FREQUENCY SPECTRUM OF SOFT X-RAY EMISSION FROM TRANSITION RADIATION(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA S K YOON DEC 86
THESIS

FREQUENCY SPECTRUM OF SOFT X-RAY EMISSION FROM TRANSITION RADIATION

by

Yoon, Seog Koo

December 1986

Thesis Advisor John R. Neighbours

Approved for public release; distribution is unlimited.
FREQUENCY SPECTRUM OF SOFT X-RAY EMISSION FROM TRANSITION RADIATION

Abstract

The absolute differential production efficiencies from foil stack materials for an electron-beam energy of 65 MeV were measured. The spectra shapes and the absolute differential production efficiencies for each of the four foil stacks are well matched by the calculated values. The transition radiation cone was measured using a motor-driven detector. The measured apex angle is in agreement with the optimum radiation cone angle. Aluminum bandwidth narrowing associated with K-edge absorption was observed. The production intensity was compared with the theoretical prediction and interpreted in terms of absorption and coherence.

Subject Terms

- Transition Radiation
- Radiation Cone
- Coherence
- Differential Production Efficiency
- Absorption

COSATI Codes

<table>
<thead>
<tr>
<th>Field</th>
<th>Group</th>
<th>Sub-Group</th>
</tr>
</thead>
</table>

Abstract Security Classification

Unclassified

Distribution/Availability of Abstract

Unclassified/Unlimited

Distribution/Availability of Report

Approved for public release; distribution is unlimited.

Monitoring Organization Report Number(s)

Naval Postgraduate School

Name of Monitoring Organization

Naval Postgraduate School

Name of Performing Organization

Naval Postgraduate School

Name of Funding/Spousing Organization

Naval Postgraduate School

Address (City, State, and ZIP Code)

Monterey, California 93943-5000

Address (City, State, and ZIP Code)

Monterey, California 93943-5000

Name of Performing Organization

Naval Postgraduate School

Name of Funding/Spousing Organization

Naval Postgraduate School

Address (City, State, and ZIP Code)

Monterey, California 93943-5000

Address (City, State, and ZIP Code)

Monterey, California 93943-5000

Title (Include Security Classification)

FREQUENCY SPECTRUM OF SOFT X-RAY EMISSION FROM TRANSITION RADIATION

Type of Report

Master's Thesis

Date of Report (Year, Month, Day)

1986 December

Source of Funding Numbers

PROGRAM ELEMENT NO PROJECT NO TASK NO WORK UNIT

Verbatim Text

The absolute differential production efficiencies from foil stack materials for an electron-beam energy of 65 MeV were measured. The spectra shapes and the absolute differential production efficiencies for each of the four foil stacks are well matched by the calculated values. The transition radiation cone was measured using a motor-driven detector. The measured apex angle is in agreement with the optimum radiation cone angle. Aluminum bandwidth narrowing associated with K-edge absorption was observed. The production intensity was compared with the theoretical prediction and interpreted in terms of absorption and coherence.
Frequency Spectrum of Soft X-ray Emission from Transition Radiation

by

Yoon, Seog Koo
Major, Republic of Korea Army
B.S., Korea Military Academy, 1978

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 1986

Author: Yoon, Seog Koo

Approved by: John R. Neighbours, Thesis Advisor
Fred R. Buskirk, Second Reader
G. E. Schacher, Chairman, Department of Physics

John N. Dyer,
Dean of Science and Engineering
ABSTRACT

The absolute differential production efficiencies from foil stack materials for an electron-beam energy of 65 MeV were measured. The spectra shapes and the absolute differential production efficiencies for each of the four foil stacks are well matched by the calculated values. The transition radiation cone was measured using a motor-driven detector. The measured apex angle is in agreement with the optimum radiation cone angle. Aluminum bandwidth narrowing associated with K-edge absorption was observed. The production intensity was compared with the theoretical prediction and interpreted in terms of absorption and coherence.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>II. THEORY</td>
<td>10</td>
</tr>
<tr>
<td>A. IN-PHASE ADDITION OF THE TRANSITION RADIATION</td>
<td>10</td>
</tr>
<tr>
<td>B. TRANSITION RADIATION CONE</td>
<td>14</td>
</tr>
<tr>
<td>C. COMPUTER SPECTRUM ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>1. Formation Length</td>
<td>16</td>
</tr>
<tr>
<td>2. Single Interface Intensity</td>
<td>18</td>
</tr>
<tr>
<td>3. Single Foil Interference Factor</td>
<td>19</td>
</tr>
<tr>
<td>4. Muti-foil Interference Factor</td>
<td>20</td>
</tr>
<tr>
<td>5. Shape of the Transition Radiation</td>
<td>22</td>
</tr>
<tr>
<td>III. EXPERIMENT APPARATUS</td>
<td>33</td>
</tr>
<tr>
<td>A. EXPERIMENT CONCEPT</td>
<td>33</td>
</tr>
<tr>
<td>B. EQUIPMENT PERFORMANCE</td>
<td>34</td>
</tr>
<tr>
<td>1. Linac</td>
<td>34</td>
</tr>
<tr>
<td>2. Target and Detector Chamber</td>
<td>35</td>
</tr>
<tr>
<td>4. Detection Apparatus</td>
<td>36</td>
</tr>
<tr>
<td>5. Observation Station</td>
<td>40</td>
</tr>
<tr>
<td>6. Stack Foils Used during Experiment</td>
<td>41</td>
</tr>
<tr>
<td>IV. RESULTS AND CONCLUSIONS</td>
<td>45</td>
</tr>
<tr>
<td>A. RESULTS</td>
<td>45</td>
</tr>
<tr>
<td>B. CONCLUSIONS</td>
<td>50</td>
</tr>
<tr>
<td>APPENDIX A: ELECTRON LINEAR ACCELERATOR PARAMETERS</td>
<td>52</td>
</tr>
<tr>
<td>APPENDIX B: CALCULATION OF PLASMA FREQUENCY</td>
<td>53</td>
</tr>
<tr>
<td>APPENDIX C: MASS ATTENUATION COEFFICIENTS FOR PHOTONS IN AL AND MYLAR</td>
<td>55</td>
</tr>
<tr>
<td>APPENDIX D: BASIC PROGRAM (HP COMPUTER)</td>
<td>57</td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td>59</td>
</tr>
<tr>
<td>INITIAL DISTRIBUTION LIST</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. MEASUREMENTS OF TOTAL COUNTS .. 45
2. COMPARISON OF RADIATION CONE ANGLE AT 65 MEV 46
3. COMPARISON BETWEEN CALCULATED AND MEASURED DATA .. 49
4. LINAC PARAMETER ... 52
5. PLASMA FREQUENCY ... 53
LIST OF FIGURES

