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I. FORMULATION OF THE PROBLEM

A. Overview of Penetration Mechanics

Penetrators have been traditionally classified as either kinetic energy

(KE) projectiles or chemical energy (CE), that is, explosively-formed jets,

rods or pellets. Typical KE projectiles are launched from a gun and arrive

at a distant target with a definite striking mass, M0 , and speed, So" Thus,

the kinetic energy, 1/2 M0 S , is easily found. In contrast, jets are
produced at khe target by collapsing a metal liner with a hollow explosive

charge. Penetration usually begins even before the jet is completely formed.

Jet aspect or length-to-diameter (L/D) ratios are typically greater than 100

after formation, with the tip moving about 8mm/).s and the rear moving about

lmm/ps . Long rod aspect ratios are typically less than 20 and each element

of the rod moves at the same speed before striking, commonly less than 2 mm/Ms.

This speed is also typical of fragment penetrators with aspect ratios near

unity.

Recently, considerable effort has been devoted to the development of

explosively formed penetrators with aspect ratios near unity. These devices

tend to blur the traditional distinction between KE and CE weapons by fitting

into both categories. They are produced by the explosive collapse of a liner

(like a jet), but arrive at a distant target as a single lump of definite

striking mass and speed (like a projectile). Such a penetrator is a cross

between a jet and a projectile and a cousin to the traditional fragment which

is launched and usually produced from a shell filled with explosive.

Because of the differences between jets and KE projectiles, separate

theories have been developed. Hydrodynamic theories have been favored for

jets, while a variety of theories have been used for bullets and fragments.

With the advent of high-speed, long rods, amended jet or bullet theories have

been introduced. In this report, we will develop a single theory which

describes all types of penetrator from a unified viewpoint.

Two points of view have been used successfully in classical mechanics.

The mechanics of particles was systematized by Newton who spoke of "quantity
(1.1)of motion" or momentum as we now call it . Continuum Mechanics followed

1



Newton's principles. However, instead of describing the time evolution of the

coordinates of a particle or system of particles, the goal became a

description of the velocity, pressure and density history of every point in

space. This view was systematized by Euler (1.2) who also showed how the two

viewpoints are connected. Especially when they are applied to fluids, we now

call these viewpoints Lagrangian and Eulerian, although both forms are due to

Euler. Lamb (1.3) gives the history and mathematics of both viewpoints.

The choice of one viewpoint or the other is usually governed by

considerations of simplicity. If a motion is symmetrical enough to be

characterized by one space coordinate, then the Lagrangian view is preferred

even in hydrodynamics (1.. The general equation of motion which allows for

spatial variation of the dilatational and shear viscosity coefficients reduces

to the Navier-Stokes equation when these coefficients are constant and the
(1.5)

bulk viscosity vanishes . The usual Eulerian form of the hydrodynamic

equation of motion is the inviscid form of the Navier-Stokes equation. If

heat conduction is important, it is customary to account for it in the energy

rate equation which reduces to Bernoulli's equation in the inviscid, adiabatic.
(1.6)

case . Usually both heat conduction and viscosity are neglected in

hydrodynamics.

In this report, we wish to describe the motion of a solid projectile

penetrating a solid target. We limit ourselves to impacts by homogeneous

projectiles with zero yaw, striking flat target surfaces at zero obliquity

without spin. The targets are assumed to be homogeneous and effectively

infinite in lateral extent. The latter description means that there is no

detectable distortion of the outermost lateral dimensions of the target.

However, the targets may be either finite or semi-infinite in the direction of

penetration. The former description means they can he perforated by the

projectile speeds and masses available. The latter description means they are

thick enough to stop the penetrator without detectable distortion of the rear

surface of the target.

Sliding friction forces are present during penetration and can be

influential in the final stage of projectile motion. For example, Zaid and

(1.7)co-workers found that a rod of length greater than the thickness of the

target plate might exit from the rear of the plate with almost no residual

velocity or', at a slightly lower striking speed, become embedded in the plate,

protruding from both the front and rear surfaces. They attributed the defeat

2



of the slightly less energetic rod to projectile/plate friction. Wingrove
has also described the increased importance of frictional energy loss

near velocity ballistic limits and attributed this to an increase in the

coefficient of friction as the projectile velocity is reduced. However,

during most of the projectile. motion, friction plays a negligible role, at

least for metal targets and projectiles, as has been pointed out by Krafft
S~(1.9)

.9 In this report we will neglect sliding friction. For similar reasons,

penetration by a spinning projectile is negligibly different from penetration

by a non-spinning projectile.

