulate the inventory of raw materials and storage of trays in the shipping warehouse. The breakdown in Table 1 illustrates the production requirements and number of trays produced per 10 day cycle for each of the 44 items.
Table 1. Ten-Day Cycle Productions, 44 Main Menu Items

<table>
<thead>
<tr>
<th>Main Menu Items</th>
<th>Trays/Cycle</th>
<th>Prod-Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Step Items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Beef Stew</td>
<td>14,529</td>
<td>6.05</td>
</tr>
<tr>
<td>o BBQ Beef</td>
<td>12,592</td>
<td>5.25</td>
</tr>
<tr>
<td>o Creamed Gr. Beef</td>
<td>25,184</td>
<td>10.49</td>
</tr>
<tr>
<td>o Breakfast Bake</td>
<td>18,888</td>
<td>7.87</td>
</tr>
<tr>
<td>o Eggs w/Ham</td>
<td>18,888</td>
<td>7.87</td>
</tr>
<tr>
<td>o Chicken ala king</td>
<td>12,592</td>
<td>5.25</td>
</tr>
<tr>
<td>o Egg loaf w/Mushrms*</td>
<td>18,888</td>
<td>7.87</td>
</tr>
<tr>
<td>o Potato Salad</td>
<td>7,555</td>
<td>3.15</td>
</tr>
<tr>
<td>o Orange Nut Cake*</td>
<td>9,444</td>
<td>3.94</td>
</tr>
<tr>
<td>o Cherry Nut Cake*</td>
<td>9,444</td>
<td>3.94</td>
</tr>
<tr>
<td>o Apple Sauce</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>o Apple Dessert</td>
<td>7,555</td>
<td>3.15</td>
</tr>
<tr>
<td>o Chocolate Pudding</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>185,779</td>
<td>77.40</td>
</tr>
<tr>
<td>Two-Step Items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Beef Pepper Steak</td>
<td>12,592</td>
<td>5.25</td>
</tr>
<tr>
<td>o Turkey S/l.w/Gravy</td>
<td>10,493</td>
<td>4.37</td>
</tr>
<tr>
<td>o Ham Slices</td>
<td>10,493</td>
<td>4.37</td>
</tr>
<tr>
<td>o Franks in Brine</td>
<td>8,585</td>
<td>3.58</td>
</tr>
<tr>
<td>o Meatloaf w/Gravy</td>
<td>9,444</td>
<td>3.94</td>
</tr>
<tr>
<td>o Canadian Bacon</td>
<td>31,480</td>
<td>13.12</td>
</tr>
<tr>
<td>o Pork Sausage Links</td>
<td>18,888</td>
<td>7.87</td>
</tr>
<tr>
<td>o Roast Beef w/Gravy</td>
<td>9,444</td>
<td>3.94</td>
</tr>
<tr>
<td>o Roast Chicken</td>
<td>12,592</td>
<td>5.25</td>
</tr>
<tr>
<td>o Egg Loaf w/Meal*</td>
<td>18,888</td>
<td>7.87</td>
</tr>
<tr>
<td>o Escalolled Potat.</td>
<td>7,555</td>
<td>3.15</td>
</tr>
<tr>
<td>o Beans w/Pork</td>
<td>7,555</td>
<td>3.15</td>
</tr>
<tr>
<td>o Macaroni/Meat</td>
<td>15,740</td>
<td>6.56</td>
</tr>
<tr>
<td>o Buttered Potat.</td>
<td>15,110</td>
<td>6.39</td>
</tr>
<tr>
<td>o Buttered Noodles</td>
<td>15,110</td>
<td>6.39</td>
</tr>
<tr>
<td>o White Rice</td>
<td>30,220</td>
<td>12.59</td>
</tr>
<tr>
<td>o Sweet Potat.</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>o 3-Bean Salad</td>
<td>9,444</td>
<td>3.94</td>
</tr>
<tr>
<td>o Green Beans</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>o Peas/Mushrooms</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>o Whole Kernel Corn</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>o Sliced Carrots</td>
<td>7,555</td>
<td>3.15</td>
</tr>
<tr>
<td>o Mixed Vegetables</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>o Sliced Peaches</td>
<td>22,665</td>
<td>9.44</td>
</tr>
<tr>
<td>o Sliced Pears</td>
<td>7,555</td>
<td>3.15</td>
</tr>
<tr>
<td>o Fruit Cocktail</td>
<td>30,220</td>
<td>12.59</td>
</tr>
<tr>
<td>o Diced Pineapple</td>
<td>15,110</td>
<td>6.29</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>402,288</td>
<td>167.62</td>
</tr>
</tbody>
</table>
Oven Baked Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Volume</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spice Cake</td>
<td>9,440</td>
<td>7.87</td>
</tr>
<tr>
<td>Chocolate Cake</td>
<td>18,888</td>
<td>15.74</td>
</tr>
<tr>
<td>Apple Coffee Cake</td>
<td>28,332</td>
<td>23.61</td>
</tr>
<tr>
<td>Blueberry Cake</td>
<td>37,776</td>
<td>31.48</td>
</tr>
</tbody>
</table>

Sub-Total

| | 94,436 trays | 78.69 hours |

Total Menu Items

| | 682,503 trays | 323.71 hours |

n.b. even though the starred items have been deleted from the main menu, equivalent substitutes are being developed and as an estimate of likely production of these new items, the older values will be assumed for these new production items for the moment.

Since there will be two separate lines, one for the retortable items and the other for the oven-bake items, they will have to operate 24 hours per day given the 250 days per year work schedule. Obviously, the 250 days is a conservative estimate for the operation of a highly automated production facility, so no real problem should occur for meeting this demand over the year.

The Oven Bake line is designed to handle a line rate of 20 cpm, and since the volume on this line is much smaller, it should be able to meet production requirements without much trouble. The Oven Bake line is also designed to operate 24 hours per day, yet its line throughput rate can be the lower bound of 20 cpm.

4. **Batch Plant Operation**

Even though there will be a great deal of automation in the design of the equipment and material handling system of the plant, due to the large number of products (44 main and 29 alternate tray items), the plant will basically operate as a batch processing operation as opposed to a continuous facility. As production volume increases, items may be produced at such rates that additional lines may be required which are dedicated to specific menu items. Nevertheless, due to the multiple product orientation, the overall plant will still function as a batch plant because the sterilisation process can only be set up for a specific menu item at one time. Loading and unloading of the trays out of the retort trolleys may be automated to a point where this time is minimised, however, the plant will still function essentially as a batch production facility.
CHAPTE R 2. Facility Overview

A. Activity Description

This Chapter will give an overview of the entire Tray Pack facility design including the type of activities, their interrelationships and general factors relating to the overall operation of the plant. As for the facility itself, there are essentially seven different activity clusters which make up the facility. These are the following:

I. Receiving Warehouse
II. Preparation Area
III. Filling Lines
IV. Sterilization Area
V. Packaging and Labelling Area
VI. Shipping Warehouse
VII. Administrative/ Staffing Areas

B. Activity Relationships

The Receiving Warehouse accommodates the raw materials, trays and lids and other commodities necessary in the manufacturing process. The warehouse is viewed as a separate entity with as much automation as possible yet integrally linked to the Preparation Area and other parts of the plant through the material handling system of Automated Guided Vehicle System (AGVS) trucks, conveyors, and forklift trucks.

The Preparation Area includes the necessary cooking and baking as well as slicing, dicing, and preparation activities associated with preparing the 44 main and 29 alternate menu items for the assembly process. Centralisation of the equipment in this area while allowing for material handling flow around the Preparation Area is key to its location and design within the plant.

The Filling Area includes the assembly, crimping, closing and seaming operations of the Tray Packs. As will be seen, the high-speed filling line for the retortable items is integrally linked to a continuous food steriliser so as to emulate as closely as possible a continuous manufacturing operation. The Oven Bake line is a separate entity but linked with the Retort line via the packaging and palletising operations.

The Sterilization Area houses a continuous food steriliser designed to accommodate the high-speed assembly line within the plant producing retortable items at 40 cans per minute. For one hour of production, this would amount to a maximum of 2400 cans per hour. Other types of batch oriented retort equipment could be utilised but there are capacity and operational concerns that arise due to the number of batch retorts required to handle the 2400 cans/hour and the capital and operating expenses that would accrue from these smaller retorts. One of the main features of the continuous food steriliser is the automated loading and unloading conveyors that smooth the production process.

The Packaging Area houses the automated equipment for labelling, boxing and palletising the cans. In addition, the USDA Laboratory as well as the Incubation room for storing the can samples from the production runs is located within this area. The Packaging area is directly adjacent to the Filling, Sterilisation areas, and Shipping Warehouse.