2.1 Schematic Diagram of a Multi-foil Radiator ... 11
2.2 Condition for Coherent Phase Summation ... 13
2.3 Schematic Diagram of the Transition Radiation Cone 14
2.4 Coherent and Incoherent Transition Radiation from a Foil Stack 15
2.5 Formation Length of Vacuum ($E_1 = 0, \gamma = 127, \theta \sim 1.\gamma$) 17
2.6 Formation Length of Al ($E_2 = 32.8$ eV, $\gamma = 127, \theta \sim 1.\gamma$) 18
2.7 Formation Length of Mylar ($E_2 = 19.9$ eV, $\gamma = 127, \theta \sim 1.\gamma$) 19
2.8 Single Interface Factor of Al ($\gamma = 127$) ... 20
2.9 Single Interface Factor of Mylar ($\gamma = 127$) ... 21
2.10 Single Foil Interference Factor of Al ($\ell_2 = 1\mu m$) 22
2.11 Single Foil Interference Factor of Mylar ($\ell_2 = 2.5\mu m$) 23
2.12 Single Foil Interference Dependence on Foil Thickness in Mylar ($E_2 = 19.9$ eV) 24
2.13 Effect of the Number of Foil on the Multi-foil Factor ($\sigma = 0.001$) 25
2.14 Multi-foil Absorption Factor of Mylar ($M = 8, \ell_2 = 2.5\mu m$) 26
2.15 Absorption Factor of Mylar (Single Interface x Multi-foil Absorption) 27
2.16 Calculated Differential Production Efficiency from 30 Foils 1\mu m Al 28
2.17 Calculated Differential Production Efficiency from 8 Foils 2.5\mu m Mylar 29
2.18 Calculated Differential Production Efficiency from 1 Foil 26\mu m Al 30
2.19 Calculated Differential Production Efficiency from 1 Foil 19\mu m Mylar 30
2.20 Calculated Spectral Distribution from 8 Foils of Various Thickness of Mylar for 65 MeV ... 31
2.21 Effect of the Number of Foils on the Radiation Peak of the 1\mu m Al 31
2.22 Calculated Effect of K-shell Absorption on the Al Spectrum for 65 MeV Electron .. 32
3.1 Schematic Diagram of a Experimental Apparatus ... 33
3.2 Schematic Diagram of a Linear Accelerator .. 34
3.3 Target and Detector Chamber .. 35
3.4 Schematic Diagram of a Gas Flow System .. 36
3.5 Detection Apparatus ... 37
3.6 Manson Model 04 Gas Flow Proportional Counter ... 38
3.7 Electrical Field Strength and Potential vs. Radius .. 39
3.8 Proportional Counter Efficiency ... 40

6
3.9 Block Diagram of the Data-collection Electronics .. 41
3.10 Stack Foils Used during Experiment .. 42
3.11 Design of Mylar Coherent Stack ... 43
3.12 Mylar Coherent Stack .. 44
4.1 Fe55 Spectrum in 400 Torr ... 46
4.2 Measured Pulse Height Counts from 30 Foils 1μm Al with Br"emssstrahlung ... 47
4.3 Comparison of Measured Pulse Height Counts from 30 Foils 1μm and 1 Foil 26μm Al ... 47
4.4 Fe55 Spectrum in 350 Torr .. 48
4.5 Measured Pulse Height Counts from 8 Foils 2.5μm Mylar with Br"emssstrahlung ... 48
4.6 Measured Pulse Height Counts from 1 Foil 19μm Mylar 49
C.1 Mass Attenuation Coefficient for Photons in Al .. 55
C.2 Mass Attenuation Coefficient for Photons in Mylar 56
ACKNOWLEDGEMENTS

I would like to express my thanks for the support and guidance given by my thesis advisor, Professor J. R. Neighbours, and my second reader Professor F. R. Buskirk in completing this thesis. I would also like to thank Dr. M. A. Piestrup for the equipment and suggestions concerning the experiment, as well as Mr. D. Snyder for the linac operation. A very special thanks to my wife, Hee Jae for her patience during these two and half years.
I. INTRODUCTION

In 1946 V. L. Ginsburg and I. M. Frank predicted the existence of transition radiation [Ref. 1: pp.353-362]. This effect was discovered during a period in which Russian theoreticians made an extensive effort in the area of radiation producing phenomena after the discovery of the Cerenkov effect. Actually, transition radiation can be considered, from a phenomenological point of view, as a Cerenkov effect of the second order since it occurs when a charged particle crosses the boundary between two media with differing dielectric constants. More generally, this effect will take place in the presence of the inhomogeneities in the medium.

Through the years, experimental investigation devoted to this effect were undertaken primarily with nonrelativistic electrons, in order to firmly establish the validity of the theory, in spite of inconvenience arising at these low energies from the simultaneous existence of scattering of the electrons and of bremsstrahlung radiation. Interest in this type of radiation was renewed after G. M. Garibyan predicted that the transition radiation yield was proportional to the energy of the particle. The application of this property to the detection and identification of individual particles was the main goal of high energy physics instrumentation, cosmic rays, and astrophysics.

In recent years the in-phase addition of radiation from multiple boundaries has been predicted and observed [Ref. 2: p.3594]. For a single interface, the radiation yield produced by an individual electron is very weak; of the order of the fine-structure constant \(\alpha \), roughly one photon for a hundred electrons. For \(M \) boundaries the spectral intensity varies as \(M^2 \), so that the emission can be much greater than for a single interface. In this thesis the effects of light absorption, and random variation in foil thickness are included in the design of transition radiation sources for the generation of x-rays. The foil dimensions must be held to close tolerance in order to satisfy the coherence conditions from each boundary.
II. THEORY

A. IN-PHASE ADDITION OF THE TRANSITION RADIATION

Transition radiation occurs when a moving charged particle encounters a sudden change in dielectric constant at the interface between different media (e.g., between a vacuum and a solid). Ordinarily, a particle which moves with constant velocity does not radiate unless it is in a refractive medium and the particle exceeds the velocity of the electromagnetic wave in medium -- as is the case for Cerenkov radiation. However, if the interaction length is limited, or equivalently, if the dielectric constant changes suddenly, then velocity matching is not important. The minimum distance over which an electromagnetic wave and a charged particle can exchange energy is called the "formation length" and is given by [Ref. 3: pp. 40-44]

$$Z_i = \frac{2c\beta}{\omega(1-\beta\sqrt{\varepsilon_i \sin^2 \theta})}, \quad (2.1)$$

where \(\gamma = (1-\beta^2)^{-1/2}\), \(\varepsilon_i\,(i=1,2) = 1 - (\omega_i \omega)^2\) are the dielectric constants of the two media, \(\omega_i\) are their respective plasma frequencies, \(\beta = v/c\), \(v\) is the speed of the electron, \(c\) is the speed of light, \(\hbar\omega\) is the photon energy, and \(\theta\) is the angle of emission. For relativistic electrons \(\beta \sim 1\), \(\sin \theta \sim \theta\), and \(1-\gamma^2 \sim 2(1-\beta)\), so that

$$Z_i \sim \frac{4\kappa\beta}{(1/\gamma)^2 + \theta^2 + (\omega_i \omega)^2}, \quad (2.2)$$

where \(\kappa = c\omega\).

In traversing an interface, the number of photons per unit time emitted by an electron is proportional to the dot product of the particle velocity and electric field strength. For a single interface V. L. Ginzburg and I. M. Frank calculated the differential production efficiency for transition radiation as [Ref. 1: p.353]

$$\frac{d^2N_\omega}{d\Omega d\omega} = \frac{a\theta^2 \omega}{16\pi^2 c^2} (Z_1 \cdot Z_2)^2, \quad (2.3)$$
where \(d^2N/d\Omega d\omega \) is the number of photons emitted per frequency per solid angle by a single particle crossing a single dielectric interface, \(\alpha = 1.137 \) is the fine-structure constant, \(\Omega \) is the solid angle in steradians, and \(Z_1 \) and \(Z_2 \) are given by Eq. (2.1).