For solid targets we may also neglect gravity.

For thin target plates struck by projectiles near velocity ballistic

limits, plate bending can play a role. We will confine our attention here to

plates which are thick enough that such an effect is negligible. If we are

near a ballistic limit, this means that the target thickness is comparable to

the projectile diameter.

Various measurements have been made of the manner in which the striking

energy of a projectile is eventually partitioned into projectile and target
(1.10 to 1.12)

heating and deformation. . In this report we will be concerned.

only with the forces at work during a penetration, a process which is complete

in tens of hundreds of microseconds. We will not be concerned with the

eventual redistribution of the absorbed energy. Electromagnetic radiation,

usually a flash of light, accompanies some impacts. Although this occurs in

the time frame of interest, it is very brief and involves a negligible amount

of energy.

We will treat both projectile and target as approximately incompressible.

Some energy is transported by wave motion in both target and projectile in the

time frame of interest. For example, the rear of a rod penetrator is slowed

when a wave generated at the front reflects at the metal/air interface. Waves

also radiate from the target cavity as it is being produced. However, the

energies involved are usually negligible. An exception may occur for jets

penetrating plastics as will be mentioned later. For very high impact speeds,
(1.13)

melting and vaporization may also become important . In this report we

will avoid such cases.

In a previous report (1.14) we concentrated on the case of a constant mass

projectile striking a target plate at non-zero obliquity. In that case we

found that a force dependent on projectile displacement was essential for
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describing ricochet versus embedment versus perforation. However, such a

force was found to be negligible in comparison to other forces for zero

obliquity impacts. Consequently, in the present report we will neglect forces

that depend on displacement. In that report we briefly discussed the case of

an eroding rod and transformed the time variable to obtain some interesting

solutions to particular cases. Here we will adopt a simpler approach by

assuming a particular form for the erosion rate. The previous report also

developed a model of projectile breakup which we will use in a future report.

Finally, the previous report gave a survey of KE penetrator theories which we

will not repeat here. However, in Chapter V below, we will survey jet

penetration theories. Selections from parts of the previous report appear in
(1.15)

the Sixth Symposium on Ballistics

The goal of the present report is to develop a unified theory which

includes the essential physics of the problem, yet is simple enough to use in

initial design work where insight and ideas for experiment are more important

than great precision. Consequently, a number of examples will be given in

order to facilitate the use of the theory. It is the author's opinion that

the exclusive use of complicated computer codes in penetration mechanics is

both premature and inadequate. Our current knowledge of the physics of

penetration is still too rudimentary for us to reduce the problem to

improvements in numerical methodology. Concentration on this aspect of the

problem, while eventually worthwhile, can distract us'from learning the

physics we 'need to know. A simple theory should have the advantage that every

detail can be understood and modified by the user. It should also enable' us

to link the specialized field of penetration mechanics to the rest of simple

physics where a few mathematical forms can be used to describe a remarkable

variety of phenomena (1.16)

B. Forces Exerted on the Penetrator

As outlined above, our problem is sufficiently symmetrical to be

characterized by one space coordinate, S, by which we denote the position of

the center of inass of the penetrator. Here we will adopt the Lagrangian

viewpoint and describe the time evolution of this coordinate or some other

coordinate related to it. In the case of a solid projectile penetrating a

solid target the penetrator moves in a crater which is usually open at the
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rear. In this respect the motion is often simpler than for a solid penetrator

in a fluid target where a turbulent wake may exert a drag force on the

projectile (1.17). Exceptions can occur as for penetration of a hard, brittle

target by a train of fragments as we shall see. If the target cavity is open

at the rear of the projectile and is wide enough to justify neglect of sliding

friction on the sides of the projectile, then all target forces are exerted on

the front of the projectile. This seems to be true for most cases of interest.