The Shipping Warehouse includes general storage for Tray Packs, storage for damaged cans, the shipping offices for rail and truck operations as well as staging areas and truck docks.
The Administrative and Staffing areas include the Engineering offices, Quality Assurance area, Test Kitchen, Management offices, Secretarial, Visitor Reception, Cafeteria, Lounge Maintenance Shop and staff locker and personal storage areas.

Figure 1 provides a translation of the seven areas of the plant into a relationship diagram indicating the relative positioning and adjacencies required for the overall plant layout.

Figure 1, illustrates the linear, continuous flow process which should underlie the facility design. Multiple parallel lines would be developed for the products from the preparation on through the packaging of the trays with the Receiving and Shipping warehouses as the end points of this linear production process. The schematic drawing on the next page, Figure 2, indicates the general physical arrangement of the major spaces necessary in the Tray Pack production facility and acts as a direct translation of the operational requirements specified in Figure 1.

Figure 2 represents the overall scheme for the plant layout. Other alternatives are possible but as they deviate from the above arrangement, tradeoffs in efficiency, material handling costs, and flexibility in plant expansion will occur.

The overall scheme represents a building area of 210,081 square feet. 189,060 square feet are dedicated to the Warehousing and Production areas while 21,021 square feet are provided for the Administrative functions.

C. Schematic Plant Layout

Some items of interest on the layout diagram are worth discussing. First of all, as has been stated before, the two warehouses for Receiving and Shipping are designed to be distinctly separate to reduce possible traffic conflicts in the material handling system that could arise due to the AGVS trucks, conveyors, forklift trucks, and movement of personnel and goods throughout the factory. This is an essential design concept underlying the plant layout. Second of all, the Warehouses are designed to be as square in shape as possible in order to minimize material handling costs. Third, the movement of goods from the Preparation area through the Filling area and onto the Sterilization area is designed to accommodate the multiple products in a linear flow process with as little overlapping and line conflicts as possible. Finally, the Administrative and Staffing areas are to one side of the entire plant so that plant expansion to the north can occur without unnecessarily disrupting the manufacturing process. On the remaining pages of this document, the detailed schematic development of each area within the plant will take shape according to the seven major areas identified previously in the first part of the report.
I) Receiving Warehouse
(Raw material receiving, Freezer and Refrigeration)

II) Preparation Area
(Ovens, Kettles, and General food preparation)

III) Filling Area
(Filling, Crimping and Closing of cans)

IV) Retorting Area
(Sterilization and Can Washing)

V) Packaging Area
(Labelling, Boxing and Palletizing of cans)

VI) Shipping Warehouse

VII) Administration/Staffing

Figure 1 Activity relationship diagram
CHAPTER 3. Receiving Warehouse

A. Activity Description

The Receiving Warehouse will accommodate the reception of dry goods storage as well as frozen and refrigerated items, trays, lids, pallets, packaging materials and other commodities necessary in the manufacturing of the Tray Packs. As such, the major activities that must be incorporated into the Receiving Warehouse will necessarily include:

- Loading docks/ Truck Turnaround/ Rail Linkage
- Raw Material Storage
 - Dry goods
 - Freezer Storage
 - Refrigerator Storage
- Tray Pack Can storage
- Tray Pack Lid storage
- Fiberboard Box Storage
- Empty Pallet Storage
- Forklift Truck Storage

B. Activity Relationships

Most existing facilities the author visited in the initial Producibility Engineering and Planning (PEP) Project report did not have this clear separation from the Receiving and Shipping Warehouses and many circulation conflicts within the material handling system were evident, even though the low volume of Tray Packs at these facilities would seem to indicate that such separation was unnecessary. Given the potentially large volume of demand, this separation is felt to be essential.

The Automated Storage and Retrieval System (AS/RS) is designed to maximise the cubage of the Warehouse and utilize computer operations in the control of the picking and placing of raw materials. It is interconnected to the horizontal flow of goods via the conveyors and Automated Guided Vehicle System (AGVS).

The Receiving Warehouse is approximately 230 feet in length by 228 feet wide for a total square footage area of 52,440 square feet, including the loading and unloading docks. There are a total of 12,500 pallet loads in the current configuration. The number of pallet loads was based on the output volume of the Shipping Warehouse and a detailed argument is given in Chapter 8. Not only does the number of pallet loads reflect the ingredients for the Tray Pack menu items, this number reflects all the other items that could be stored in the Warehouse for the production of Tray Packs. These other items include the empty trays, lids, pallets, extra equipment, and supplies necessary for the general operation of the Tray Pack plant. See Figure 3 for a layout diagram of the Receiving Warehouse.

There are seven aisles in the AS/RS with the Freezer area in the central aisle and the two refrigeration areas encompassing it to maintain better climate control. The Freezer aisle is designed to provide an operating temperature of between \([-10^\circ F \sim -12^\circ F]\), while the Refrigeration aisles are designed to maintain a temperature of between \([30^\circ F \sim 40^\circ F]\).

Flanking the two refrigeration aisles are dry goods storage to complement and insulate the refrigerated items. This is a very compact arrangement and befits this type of automation.

Each pallet rack is capable of storing 9 racks each on its own level for a total height of 51.58 feet. With the roof truss, the overall height of the Warehouse is around 55 feet. See Figure 4 for a section through the Warehouse.

The pallet racks are double-wide in order to maximise the density of storage. Alternatively, single wide pallet racks are often used, but to demonstrate the capabilities of this system, a double wide pallet rack operation was chosen. The throughput of each automated aisle is designed for a maximum of 15 pallets per hour. The maximum load for the robot cart operating down each aisle is designed to be 3500 lb, with a rectangular cube the most likely storage shape.
Figure 3. Receiving Warehouse Layout Diagram
Figure 4 Section through receiving warehouse
The AS/RS and AGVS systems may be a rather expensive capital investment, so that one could make an argument for pallet racks and forklift trucks. Nevertheless, the tradeoff here is that the non-automated pallet rack system will require more square footage, more personnel to operate, and higher maintenance costs. To accommodate the same number of pallet loads within the Receiving Warehouse as is indicated in the drawings, a normal pallet rack and forklift truck system would require at least one-half more floor area. The area saving is explained in the area calculations within Chapter 8 on the discussion of the Shipping Warehouse. Also, the AS/RS and AGVS systems will allow the plant to operate 24 hours per day. In addition, the AS/RS reduces circulation inefficiencies and thus requires a smaller warehouse envelope. Finally, there are tax advantages that come with the AS/RS since it can be constructed as a separate building.

In the front of the Warehouse are the AGVS and conveyors which pickup and drop off the pallet loads. The AGVS vehicles are designed to operate in both directions to maximise flexibility in the delivery of materials. Figure 5 illustrates the relationship between the AGVS and the AS/RS. The AGVS is a key ingredient in the Material Handling System (MHS) of the plant. The AGVSs are designed to travel in both directions and move a pallet onto and off their loading/unloading beds to the various destinations throughout the plant. Certainly, forklift trucks may have to be used to supplement the AGVS system, yet, it is felt that the technology for controlling AGVS vehicles is such that the Tray Pack plant can be essentially designed around them. The AGVS vehicles and track interlink all areas of the plant. Appendix B illustrates some manufacturer's products for these AS/RS and AGVS systems which are becoming quite commonplace among food processing manufacturers.*

* I am indebted to Mr. William B. York of Eaton-Kenway who assisted with the initial layout and design of the Warehouse and the AGVS interface.
Figure 5 AS/RS and AGVS interface

CHAPTER 4. Preparation Area

A. Activity Description

The area items required in the Preparation Area include the following activities:

- Freeser Area (walk-in)
- Refrigerator Area (walk-in)
- Trimming and Dicing Rooms (large work tables)
- Cooking area (kettles/ ovens)
 - Separate cooking area for retortable food items.
 - Separate cooking area for oven-baked items.
- Mixing Vessels and other kitchen equipment such as tables, racks, and large carts.

B. Activity Relationships

The Preparation Area is designed to maintain the continuous flow of materials established for the plant operations. Refrigeration and Freeser areas are conveniently adjacent to the Warehouse and Can Assembly/Filling areas.

The Preparation Area is divided into two elements. The first is for the Oven Bake line preparation while the second is for the retortable items. Ovens, kettles, and other cooking equipment are combined into a utility wall so that power requirements for the two separate preparation areas are centralized, while the general work areas remain open and unobstructed. General cleanup of kettles, pots, and mixing vessels also links the two preparation elements.