The spectral intensity from an electron crossing \(M \) foil pairs perpendicularly, each composed of two materials of thickness \(\ell_1 \) and \(\ell_2 \) can be calculated by considering the field amplitudes at some observation point [Fig. (2.1)]. The results should be simply the coherent sum of the radiation amplitudes from \(2M \) single interfaces. The phase factor must be properly included, taking into account that the particle traverses different interfaces at different times.

\[
\frac{d^2N}{d\Omega d\omega} = \frac{d^2N}{d\Omega d\omega} \cdot \sin^2(\ell_2 Z_2) F(M,X),
\]

(2.4)

where

\[
F(M,X) = \frac{1 + \exp(-M\sigma) - 2\exp(-M\sigma) \cos(2MX)}{1 + \exp(-\sigma) - 2\exp(-\sigma) \cos(2X)}.
\]

(2.5)
where \(N \) is the number of photons emitted by a single particle traveling through a dielectric stack, where \(\sigma = \mu_1 \ell_1 + \mu_2 \ell_2 \), \(X = \ell_1 Z_1 + \ell_2 Z_2 \), and \(\mu_1 \) and \(\mu_2 \) are the linear absorption coefficients of the spacing and foil media, respectively (\(\mu_1 \approx 0 \) for vacuum spacing). When the periods of \(F(M,X) \) are not experimentally resolvable and the photon absorption of radiation is not small, Eq. (2.5) becomes [Ref. 5: p.918]

\[
<F(M,X)> \sim \frac{1 - \exp(-M\sigma)}{\sigma} .
\]

(2.6)

At high photon energies, where x-ray absorption is small or negligible, so that \(\sigma \approx 0 \)

\[
F(M,X) \sim \frac{\sin^2(MX)}{\sin^2 X} .
\]

(2.7)

Then Eq. (2.4) can be written as

\[
\frac{d^2N}{d\Omega d\omega} = \frac{d^2N_0}{d\Omega d\omega} \frac{4\sin^2(\ell_2 Z_2)}{\sin^2 X} \frac{\sin^2(MX)}{\sin^2 X} .
\]

(2.8)

When the spacing between the foils \(\ell_1 \) exceeds the formation length of the gap material \(Z_1 \), \(F(M,X) \) varies rapidly compared with the single-interface term given by Eq. (2.4) and the peak spectral intensity is found to vary as the square of the number of interfaces when \(X = r\pi \) and \(r \) is an integer, neglecting photon absorption in the foils, variation in foil thickness and the multiple scattering. From Eq. (2.8) it is possible to determine the foil thicknesses that maximize photon production. This occurs for

\[
X = r\pi ,
\]

(2.9)

and

\[
\ell_2 Z_2 = (m - 1/2)\pi ,
\]

(2.10)
Where \(r \) and \(m \) are positive integers. Substituting these conditions into Eq. (2.8) gives

\[
\frac{d^2 N}{d\Omega d\omega} = 4M^2\left[-\frac{d^2 N}{d\Omega d\omega}\right].
\]

(2.11)

Eqs. (2.9) and (2.10) are the coherence conditions, i.e., the requirements for in-phase addition of the radiation from all interfaces. To minimize photon absorption and electron scattering, \(\ell_1 \) and \(\ell_2 \) should be as small as possible which means choosing \(r = m = 1 \), for these values.

\[
\ell_{1,2} = (\pi/2)Z_{1,2}.
\]

(2.12)

Figure 2.2 Condition for Coherent Phase Summation.

With the assumption that \(\epsilon_{1,2} \sim 1 \), from Eqs. (2.1) and (2.9) it is found that the angle for which resonance is satisfied is given by [Ref. 6: pp. 264-275].

\[
\cos \theta \sim \frac{\ell_1 + \ell_2}{\ell_1 \sqrt{\epsilon_1} + \ell_2 \sqrt{\epsilon_2}} \left[1 + \frac{2\pi c}{\omega (\ell_1 + \ell_2)}\right].
\]

(2.13)
The in-phase radiation adds coherently and the resonance transition radiation is shown diagramatically in Fig. (2.2).

![Transition Radiation](image)

Figure 2.3 Schematic Diagram of the Transition Radiation Cone.

B. TRANSITION RADIATION CONE

Fig. (2.3) shows the transition radiation emitted in a tight forward direction. There is also an apex angle that maximizes the radiation $\frac{d^2N_o}{d\Omega d\omega}$ from a single interface. For the conditions $\theta^2 < 1$, $c_{1,2} \approx 1$, and $\beta \approx 1$, this optimizing angle can be derived from Eq. (2.13) [Ref. 4: p. 1290]

$$\theta^2_{opt} = 1.3\{-(\delta_1 + \delta_2) + ([\delta_1 + \delta_2]^2 + 12\delta_1 \delta_2)^{1/2}\}. \quad (2.14)$$
where \(\delta_i = [(1/\gamma)^2 + (\omega_i/\omega)^2]^{1/2} \) \((i = 1, 2) \). If both Eq. (2.1) and Eq. (2.13) are satisfied for \(\theta = \theta_{\text{opt}} \), the \(dN/d\Omega d\omega \) is optimized. In general, \(\omega_2 > \omega_1 \), where \(\omega_1 \) is the plasma frequency of the medium in which the foils immersed. For the case of a foil stack in vacuum, \(\omega_1 \approx 0 \) and \(\theta_{\text{opt}} \) reduces to

\[
\theta_{\text{opt}} \approx 1/\gamma .
\]

(2.15)

As the electron energy increases, the cone apex angle becomes small. This gives a highly directional and intensive forward beam.

Figure 2.4 Coherent and Incoherent Transition Radiation from a Foil Stack.

For incoherent emission the photons can be separated from the emitting charged particle. For coherent radiation where there is inter-foil phase addition of the radiation, the lobe pattern will be broken into smaller lobes due to interfoil coherent addition of soft x-rays [Fig. (2.4)].
C. COMPUTER SPECTRUM ANALYSIS

By taking the approximate multi-foil absorption [Eq. (2.6)], the analytic expression for the transition radiation [Eq. (2.4)] can be written as

\[
\frac{d^2N}{d\Omega d\omega} \sim 4 \left[\frac{d^2N_0}{d\Omega d\omega} \right] \sin^2(\ell_2/Z_2) \frac{1 - \exp(-\lambda \sigma)}{\sigma} .
\]

(2.16)

This expression was used for the differential production efficiency in spectrum analysis below. The analytic expression can be analyzed by dividing it into the three parts:

1. **The single interface intensity** 4d\^2 N_0 du d\omega [Eq. (2.3)]
2. **The single foil interference dependence** sin^2(\ell_2/Z_2) [Eq. (2.4)]
3. **The multi-foil interference dependence** F(M,X) [Eqs. (2.5) and (2.6)]

1. **Formation Length**

The key to understanding the dependence of the three main terms on the photon energy and the stack variables is understanding the dependence of the formation length [Eq. (2.1)] on the photon energy and stack variables. The dependence of the transition radiation intensity on the formation length can be divided into three parts.

a. **The single interface intensity** depends on \((Z_1 - Z_2)^2\)

b. **The single foil interference** depends on the phase \((\ell_2/Z_2)\)

c. **The multi-foil interference** depends on the phase \((\ell_2/Z_1 + \ell_2/Z_2)\)