Let the mass of the penetrator at any given time be denoted by M P PpV,

where Pp is the density of the penetrator and V is its volume. When it is

appropriate to speak of the penetrator length, L, and cross-sectional area, A,

then V - AL. If the pressure or the front of the penetrator is p and the

pressure on its rear and sides is zero, then the pressure gradient along its

length is p/L, the force per unit volume. If we multiply this by the volume,

AL, we obtain pA for the opposing force due to the strength of the target.

Tabor (1.18, 1.19) has shown that the mean pressure exerted by a metal target

on a metal penetrator is approximately equal to three times the ultimate yield

strength, or elastic limit, Yt, of the target material as determined in

standard tensile tests. He started with the theoretical predictions of Hencky
(1.20) and Ishlinsky (1.21) which agreed that the pressure should be a bit less

than 3Yt. He then measured this pressure for various metals and found it

to be quite close to 3Yt' t(1.19)

In the appendices of his book Tabor noted the proportionality

between the ultimate tensile strength and the Brinell hardness number

Yt = Cm(BHN) (1.1)

where C is a constant approximately equal to 0.3 x 108 (dyne/cm 2)/(kg /mm2
m

for steel or hard aluminum. For soft aluminum or copper he suggested C
m

values about 50% higher with intermediate values for other non-ferrous metals.

He also gave hardness values for many metals and a few indenter materials as

well as conversions between various hardness numbers. Table 1.1 here gives

some typical values.
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Table 1.1 Typical range of Brinell hardness numbers, BHN, and yield

strengths, Yt. 2 2

Material BIN (kg/nuii) Yt (dyne/cm2)

lead 1 .5 x 108

copper 30-130 1I-60

aluminum 15-150 7-50

steel 100-400 30-120

diamond 6,000

Since the mean pressure to keep bonds breaking and initiate plastic flow

in a target is

P - 3Y (1.2)

we can calculate the resistive force of the target due to its hardness as

a - pA - 3YtA - 3C (BHN) A (1.3)
t m

from Eqs. (1.1) and (1.2). Here A is the time average value of the area

presented by the projectile to the target during the penetration. Commonly

the nose of the projectile deforms during a penetration so that A > A0 where

A is the initial cross-sectional area of the projectile before penetration

begins. Thus the force a in Eq. (1.3) is a constant in the approximation we

are making here. For example, if the target is an armor steel with

BHN - 300kg/mn 2, we find 3Y = 3 (90 x 108) = 2.7 x 10 dyne/cm 2, and if A 1 lcm2

10 2
then a = 2.7x10O dyne= .27gmm/u M 5 Here we have converted to grams (g),

millimeters (mm) and microseconds (gs), the mass, length and time units which

seem most appropriate to our problem.

The nose shape of a projectile can affect its penetration, especially as

it enters the target, or if the target is thin, and projectile plastic
(1.22)

deformation and/or erosion are not important factors . Shape is not

very important in a deep penetration or when projectile deformation and/or

erosion are important, since penetrator noses become hemi-spherical mushroom

caps. Whenever we discuss non-deforming projectiles in this report, we will

restrict ourselves to spheres or rods with hemi-spherical noses so we need not

be concerned with other shapes. Even for spheres we should, strictly

speaking, use a Hertzian contact surface to account for elastic deformation as

described by Goldsmith (1.23). Such precision is not important to our goal of

coupled insight and simplicity. Generally speaking, we will be concerned only
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with the area presented by a hemi-sphere of diameter somewhat larger than the

/ initial diameter.

A second type of resistance offered by a target is inertial and becomes

more important at higher speeds. We approximate this force by

1Pt ý2 A = cp2 (1.4)

where P is the penetration speed and c h ptA is a constant proportional to

the target density, Pt, and the average projectile presented area, A. In Eq.

(1.4), hpitp2 is the energy of a moving unit volume of target material after

its bonds have been broken, assuming it moves with the same speed as the

projectile-nose. It is also the resistive force per unit area offered by the

target because of its mass, so that multiplication by the area gives us the

inertial force.

Equations (1.3) and (1.4) give the two main forces we will be concerned

with. They require only a knowledge of the target density and hardness as

well as an estimate of the area presented by the penetrator. If we add these

two forces we have the form proposed by Poncelet 150 years ago. What is new

here is the use of 3Yt in Eq. (1.3) so that we can calculate the hardness

force term from measured Brinell numbers, instead of treating it as an

adjustable parameter. The form for c in Eq. (1.4) is not new, but it also

prevents us from treating it as an adjustable parameter. If any adjustment is

made, it will be in our estimate of A > Ao. Whenever possible, we will use

experimental information to estimate A, which appears in both a, the hardness

force, and c, the inertial coefficient.