The total square footage allocation for the Preparation Area is 23,546 square feet, with 13,908 square feet allocated to the Retortable item production and 9,638 square feet allocated for the Oven Bake production. The area is designed to maximize flexibility in the production of the different menu items so as little obstruction as possible is provided while traffic flows around the work areas. Figures 6, 7, and 8 illustrate the Preparation Area and its components.

The AGVS system flows around the Preparation Area providing pallets of raw materials from the AS/RS system, which then can be moved to the Filling area via the AGVS or via pumpable systems where appropriate.
Figure 6 General layout of preparation area
Figure 7 Retortable item preparation area
Figure 8 Oven bake preparation area
CHAPTER 5. Assembly Area

A. Activity Description

The Assembly Area constitutes the heart of the filling and closing operations of the Tray Packs manufacturing plant. All automated assembly of the contents of each can are to be carried out here. This area of the plant will be designed in much more detail than the other parts of the plant, since the current automated technologies of filling the Tray Packs are more critical at this stage of the Tray Pack manufacturing process.

The essential major activities included are the following:

- Can and lid setup areas
- Retort Filling Line
- Oven Bake Line
- Sterilization Loading/Unloading

B. Activity Relationships

This Assembly Area is the critical cost containment operation of the Tray Pack manufacturing process. Cans and lids travelling from the Warehouse join with the preparation of items and the line equipment. As mentioned previously, two types of high speed assembly lines are required for Tray Pack manufacturing operations. The Retort line which should operate at 40 cpm and the Oven Bake line which will operate at 20 cpm.

Let's discuss some of the detailed requirements for the Retort line, then the Oven Bake line. Some of the detailed activities which must occur for the Retortable line include:

Phase I. General Hand Placement, One-Step and Two Step Filling Line:

- i) Can feeding mechanism
- ii) Can washer
- iii) Conveyor to Gravity (Shaker type) Volumetric filler for large and irregular menu items.
- iv) Piston filler for certain viscous items.
- v) Liquid Filler for less-viscous items.
- vi) Automatic Check-Weigher and Reject machine.
- vii) Vertical lid feeder (500-600 lids).
- viii) Y-channel or similar distribution conveyor to transfer cans to available seamers.

Phase II. Closing Equipment

- i) Two automatic seamer(s), Yaguchi or equal.
- ii) Can washer at outfeed of each seamer
- iii) Conveyor to trolley loading equipment

Phase III. Trolley Loading Equipment:

- i) Accumulation Table and Conveyor to Sterilizer
- ii) Automated Loader/Unloader for Sterilizer

In general, it is felt that the conveyor for the Retortable line should be a 16 inch wide powered conveyor that originates from the can washing area and interconnects all the filling machinery all the
way to the accumulation table for eventual loading of the Tray Packs onto the UFS trolley cars. Part of the conveyor may be magnetised upon emergence from the Lid-Feeder/Crimping machine as one way to keep the lids on the Tray Packs to avoid the sloshing and spillage problems as the trays move down the line.

The working height of the first stage of the line should be 36 inches high for conveniently filling the cans either manually or automatically. The working height of the Yaguchi is 1143 mm (approximately 45 in) so that the Yaguchi seamers ideally need to be recessed in the floor so as to maintain a uniform working height of 36 inches.

In designing the line layout, it was important to keep track of the following design variables:

1. Conveyor line speed and Machine Operating speeds
2. Finite Buffers in front of the work stations
3. Placement of work stations (machines)
4. Conveyor topology

What basically exists in the assembly line is a series of work stations connected together where queuing of the cans occurs as they travel the length of the assembly line because of the different machine and conveyor speeds, finite buffers, and throughput requirements. Mathematically this is called a queuing network, where the cans receive service along the line at the various work stations as they are filled. By modelling the filling line as a queuing network, engineers can vary the above design variables to see what parameter settings allow them to achieve the design line throughput of 40 cans/minute (cpm). The buffer sizes between machines which were set at a minimum of seven feet and were verified with the use of a queuing network model. In other situations where the throughput would not have to be as high as 40 cpm then different buffer sizes would be appropriate. In Appendix C, a SIMAN simulation program, both the model frame and the experimental frame are included which was used to simulate the filling line to verify the line rate of 40 cpm and buffer sizes of 7 ft.

Some of the detailed activities which must occur for the Oven Bake line include:

Phase I. Oven Bake Filling:

i) Can feeding and washing mechanism

ii) Automatic parchment placement

iii) Piston Filler with overhead injection mixer.

iv) Automatic Check-Weigher and Reject machine

v) Horizontal/Vertical lid feeder (200-300 lids) conveyor to transfer cans to available seamers.

vi) One automatic crimper, modified Yaguchi or equal.

Phase II. Baking and Cooling:

vii) Oven

viii) Cooler

Phase III. Closing, Cooling and Loading:

ix) Closing machine at outfeed of cooling area.

x) Accumulation Table and loader onto Drying Racks with automated trolleys.

xi) Unloading conveyor to packaging area.
C. Activity Relationship Diagram

Figures 9 to 20 illustrate the general Retort filling line area and its related work areas.

The Filling line for the retortable items is basically designed in three stages. The first stage is the filling process where the cans are washed, filled, and weighed. The second stage of the process is where the lids on the cans are crimped or placed, and the cans are closed. Finally, in the third stage, the cans are washed, accumulated, then shunted to the loading conveyors for sterilisation.

In what follows, detailed drawings of many of the equipment items and their location relative to each other along the line are presented. The order of presentation roughly follows the actual line layout.

It should be pointed out that there are some new machines that need to be designed for this process. These include the Gravity Filler for the difficult items that are normally hand-placed within the trays, the Lid Placement and Crimping Machine, and the Oven Bake Drying Racks and Trolley System.

The Gravity Filler is designed as a rotary machine with 12 inch diameter shunts (or cones) which would place by gravity (or shake) the food items into the cans. Alternatively, this could be termed a Shaker Filler.

The Lid Placement and Crimping device would automatically place and either crimp the lids or magnetically place the lids on the tray as they move through the machine. Crimping or magnetically placing the lids is critical to minimising sloshing and spillage of the tray contents. It would accommodate a minimum of 500-600 tray lids and since the throughput of the line at 40 cpm, it will have a maximum of 2400 cph. Careful design of this machine is important so that the next stage of the filling process, the closing of the cans proceeds without machine breakdown or loss of the contents of the can.

What is indicated here are rough design ideas of how these machines would be placed in the Filling line process and only the barest details of their actual design. Companies that would most likely carry out the final design process for these new machines are listed in the Appendices.

The design of the Oven Bake line is similar to the line layout of Sterling Bakery in San Antonio, Texas since they have been the largest supplier of bakery items of Tray Packs. There are some differences however, mainly in the way the Tray Packs are accumulated after the cooling process and finally packaged. A device that needs to be designed is the Automated Trolley Drying Racks as indicated in Figure 20. Since the Tray Packs need to cool for about 1 hour after coming from the oven, a holding device is necessary before the cans are finally boxed, labelled, and palletised. This device is patterned after the automated accumulation and loading mechanism of the FMC UFS Sterilizer (see next Chapter).
Figure 9 General filling operations
Figure 10 First stage assembly filling line
Figure 11 Second stage assembly filling line
Figure 12 Second & third stage assembly filling line
Figure 13 Gravity filler
Figure 14 Piston and liquid fillers
Figure 15 Lid placement and crimper
Figure 16 Yaguchi layouts
Figure 17 Oven bake line layout
Figure 18 Oven bake filling operations
Figure 19 Oven bake closing operations
CHAPTER 6. Sterilisation Area

A. Activity Description

The Sterilisation Area houses the retorting equipment and boiler for accommodating the assembled Tray Packs during sterilisation. The Sterilisation Area is designed around the Food Machinery Corporation (FMC) retort, the Universal Food Sterilizer (UFS) with its trolley system for handling Tray Packs, the automated loading and unloading system, and a computer control system.

The detailed activities included in the area are the following:

- Loading/Unloading from Filling lines
- UFS Retort (or equal)
- Boiler Room.

B. Activity Relationships

The sterilisation process becomes one of the most crucial design determinants in achieving the desired throughputs of 40 cpm and eventual production volume for the plant. Even with the UFS Continuous steriliser, there are capacity limitations which must be addressed.

In the assumptions required for sizing the UFS, it can be shown that the trolleys circulating through the UFS are only capable of holding 144 cans. This is due to the size of the Tray Packs and the automated loading/unloading process.