The formation length \(Z_1\) is inversely proportional to the photon energy [Fig. (2.5)]. The formation length \(Z_2\) of the foil has the maximum value \(Z_{max}\) at \(E_{critical}\) (critical energy of transition radiation above which the intensity becomes negligible). \(E_{critical}\) can be found by taking the first derivative of formation length \(Z_2\) [Eq. (2.2)]

\[
E_{critical} \sim \left(\frac{\gamma^2}{1 + \gamma^2 \theta^2} \right)^{1/4} E_2 .
\]

(2.17)

where \(E_2\) is the energy corresponding to the plasma frequency of dielectric foil. For \(\theta = 1:\gamma\) at \(\theta_{opt}\) Eq. (2.17) becomes \((\gamma:\sqrt{2})E_2\). \(Z_{max}\) can be found by substituting Eq. (2.17) into Eq. (2.2)
Figure 2.5 Formation Length of Vacuum ($E_1 = 0, \gamma = 127, \theta \sim 1 \gamma$).

\[Z_{\text{max}} = \frac{2hc}{E_2 \sqrt{1 - \gamma^2 - \theta^2}} \]

(2.18)

for $\theta = 1, \gamma$ at θ_{opt} then $Z_{\text{max}} = (\sqrt{2} E_2)hc\gamma$. For photon energies $E < < E_{\text{critical}}$ the formation length of the dielectric becomes independent of γ and is inversely proportional to the square of the medium plasma energy

\[Z_2 = 4hc(E_2^2). \]

(2.19)
At the critical energy the formation lengths Z_1, Z_2 are approximately equal, and the single interface intensity becomes small. Therefore, above the critical energy the transition radiation intensity will be negligible. Figs. (2.6) and (2.7) show the dependence of the formation length of Al and Mylar on photon energy for $\theta_{\text{opt}} \sim 1 \gamma$ and $\gamma = 127$. For photon energies below the critical energy (2.95 keV, 1.79 keV for Al and Mylar) the formation length is approximately linear with energy and independent of γ. The formation length Z_2 of Mylar is longer than Al and Mylar has lower critical energy than Al because of the smaller plasma frequency.

2. Single Interface Intensity

The single interface intensity $d^2N_0 d\Omega d\omega$ [Eq. (2.3)] limits the spectrum to the maximum photon energy approximately equal to $\gamma E_2 = \Sigma$ for a vacuum dielectric stack. Above this energy, the spectrum is proportional to $1 \omega^4$. Figs. (2.8) and (2.9) show that $d^2N_0 d\Omega d\omega$ falls off more quickly for a Mylar vacuum interface than for a Al vacuum interface. The single interface intensity is also the factor which limits emission of transition radiation to a small forward angle approximately equal to 1γ.

Figure 2.6 Formation Length of Al ($E_2 = 32.8$ eV, $\gamma = 127.0 \sim 1 \gamma$).
3. Single Foil Interference Factor

The single foil interference term \(\sin^2(\ell_2 Z_2)\) is an important factor in the resonance condition. Single foil resonance condition occurs at the photon energy \(E_m\) satisfying the condition \(\text{Eq. (2.10)}\)
\[
\ell_2 = \frac{Z_2}{2} (2m-1) \pi, 2
\]
with \(m\) an integer. The phase slippage of the particle during transit through the foil is \((2m-1) \pi/2\), and the radiation of opposite phase produced at each interface as the particle enters and exits the foil interferes constructively. The phase slippage accounts for coherent addition of amplitudes from the two interface of a single foil and gives a peak value twice as large as from two interface when the emission is completely random. Figs. (2.10) and (2.11) show single foil interference factors of Al and Mylar with respect to photon energy. Mylar has a longer formation length \(Z_2\) than Al [Figs. (2.6) and (2.7)] and 2.5 times bigger foil thickness than Al. The Mylar has a second peak at a smaller photon energy than Al. Fig. (2.12) shows the single foil interference factor as a function of photon energy for different foil thickness. The photon energies corresponding to the single foil resonance can be found from the first peak curves.
4. Muti-foil Interference Factor

The multi-foil interference factor $F(M,Z)$ [Eq. (2.5)] results from the same interference phenomena as for the single foil interference factor. It includes the effect of absorption of photons within the foil stack.

As the number of foils in a stack is increased, intensity at the fixed photon energy is increased up to the saturated value. Fig. (2.13) shows the multi-foil dependence according to the number of foils. The absorption factor approximately increases linearly with number of foils. When $M \sigma > 1$ the asymptotic value for $F(M,X)$ is $1 \sigma(\omega)$. After this value is attained, the radiation intensity can not be increased by increasing the number of foils. A approximate condition for foil
saturation of transition radiation spectrum is $M\sigma \sim 1$. If the resonance condition is satisfied, then the radiation from successive foils interferes constructively, and $F(M, X) \sim M^2$ for negligible absorption (with M the number of foils). For $M > 1$, $F(M, X)$ can be approximated as a series of delta functions located at the resonance angles given by Eq. (2.13). Fig. (2.14) shows the photon energy dependence of $F(M, X)$ for Mylar/ vacuum with the number of foil 8 and foil thickness 2.5μm. In addition to absorption, particle scattering and random variation in foil thickness and spacing reduce the resonance effect. [Ref. 7]
5. Shape of the Transition Radiation

The shape of spectrum [Eq. (2.16)] is determined by the three main characteristics:

a The absorption of the radiation in the foils
b The critical photon energy $\hbar \nu_c = \gamma \hbar \nu_2$
c The constructive interference between interfaces of single foil.

The effect of these factors is shown for three cases. Where the transition radiation intensity is plotted as a function of energy for three cases: (1) for no absorption -- single interface factor [Figs. (2.8) and (2.9)]. (2) for absorption but no single foil coherence -- single interface x multi-foil absorption factor [Fig. (2.15)]. (3)
for both absorption and single foil coherence -- differential production efficiency [Figs. (2.16), (2.17), (2.18), and (2.19)].

When the losses due to the absorption in the foils are included, the reduction of the low-energy photons occurs and the drop-off at the high energy end of the spectrum is determined by the critical energy $\tilde{\omega}_c$. Above this energy the spectrum drops off as $(\omega_2 - \omega)^4$.

The second term in Eq. (2.16) $\sin^2(\ell_2 Z_2)$ accounts for coherent addition of amplitudes from the two interfaces of the single foil and gives a peak value twice as large as from two interfaces when the emission is completely random. This occurs when there is constructive interference between the waves generated at the front and back interfaces [Ref. 8: pp.336-339]. The radiation intensity is maximized when the thickness of the foil is such that both the electron and the photon travel an integral number of wavelengths in the field generated at the first interface.
Figure 2.12 Single Foil Interference Dependence on Foil Thickness in Mylar ($E_2 = 19.9$ eV).

The spectral shape from a transition radiator is closely related to the thickness of the individual foil [Eqs. (2.4) and (2.5)] not only because the formation length [Eq. (2.1)] is needed for photon production but also because of absorption of the emitted radiation in the foils [Eq. (2.6)]. For low energy photons, absorption is of concern and can be minimized by making the foils as thin as possible; however if the thicknesses are made thinner than the formation length, photon production will also stop. Thus, the peak production intensity occurs at the photon energy corresponding to the formation length Z_2 equivalent to foil thickness [Ref. 9: p.3604]. There is an optimum foil thickness that balances production with re-absorption to give the maximum photon yield. This is shown in Fig. (2.20) for the case of Mylar foils. The number of foils N is kept constant and the thickness is varied. The magnitude and peak emission can be predicted.

