RELATIONS BETWEEN ARRIVAL AND TIME AVERAGES OF A PROCESS IN DISCRETE-TIME (U) VIRGINIA UNIV CHARLOTTESVILLE DEPT OF ELECTRICAL ENGINEERING

UNCLASSIFIED

L GEORGIADIS NOV 86 UVA/525415/EE87/102 F/G 12/2 NL
A Technical Report
Grant No. N00014-86-K-0742
September 1, 1986 - August 31, 1986

RELATIONS BETWEEN ARRIVAL AND TIME AVERAGES OF A PROCESS IN DISCRETE-TIME SYSTEMS AND SOME APPLICATIONS

Submitted to:
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

Attention: R. N. Madan
Code 1114SE

Submitted by:
L. Georgiadis
Research Assistant Professor

P. Kazakos
Professor

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

Report No. UVA/525415/EE87/102
November 1986

SCHOOL OF ENGINEERING AND APPLIED SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA 22901
A Technical Report
Grant No. N00014-86-K-0742
September 1, 1986 - August 31, 1986

RELATIONS BETWEEN ARRIVAL AND TIME AVERAGES OF A PROCESS
IN DISCRETE-TIME SYSTEMS AND SOME APPLICATIONS

Submitted to:
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

Attention: R. N. Madan
Code 1114SE

Submitted by:
Leonidas Georgiadis
Research Assistant Professor

P. Kazakos
Professor

Department of Electrical Engineering
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

DISTRIBUTION STATEMENT A
Approved for public release;
Distribution Unlimited

Report No. UVA/525415/EE87/102
Copy No. ___
November 1986
We consider a process observed by arrivals in a discrete-time system. The arrivals are controlled by an underlying Markov chain. The relation between the time average of the observed process and the average of the same process as observed by the arrivals is derived. Applications of the results are provided.
1. INTRODUCTION

The fact that "Poisson Arrivals See Time Averages" (PASTA) has been used repeatedly in the analysis of queueing systems. Various authors provided proofs of PASTA under varying assumptions on the observed process and its relationship to the Poisson arrivals \[6,7,9\]. In [10] it was shown that PASTA is essentially a sample path property. The basic condition is that the observed process cannot anticipate future jumps of the Poisson process. In this paper we consider discrete-time systems. These systems arise naturally in the study of synchronized communication networks and can also be considered as approximations of continuous-time systems. We assume that the statistics of the arrival process are governed by an underlying denumerable Markov chain and that the observed process cannot anticipate future arrivals if the current state of the Markov chain is known. We derive the relation between the time average of the observed process and the average of the process as observed by the arrivals. The states of the underlying Markov chain are involved in this relation. Examples are given to illustrate the applicability of the results. As in [10] the results can be applied even if the observing process has a role different than that of "arrival."

2. MAIN RESULTS

On a probability space \((\Omega, F, P)\) consider:

i) An increasing family of \(\sigma\)-fields, \(\mathcal{F}_n, n = 0, 1, \ldots\).

ii) A sequence \(U_n, n = 0, 1, \ldots\) of random variables adapted to \(\mathcal{F}_n\) (i.e. \(U_n \in \mathcal{F}_n\) measurable for every \(n\)).

iii) A sequence \(\Theta_n, n = 1, 2, \ldots\) of nonnegative, integer valued random variables adapted to \(\mathcal{F}_n\).

iv) A sequence \(X_n, n = 0, 1, \ldots\) of random variables adapted to \(\mathcal{F}_n\), such that:

\[
E(\Theta_{n+1} | \mathcal{F}_n) = E(\Theta_{n+1} | X_n) \quad \text{a.e., } n = 0, 1, \ldots
\]

Let \(I(A), A \in \mathcal{F}\), denote the indicator function of the event \(A\).

The interpretation of the quantities defined above is the following:

i) \(\mathcal{F}_n\) is the history of the system up to time \(n\).

ii) \(U_n\) is the observed process. \(U_n\) is usually an indicator function. The process of interest is, say, \(D_n, n = 0, 1, \ldots\) and \(U_n = I(D_n \in B)\), where \(B\) is an event in the state space of \(D_n\).

iii) \(\Theta_n\) represents bulk arrivals.

iv) \(X_n\) is the process governing the evolution of the arrival process.