If automated loading/unloading is not required, then larger capacities on the trolleys are possible. However, this requires hand-placement of the trays after the closing operation, and this is not practical in a high-speed manufacturing operation.

In addition, if one compares the UFS with FMC’s batch retorts, the Continuous Food Sterilizer (CFS) Model Number 24, which is capable of holding 4 trolleys of 144 cans each, one can get a better idea of the capability of the UFS as opposed to traditional batch retorts. This CFS No. 24 batch retort has a larger capacity than most other batch retorts, 576 Tray Packs, as opposed to 256 Tray Packs which is common with Rotomat and LeGarde. In the comparison table which follows, one should multiply by a factor of two in order to get the equivalent number of batch retorts, e.g., Rotomat or Legarde that would be necessary to accommodate the throughput of the plant.

The following data in Table 2 were generated by a representative from FMC.

Table 2. Sterilisation Process Specifications

<table>
<thead>
<tr>
<th>Cans per Minute (cpm)</th>
<th>Cook Time</th>
<th>Cooling Time</th>
<th>Trolleys</th>
<th>Overall Length</th>
<th>Loaders Unloaders</th>
<th>CFS Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>50</td>
<td>30</td>
<td>9</td>
<td>59</td>
<td>1 each</td>
<td>4 CFS</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>30</td>
<td>14</td>
<td>79</td>
<td>1 each</td>
<td>6 CFS</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>30</td>
<td>18</td>
<td>95</td>
<td>1 each</td>
<td>9 CFS</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>30</td>
<td>27</td>
<td>131</td>
<td>1 each</td>
<td>11 CFS</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
<td>30</td>
<td>25</td>
<td>123</td>
<td>2 each</td>
<td>11 CFS</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>30</td>
<td>38</td>
<td>175</td>
<td>2 each</td>
<td>16 CFS</td>
</tr>
</tbody>
</table>

For cook times ranging between 50 and 80 minutes, the 60 cpm throughput rate is really not feasible for one UFS, rather two UFS sterilizers would be required for the Tray Pack facility. Two UFS sterilizers may be justifiable in a facility that is producing more than 17 million trays/year, but this study will not consider such a possibility.

This limitation of the UFS Sterilizer is quite important to the layout of the plant as well as future studies. The reason the UFS is not capable is due to its overall length and number of cars required. Beyond 30 trolley cars, the representative from FMC believes that the UFS becomes inefficient both
from a mechanical engineering (heat transfer) point of view and from an engineering economy point of view.

It can also be argued that below 4-5 CFS batch sterilizers or (8-10 Rotomat equivalents), one UFS is not cost effective. Thus, unless the Filling line operates at 20 cpm for an 80 minute cook time, one UFS is not justifiable. These lower bounds of 20 cpm and 80 minute cook times are really quite conservative since many of the products are likely to require at least 80 minute cook times. This is basically a cost-effectiveness argument since each CFS 24 costs around $225,000 without any automated loading and unloading equipment and material handling system while the equivalent UFS costs around $1.2 million. For five CFS equivalents, the automated loading/unloading as well as the costs of water and energy make the UFS more cost-effective.

Also, the UFS is a dedicated line system, so that multiple products cannot be run on the separate lines feeding the UFS. Rather, whatever assembly lines feed the UFS, they should be a single product. Thus, in order to schedule production on a UFS, the production periods must be scheduled for one product, shut down, then set up for another product, otherwise, inefficiencies will result. Finally, multiple products would require some area for queuing of the trays, and this may not be suitable from a Food Science viewpoint since critical gases may build up in the tray before it is sterilized.

For the particular configuration shown in Figures 21 through 24, the following detailed specifications regarding the design and operations of the system are provided.

The utility requirements for the UFS are as given in Table 3:

<table>
<thead>
<tr>
<th>TABLE 3. Utility Requirements for Universal Food Sterilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam: Approximately 0.15 ~ 0.25 Kg steam/Kg Product</td>
</tr>
<tr>
<td>Water: Approximately 2.5 ~ 3.41 water/Kg product (.3 ~ .4gal/lb)</td>
</tr>
<tr>
<td>Air @4.22Kg/cm² (60psi)</td>
</tr>
<tr>
<td>A. Approximately 2.12m³/min. ~ 5.66m³/min (75 ~ 200CFM)</td>
</tr>
<tr>
<td>Electrical</td>
</tr>
<tr>
<td>Cars between the locks - (per car)</td>
</tr>
<tr>
<td>Pump for hot well</td>
</tr>
<tr>
<td>Pump for disch lock to hot well</td>
</tr>
<tr>
<td>Pump for pressure cool</td>
</tr>
<tr>
<td>Drive Screws(total)</td>
</tr>
<tr>
<td>Pump for atmospheric cool (per car)</td>
</tr>
<tr>
<td>Hydraulic System</td>
</tr>
</tbody>
</table>

Personnel: Only one operator is needed to run the UFS.
Estimated Costs: The UFS as configured in the drawings with 27 cars between locks, one loader and unloader will cost approximately $2,674,000. This includes 54 cars total.

The Boiler Room is located adjacent to the UFS so that the heated water supply required for the UFS is conveniently located so as to minimize piping distances.

C. Activity Relationship Diagram

As indicated in Figure 21, the UFS is 131 feet long with 27 trolley cars, each holding 144 Tray Packs. The infeed conveyors are designed to handle Tray Packs at 40 cpm. Trolleys circulate through the UFS in clockwise rotation being incrementally moved through the UFS by a worm gear drive.

Cooling of the trays occurs at the end of the cooking cycle, then the trolleys are moved to the unloading conveyor where they are fed to the packaging and palletising area.
Figure 21 Sterilisation area layout
Figure 22 UFS loading/unloading area
Figure 23 UFS trolley discharge and cooling area
CHAPTER 7. Packaging Area

A. Activity Description

This *Packaging Area* of the plant will house a number of pieces of automated machinery designed to label, box, palletize and sheathe the Tray Packs ready for shipment. In addition, the Computer Controls and Incubation Room are located here since they are centrally located to the entire plant operation as can be seen in the layout diagram.

The *Packaging Area* should include:

- Automated Case Former
- Automated Pad Inserter
- Automated Can Labelling/Marking
- Automated Conveyor Transfer Equipment
- Robot Palletizer/Depalletizer
- Pallet Sheathing Equipment
- Computer Controls Room
- USDA Laboratories & Incubation Room

B. Activity Relationships

This *Packaging Area* of the plant is directly adjacent to the *Sterilization Area* and the Shipping Warehouse. Automated conveyors link the Sterilizer with the *Packaging and Palletizing areas* so as to minimize material handling distances.

The *Packaging Area* is designed so that the retortable items have their own packaging operations as well the the Oven Bake items. This duplication is felt to be necessary in order to streamline operations as well as accommodate the different throughput rates of the products.

The AGVS system is integrally linked to this *Packaging Area* so that once the pallets are sheathed they can be moved to the Shipping Warehouse.

The *USDA Laboratories & Incubation Room* is adjacent to this area so that the USDA scientists may have their own work areas (offices with bath & lockers) nearby the production area. Also, the Incubation room is adjacent to this lab area so that samples drawn from the production lots can be safely stored in a separate controlled environment.

Finally, the *Computer Controls* room for the operation of the entire plant is located in this area. Separate control systems for the AS/RS, AGVS, UFS and other automated systems throughout the plant would be networked together in this room. The *Computer Controls* room is convenient to the entire plant operation, for *visual and physical* control, yet separate to maintain *climate control* and *security*.

Figure 25 illustrates the *Packaging Area*, and Figures 26 through 28 the component parts.
Figure 28 Packaging area layout
Figure 26 Retort packaging line
Figure 27 Oven bake packaging line
Figure 26 Robotic palletizer w/ AGVS interface
CHAPTER 8. Shipping Warehouse

A. Activity Description

The Shipping Warehouse constitutes the end-point of the Tray Pack assembly process. As in the Receiving Warehouse, an AS/RS and AGVS system are used to manipulate the pallets accommodating the Tray Packs.

The detailed parts of the Shipping Warehouse include:

- Storage for Tray Packs ready for shipping
- Damaged Can Storage
- Shipping Dock/ Truck Turnaround/ Rail Linkage
- Garbage Collection

B. Activity Relationships

The Shipping Warehouse is essentially a mirror-image of the Receiving Warehouse but only accommodating the completed Tray Pack assemblies. Because of the unusual requirement to store production batches for 20 days, this Warehouse should be sized to accommodate production for 20 days.

Based on a tabular breakdown in the first part of this report, 20 days production would require a minimum of 1,365,006 Tray Packs for the 44 menu items. This figure does not include damaged or returned cans, holdover shipments or excess production. In order to finalize the Shipping Warehouse design figure to include these contingencies, let’s perform the following analysis.