A third type of target resistive force which is often considered is a
viscous force proportional to the first power of the speed(.2)t .3.

None of these authors could do more than guess at the magnitude of this effect

since they had no experimental measurements of solid viscosity. More
recently, Walters (1-31) revived interest in solid viscosity by summarizing

the available experimental data. Unfortunately, there is more than order of

magnitude disagreement between various experimental measurements, with Russian

workers tending to favor high values and American workers tending to favor low

values. Thus Walters was forced to treat the viscous coefficient as an

adjustable parameter (within wide experimental limits) when applying it to
I ~~~penetration mechanics" "12.
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The notion of internal friction or viscosity is basically the same for

srt(4 and fluids as was pointed out by Thomson over 100 years ago.

This molecular friction in elastic solids may be properly
called viscosity of solids, because, as being an internal
resistance to change of shape depending on the rapidity
of the change, it must be classed with fluid molecular
friction, which by general consent is called viscosity

of fluids." (1.33)

Somewhat earlier, Maxwell (1.3m) wade similar observations, pointing out

that in a viscous solid the time rate of change of internal stress, 3, is

proportional both to the strain rate, C, and the stress divided by a

relaxation time, r . That is,

-GE - /'r (1.5)

where G is the rigidity or shear modulus. An integration of Eq. (1.5) for

constant C gives

__- + ( r0  - exp (t/r) (1.6)

where 7= Gr is the coefficient of viscosity. When sufficient time has

passed after an initial loading ( t )> >), -> o, showing that in this

limit the viscosity is the shear stress divided by the strain rate. For

simple Newtonian liquids like water 7 is very short (10-12 s), and

considerable effort must be made to observe its relaxation. However, this has

been done on a regular basis for some time now (1.35). For non-Newtonian

liquids and solids, r can be much longer.

Hencky (1.36) saw in Maxwell's r a way to "bridge the gap from solid to

liquid continua." By introducing relaxation time or its inverse (frequency),

he derived Euler's equations of viscous fluid flow from the deformation of an

originally elastic continuum. He showed that the Navier-Stokes equation is

the special case of large stress or small relaxation time.

A hit later, de Bruyne (1.37) pointed out that Maxwell's relaxation time

could be written in terms of an activation energy, U:
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r = r,, exp [U / (RT)] (1.7)

where R is the gas constant, T is the temperature and 7 is the

high-temperature limit. Multiplying Eq (1.7) by G gives the viscosity n in

Maxwell's model which then has the form postulated by Andrade (1.38). He

went on to observe that deformation of a solid takes place by "a change of

molecular position from one stable state, over an energy barrier, U, to

another stable state, and that only those molecules (or groups of molecules)

having sufficient energy of thermal agitation to get over the barrier are able

to make the change." He let au be the ultimate stress and

U - VM(Ou-q)2/( 2G) (1.8)

since the strain energy per unit volume stored in a solid might be written as

1/2 ./G Here VM is the volume of a mole of material with VM - N V , if Na 0m a

is Avogadro's number and Vm is the volume of a molecule. If the velocity is

v - 61/dt and the strain is 61/dxthen a is proportional to the velocity

gradient in Eq (1.6) after sufficient time has passed, t >>r, that is,

Se -I '7d/dt (61/dx) - idv/dx . (1.9)

When n = u/C = Gr , Eqs. (1.7) and (1.8) give

n G r exp [V (u _ a ) 2 /(2GkT)] (1.10)

where k=R/N is Boltzmann's constant. Eq. (1.10) says that the viscosity

decreases as the temperature increases in agreement with observations of

condensed matter (liquids and solids). The increase in thermal energy makes

it easier for potential barriers to be crossed. However, Eq (1.10) predicts

that n will decrease as the stress or pressure is increased toward its

ultimate value, a->au , which is contrary to observations. As the pressure

applied to condensed matter increases so does the viscosity, since it becomes

more difficult to overcome potenfial barriers.