Let us define:

\[T_n = \frac{\sum_{i=0}^{n} U_i}{n}\] \[O_n = \frac{\sum_{i=0}^{\Theta_i} U_i}{\sum_{i=1}^{\Theta_i}}\] \[O_n^p = \frac{\sum_{i=0}^{\Theta_i} U_{i-1}}{\sum_{i=1}^{\Theta_i}}\]

\[O_n^p = \frac{\sum_{i=0}^{\Theta_i} U_{i-1}}{\sum_{i=1}^{\Theta_i}}\]
\[S_{i,n}^n = \frac{\sum_{i=1}^{n} U_i I(X_i = i)}{\sum_{i=0}^{n} I(X_i = i)} \quad (2d) \]

\[S_{i,n}^p = \frac{\sum_{i=1}^{n} U_{i-1} I(X_i = i)}{\sum_{i=1}^{n} I(X_i = i)} \quad (2e) \]

\(T_n \) is the time average of the observed process up to time \(n \).
\(O_n^a \) is the average value of \(U_n \) that arrivals up to time \(n \) see, just after they arrive.
\(O_n^b \) is the average value of the process \(U_n \) that arrivals up to time \(n \) see, at the last slot before they arrive.
\(S_{i,n}^a, S_{i,n}^b \) have the same interpretations as \(O_n^a, O_n^b \) respectively, if we consider that an arrival occurs whenever \(X_n = i \), \(i \) fixed.

An example where the arrivals have the structure described above is the output of the finite population slotted ALOHA system ([4], chapter 8). In this case,

\[\Theta_n = \begin{cases} 1 & \text{if a successful transmission occurs in slot } n \\ 0 & \text{otherwise} \end{cases} \]

and \(X_n \) is the number of blocked users in the beginning of slot \(n \). The output of Tree, Window or Stack type Random Access Algorithms can be put in this framework as well. The same is true for the output of other discrete-time queues. The process \(D_n \) can be, for example, the length of a queue whose input is the output of a Random Access Algorithm. We are interested in the relationship between the quantities defined in (2), as \(n \) increases to infinity.

The following Theorem is the basis for the subsequent derivations.

Theorem 1. Let \(|U_n| \leq B < \infty, n = 1, 2, \ldots \), and \(\sum_{n=1}^{\infty} \frac{1}{n} E(\Theta_n^2) < \infty \). Then,

\[\lim_{n \to \infty} \left(\frac{\sum_{i=1}^{n} U_{i-1} \Theta_i}{n} - \frac{\sum_{i=1}^{n} U_{i-1} E(\Theta_i/X_{i-1})}{n} \right) = 0 \ a.e. \]

Proof. The proof is similar to the martingale proof of the Strong Law of Large Numbers. We include it here for completeness.

Let

\[G_n = U_{n-1} \Theta_n - U_{n-1} E(\Theta_n/X_{n-1}), n = 1, 2, \ldots \]

and

\[G_n = \sum_{i=1}^{n} \frac{1}{C_i} C_i = \begin{cases} C_1 & n = 1 \\ C_n + G_{n-1} & n = 2, 3, \ldots \end{cases} \]

The random variables \(C_n, n = 1, 2, \ldots \) are integrable:

\[E(|C_n|) \leq 2B (E(\Theta_n^2))^n < \infty. \]

It follows that \(G_n \) is integrable for \(n = 1, 2, \ldots \). It can also be seen that \(\{G_n, \mathcal{F}_n, n = 1, 2, \ldots\} \) is a martingale. Moreover,
\[E(G_{n+1}^2/\mathcal{F}_n) = G_n^2 + \frac{1}{(n+1)^2} E(C_{n+1}^2/\mathcal{F}_n) + 2G_n \frac{1}{n+1} E(C_{n+1}/\mathcal{F}_n) \]
\[\leq G_n^2 + \frac{1}{(n+1)^2} E((\mid \Theta_{n+1} \mid + E(\mid \Theta_{n+1}/X_n \mid)^2)/\mathcal{F}_n) \]
\[\leq G_n^2 + \frac{2B^2}{(n+1)^2} (E(\Theta_{n+1}^2/\mathcal{F}_n) + E(\Theta_{n+1}^2/X_n)) \]