If we consider that the Shipping Warehouse has a capacity of K units and it must store n different commodities for which the stock items are known, then the required maximum capacity of the i^{th} commodity k is given as:

$$
\sum_{i=1}^{n} k_i = K \quad \text{or} \quad K = \sum_{i=1}^{n} k_i + r \sum_{i=1}^{n} \sigma_i
$$

where r = a risk factor associated with the stock distribution

Let’s establish the validity of the above formula.

The proportion of capacity taken up by the maximum required for the i^{th} item is given as:

$$
\alpha_i = \frac{k_i}{K}
$$

Further, the average stock of the i^{th} item is given by k_i with the total average stock κ, given by:

$$
\sum_{i=1}^{n} k_i = \kappa
$$

For our problem, if the production of Tray Packs is symmetrical, then the distribution of total stock will approach the normal distribution with average equal to the sum of the averages and variances equal to the sum of the variances, i.e.

$$
K = \sum_{i=1}^{n} k_i + r \sum_{i=1}^{n} \sigma_i
$$

Finally, with an estimate of the standard deviation of production on each of the Tray Pack items, we can estimate the expected maximum production. As a method of estimating the standard deviation, we shall employ the coefficient of variation which is given by:

$$
\nu = \frac{\sigma}{\mu}
$$
If we assume ν to be approximately 0.25, which assumes a low variance, then σ will be approximately 341,252 Tray Packs, given an average total output of 1,365,006 trays per 20 day cycle. If further, we assume a risk factor of 3 (Three sigma-limits) then, the maximum expected demand will be 2,388,760 trays per 20 day cycle. This is a reasonable estimate of the maximum production and will be used to size the overall warehouse.

In comparison to conventional technology to warehouse Tray Packs on pallets, in order to accommodate 2,400,000 Tray Packs stacked 48 cartons to a pallet, approximately 12,500 pallet loads would be required for a grand total of around 109,125 square feet (330.54 feet on a square side). Aisles between pallet racks are 10 feet wide and the total height of the stacked pallets is limited by the vertical lifting capabilities of the conventional fork-lift truck. The Shipping Warehouse indicated in the diagram of Figure 29 accommodates the same number of pallets as a conventional warehouse in only 59,774 square feet. This is a gross savings of 49,351 square feet, a savings of 45.2%.

Finally, if an a AS/RS warehouse were chosen with a higher ceiling, additional savings in square footage construction costs would occur. While the main emphasis of this report has not been on space saving economies for storage and material handling of Tray Packs, such type of automation as is possible with AS/RS and AGVS systems should prove to be quite effective. An illustration of the AGVS system with the Packaging Area is Figure 30.
Figure 29 Shipping warehouse

Figure 29 Shipping warehouse
Figure 30 AGVS interface with packaging area
CHAPTER 9. Administration/Staffing

A. Activity Description

The number of activities included within this activity category are quite extensive given the range of duties the staff must carry out.

- Managerial Offices
- Secretarial
- Plant Engineer
- Quality Assurance
- General Engineering
- Maintenance & Janitorial Shops
- Test Kitchen
- Visitor Reception
- Cafeteria
- Parking (Visitors/Staff)

B. Activity Relationships

The Administrative/Staffing area is located in the plant where it may be least affected by the expansion of the plant operations, however, it is centrally located to the plant operations for maximum security and control reasons. The USDA Laboratories have already been included along with the Incubation room requirements covered in Chapter 7.

The Administrative area is 429 feet long by 49 feet wide, or roughly 21,021 square feet. This is a generous allotment but considering the range of functions including expansion over the years, this allocation is not unreasonable. Since the focus of the project has been on the manufacturing layout, no detailed layout for the Administrative/Staffing area has been provided other than its general location and configuration which is indicated on Figure 2.
CHAPTER 10. Summary and Conclusions

In order to conclude this report, a final summary cost and personnel estimate of the plant together with specific recommendations and issues for future study will be presented.

A. Cost and Personnel Estimate

The Cost & Personnel Estimate is broken down into the main activity areas within the plant. The building is to be a pre-engineered structure so the cost/square foot of the construction is based on this concept. In general, a cost per square foot of $45.00 is used to estimate the cost of the building. Besides this, each individual equipment item of major significance is also itemised, in particular, the equipment items of the Assembly/Filling Area. Along with the cost itemisation, the number of personnel necessary to operate and maintain the equipment is estimated.

Table 4. Activity and Cost Estimate

<table>
<thead>
<tr>
<th>Items</th>
<th>Quantity</th>
<th>Personnel</th>
<th>Cost/Quantity</th>
<th>Total $</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Receiving Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o AS/RS Building</td>
<td>52,440 s.f.</td>
<td>2</td>
<td>$500,000 per aisle</td>
<td>3,500,000</td>
</tr>
<tr>
<td>-(Racks, Refrigeration & AGVS Trucks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>3,500,000</td>
</tr>
<tr>
<td>II. Preparation Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Multi-Step Building Area</td>
<td>13,908 s.f.</td>
<td>10</td>
<td>$45.00/s.f.</td>
<td>625,860</td>
</tr>
<tr>
<td>o Oven-Bake Preparation Area</td>
<td>9,638 s.f.</td>
<td>10</td>
<td>$45.00/s.f.</td>
<td>433,710</td>
</tr>
<tr>
<td>o Wall-Mounted Equipment</td>
<td></td>
<td></td>
<td>$100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>-(Ovens, Kettles, Sinks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>1,159,570</td>
</tr>
<tr>
<td>III. Filling Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Building Area</td>
<td>37,017 s.f.</td>
<td></td>
<td>$45.00/s.f.</td>
<td>1,665,765</td>
</tr>
<tr>
<td>-(includes Sterilization Area)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Gravity Filler</td>
<td>1</td>
<td></td>
<td>$50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>o FMC #676 Piston Filler</td>
<td>2</td>
<td></td>
<td>$120,000</td>
<td>240,000</td>
</tr>
<tr>
<td>o FMC #676 Liquid Filler</td>
<td>2</td>
<td></td>
<td>$90,000</td>
<td>180,000</td>
</tr>
<tr>
<td>o Yamato CMO 3-L Check-Weigh</td>
<td>2</td>
<td></td>
<td>$21,500</td>
<td>43,000</td>
</tr>
<tr>
<td>-(with Air-pusher reject)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o Yaguchi Vertical Lid Feeder</td>
<td>1</td>
<td></td>
<td>$18,000</td>
<td>18,000</td>
</tr>
<tr>
<td>o Yaguchi Oven-Bake Crimper</td>
<td>1</td>
<td></td>
<td>$30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>o Yaguchi YR-SV Seamers</td>
<td>3</td>
<td></td>
<td>$150,000</td>
<td>450,000</td>
</tr>
<tr>
<td>o Ovens for Oven Bake items</td>
<td>1</td>
<td></td>
<td>$150,000</td>
<td>150,000</td>
</tr>
<tr>
<td>o Cooling Line for Oven Bake items</td>
<td>1</td>
<td></td>
<td>$150,000</td>
<td>150,000</td>
</tr>
<tr>
<td>o Oven-Bake Trolley Racks</td>
<td>1</td>
<td></td>
<td>$50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>o Can Washers</td>
<td>4</td>
<td></td>
<td>$30,000</td>
<td>120,000</td>
</tr>
<tr>
<td>o Powered Conveyors</td>
<td>16" x 100ft.</td>
<td></td>
<td>$32.00 per foot</td>
<td>3,200</td>
</tr>
<tr>
<td>-(Powered Belt conveyor on roller)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>3,149,965</td>
</tr>
</tbody>
</table>

53
IV. Sterilisation Area

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMC-UFS Sterilizer</td>
<td>1</td>
<td>1</td>
<td>$2,674,000</td>
<td>$2,674,000</td>
</tr>
<tr>
<td>Boiler Room</td>
<td></td>
<td>1,107 s.f.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-(s.f. costs already included)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$2,674,000</td>
</tr>
</tbody>
</table>