The spectral shape is influenced by not only an optimization procedure of minimizing absorption with thin foils but also by using as large a value of M as feasible. As the number of foils increases both scattering and photon absorption increase, thereby destroying coherence and ultimately preventing emission from photons. Neglecting multi-foil scattering, as the number of foils increases the peak
Figure 2.13 Effect of the Number of Foil on the Multi-foil Factor ($\sigma = 0.001$).

sharpens and increases in intensity as M^2 [Eq. (2.11)], however, since absorption also increases with M [Fig. (2.14)], a final value for photon production is reached where increasing M does not result in increased production. Fig. (2.21) shows a limiting effectiveness of increasing M, there is small gain in intensity after $M \sim 20$.

The increase in absorption above the K-edge results in a narrower energy spectrum than would otherwise be measured. Fig. (2.22) shows the calculated effect of K-shell absorption for Al on the radiation spectrum for 65 MeV electron beam energy with K-edge 1560 eV. As the absorption coefficient increases, the intensity decrease sharply. The narrow spectrum is due to the sudden change in x-ray absorption at the K photoabsorption edge in the material. The curve does not include the effect of the detector resolution.

The purpose of this experiment has been divided into three areas:

(a) The x-ray radiation is emitted in a forward cone with the apex angle of the
cone at approximately 1°. The measurement of the apex angle was
done by improvements in collecting data using a motor-driven detector.

(b) The absolute differential production efficiencies for soft x-rays emitted from
radiator were compared with the theoretical predictions and interpreted in
terms of absorption and coherence by measuring the peak and FWHM
bandwidth energy (full width of the spectrum between points having half the
maximum production efficiency).

(c) The narrower frequency spectrum was predicted by the increase in absorption
above the K edge, and the effect of the K edge was compared with no K-shell
absorption edge.
Figure 2.15 Absorption Factor of Mylar (Single Interface x Multi-foil Absorption).
Figure 2.16 Calculated Differential Production Efficiency from 30 Foils 1μm Al.
Figure 2.17 Calculated Differential Production Efficiency from 8 Foils 2.5μm Mylar.
Figure 2.18 Calculated Differential Production Efficiency from 1 Foil 20µm Al.

Figure 2.19 Calculated Differential Production Efficiency from 1 Foil 19µm Mylar.
Figure 2.20 Calculated Spectral Distribution from 8 Foils of Various Thickness of Mylar for 65 MeV.

Figure 2.21 Effect of the Number of Foils on the Radiation Peak of the 1μm Al.
Figure 2.22 Calculated Effect of K-shell Absorption on the Al Spectrum for 65 MeV Electron.
III. EXPERIMENTAL APPARATUS

A. EXPERIMENTAL CONCEPT

The experiment was done at the Naval Postgraduate School at Monterey California using a medium energy linac. The experimental apparatus is shown in Fig. (3.1). Electrons enter from the left-hand side into a vacuum chamber where they pass through the foil stacks, and then through the dump magnet to be deflected out of the path of photon detector. During their passage, the x-rays travel entirely in a 10^{-6} Torr vacuum penetrating the 1000 A window of the proportional counter. Throughout the run, the transition radiation photons were detected with a gas-flow x-ray propotional counter. Five foil stacks were mounted on a movable platform holder so that five
different targets can be used without changing the vacuum. A phosphor (ZnS) target was used for the alignment of the electron beam relative to the target chamber. The detector was periodically calibrated using a Fe55 source. The current pulse height was monitored using a scintillator just before the beam dump. In this manner the total charge was kept constant for each measurement.

B. EQUIPMENT PERFORMANCE

![Figure 3.2 Schematic Diagram of a Linear Accelerator.](image)

1. Linac

The linear accelerator (Linac) is used to produce high-energy electron bunches [Fig. (3.2)]. As for general characteristics, the linac is similar to the Stanford linear accelerator Mark 3, which has 1000 MeV kinetic electron energy, while the NPS linac is 9.14 m long and 100 MeV. An electron gun at the beginning of the accelerator injects electrons at roughly $\beta = 0.5$. The design of the accelerator sections causes the energy to propagate in the TM mode. The injected electrons are accelerated to near the velocity of light in their first few centimeters of travel. Coupled klystrons produce
a travelling TM mode wave along the wave guide. The electron speed and the wave speed are about the same, so that the electric field of the wave will accelerate the electrons. Thus, the electrons gain energy at the expense of the wave.

2. Target and Detector Chamber

The target and detector chamber are made of aluminum and the picture is shown in Fig. (3.3). During the experiment the whole Linac and a target chamber are kept under vacuum by using a Turbo Molecular Pump and Mechanical Fore Pump. The pressure is about 10^{-6} Torr. In the target chamber, there is a vertically movable target ladder on which the foil stacks are mounted. The target ladder position is monitored and controlled with circuits connecting to the Control Room. The detector system will be discussed in the next section.

3. Gas Flow System

The schematic diagram of the gas flow system for the proportional counter is shown in Fig. (3.4). Vacuum pump 1 and 2 operate throughout the experiment. If valve A is open with valves B and C closed, the pressure becomes the same at valve B.
C. and the proportional counter. Then, the target and the detector chamber are evacuated simultaneously through the valve A. Now close valve A and open valve C and D with the vacuum pump 1, 2 operating, and introduce argon and propane gas mixture to the propotional counter by opening the valve B. Set the valve C and D and valve B for stable gas pressure as required. The pressure meter B indicates the positive pressure with respect to the target chamber. Next supply a high voltage to the proportional counter and find the optimum pressure and voltage of the proportional counter.

4. Detection Apparatus

The reason for the use of the proportional counter [Fig. (3.5)] as a detector is that the low photon energy generates a few ion-electron pairs within this gas, and the generated pulses have a broad distribution reaching up to the amplifier noise level. For use in the soft x-ray region, between 100 eV and 3000 eV, the window of the
proportional counter must be quite thin and fragile. The mechanism of the proportional counter requires that the pressure of the gas be at least 40 Torr. The window forms a built-in filter which excludes stray electrons and ions from the detector and responses to the counter system [Ref. 10: p.1].

The window is made of VYNS (a copolymer of vinyl chloride and vinyl acetate). The composition is 5% H, 41% C, 5% O, 49% Cl by weight with a 55% transmission and 400 meshescreens having a 3x10 mm slot for operating maximum differential pressure of 800 Torr. For the proportional counter, the gas mixture of 90% argon and 10% propane (P-10 gas) is provided by the gas flow system and high voltage power (1200 V) is supplied. Use of the gas molecules as detection assures 100% photoionization yield above the ionization energy, and with zero yield below the ionization energy. The proportional counter gas is delivered from the tank which will provide a choice of several gas mixtures, allowing a change in primary detector medium by valving in the new gas. The performance depends strongly upon the gas pressure which can be controlled all the time during the experiment.

Figure 3.5 Detection Apparatus.
The proportional counter provides information on the emitted photon energy of radiation being detected. The electronic analysis of the amplitude of the output pulse provides a technique for determining the photon intensity. Fig. (3.6) illustrates the basic design for the proportional counter. Since it is much easier to mount a flat-sided detector than a cylindrical detector, the proportional counter is designed as shown by boring the cylindrical hole in a rectangular cross section bar. The window can be mounted by clamping against the outside of the counter body.

