<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

AD-A178 167
THE PLASMON DISPERSION RELATION ON A ROUGH SURFACE: A SIMPLE APPROXIMATIO. (U) STATE UNIV OF NEW YORK AT BUFFALO DEPT OF CHEMISTRY
D A JELSKI ET AL. MAR 87
UNCLASSIFIED
UBUFFALO/DC/87/TR-31 N00014-86-K-0843
F/G 28/9
ML
The Plasmon Dispersion Relation on a Rough Surface: A Simple Approximation
by
Daniel Jelski and Thomas F. George

Prepared for Publication
in
Journal of Physical Chemistry

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

March 1987

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
This paper is concerned with periodic, laser-induced, chemical vapor deposition recently observed experimentally. In order to inquire further into this phenomena, it is first necessary to find a simple means of calculating the plasmon field strength for relatively deep gratings. The Rayleigh hypothesis is assumed, and only p-polarized, normally incident light is considered. A closed-form equation for the plasmon field intensity is then derived. Also discussed is the behavior of the plasmon dispersion relation for a shallow grating, but for a complex dielectric constant where the imaginary part is not necessarily small.
THE PLASMON DISPERSION RELATION ON A ROUGH SURFACE: A SIMPLE APPROXIMATION

Daniel A. Jelski and Thomas F. George
Departments of Chemistry and of Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

ABSTRACT
This paper is concerned with periodic, laser-induced, chemical vapor deposition recently observed experimentally. In order to inquire further into this phenomena, it is first necessary to find a simple means of calculating the plasmon field strength for relatively deep gratings. The Rayleigh hypothesis is assumed, and only p-polarized, normally incident light is considered. A closed-form equation for the plasmon field intensity is then derived. Also discussed is the behavior of the plasmon dispersion relation for a shallow grating, but for a complex dielectric constant where the imaginary part is not necessarily small.
1. Introduction

Our laboratory has been investigating laser-induced chemical vapor deposition processes as recently observed experimentally.1-3 In particular, we have been interested in the periodic structures observed by Brueck and Ehrlich.3 In a later paper, we shall discuss this experiment directly. This paper, however, will be devoted to developing the theoretical framework necessary for the calculations.

The periodic structure that is observed evolves from the plasmon field induced by the laser. The laser interacts with the random surface roughness. Because the plasmon is resonant at one frequency (for shallow gratings), that frequency component grows as

\[\frac{\partial \xi}{\partial t} = aI(x), \]

where \(\xi \) is the grating amplitude, \(I(x) \) is the total field intensity as a function of position, and \(a \) is the proportionality constant. From this it is clear that we need to develop expressions for the plasmon field intensity as a function of grating height and wavenumber. We can simplify the problem considerably in all that follows by assuming perpendicular incidence, in which case the \(x \)-dependence of the intensity depends only on the plasmon field and not on the reflected or incident fields. We can simplify the problem even further by using the Rayleigh expansion. This is an exact solution above the selvedge region and an approximation within the selvedge region. However, we are primarily interested in field strengths above the selvedge region, so that this expansion is justified.

Many authors have discussed the interaction of radiation with a rough surface or grating. Petit4 has written a good introduction to the subject.
Maradudin5 has discussed the behavior of surface polaritons and plasmons (which together are what we are generically referring to as a surface plasmon). In particular, he has worked out the theory for randomly rough surfaces and has written expressions for the dispersion relation using both the Rayleigh expansion and the exact formula using Green's functions. We shall make much use of this work as we go along. Other authors have also made significant contributions. Jha, Kirtley and Tsang6 have developed the theory for a shallow grating. These authors have made extensive use of the work of Toigo, Marvin, Celli and Hill,7,8 who have written the Rayleigh expansion in a remarkably simple form. Finally, Agassi and George9,10 have developed a dressed Rayleigh expansion which eliminates many of the numerical difficulties encountered previously.

We are interested in the plasmon field intensity above the selvedge region for reasonably deep gratings. We need an expression as a function of both grating height and grating wavenumber. Since we shall also need the derivatives of this function, it is important to derive an expression in closed form. To date, all calculations for deep gratings have involved the inversion of large matrices. Given the conditions of our application, this is impractical. Therefore, we must develop an approximation which is still valid in the deep grating case, but which provides a closed form equation for the plasmon field strength. Two recent papers11,12 have made progress in this field. In particular, the work by Weber12 represents a generalization of our present result. We will compare our result with his in the conclusion.