V. Packaging Area

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC-APS Automated Case Former</td>
<td>2</td>
<td>1</td>
<td>$33,000</td>
<td>$66,000</td>
</tr>
<tr>
<td>Automated Pad Inserter</td>
<td>2</td>
<td>1</td>
<td>$32,000</td>
<td>$64,000</td>
</tr>
<tr>
<td>Can Labeller</td>
<td>2</td>
<td>1</td>
<td>$10,290</td>
<td>$20,580</td>
</tr>
<tr>
<td>Roller Conveyors</td>
<td>2Q</td>
<td>48" x 92 ft</td>
<td>$190.00/ft</td>
<td>$34,960</td>
</tr>
<tr>
<td>-(Powered roller Conveyor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMC Model 500 Robotic Palletizers</td>
<td>2</td>
<td>1</td>
<td>$60,000</td>
<td>$120,000</td>
</tr>
<tr>
<td>ABC Pallet Sheaters</td>
<td>2</td>
<td>1</td>
<td>$35,000</td>
<td>$70,000</td>
</tr>
<tr>
<td>Computer Controls Room</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-(s.f. & eqpt. costs already included)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incubation Room</td>
<td>875</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-(s.f. costs already included)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$375,540</td>
</tr>
</tbody>
</table>

VI. Shipping Warehouse

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Unit Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASRS Building</td>
<td>2</td>
<td>52,440 s.f.</td>
<td>$500,000/isle</td>
<td>$3,500,000</td>
</tr>
<tr>
<td>-(Racks, AGVS Equipment, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>$3,500,000</td>
</tr>
</tbody>
</table>

VII. Administrative/Staffing

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Rate/Year</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Area</td>
<td>21,021</td>
<td>21,021 s.f.</td>
<td>$45.00/s.f.</td>
<td>945,945</td>
</tr>
<tr>
<td>Managerial</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secretarial</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering & Qual. Cntrl.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance & Janitorial</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Kitchen</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cafeteria</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>945,945</td>
</tr>
</tbody>
</table>

VIII. Building Services

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Rate/Year</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing, Mechanical, and Electrical</td>
<td>105,201</td>
<td>105,201 s.f.</td>
<td>$15.00/s.f.</td>
<td>1,578,015</td>
</tr>
<tr>
<td>VIII. Sub-Total</td>
<td></td>
<td></td>
<td></td>
<td>1,578,015</td>
</tr>
</tbody>
</table>

IX. Grand Totals

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel Totals</td>
<td>72</td>
<td></td>
<td>16,883,035</td>
</tr>
<tr>
<td>Cost Totals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cost for all the plant and equipment comes out to around $80.36 per square foot for the entire Tray Pack facility.
B. Specific Recommendations

A partial list of recommendations appropriate for continued examination beyond the current project report is presented below. The recommendations are broken down into three major categories, namely: Engineering & Planning, Engineering Design, and Engineering Control.

B.1. Engineering & Planning

1. Systemwide Cost Analysis

A system-wide cost analysis of the production, manufacturing and distribution of Trays Packs as currently carried out by manufacturers would begin to pinpoint problem areas and suggest where cost savings could be enacted to reduce and control the overall costs of manufacturing Tray Packs.

Supporting Information:

As is apparent from this study and the past ones, there are many economic and financial aspects of the production, manufacturing and distribution of Tray Packs that could be improved upon. Cost and Quality control pervades all facets of the Tray Pack process: from the distribution and warehousing of raw materials, preparation and assembly of menu items, closing and sterilisation of the cans, and onto the eventual packaging and shipping of the completed assemblies. A detailed survey and data base construction of current cost information for the entire Tray Pack manufacturing process would clearly aid in the prioritisation of efforts to reduce and control costs within the program.

2. Optimization Software

A number of problems with Tray Pack manufacturing and production process lend themselves to software optimisation development at the system planning level, among which the following problem area appears most relevant: Tray Pack Facility Optimisation

Supporting Information:

As a follow-up analysis building upon the results of the software demand analysis program entitled NATPRO, an optimisation analysis could be performed to examine the number of facilities and production lines necessary to meet Tray Pack demand with minimum cost. The optimisation program would have to consider the producer’s production rates for the individual items and any facility capacity constraints impinging on the required demand for the product. Linear and Integer Programming models could be constructed to carry out this optimisation analysis.

B.2 Engineering Design

The set of recommendations contained in this section concerns the detailed equipment designs for the Tray Pack lines. While the present report focused on the location and configuration of the lines within the facility, time has not permitted the detailed investigation of the mechanical design of each piece of equipment as noted in the report.

1. Spillage Problem:

Identify and develop methods and/or devices to control the spillage problems in transferring trays into the seamer thus enabling all products to be produced at a constant, maximum rate.

Supporting Information:

Current production rates are limited mainly by the speed of the seaming operation. There are two factors that influence seaming rates:
The inherent maximum speed of the machine (which presently ranges from approximately four to thirty cans per minute)

- Spillage problems met in transferring cans with low viscosity products from the last filler into the seamer.

Producers are currently limited by spillage problems to about eight cans per minute on some items. If lids could be placed on the cans and held in place until the can is in the seamer, production speeds for all products should increase to at least 20 cans per minute. One possible method of holding the lids in place would be to develop and use a clip attachment and removal system (the removal system becoming part of the seamer itself).

2. Filling Problem:

Adopt or develop mechanical aids to speed tray filling operation.

Supporting Information:

At the present time, placement of specific count items into the trays is done by hand. The large number of menu items precludes development of devices to totally replace hand placement. Moreover, an important inspection operation is eliminated if such totally mechanical placement is achieved. Nevertheless, collection and arrangement of pieces into a tray loading pattern is practiced in a variety of food processing lines. Selection and implementation of equipment to facilitate such preassembly should allow labor and physical space requirements for tray filling to be reduced. The Gravity and Shaker Filler concepts which have been indicated within this report represent the type of items needed.

Problems involved in placement of small particulates and pumpable liquid and semi-liquid foods are not as difficult to overcome as those with specific count items. Nevertheless, problems with uniformity, head space control, and cleanliness of the can seal area that were raised by various producers, point to the need for further development work in this area as well.

3. Experimental Line Development:

Develop and assemble a full speed developmental and demonstration production line based on the design concepts of the present report.

Supporting Information:

In the past, there has been little sharing of information between competitive producers of Tray Pack foods. Moreover, as contracts to date have been for small quantities, there has been little incentive to investigate semi-mechanised filling devices, lid clip arrangements, and work station improvements. Proper investigation of these topics would benefit all producers and would prevent duplication of research efforts if performed in a neutral environment.

B.3 Engineering Control

The recommendations in this section concern control of producibility, namely the inventory, scheduling, line reliability, congestion and maintainability of the production lines related to producibility. Since most producers did not have well-engineered production lines, control problems of Tray Packs have not really emerged as key issues at the current time. Given our understanding of the type of control problems normally associated with production lines, these problems will eventually surface, so preliminary planning and software development in this area will eventually have some long range impacts. There are two sets of recommendations in this area, a) Multi-Product Batch Scheduling and b) Digital Simulation of the Product Lines.

1. Multi Product Batch Scheduling

Develop software for scheduling of multi-product items within food processing plants so that due dates and resources within the plant are optimised.
Supporting Information:

As Tray Pack volume increases, utilization of resources (e.g., equipment, labor, space) will intensify between Tray Pack items and commercial items produced at a site. Multi-product resource scheduling would be concerned with developing and utilizing software tools so that Tray Pack items and commercial items could be scheduled simultaneously and due dates and resource utilization could be optimized. Also, these software tools would be developed for personal computers so that producers would have ready, easy access to them.

2. Digital Simulation of Product Lines

Develop simulation and analytical models for the production lines via a digital simulation language and other network flow models so that changes in technology, line configuration, workstation changes can be examined as to their impact on production rates. This type of simulation analysis is not only useful for checking actual production rates before the lines are built, but for controlling problems associated with machine breakdowns, congestion, and overall line reliability.

Supporting Information:

Flow analyses could be developed for classes of tray items, and ultimately, each tray item if necessary. If a simulation of each item were developed, this information could be shared between producers as they are developing similar product lines so that producers do not make the same mistakes previously made by other producers, especially as new equipment items, labor charges are made, etc. The programs could be part of a technology transfer so that individual producers could have the software available on Personal Computer (PC) micros to set-up and test the line configurations before actually constructing them.

C. References

2. Research and Development Associates for Military Food and Packaging Systems, Inc. Minutes of Committees and Subcommittees of the R & D Associates, Half Steam Table, Table Tray Committee, 10 (Fall 1985).

4. Information provided by the FMC Corporation, Mr. Paul J. Aguilar, Applications Engineer, Correspondence on November 19, 1985.

Appendix A. Manufacturers Listing

The following Appendix itemises manufacturers of specialised equipment critical to the operation of the plant. The manufacturer's are associated with the following four areas of the plant: The Receiving and Shipping Warehouses, the Preparation and Filling Area, The Sterilisation Area, and finally, the Packaging Area.