Fig. (3.6) emphasizes the problem introduced by this mounting, that of the dead volume inside the detector. Ederer and Tomboulian introduced the design shown at the bottom in Fig. (3.6) for the use in the soft x-ray region. The reason for the concern with the dead space just behind the window is that the few electrons released in the initial absorption may be lost by diffusion back to the detector window. The
counter used for the experiment has a stainless anode 50 \textmu m in diameter, maintained at 1000 to 1500 volts positive potential. Fig. (3.7) shows the electric field and voltage distribution with respect to the location from the anode wire axis. The anode wire position is located at the center of the horizontal scale, which is a linear scale of radius measured from the axis of the counter running from the window at \(r = 10 \text{ mm} \) at the left and the right. The field increases inversely proportional to the radius to very high values (94,000 V cm) quite close to the anode wire [Ref. 10: p.3].

The initial event ion-electron pairs are separated rapidly by the field outside of the central region. When the electrons approach to within a few mean free paths of the anode wire, much energy is produced. At some radius, the energy gained by each
event electron between collisions is sufficient to cause secondary ionization. Between the collisions the energy increases as the radius decreases causing most of the ionization zone to be localized within 50 μm of the anode wire. The pulse induced on the central anode wire will be proportional to the potential difference through which the electrons and ions fall in their motions towards the wire and towards the grounded cathode inner surface. The positive ions move through most of the applied potential in their trip to the grounded cathode and this positive ion motion is the origin of the observed output pulse. Since part of the trip takes place in the very high field region near to the anode wire axis, the ion has a very high velocity through the steep potential gradient so the pulse starts off with a rapid initial rise, reaching about 50% of its maximum value within 0.5μs.

Fig. (3.8) shows the counter efficiency with respect to the photon energy. About 3.2 keV there is sudden change in efficiency, but the energy region of interest is below 3.2 keV. The proportional counter can be moved up and down by the driving motor, and the counter always points at the virtual center of the emission region.

5. Observation Station

The analyzing equipment consists of an ORTEC 142 PC preamplifier, an ORTEC 450 Research Amplifier, and a TRACER NORTHERN TN-7200 Pulse Height
Analyzer (PHA). The electron beam was deflected by the sweeping magnet through the large plastic scintillator which served as the beam monitor. The PHA received signal pulses from a charge-sensitive amplifier connected to the x-ray detector. Photons were counted until a fixed amount of beam charge had passed through the foil stack [Fig. (3.9)].

The PHA divides the detection range into a predetermined number of channels, and then records graphically the number of counts with which each signal channel is detected. The data is presented in the form of pulse height distribution with the number of counts per channel displayed on a linear vertical scale and the channel number displayed on a linear horizontal scale. The pulse-height is proportional to the incident photon energy. Thus the displayed results form an energy dispersed spectrum of the incident photon beam.

6. Stack Foils Used during Experiment

Two Al stack-foils and two Mylar stack-foils were used during the experiment. One aluminum stack has 30 foils with 1 \(\mu \)m foil thickness, the other has 1 foil of 20 \(\mu \)m
foil thickness, one Mylar stack has 8 foils with 2.5 \(\mu \text{m} \) foil thickness, the other has 1 foil with 19 \(\mu \text{m} \) foil thickness. The Mylar foils were mounted on ladder 2.1-mm-stick ladder, while the Al foils were mounted on 1.5-mm-thick ladder. These dimensions were chosen to maintain adequate support of the delicate foils and keep the constant dimension [Fig. (3.10)].

A stack of 8 Mylar foils with each foil thickness 2.5 \(\mu \text{m} \) was constructed [Figs. (3.11) and (3.12)] in order to attain a coherent spectrum. This stack maintains a flat surface with a spacing 1.6 mm. Mylar was used because it is durable and does not tear easily when stretched.

The foil stacks produce both transition and bremsstrahlung radiation. To account for the bremsstrahlung background for each radiator, a single foil with
thickness equivalent to stack foils was constructed. The measured bremsstrahlung generated from the single foil using equal beam current was then subtracted from that produced by the corresponding foil stacks.

Figure 3.11 Design of Mylar Coherent Stack.
Figure 3.12 Mylar Coherent Stack.
IV. RESULTS AND CONCLUSIONS

A. RESULTS

Measurements of the total number of counts were carried out for several different positions of the detector. All measurements were for the same counting interval. The detector plane was 49" from the stack target. Motion of the detector was monitored by a counter with a scale of 0.0124" digit. The detector was on the beam axis at a scale reading of 335. Table 1 shows the total number of counts in region of interest for several different detector positions for 65 Mev electrons incident on 30 Al stack foils.

TABLE 1
MEASUREMENTS OF TOTAL COUNTS

<table>
<thead>
<tr>
<th>Dial No.</th>
<th>Distance</th>
<th>Cone Angle</th>
<th>Counts No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>285</td>
<td>0.620"</td>
<td>12.65mr</td>
<td>10102</td>
</tr>
<tr>
<td>290</td>
<td>0.558"</td>
<td>11.39mr</td>
<td>10112</td>
</tr>
<tr>
<td>295</td>
<td>0.496"</td>
<td>10.12mr</td>
<td>10123</td>
</tr>
<tr>
<td>300</td>
<td>0.434"</td>
<td>8.86mr</td>
<td>10134</td>
</tr>
<tr>
<td>305</td>
<td>0.372"</td>
<td>7.59mr</td>
<td>10144</td>
</tr>
<tr>
<td>310</td>
<td>0.310"</td>
<td>6.33mr</td>
<td>10185</td>
</tr>
<tr>
<td>315</td>
<td>0.248"</td>
<td>5.06mr</td>
<td>10165</td>
</tr>
</tbody>
</table>
TABLE 2
COMPARISON OF RADIATION CONE ANGLE
AT 65 MEV

<table>
<thead>
<tr>
<th>Optimum Angle</th>
<th>Measured Apex Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.86mr</td>
<td>6.33mr</td>
</tr>
</tbody>
</table>

The error of the measured apex angle is ascribed to the discrete dial readings, the small dimensions of detector (1.8" x 3 8"), and electronics resolution.

![Figure 4.1](image)

Figure 4.1 Fe55 Spectrum in 400 Torr.

The experimental results are shown in Fig. (4.1) through (4.6). Figs. (4.1) and (4.4) show the Fe55 spectra which have peaks at 3 and 5.9 keV. The experimental results for Al in Figs. (4.2) and (4.3) compare favorably with the theoretical predictions in Figs. (2.16) and (2.18) respectively. Similarly the experimental results for Mylar in Figs. (4.5) and (4.6) compare favorably with the theoretical predictions in Figs. (2.17) and (2.19) respectively. There is a good correspondence between the theoretical and
Figure 4.2 Measured Pulse Height Counts from 30 Foils 1μm Al with Bremsstrahlung.

Figure 4.3 Comparison of Measured Pulse Height Counts from 30 Foils 1μm and 1 Foil 26μm Al.
Figure 4.4 Fe55 Spectrum in 350 Torr.

Figure 4.5 Measured Pulse Height Counts from 8 Foils 2.5μm Mylar with Bremsstrahlung.
Figure 4.6 Measured Pulse Height Counts from 1 Foil 19μm Mylar.