We should also point out that there has been considerable work done on a closely related problem. Fauchet and Siegman13 have discovered ripples as a result of laser annealing, and Sipe et al.14 have developed an elegant
theory to account for this phenomena. But these are effects of surface
damage rather than surface deposition, and hence the theoretical
requirements are more stringent in that the Rayleigh hypothesis can no
longer be applied.

But there is one additional problem. The experiment of Brueck and
Ehrlich involved a plasmon wave along a cadmium surface. The dielectric
constant for cadmium (at UV frequencies) is approximately

$$\varepsilon = -2.5 + 1.3i.$$ \hspace{1cm} (2)

Most calculations, even for shallow gratings, have assumed that the
imaginary part of the dielectric constant is either zero4,5, or small6
Since this is not the case for us, we shall digress a bit and discuss the
effect on the dispersion relation as the imaginary part of the dielectric
constant becomes large.

The remainder of this paper is organized as follows. In section 2 we
shall discuss the dispersion relation as a function of dielectric constant.
In section 3 we shall derive our approximate formula for the plasmon field
strength. Section 4 contains a discussion of our results, including a
numerical comparison of our approximation with the exact calculation.

2. Dispersion Relation

We can write the solution of the homogenous Helmholtz equation as

$$E_a = E_{\xi_0} \exp(i[kx - \alpha_0 z]) + \sum_{\xi = -\infty}^{\infty} A_{\xi} \exp(i[k_x x + \alpha_\xi z])$$ \hspace{1cm} (3)

$$z > \xi(x)$$
\[E_b = \sqrt{\varepsilon_0} \sum \frac{C_l \exp(i(k_l x - \beta_l z))}{z<\xi(x)}, \]

where

\[k = \frac{\omega}{c}, \quad \varepsilon = \varepsilon_1 + i\varepsilon_2, \quad \varepsilon_1 < -1 \]

\[k_l = k + \ell k_g, \quad \alpha_l = (k^2 - k_l^2)^{1/2}, \quad \text{Im} \alpha > 0 \]
\[\beta_l = (\varepsilon k^2 - k_l^2)^{1/2}, \quad \text{Im} \beta_l > 0 \]
\[p_{\ell+} = \frac{1}{k} [k_g z + \alpha_l z] \]

and where \(k_g \) is the plasmon frequency and \(E_1 \) the incident field strength.

The notation has been culled from refs. 5 and 9. This solution is exact as long as one is outside the selvedge region. Within the selvedge region it may be a good approximation, but as mentioned previously, we are primarily concerned with the region outside, and hence we can use eqs. 4 and 5 without reservation. From the above, it is apparent that \(A_0 \) is the reflected field, while \(A_k \) is the \(l \)-th order Bragg reflection (\(\alpha_l \) real), or surface plasmon (\(\alpha_l \) imaginary). We are interested in the plasmon effect, and hence we shall always assume that \(k_g > k \).

Now, suppose that the surface profile is sinusoidal and can be written as

\[\xi(x) = \xi \cos(k_g x), \]

(6)
and that ξ is small. Then, for perpendicularly incident, p-polarized light, we can write the the plasmon field strength as

$$A_L = \frac{a_0\beta_k [k^2 \xi (c_k - \beta_k)]}{\varepsilon k^2 - k^2(1 + \varepsilon)}.$$ \hfill (7)

For small ξ, A_L is very small unless the denominator is very small. If ε is real, the denominator, which we shall call the resonance factor and denote by R, is zero if

$$k^2 g^2 = k^2 \frac{\varepsilon_1}{\varepsilon_1 + 1}.$$ \hfill (8)

This is the familiar plasmon resonance condition for a flat surface and a real dielectric constant. However, if ε is complex then the strength of the plasmon field depends on the modulus of R, and it is no longer sufficient merely to minimize the real part. We must then minimize

$$|R|^2 = [k^2 (1 + \varepsilon_1) - k^2 \varepsilon_1]^2 + [\varepsilon_2 (k^2 - k^2)]^2.$$ \hfill (9)

Differentiating with respect to k_g and setting the result to zero, we obtain a new dispersion relation

$$k_g^2 = \frac{k^2 [\varepsilon_1 (1 + \varepsilon_1) - \varepsilon_2^2]}{(1 + \varepsilon_1)^2 + \varepsilon_2^2}.$$ \hfill (10)
As $\varepsilon_2 \rightarrow 0$ this reduces to eq. 5. We also note that if $\varepsilon_2 \neq 0$, then $|R| \neq 0$, and the resonance is both dampened and broadened. Equation 10 is the flat surface plasmon dispersion relation for an arbitrary, complex-valued dielectric constant.