If r is large enough in Eq (1.6), then there will be an observable delay

in returning to the unstressed state when the material is unloaded. This

lagging of the strain behind the stress is a case of mechanical hysteresis



(1.39)
which Zener has dubbed "anelasticity" . A number of stress-induced

mechanisms have been considered such as the inhibition of thermal or particle
A

diffusion or of viscous slip along grain boundaries. Ke, a co-worker of Zener,

measured the internal friction of both single crystal and polycrystalline

aluminum as a function of temperature and found a resonance peak near 500 0 C in

polycrystalline specimens but not in single crystals. He attributed this to

viscous slip at grain boundaries and estimated the viscosity of

polycrystalline aluminum to vary from 2 x 1016 poise near room temperature to

about 2 x 10- poise at 660°C, the melting point. (. K0). made similar

measurements for a number of other metals. For alpha-iron he found the

viscosity to vary from 1045 poise near room temperature to 10- 2 poise at 910 0C

where a transition to gamma-iron occurs. He found three resonance peaks in

alpha-iron. Those centered at 200C and 2250C he attributed to stress-induced

re-distribution of interstitial nitrogen and stress-induced inhibition of

nitrogen atom diffusion respectively. The main peak centered at 5000 C and

extending from 400 0C to 6000 C he attributed to viscous slip at grain

boundaries. He noted that the viscosity decreased from 1010 poise at 400°C to

103 poise at 600 0C, values quite comparable to those of pyrex glass over the

same range (1.41). KO also studied the effects of impurities in aluminum,
(1.42)

iron and copper as well as the effect of alloying aluminum and copper
(1.43) Ke's measurements were carried out at low stress levels and slow

speeds, so they may not be transferable to penetration mechanics where high

speeds and stresses occur. However, his finding that measurements of the

viscosity of solids vary widely with the characteristics of particular

specimens may help to account for the large discrepancies between viscosity

values reported by various workers for nominally the same materials.

Krausz and Eyring (1.44) have developed these ideas and introduced

statistical quantum mechanics via Eyring's absolute reaction rate theory. In

the view of these authors a solid can be looked upon as a giant molecule, if it

is a perfect crystal. Of course, imperfections and grain structures modify

this view and the flow units might be grains rather than molecules in the case

of metals. They use their rate theory of plastic deformation to explain a

variety of phenomena, including mechanical hysteresis.

In their discussion of viscosity and plastic flow, they develop an

expression which relates the strain rate, C , to the net number of times per

second that a flow unit moves in a direction determined by the stress:
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C=(C/(2 r)][eZ-eZ] (1/= ) sinh z (1.11)

where

r= X /(2 X k*) (1.12)

is the relaxation time,

z M rVH (1-13)IZz = (•X 3 )/(2kT) = ~H(.3

2kT

"and

k*= (kT/h) exp [-AG*/(kT)] (1.14)

Here k* is the rate constant (sec ) and involves Boltzmann's constant, k,

Planck's constant, h, and Gibb's free energy of activation, AG*, as well as

the temperature, T. The parameter z is proportional to the stress, a , which

induces flow units to move from one site to another one an average distance X1

away. Here (X 2X3 ) is the cross-sectional area presented by the flow unit to

the opposing medium. Consequently, a(X2X3)is the force. In moving to an

adjacent site, the flow unit surmounts a potential energy barrier which has a

peak located a distance X/2 from a valley, so the force does work aX 2 X3 X/2 " OV /2.

This is the numerator of Eq (1.13), the activation energy. The thermal

factor, kT, in the denominator has the effect of assisting a passage over the

barrier at higher temperatures. The hole volume swept out during the motion

is VH= X 2X3X, while the volume of the flow unit is not much different, namely,

V = XI X2X3 * The exponential terms in Eq (1.11) represent forward and

backward motions of flow units. Krausz and Eyring go on to generalize their

theory in order to include the motion of more than one type of flow unit, each

characterized by its own relaxation time, Ti, and occupying a fraction, Xi, of

the shear surface. They then proceed to apply their theory to a number of

solids. However, they do not treat metals to any extent, except to point out

the analogy between superplastic flow of metals and the motion of viscous

materials like hot glasses. The great elongation which is possible without

necking or breaking is familiar to anyone who has observed a demonstration of

the glass-maker's art.
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