TABLE 3
COMPARISON BETWEEN CALCULATED AND MEASURED DATA

<table>
<thead>
<tr>
<th>Foil</th>
<th>M</th>
<th>C.Peak</th>
<th>M.Peak</th>
<th>C.FWHM</th>
<th>M.FWHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>30</td>
<td>1040 eV</td>
<td>1030 eV</td>
<td>1290 eV</td>
<td>1140 eV</td>
</tr>
<tr>
<td>Al</td>
<td>1</td>
<td>1000 eV</td>
<td>940 eV</td>
<td>1600 eV</td>
<td>1500 eV</td>
</tr>
<tr>
<td>Mylar</td>
<td>8</td>
<td>1330 eV</td>
<td>1380 eV</td>
<td>1580 eV</td>
<td>2200 eV</td>
</tr>
<tr>
<td>Mylar</td>
<td>1</td>
<td>1580 eV</td>
<td>1000 eV</td>
<td>1320 eV</td>
<td>1250 eV</td>
</tr>
</tbody>
</table>

* FWHM: the full width of the spectrum between points having half the maximum production efficiency
the measured foil stack spectrum. The theoretical plots were calculated by using Eq. (2.16).

The ratio of the transition radiation to that of bremsstrahlung was 2.3 for Al and 2.7 for the Mylar foil. These ratios are lower than expected from the theory and the reason may be because there are other sources of background which were originally attributed to bremsstrahlung. A sudden change in intensity was observed at energy 3.1 keV for Mylar and it is due to the counter efficiency change from 0.2 to 0.5 [Fig. (3.8)].

Table 3 is a listing of four foil stacks, their respective number of foils, calculated peak frequencies, measured frequencies, calculated FWHM, and measured FWHM. For three of the foil stacks, the measured photon peak positions are found to agree with the calculated values. The single foil Mylar is noticeably different because of big fluctuations in small photon energy and of the modelling of unknown background. Comparison between the theoretical curves and their respective experimental measurements are limited to the position of the peak and the bandwidth. The measured FWHM energy for Al stack is reduced by 150 eV, and it is due to bandwidth narrowing associated with K-edge absorption (E = 1.54 keV).

B. CONCLUSIONS

The absolute differential production efficiencies (photons/eV sr electron) for soft x-rays emitted from each of four transition radiator were measured for incident electron-energy of 65 MeV. The radiators were made of stacks of 1.0-μm-thick 30 foils Al, 25.4-μm-thick single foil Al, 2.5-μm-thick 8 foils Mylar, and 19-μm-thick single foil Mylar. The radiation spectra were most intense between 0.6 and 1.8 keV for Al, 0.9 and 3.1 keV for Mylar, peaking at 1.10, 1.00, 1.44, and 1.58 keV respectively.

The transition radiation cone was measured in different ways, and the measurement is in agreement with optimum apex angle. The radiation peak can be selected by proper selection of foil number, and thickness. For the case of foils separated by a vacuum, the peak frequency and bandwidth are dependent upon the foil thickness and plasma frequency. Measured peak energies correspond to the theory. Aluminum bandwidth narrowing associated with K-edge absorption was observed.

The highly directional beam, high photon production make an electron beam competitive as an x-ray source, especially for applications using a low energy, low current electron beam and requiring a small x-ray beam size. X-ray lithography, x-ray microscopy, and other medical application are possible.
However refinements remain to be done. Some specific suggestions are given below.

1. The magnet was used to deflect electrons from the photon path, but a part of them entered the photon path. They made noise. More powerful magnets are needed to eliminate electrons.

2. The experimental area was very noisy. It affected the observed spectrum. Noise could be decreased by electrically shielding the detector, which would decrease the electric field noise. Magnetic field noise associated with the LINAC klystrons could be reduced by thick concrete shielding.

3. The pipe through which photons pass is about 1.25", and the detector has the dimension 1/8"x3/8" of slotted window. The resolution smearing occured by the shadow effect of photons. An x-ray detector with very fine resolution would be required.

Continued research of transition radiation include the following for future work:

1. Investigation of the effect of multi-foil scattering in transition radiation
2. Determination of the spectrum distribution of a radiator having the several different periodic media (such as Al, air, and Mylar)
3. Determine the dependency of the intensity and frequency spectrum on the resonance peak
APPENDIX A

ELECTRON LINEAR ACCELERATOR PARAMETERS

TABLE 4

LINAC PARAMETER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Energy</td>
<td>120 MeV</td>
</tr>
<tr>
<td>Max. Average Current</td>
<td>20 μamps</td>
</tr>
<tr>
<td>Length</td>
<td>9.14 m</td>
</tr>
<tr>
<td>Pulse Repetition Frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>1 μs</td>
</tr>
<tr>
<td>Operation Frequency</td>
<td>2.856 GHz</td>
</tr>
<tr>
<td>Pulse Repetition Rate</td>
<td>120 PPS</td>
</tr>
<tr>
<td>Pulse Duration</td>
<td>2.5 μs</td>
</tr>
<tr>
<td>Nr. of Klystron</td>
<td>3</td>
</tr>
<tr>
<td>Peak Power per Klystron</td>
<td>21 MW</td>
</tr>
</tbody>
</table>
APPENDIX B
CALCULATION OF PLASMA FREQUENCY

TABLE 5
PLASMA FREQUENCY

<table>
<thead>
<tr>
<th>material</th>
<th>ω_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>32.8 eV</td>
</tr>
<tr>
<td>Be</td>
<td>24.5 eV</td>
</tr>
<tr>
<td>Cu</td>
<td>54.6 eV</td>
</tr>
<tr>
<td>Mylar</td>
<td>19.9 eV</td>
</tr>
</tbody>
</table>

In the absence of a magnetic field, a plasma resonates electrostatically with the frequency. Ignoring the ion motion, the plasma frequency is given by

$$\omega_p = \sqrt{\frac{ne^2}{\varepsilon_0 m}}$$ \hspace{1cm} (2.1)

where e is 1.6×10^{-19} (coul), h is 1.055×10^{-34} (J.sec), m is 9.1×10^{-31} (kg), and $\varepsilon_0 = 8.85 \times 10^{-12}$ (F.m). Substituting these values into Eq. (2.1), the plasma frequency becomes

$$h\omega_p = \sqrt{n} \times 3.718 \times 10^{-11} \text{ (eV)}$$ \hspace{1cm} (2.2)

The electron concentration can be obtained by

$$n = Z N p / A$$ \hspace{1cm} (2.3)
where \(n \) is the number of electrons per \(\text{cm}^3 \), \(Z \) is atomic number, \(N \) is Avogadro number, \(\rho \) is density (gm/cm\(^3\)), and \(A \) is atomic weight. For Al \(n = 7.8 \times 10^{23} \) (electrons/cm\(^3\)), the plasma frequency has the value \(\hbar \omega = 32.84 \) (eV).
Corresponding linear coefficients for Al can be obtained by multiplying all curves by $\rho = 2.70 \text{ (g cm}^3) \text{ for Al [Fig. (C.1)] and } \rho = 1.395 \text{ (g cm}^3) \text{ for Mylar [Fig. (C.2)] (at } T = 0^\circ \text{C, } P = 760 \text{ mmHg}. \text{ Mylar (C}_5\text{H}_4\text{O}_2) \text{ mass attenuation coefficients are obtained approximately by taking } \mu \rho = 1.3(\mu \rho)_c + 5.8(\mu \rho)_c.$
Figure C.2 Mass Attenuation Coefficient for Photons in Mylar.
APPENDIX D
BASIC PROGRAM (HP COMPUTER)