Therefore,
\[E(G_n^2) \leq E(G_1^2) + 4B^2 \sum_{i=1}^{\infty} \frac{1}{(i+1)^2} E(\Theta_{i+1}^2) < \infty, \quad n = 1, 2, \ldots. \]

It follows ([1], Th. 7.6.10, p301) that \(G_n \) is uniformly integrable and converges almost everywhere (and in \(L^2 \)) to a finite limit \(G(\infty) \). Therefore,
\[\sum_{i=1}^{\infty} \frac{1}{i} C_i = G(\infty) < \infty \text{ a.e.} \]

The theorem now follows by an application of Kronecker's Lemma ([1], Th 7.1.3, p270).

The following Corollary is the counterpart of the corresponding Theorem for Poisson arrivals in continuous time [10].

Corollary 1. Let \(\Theta_n, \quad n = 1, 2, \ldots \) be a sequence of random variables such that \(\Theta_n \) is independent of \(\mathcal{F}_{n-1}, \quad n = 1, 2, \ldots \), \(E(\Theta_n) = \lambda_n \), and \(\sum_{i=1}^{\infty} \frac{1}{i^2} E(\Theta_i^2) < \infty \). If
\[\sum_{i=1}^{\infty} \frac{\lambda_i}{n} \]
\[\lim_{n \to \infty} \frac{\sum_{i=1}^{n} U_i \lambda_i}{n} = \lambda < \infty, \]
then
\[O_n^b \to O_\infty^b \text{ a.e.} \quad \text{iff} \quad \frac{\sum_{i=1}^{n} U_i \lambda_i}{n} \to \lambda O_\infty^b \text{ a.e.} \]

Therefore, if \(\lambda_n = \lambda, \quad n = 1, 2, \ldots, \) then,
\[O_n^b \to O_\infty^b \text{ a.e.} \quad \text{iff} \quad T_n \to T_\infty = O_\infty^b \text{ a.e.} \]

Proof. In Theorem 1., let \(X_n = \Theta_n, \quad n = 1, 2, \ldots, \) \(X_0 = \text{constant} \). Then
\[\lim_{n \to \infty} \left[\frac{\sum_{i=1}^{n} \theta_i}{\sum_{i=1}^{n} \Theta_i} - \frac{\sum_{i=1}^{n} U_i \lambda_i}{n} \right] = 0 \text{ a.e.} \]

By Kolmogorov's Strong Law of Large Numbers ([1], Th. 7.2.2, p274),
\[\frac{\sum_{i=1}^{n} \theta_i - \sum_{i=1}^{n} \lambda_i}{n} \to 0 \text{ a.e.} \]

The rest of the Corollary follows easily. \(\Box \)

Remark. Note that it is not required that the random variables \(\Theta_n \) be identically distributed. On the other hand, if the random variables \(\Theta_n \) are independent identically distributed (i.i.d), the restriction on the second moments is not necessary.
Corollary 2. If \(\theta_n \) are i.i.d. random variables with finite mean, then

\[
O^b_n \rightarrow O^b \quad a.e.
\]

Proof. The proof is entirely analogous to the corresponding proof of the Strong Law of Large Numbers ([11], Th 7.2.5, p275) and will be omitted. We only note that in the proof, instead of referring to the Strong Law of Large Numbers with finite second moments, one should refer to Theorem 1. \(\square \)

We now state the conditions for the main Corollary concerning the nonindependent case.