Receiving and Shipping Warehouses

AS/RS and AGVS SYSTEMS

Eaton-Kenway
attn: Mr. William B. York
515 East 100 South
P.O. Box 4250
Salt Lake City, Utah 84102

Hartman Material Handling Systems, Inc.
attn: Mr. Edward J. Budill
66 School Street
Victor, New York 14564

Jervis B. Webb Company
attn: Mr. Carl M. Kaltwasser
Executive Plaza
540 Pennsylvania Avenue, Suite 321
Fort Washington, Pennsylvania 19034

SPS Technologies
attn: Mr. Charles D. Wenzel
Township Line Road
Hatfield, Pennsylvania 19440

Litton UHS
3101 Old Hayneville Road
P.O. Drawer 177
Montgomery Alabama 36195

PREPARATION AND FILLING AREAS

General Preparation & Filling Equipment

FMC Corporation
attn: Mr. Dave Isaacs
103 East Maple Street
Hoopeson Illinois 60943

Groen Division/Dover Corporation
1900 Pratt Boulevard
Elk Grove Village, Illinois 60007

Fillers

Solbern Corporation
attn: Mr. Bill Kalmar
8 Kulick Road
Fairfield, New Jersey 07006
Packaging Research Corporation
attn: Mr. Rodney D. Wicklund
2852 S. Tejon
Englewood, Colorado 80110

Check Weighers/Rejects
Barkley & Dexter Laboratories, Inc.
attn: Mr. Sam Cudgel
50 Frankfort Street
P.O. Box 307
Fitchburg, Massachusetts 01420

Lid Feeder, Crimper & Seamers
Industrial Marketing International
attn: Mr. Heins Grossjohan
P.O. Box 503 - 1-3 Broad Street
Kinderhook, New York 12106

FMC Corporation
attn: Mr. Richard Houtser
Food Processing Machinery Division
2300 Industrial Avenue Box A
Madera, California 93639

Can Washers
Alvey Washing Equipment
attn: Harley Huddle
11337 Willimason Road
P.O. Box 41031
Cincinnati, Ohio 45241-0031
(513) 489-3060

STERILIZATION AREA

Retorting Equipment
FMC Corporation
attn: Mr. Richard Houtser
Food Processing Machinery Division
2300 Industrial Avenue Box A
Madera, California 93639

Industrial Marketing International
attn: Mr. Heins Grossjohan
P.O. Box 503 - 1-3 Broad Street
Kinderhook, New York 12106

Packaging Area

Case Packers, Pad Inserters, and Sheathing Equipment
ABC Packaging Corporation
attn: Mr. James Hooker
811 Live Oak Street
Tarpon Springs, Florida 33589
Western Packaging Systems, Ltd
attn: Mr. John J. Fisher
P.O. Box 2287
Naperville, Illinois 60565

Palletisers and Conveyors

FMC Corporation
attn: Mr. Jim Klaber
103 East Maple Street
Hoopeston Illinois 60942

Litton UHS
3101 Old Hayneville Road
P.O. Drawer 177
Montgomery Alabama 36195

Labellers

Dalemark Industries Inc.
attn: Maria Rau
950 Airport Road
Lakewood, New Jersey 08701

Anker Labelers Corp.
Briggs Road
Mt. Laurel, New Jersey 08054

American Technologies
1301 Dugdale Road
Waukegan, Illinois 60085
Appendix B. Selected Product Literature

The following drawings and figures (B.1 through B.4) were taken from product literature supplied by the following manufacturers:

Eaton-Kenway Corporation, maker of AS/RS and AGVS equipment.

FMC Corporation maker of robotic palletizers.

These products were selected because of their unusual design features and relevance to the details of the plant design. Other manufacturers listed in the previous Appendix also make similar or related types of equipment.
Figure B.1 AS/RS Aisles w/ AGVS interface
Figure B.2 AS/RS Aisles
Figure B.4 Robotic Palletizers
SIMAN MODEL PROCESSOR RELEASE 3.0
COPYRIGHT 1985 BY SYSTEMS MODELING CORP.

BEGIN;
10 CREATE:ED(1):MARK(1);
20 COUNT:1;
;
30 QUEUE,1;
40 SEIZE:CONV1;
50 DELAY:ED(2);
60 QUEUE,8;
70 SEIZE:WASHER1;
80 RELEASE:CONV1;
90 DELAY:ED(3);
100 QUEUE,3;
110 SEIZE:CONV2;
120 RELEASE:WASHER1;
130 DELAY:ED(4);
140 QUEUE,4;
150 SEIZE:CONV3;
160 RELEASE:CONV2;
170 DELAY:ED(5);
180 QUEUE,5;
190 SEIZE:GRAVITY;
200 DELAY:ED(6);
210 QUEUE,6;
220 SEIZE:CONV4;
230 RELEASE:GRAVITY;
240 RELEASE:CONV3;
250 DELAY:ED(7);
260 QUEUE,7;
270 SEIZE:CONV5;
280 RELEASE:CONV4;
290 DELAY:ED(8);
300 QUEUE,8;
310 SEIZE:PISTON;
320 DELAY:ED(9);
330 QUEUE,9;
340 SEIZE:CONV6;
350 RELEASE:PISTON;
360 RELEASE:CONV5;
370 DELAY:ED(10);
380 QUEUE,10;
390 SEIZE:CONV7;
400 RELEASE:CONV6;
410 DELAY:ED(11);
420 QUEUE,11;
430 SEIZE:LIQUID;
440 DELAY:ED(12);
450 QUEUE,12;
460 SEIZE:CONV8;
470 RELEASE:LIQUID;
480 RELEASE:CONV7;
490 DELAY:ED(13);
500 QUEUE,13;
510 SEIZE:CHECK;
520 RELEASE:CONV8;
530 DELAY:ED(14);
540 BRANCH,1:
550 WITH,.05,SCRAP:
560 SCRAP COUNT:5;
570 ELSE,CONTINUE;
580 RELEASE:CHECK:DISPOSE;
590 CONTINUE QUEUE,14;
600 SEIZE:CONV9;
610 RELEASE:CHECK;
620 DELAY:ED(15);
630 QUEUE,15;
640 SEIZE:LIQFID;
650 RELEASE:CONV9;
660 DELAY:ED(16);
670 BRANCH,1:
680 WITH,.5,YAGUCHI1:
690 ELSE,YAGUCHI2;
700 YAGUCHI1 QUEUE,16;
710 SEIZE:CONV10;
720 RELEASE:LIQFID;
730 DELAY:ED(17);
740 QUEUE,17;
750 SEIZE:YAGUCHI1;
760 RELEASE:CONV10;
770 DELAY:ED(18);
780 QUEUE,18;
790 SEIZE:CONV12;
800 RELEASE:YAGUCHI1;
810 DELAY:ED(19);
820 QUEUE,19;
830 SEIZE:WASHERS;
840 RELEASE:CONV12;
850 BRANCH,1:
860 ALWAYS,DELAY;
870 YAGUCHI2 QUEUE,20;
830 SEIZE:CONV11;
840 RELEASE:LIDFID;
850 DELAY:ED(20);
860 QUEUE,21;
870 SEIZE:YAGUCHI2;
880 RELEASE:CONV11;
890 DELAY:ED(21);
900 QUEUE,22;
910 SEIZE:CONV13;
920 RELEASE:YAGUCHI2;
930 DELAY:ED(22);
940 QUEUE,23;
950 SEIZE:WASHER2;
960 RELEASE:CONV13;
970 DELAY DELAY:ED(23);
980 RELEASE:WASHER2;
990 TALLY:1,INT(1);
1000 COUNT:2:DISPOSE;
END;
BEGIN;
10 PROJECT, ASSEMBLY, DESAI, 1/28/86;
20 DISCRETE, 1000, 2, 25;
30 DISTRIBUTIONS: 1, CO(1):
 2, UN(2, 1):
 3, CO(3):
 4, UN(4, 1):
 5, UN(5, 1):
 6, CO(6):
 7, UN(7, 1):
 8, UN(8, 1):
 9, CO(9):
 10, UN(10, 1):
 11, UN(11, 1):
 12, CO(12):
 13, UN(13, 1):
 14, CO(14):
 15, UN(15, 1):
 16, CO(16):
 17, UN(17, 1):
 18, CO(18):
 19, UN(19, 1):
 20, UN(20, 1):
 21, CO(21):
 22, UN(22, 1):
 23, CO(23):
 24, EX(24, 1):
;
40 RESOURCES: 1, CONV1, 7:
 2, WASHER1:
 3, CONV2, 7:
 4, CONV3, 5:
 5, GRAVITY:
 6, CONV4, 7:
 7, CONV5, 5:
 8, PISTON:
 9, CONV6, 7:
 10, CONV7, 5:
 11, LIQUID:
 12, CONV8, 7:
 13, CHECK:
 14, CONV9, 7:
 15, LIDFID:
16, CONV10, 7:
17, CONV11, 7:
18, YAGUCHII:
19, YAGUCHII:
20, CONV12, 5:
21, CONV13, 3:
22, WASHER8;