** INFORMATION **
+ THE OBJECTIVE OF THIS PROGRAM IS TO CALCULATE AND DRAW +
+ THE ABSOLUTE DIFFERENTIAL PRODUCTION EFFICIENCIES FROM +
+ STACK MATERIAL. THE DRAWING METHOD IS THE FUNCTION +
+ CURVE OF DISPLA. +
** VARIABLE DEFINITION **
+ L : FOIL THICKNESS IN [m] +
+ X : ENERGY IN [Kev] +
+ K : ENERGY IN FREQUENCY +
+ D : ABSOLUTE COEFFICIENT +
+ Y : MULTI-FOIL ABSORPTION COEFFICIENT +
+ O : PLASMA FREQUENCY IN [Kev] +
+ A : PLASMA FREQUENCY IN FREQUENCY +
+ N,AA,B : SINGLE INTERFACE FACTOR +
+ U : FORMATION LENGTH Z1 +
+ G,E : FORMATION LENGTH Z2 +
+ F : SINGLE FOIL FACTOR +
+ GG,H : TOTAL PRODUCTION EFFICIENCY +
+ M : TOTAL ABSORPTION FACTOR +
** VARIABLE DEFINITION **

C PROGRAM FOR PLOTTING BY SHERPA OR BY TEK618
C--
C GRAPH OF XY DATA GIVEN
PROGRAM GRF2D
CALL TEK618
C CALL PRTPLT
CALL XYPLOT
CALL DONEPL
STOP
END
C PLOTTING THE GIVEN FUNCTION
SUBROUTINE XYPLOT
C---
C MAIN PROGRAM
C---
DIMENSION X(300),Y(300),DI(300),KI(300),A1(300),B1(300),C(300),E(300)
DIMENSION FI(300),G(300),HI(300),M(300),L(300),N(300),O(300),P(300)
DIMENSION Q(300),R(300),S1(300),T1(300),U(300),V(300),N(300),AA(300)
DIMENSION BB(300),CC(300),FF(300),EE(300),GG(300),YY(300)
REAL YY
INTEGER I,J
CALL PAGE(12,9)
CALL ARE2D(9,5.9)
CALL AREA2D(5.5,6.)
CALL YAXAND(90.)
CALL XAXAND(0.)
CALL MxASI('L/CSTD','/
CALL MxASI('ITALIC','x')
CALL Height(0.2)
CALL XNAME('PHOTON ENERGY (KEV)',20)
CALL XNAME('NUMBER OF FOIL',14)
CALL YNAME('PHOTONS / EV/STERAD./ELECTRON) 10**(-4)',39)
CALL YNAME('SINGLE INTERFACE = MULTI-FOIL AB. 10**(-8)',42)
CALL YNAME('ABSORPTION COEFFICIENT (CM**2 /GM) IN LOG',61)
CALL YNAME('MULTI-FOIL INTERFERENCE FACTOR',30)
CALL COMPLX
CALL HEADING('PRODUCTION EFFICIENCY',21,2.5,1)
CALL HEADING('MULTI-FOIL INTERFERENCE',23,1.5,1)
CALL RESIZ('HEIGHT')
CALL FRAME
CALL CROS
CALL GRAFIO.100.,600.,0.,100.,500.)
CALL DOT
CALL GRID(1,1)
CALL RESIZ('ALL')
CALL POLY3
CALL TKCRV(.05)
CALL MARKER(1)

57
CALL HEIGHT(.15)
Z = 0.
DO 30 J = 1.5
Z = Z + 1
DO 20 I = 1,300
MI(I) = 4*Z
LI(I) = 1
X(I) = FLOAT(I)/25
K(I) = 1.5165*X(I)
DI(I) = 3.93-0.49*X(I)
DI(I) = 5.55-X(I)*0.55
DI(I) = LOG10(X(I))
E(I) = -2.1*LOG10(X(I))+2.5
FF(I) = -3.072*LOG10(X(I))+0.7025
D(I) = 10*(E(I))*0.00327
E(I) = 2.1*LOG10(X(I))+2.5
D(I) = 10*(E(I))*1.00-0.27
D(I) = 0.001
Y(I) = 1/D(I)*1-EXP(-X(I))*D(I)
QI(I) = 30.4E-3
AI(I) = 1.5165*X(I)
BI(I) = 1.828E-7*K(I)*(-5)*AI(I)**4
CI(I) = 1.25E-4*(AI(I)/X(I))**2
DI(I) = 1/X(I)*1.2E9/C(I)
UI(I) = 6.4E-6/X(I)
M(I) = (UI(I)+E(I))*1E-18**2
AA(I) = 2.174E-26*(M(I)/X(I))+1E18*1.5172E15*1E-14
FI(I) = SIN(LI(I))/6.5E17+1E18**2
G(I) = 0.0906/1.236E-4*AI(I)/X(I)**2
HI(I) = 0.0126*F(I)+BI(I)/Y(I)+1E-18*1.523E15
MI(I) = Y(I)*F(I)
PI(I) = 1.256E-4*(1.326E-5+Q(I)/X(I))**2
N(I) = 1.828E-25*Q(I)**4*(1)(+6-5)*PI(I)**4*(-2)+1E17
T(I) = 5175/UL(I)+E(I)/1E12
Q(I) = SIN(LI(I)/2)*SIN(T(I))**2
R(I) = 1*EXP(-D(I))-2*EXP(-Q(I)/2)*COS(2*T(I))
S(I) = Q(I)+R(I)
GG(I) = AA(I)+S(I)
CC(I) = AA(I)+S(I)
BB(I) = AA(I)+F(I)*YY(I)
V(I) = M(I)*F(I)+S(I)+1.523E15
WRITE(6,55)X(I),Y(I),Z(I)
55 FORMAT(1X,4E10.3)
READ6,55 IX,Y2
55 FORMAT(1X,4E10.3)
CONTINUE
CALL CURVE(X,0,300,0)
CALL ENDGRID(0)
CONTINUE
CALL CURVE(X,0,300,0)
CALL ENDGRID(0)
RETURN
END
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Distribution</th>
</tr>
</thead>
</table>
| 1. | 2 | Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145 |
| 2. | 2 | Library, Code 0142
Naval Postgraduate School
Monterey, California 93943-5002 |
| 3. | 1 | Physics Library, Code 61
Department of Physics
Naval Postgraduate School
Monterey, California 93943-5000 |
| 4. | 2 | Professor J. R. Neighbours, Code 61Nb
Department of Physics
Naval Postgraduate School
Monterey, California 93943-5000 |
| 5. | 2 | Professor F. R. Buskirk, Code 61Bs
Department of Physics
Naval Postgraduate School
Monterey California 93943-5000 |
| 6. | 1 | Library
Korea Military Academy
Gong-reung-dong 556-21
Republic of Korea 130-02 |
| 7. | 11 | Yoon, Seog Koo
476 Sang-sa, Rack-sung-ri, Kum-gu-myon
Kim-je-gun, Jeon-buk,
Republic of Korea 550-16 |
| 8. | 1 | Jung, Yun Su
SMC 2643 Naval Postgraduate School
Monterey California 93943-5000 |
| 9. | 1 | Lee, Young Moon
SMC 1110 Naval Postgraduate School
Monterey California 93943-5000 |
| 10. | 1 | Wee, Kyoum Bok
SMC 2814 Naval Postgraduate School
Monterey California 93943-5000 |
| 11. | 1 | Yoon, Sang Il
SMC 1558 Naval Postgraduate School
Monterey California 93943-5000 |
END
5-87
PTIC