As the grating becomes deeper, R also depends on higher powers of ε_1, whereby a branching occurs in the dispersion relation and the resonance becomes less pronounced. Thus the mechanism of the periodic deposition process should now be clear. In the beginning, the incident light is resonant with one frequency component of the randomly rough, but very shallow grating. Because of this resonance, the plasmon of that frequency is much stronger than the others. Hence the field intensity is periodic, and deposition, following eq. 1, has the same periodicity, leading to a growth in amplitude of the grating.

As the grating becomes larger, the dispersion relation branches, and the resonance is correspondingly broadened and dampened. This results in a decrease in the periodicity of the field intensity and a corresponding decrease in the differential rate of deposition (i.e., deposition occurs evenly, not necessarily more slowly). Hence the grating stops growing.

3. Calculation of Plasmon Field Intensity

We can write an expression for the coefficients of eq. 3 as $^7, ^9$

$$\sum_{l=0}^{-} M_{m,l} A_l = u_m E_i,$$ \hspace{1cm} (11)

where
\[m_{m,t} = \frac{\alpha_t \beta_m + k_t k_m}{\alpha_t + \beta_m} (i)^{m-t} J_{m-t}(\xi(\alpha_t - \beta_m)) \]

(12)

\[\nu_m = \frac{-\alpha_0 \beta_m + k_0 k_m}{\alpha_0 + \beta_m} (i)^m J(\xi(\alpha_0 + \beta_m)), \]

(13)

and \(J_m(x) \) is the \(m \)-th-order Bessel function. In general, this results in an infinite number of coupled equations, from which the \(A_t \)'s can be extracted. In practice, Agassi and George\(^9\) have shown that 50 equations is sufficient to find an accurate solution. However, in our circumstance this is impossible. We must find the plasmon field strength as a function of both grating height and wavenumber, which means that we would have to invert two 50 x 50 real matrices for each data point. Using the approximation scheme which we shall derive, we have calculated 10,000 data points. This is perhaps more than necessary, but doing so has enabled us to thoroughly understand the behavior of these functions.

For our approximation, we borrow a page from Maradudin\(^5\) and extend that result to higher orders. The method rests on two ideas. One is that if \(A_1 \) is a plasmon at resonance with \(k_g \), then

\[A_1 \gg A_m \quad m \neq 1. \]

(14)

The second condition is to note that

\[M_{nn} - 1, \quad M_{n,nt1} - \xi, \quad M_{n,nt2} - \xi^2, \ldots \]

(15)

so that even for reasonably deep gratings we can assume that \(M_{11} > M_{12} > M_{13} \) etc.

A special case of eq. 11 is
\[M_{11}A_1 + \sum_{m=1}^{\infty} M_{1,m}A_m = \mu_1 E_1 \] (16)

or

\[A_1 = \frac{\mu_1 E_1 + \sum_{m=1}^{\infty} M_{1,m}A_m}{M_{11}}. \] (17)

Thus \(R = M_{11} \), which must therefore go to zero if \(A_1 \) is to be resonant. Expanding \(A_{11} \) to first order in \(\xi \) yields our result of eq. 4.

Equation 17 is exact. Now we make our approximation. Suppose that \(m \neq 1 \).

Then we can write

\[M_{mm}A_m + \sum_{p \neq m} M_{mp}A_p = \mu_m E_1 \] (18)

But because we are at resonance, of the sum over \(p \), \(p=1 \) is by far the largest term. Thus we can simplify eq. 18 as

\[A_m = \frac{\mu_m E_1 - M_{1,1}A_1}{M_{mm}}. \] (19)

Substituting eq. 19 into 17, we obtain

\[A_1 = \frac{(\mu_1 - \sum_{p \neq 1} M_{1,p}M_{pp}^{-1} \mu_p)E_1}{M_{11} - \sum_{p \neq 1} M_{1,p}M_{pp}^{-1} M_{pp}}. \] (20)
In the case of normal incidence, \(A_1 = \Lambda_{-1} \) by symmetry, and we are not justified in leaving \(\Lambda_{-1} \) out of eq. 19. Inclusion of this term for normal incidence yields

\[
A_1 = \frac{(\mu_1 - \sum_{p \neq 1} (M_{1p} + M_{1-p})\frac{\mu_D}{M_{pp}})E_1}{[(M_{11} + M_{1-1}) - \sum_{p \neq 1} (M_{1p} + M_{1-p})(M_{p1} + M_{p-1})\frac{1}{M_{pp}}]}
\]

(21)

where \(p \) is summed only over non-negative integers. It is clear that in the shallow grating case, both eqs. 20 and 21 reduce to eq. 7.