Let \(X_n, n=1,2,..., \) be an irreducible, homogeneous, denumerable Markov chain with state space \(\mathcal{L} \), and transition probabilities \(p_{ij} = P(X_{n+1} = j/X_n = i) \). Let \(\mathcal{H} \) be the state space of \(\Theta_n, \mathcal{H} \subseteq \{0,1,2,...\} \). Let \(D_i = E(\theta_{n+1}/X_n = i) \), independent of \(n \), and \(M_i = E(\theta_{n+1}^2/X_n = i) \), independent of \(n \).

Corollary 3. Let \(|U_n| \leq B < \infty \) a.e., \(n=1,2,... \). Let \(X_n \) be ergodic with stationary probabilities \(\pi_i, i \in \mathcal{L} \). If

\[
M_i \leq M < \infty, \quad i \in \mathcal{L}
\]

and

\[
S^b_{i,n} \rightarrow S^b_{i,\infty} \quad a.e., \quad i \in \mathcal{L}
\]

then

\[
S^b_{i,n} \rightarrow S^b_{i,\infty} \quad a.e., \quad i \in \mathcal{L}, \quad O^b_n \rightarrow O^b \quad a.e., \quad T_n \rightarrow T_\infty \quad a.e.
\]

and the following equalities hold:

\[
O^b_n (\sum_{i \in \mathcal{L}} D_i \pi_i) = \sum_{i \in \mathcal{L}} D_i \pi_i S^b_{i,\infty}, \quad a.e.
\]

(4.a)

\[
S^b_{i,\infty} \pi_j = \sum_{i \in \mathcal{L}} \pi_i p_{ij} S^b_{i,\infty}, \quad i, j \in \mathcal{L}, \quad a.e.
\]

(4.b)

\[
T_\infty = \sum_{i \in \mathcal{L}} \pi_i S^b_{i,\infty} = \sum_{i \in \mathcal{L}} \pi_i S^b_{i,\infty}, \quad a.e.
\]

(4.c)

Proof. From (3) it follows that

\[
E(\theta_2^2) \leq M, \quad n=1,2,...
\]

(5)

Therefore, Theorem 1 applies with \(U_n \equiv 1 \).

\[
\lim_{n \rightarrow \infty} \left\{ \frac{\sum_{i=1}^{n} \Theta_i}{n} - \frac{\sum_{i=1}^{n} E(\Theta_i/X_{i-1})}{n} \right\} = 0
\]

(6)

Because of (3), \(\sup_{i \in \mathcal{L}} D_i < \infty \), and therefore,

\[
\sum_{i \in \mathcal{L}} D_i \pi_i < \infty
\]

(7)

From (7) and Th.2 in [3] p92, it follows that

\[
\lim_{n \rightarrow \infty} \frac{\sum_{i=1}^{n} E(\Theta_i/X_{i-1})}{n} = \sum_{i \in \mathcal{L}} D_i \pi_i, \quad a.e.
\]

(8)

From (6) and (8) we see that
Observe now that $E \{ \Theta_{n+1}/X_n \} = \sum_{i \in \mathcal{L}} D_i I(X_n = i)$, and apply Theorem 1 again:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \Theta_i}{n} = \sum_{i \in \mathcal{L}} D_i \pi_i, \text{ a.e.} \tag{9}$$

Also,

$$\frac{\sum_{i=1}^{n} U_{i-1} I(X_{i-1} = i)}{n} = \sum_{i=1}^{n} \frac{U_{i-1} I(X_{i-1} = i)}{n} \to S_{i,\infty}^p \pi_i, \text{ a.e.} \tag{10}$$

Let A_m be an arbitrary finite subset of \mathcal{L}. Since

$$|U_{i-1} D_i I(X_{i-1} = i)| \leq BD_i I(X_{i-1} = i), \tag{12}$$

it can be seen that,

$$\left| \frac{\sum_{i \in \mathcal{L}} \sum_{i=1}^{n} U_{i-1} D_i I(X_{i-1} = i)}{n} - \frac{\sum_{i \in \mathcal{L}} D_i \sum_{i=1}^{n} U_{i-1} I(X_{i-1} = i)}{n} \right| \leq B \sum_{i \in \mathcal{L}} D_i I(X_{i-1} = i) \tag{13}$$