50 PARAMETERS:1, 1.35:
2, 6.9, 7.1:
3, 6.9, 7.1:
4, 6.9, 7.1:
5, 9.4, 5.1:
6, 1.0:
7, 6.9, 7.1:
8, 6.9, 7.1:
9, 1.0:
10, 6.9, 7.1:
11, 6.9, 7.1:
12, 1.0:
13, 6.9, 7.1:
14, 1.0:
15, 6.9, 7.1:
16, 1.0:
17, 6.9, 7.1:
18, 2.7:
19, 6.9, 7.1:
20, 6.9, 7.1:
21, 2.7:
22, 2.9, 3.1:
23, 1.0:
24, 0.0;

60 COUNTERS:1, TOTAL ARRIVALS:
2, TOTAL DEPARTURES:
3, TOTAL SCRAPPED;
70 TALLIES:1, TIME IN SYSTEM;
80 DSTAT:1,NQ(1), Q FOR CONVEYOR1:
 2, NQ(2), Q FOR WASHER1:
 3, NQ(3), Q FOR CONVEYOR2:
 4, NQ(4), Q FOR CONV3:
 5, NQ(5), Q FOR GRAVITY FILLER:
 6, NQ(6), Q FOR CONV4:
 7, NQ(7), Q FOR CONV5:
 8, NQ(8), Q FOR PISTON FILLER:
 9, NQ(9), Q FOR CONV6:
10, NQ(10), Q FOR CONV7:
11, NQ(11), Q FOR LIQUID FILLER:
12, NQ(12), Q FOR CONV8:
13, NQ(13), Q FOR CHECK:
14, NQ(14), Q FOR CONV9:
15, NQ(15), Q FOR LIDFIL:
16, NQ(16), Q FOR CONV10:
17, NQ(17), Q FOR YAGUCHII:
18,NQ(18),Q FOR CONV12:
19,NQ(19),Q FOR WASHER2:
20,NQ(20),Q FOR CONV11:
21,NQ(21),Q FOR YAGUCH12:
22,NQ(22),Q FOR CONV13:
23,NQ(23),Q FOR WASHER2:
24,NR(1),BUSY CONV1:
25,NR(2),BUSY WASHER1:
26,NR(3),BUSY CONV2:
27,NR(4),BUSY CONV3:
28,NR(5),BUSY GRAVITY:
29,NR(6),BUSY CONV4:
30,NR(7),BUSY CONV5:
31,NR(8),BUSY PISTON:
32,NR(9),BUSY CONV6:
33,NR(10),BUSY CONV7:
34,NR(11),BUSY LIQUID:
35,NR(12),BUSY CONV8:
36,NR(13),BUSY CHECK:
37,NR(14),BUSY CONV9:
38,NR(15),BUSY LIDFID:
39,NR(16),BUSY CONV10:
40,NR(17),BUSY CONV11:
41,NR(18),BUSY YAGUCH11:
42,NR(19),BUSY YAGUCH12:
43,NR(20),BUSY CONV12:
44,NR(21),BUSY CONV13:
45,NR(22),BUSY WASHER2:

; 90 REPLICATE,1,,10000;
;
;
END;
Distribution List

<table>
<thead>
<tr>
<th>Company</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Technical Information Center</td>
<td>2</td>
</tr>
<tr>
<td>Attn: DTIC-DDAB</td>
<td></td>
</tr>
<tr>
<td>Cameron Stn BG5</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Defense Logistics Agency</td>
<td></td>
</tr>
<tr>
<td>Attn: DPMSO (Mr. O'Brien)</td>
<td></td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22304-6100</td>
<td></td>
</tr>
<tr>
<td>Merton Singer, Colonel (Ret.)</td>
<td>1</td>
</tr>
<tr>
<td>Executive Secretary</td>
<td></td>
</tr>
<tr>
<td>RSDA for Military Food Packaging Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>103 Biltmore Drive, Suite 108</td>
<td></td>
</tr>
<tr>
<td>San Antonio, TX 78213</td>
<td></td>
</tr>
<tr>
<td>Central States Can Co.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Dave Blizzard, Vice President</td>
<td></td>
</tr>
<tr>
<td>700 16th Street, S.E.</td>
<td></td>
</tr>
<tr>
<td>Massillon, OH 44648</td>
<td></td>
</tr>
<tr>
<td>Sterling Bakery, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Dexter Bellie, Tray Pack Production Manager</td>
<td></td>
</tr>
<tr>
<td>5722 Kenwick</td>
<td></td>
</tr>
<tr>
<td>San Antonio, TX 78238</td>
<td></td>
</tr>
<tr>
<td>Vantage Foods, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Avery Konor, Project Manager</td>
<td></td>
</tr>
<tr>
<td>10311 Evendale Drive</td>
<td></td>
</tr>
<tr>
<td>Cincinnati, OH 45241</td>
<td></td>
</tr>
<tr>
<td>Southern Packaging and Storage Company, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Alan Dafler, Vice President, Research and Development</td>
<td></td>
</tr>
<tr>
<td>Bennettsville, SC 29512</td>
<td></td>
</tr>
<tr>
<td>Venice Maid Co., Inc.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Charles Lagrosso</td>
<td></td>
</tr>
<tr>
<td>270 North Mill Road</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 1505</td>
<td></td>
</tr>
<tr>
<td>Vineland, NJ 08360</td>
<td></td>
</tr>
<tr>
<td>Vanee Foods Company</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Ron Van Ekeren, Vice President</td>
<td></td>
</tr>
<tr>
<td>5415 Mc Dermott Drive</td>
<td></td>
</tr>
<tr>
<td>Berkeley, IL 60183</td>
<td></td>
</tr>
<tr>
<td>Bryan Bros.</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Richard Lanke, Plant Production Manager</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 1177</td>
<td></td>
</tr>
<tr>
<td>West Point, MS 39773</td>
<td></td>
</tr>
</tbody>
</table>
Right Away Foods Corp. .. 1
 Attn: Mr. James Bourg, President
 P.O. Box 184
 Edinburg, TX 78540

Rollason Engineering Co. ... 1
 Attn: Mr. lan& Herbert
 Fern Park, FL 32720

Eaton-Kenway ... 1
 attn: Mr. William B. York
 515 East 100 South
 P.O. Box 4250
 Salt Lake City, Utah 84102

Hartman Material Handling Systems, Inc. 1
 attn: Mr. Edward J. Budill
 66 School Street
 Victor, New York 14584

Jervis B. Webb Company .. 1
 attn: Mr. Carl M. Kaltwasser
 Executive Plaza
 540 Pennsylvania Avenue, Suite 321
 Fort Washington, Pennsylvania 19034

SPS Technologies ... 1
 attn: Mr. Charles D. Wenzel
 Township Line Road
 Hatfield, Pennsylvania 19440

Litton UHS ... 1
 3101 Old Hayneville Road
 P.O. Drawer 177
 Montgomery Alabama 36195

FMC Corporation ... 1
 attn: Mr. David Schlueter
 103 East Maple Street
 Hoopeston Illinois 60942

Groen Division/Dover Corporation 1
 1900 Pratt Boulevard
 Elk Grove Village, Illinois 60007

Solbern Corporation ... 1
 attn: Mr. Bill Kalmar
 8 Kulack Road
 Fairfield, New Jersey 07006

Packaging Research Corporation 1
 attn: Mr. Rodney D. Wicklund
 2852 S. Tejon
 Englewood, Colorado 80110

Barkley & Dexter Laboratories, Inc. 1
 attn: Mr. Sam Gudgel
Lakewood, New Jersey 08701
Anklez Labelers Corp. .. 1
Briggs Road
Mt. Laurel, New Jersey 08054
American Technologies .. 1
1301 Dugdale Road
Waukegan, Illinois 60085

INTERNAL DISTRIBUTION

Technical Director ... 1
Director, Aero-Mechanical Engineering Directorate 1
Director, Food Engineering Directorate 1
Director, Individual Protection Directorate 1
Director, Science and Advanced Technology Directorate . 1
Technical Library ... 3
Project Officer ... 25