We shall use eq. 21 with one modification: To ensure numerical convergence, we shall use the dressed Rayleigh expansion. Thus we rewrite eq. 10 as

\[
\sum_{l=-\infty}^{\infty} M^D_{m,l} A^D_{l} = \mu^D_{m} E_1
\]

(22)

where

\[
M^D_{m,n} = M_{m,n} \exp(i\xi[\alpha_m + \beta_m])
\]

(23)

\[
\mu^D_{m} = \mu_m \exp(i\beta_m \xi), \quad \Lambda^D_{n} = \Lambda_n \exp(i\alpha_n \xi).
\]
This eliminates numerical instabilities, not only in the exact calculation, but also for our approximation. In practice, for the grating heights of interest, we have found that summing p from 0 to 15 in eq. 21 provides sufficient accuracy.
4. Conclusion

Equation 21, modified if necessary by the transformation of eq. 23, constitutes our closed form approximation for the plasmon field strength. Let us consider the advantages and shortcomings of our approximation. The first constraint is to notice that for our approximation to be valid, eq. 14 must hold. This means that we must be on the resonance frequency. Were we not on the resonance frequency, then the approximation used in deriving eq. 19 would not be valid. Secondly, our approximation still is a function of grating height. Note that we have used eq. 15, which means that we are discarding higher orders of ξ for non-resonant plasmons. As these become large, then our approximation becomes less accurate.

Nevertheless, we are happy to report that this method preserves the qualitative features of the full calculation. Figure 1 illustrates this very clearly. Here we have calculated the plasmon field strength (|A₁|) for various grating heights using both our new method and the full calculation. It is clear that for gratings up to ξ = 25 nm, the simple calculation preserves the qualitative features of the exact method. This corresponds to a value of \(k \xi = 0.7 \), which is a very deep grating. The quantitative picture may also be better than appears in the graph. The calculation was done for \(k = 2.95 \times 10^7 \text{ m}^{-1} \). This is the resonance frequency for shallow gratings, but it is off resonance for deeper gratings. At 25 nm, we have observed that the resonance frequency is closer to \(3.1 \times 10^{-7} \text{ m}^{-1} \). We have ignored this shift in frequency in our calculations.

As mentioned previously, our result compares with the more general result of Weber. His is more general in that it explicitly accounts for three terms in the Rayleigh expansion rather than just one. However, at resonance, the other two terms can be expected to contribute negligibly, and
hence our result should be nearly as accurate. Off resonance, of course, the other terms are significant and Weber's method is clearly preferable. Strict numerical comparison is impossible since he did his calculation using silver, with a small c_2, whereas ours is for cadmium. Furthermore, his example is for a sawtooth grating while ours is for a sinusoidal grating. But it is very clear from a comparison of figure 1 with his table 1 that the same qualitative features hold, namely that the plasmon resonance intensity is underestimated. Our formalism, while not as general, is derived much more simply and is easier to use, and is probably just as accurate where applicable.

In a later paper we shall apply this formalism to the problem of periodic, laser-induced, chemical vapor deposition. We should be able to predict the growth rate and maximum peak height using the above method.
Acknowledgements

D. A. J. gratefully acknowledges the invaluable assistance of Dr. Pu-Tak Leung and also appreciates the help of other members of our research group. We would like to thank a referee for bringing refs. 11 and 12 to our attention. This research was supported by the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.
References

This graph compares the plasmon field strength ($|A_1|$) calculated from eq. 21 (using the dressed Rayleigh expansion) with that from the exact method. The dielectric constant used is $-2.5 + 1.3i$, the incident light has a wavelength of 257 nm ($k = 2.44 \times 10^7 \text{ m}^{-1}$), and the grating wavenumber is taken as $2.95 \times 10^7 \text{ m}^{-1}$.
Approximate

Exact

Grating Height [nm]
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Code 334</td>
</tr>
<tr>
<td>2</td>
<td>NORDA</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L2</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>1</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>high quality</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Attn: Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>1</td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td>1</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookesville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina
27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 SWH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. M. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. R. Hood
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwiler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125