Exactly as in the proof of (8), we have that,

$$\lim_{n \to \infty} \frac{\sum_{i \in \mathcal{L}} \sum_{i=1}^{n} D_i I(X_{i-1} = i)}{n} = \sum_{i \in \mathcal{L}} D_i \pi_i, \text{ a.e.} \tag{14}$$

From (11), (13), (14), (7) and the arbitrariness of A_m we conclude that,

$$\lim_{n \to \infty} \frac{\sum_{i \in \mathcal{L}} \sum_{i=1}^{n} U_{i-1} I(X_{i-1} = i)}{n} = \sum_{i \in \mathcal{L}} D_i \pi_i S_{i,\infty}^p, \text{ a.e.} \tag{15}$$

Formula (4.a) is established by combining (9), (10) and (15). Formula (4.b) follows immediately by setting $\Theta_n = I(X_n = j)$. To prove formula (4.c) observe that

$$U_n = \sum_{i \in \mathcal{L}} U_n I(X_{n+1} = i) = \sum_{i \in \mathcal{L}} U_n I(X_n = i), \text{ a.e.}$$

and apply the arguments used to prove (15). \(\square \)

Remarks. i) If D_i is constant, it follows from (4.a) and (4.c) that $T_\infty = O_\infty^b$. Therefore, in this case arrivals see time averages. Note that independence is not necessary.

ii) A particularly simple relation holds if $\mathcal{L} = \{ 0,1 \}$ and $\Theta_n = I(X_n = 1)$. In this case we have from (4.b),

$$O_\infty^b \pi_1 S_{1,\infty}^p \pi_1 = \pi_{1P_{11}} S_{1,\infty}^p + \pi_{0P_{01}} S_{0,\infty}^p$$

$$= \pi_{1P_{11}} O_{1,\infty}^p + \pi_{0P_{01}} S_{0,\infty}^p, \text{ a.e.}$$

Also, from (4.c).
Therefore,

\[T_{\infty} = \pi_1 O_{1,\infty}^a + \pi_0 S_{\infty}^a \text{ a.e.} \]

Formula (16) involves only the quantities seen by arrivals and the time average of the process. It will be used in Section 3.2.

iii) The quantities \(O_{\infty}^a, O_{\infty}^b \) represent the averages of the process observed by bulk arrivals. In practice the average of the process observed by a particular user is of interest. Specifically, for \(l \) arrivals, the quantities of interest are:

\[
\frac{\sum_{m=1}^{i} U_{T_m}}{l}, \quad \frac{\sum_{m=1}^{i} U_{T_m-1}}{l}
\]

where \(T_m \) is the time of the \(l \)th arrival.

Under the conditions of Corollary 3, it can be shown using standard ratio limit arguments, that

\[
\lim_{n \to \infty} O_n^a = O_{\infty}^a \text{ a.e. \iff} \lim_{l \to \infty} O_l^a = O_{\infty}^a = O_{\infty}^a \text{ a.e.}
\]

and

\[
\lim_{n \to \infty} O_n^b = O_{\infty}^b \text{ a.e. \iff} \lim_{l \to \infty} O_l^b = O_{\infty}^b = O_{\infty}^b \text{ a.e.}
\]

If the \(\Theta_n \) are i.i.d., the restriction on the second moments is not necessary.

iv) The formulation in this section was in terms of sample averages. Results can also be obtained in terms of limiting probabilities. Consider the following example, useful in applications. Let \(T_m, m=1,2,... \) be a sequence of random variables taking positive, integer values. Let \(T_{m}, m=1,2,... \) be independent of \(D_n, n=1,2,... \). If \(\lim_{m \to \infty} T_m = \infty \) a.e. and

\[
\lim_{n \to \infty} P(D_n = l) = P_l,
\]

then

\[
\lim_{m \to \infty} P(D_T = l) = P_l
\]

The result follows by observing that

\[
P(D_T = l) = \sum_{n=1}^{\infty} P(D_n = l \cap T_m = n) = \sum_{n=1}^{\infty} P(D_n = l) P(T_m = n)
\]

and

\[
\lim_{m \to \infty} P(T_m = n) = 0, \quad n = 1,2,...
\]

Let now \(D_n, n=1,2,... \) be independent of \(\Theta_n, n=1,2,... \) and let \(T_m \) be the time of the \(m \)th arrival. Then \(D_{T_m} \) is the value of \(D_n \) observed by the \(m \)th arrival. If \(\lim_{m \to \infty} T_m = \infty \) a.e.,

which is usually the case in practical systems, then the limiting probabilities of \(D_{T_m} \) and \(D_n \) are the same. Note that no assumptions on the statistics of the two processes are required.

3. APPLICATIONS

3.1 The discrete-time GIGGc queue.

Consider a communication node consisting of \(c \) servers. Time is divided in intervals of constant length, called slots. The unit of time is the length of a slot. Slot \(n, n=1,2,... \).
occupies the time interval \([n-ln).\) During a time slot \(n\), a number of messages \(\Theta_n\) arrives in the node. The length of message \(i\) is \(Z_i\) slots. The processes \(\Theta_n\) and \(Z_i\) consist of i.i.d. random variables, and are independent.

Define:
- \(N_n:\) The size of the queue at the beginning of slot \(n\) (just after the arrivals \(\Theta_n\)).
- \(I_n:\) The number of messages whose service is completed in slot \(n\).
- \(N^b_m:\) The value of \(N_n\) in the slot just prior to the \(m\)th arrival.
- \(M^b_m:\) The value of \(M_n=N_n-I_n\) in the slot just prior to the \(m\)th arrival.

Let
\[
\mathcal{F}_n = \mathcal{F}(\Theta_1, 0 \leq l \leq n, Z_l, 1 \leq l < \infty, N_0)
\]
If \(E[\Theta_n] < cE[Z_i]^{-1}\), ergodic conditions hold. Considering the system in steady state, we have from Corollary 2
\[
P(N^b_m = l) = P(N_n = l), \quad l = 0, 1, \ldots
\]
and
\[
P(M^b_m = l) = P(M_n = l), \quad l = 0, 1, \ldots
\]
Since \(M_n \geq N_n\), we have that
\[
P(M_n \leq l) \leq P(N_n \leq l), \quad l = 0, 1, \ldots
\]
Also, \(N_{n+1} = M_n + \Theta_n \geq M_n\). Therefore,
\[
P(N_{n+1} \leq l) = P(N_n \leq l) \leq P(M_n \leq l), \quad l = 0, 1, \ldots
\]
From (20) and (21) we conclude that
\[
P(M_n = l) = P(N_n = l), \quad l = 0, 1, \ldots
\]
Therefore,
\[
P(M^b_m = l) = P(N_n = l), \quad l = 0, 1, \ldots
\]
Property (23) was used in [2] for the analysis of the GI\(\Gamma\)GI1 discrete-time queue. It seems that in [2], \(M_n\) was confused with \(N_n\), but as formula (22) shows, this does not alter the final result.

3.2 Star network with Markovian inputs.

This system was studied in [8]. An infinite buffer in a node accepts messages from \(K\) links. Time is slotted. In slot \(n\), link \(i\) generates one or zero messages. The length of a message is constant, equal to one slot. One message is processed per slot by the node.

Let
\[
\Theta^i_n = \begin{cases}
1 & \text{if one message is generated at link } i \text{ in slot } n \\
0 & \text{otherwise}
\end{cases}
\]
The sequences \(\{\Theta^i_n, n=1,2,\ldots\}\) are homogeneous Markov chains for \(1 \leq i \leq K\), and independent. Let
\[
p_{i1} = P(\Theta^i_{n+1} = 1/\Theta^i_n = r) > 0
\]
\[
\gamma_i = p_{11} - p_{i1}
\]
We define

\[N_n: \text{ The size of the queue at the beginning of slot } n \text{ (just after the arrivals).} \]

\[N_{i,m}: \text{The value of } N_n \text{ in the slot just prior to the } m\text{th arrival at link } i. \]

\[N_{t,m}: \text{The value of } N_n \text{ in the slot of the } m\text{th arrival at link } i. \]

\[\Theta_{i,m}: \text{The number of arrivals at link } j, \text{ in the slot of the } m\text{th arrival at link } i, i \neq j. \]

\[I_{i,m}: \text{The number of messages completing service in the slot of the } m\text{th arrival at link } i. \]

\[W_{i,m}: \text{The delay of the } m\text{th arrival at link } i. \]

\[N_i^k: \text{The number of messages from link } i \text{ in the queue at slot } n. \]

We will provide the formula for the mean queue length and, consequently, the average waiting time of a message. This formula was derived in [8]. The procedure followed in [8] relies on the computation of the characteristic function of the queue length. We present here a simplified proof that is based on probabilistic arguments. In addition, the average waiting time of a message at a particular link, and the probability of zero queue length in the slot just prior to the arrival of this message, are derived during the proof.

The queue discipline is first-come first-served. Let us assume for simplicity that if links \(i_1, i_2, i_1 < i_2 \) generate messages at the same slot, link \(i_1 \) is served first.

If \(\sum_{i=1}^{K} \alpha_i < 1 \), ergodic conditions hold. We consider the system in steady state. Let

\[\mathcal{F}_n = \mathcal{F}(\Theta_{i,0}, 0 \leq i \leq n, 1 \leq i \leq K, N_0) \]

From formula (16) we have that

\[P(N_{i,m}^b = l) = \gamma_i P(N_{i,m}^b = l) = (1-\gamma_i)P(N_i = l), l = 0, 1, ..., 1 \leq i \leq K \] (24)

Therefore

\[E\{N_{i,m}^b\} - \gamma_i E\{N_{i,m}^b\} = (1-\gamma_i)E\{N_i\}, 1 \leq i \leq K \] (25)

Observe now, that

\[N_{i,m}^b = N_{i,m}^b + \sum_{1 \leq j \leq L} \Theta_{j,m} + 1 - I_{i,m}, 1 \leq i \leq K \] (26)

From Remark iv) in Section 2, we easily conclude that

\[P(\Theta_{i,m}) = \alpha_i = E\{\Theta_{i,m}\} \] (27)

Therefore, from (26) we have that

\[E\{N_{i,m}^b\} = E\{N_{i,m}^b\} + \sum_{j=1}^{K} \alpha_j - \alpha_i + P(N_{i,m}^b = 0) \] (28)

From (24) we see that

\[P(N_{i,m}^b = 0) = \gamma_i P(N_{i,m}^b = 0) = (1-\gamma_i)P(N_i = 0) \] (29)

But \(N_{i,m}^b \geq 1 \) and therefore, \(P(N_{i,m}^b = 0) = 0 \). Also, \(P(N_i = 0) = 1 - \sum_{j=1}^{K} \alpha_j \). This can be proved as in example 11-8, p400, in [5]. Although the GI|GI|c queue is treated in [5], the proof goes through in our case. Therefore,

\[P(N_{i,m}^b = 0) = (1-\gamma_i)P(N_i = 0) = (1-\gamma_i)(1- \sum_{j=1}^{K} \alpha_j) \] (30)
Combining (28) and (30) we get
\[E\{N_{i,m}\} = E\{N_{i,m}^p\} + \sum_{j=1}^{K} \alpha_j - \alpha_i + (1-\gamma_i)(1-\sum_{j=1}^{K} \alpha_j) \] (31)

Next, observe that
\[W_{i,m} = N_{i,m}^p + \sum_{j=1}^{i-1} \Theta_{i,m} + 1 - I_{i,m} \] (32)

Therefore,
\[E\{W_{i,m}\} = E\{N_{i,m}^p\} + \sum_{j=1}^{i-1} \alpha_j + (1-\gamma_i)(1-\sum_{j=1}^{K} \alpha_j) \] (33)

By Little's formula applied to each link separately, we have that
\[\alpha_i E\{W_{i,m}\} = E\{N_i\}, \quad 1 \leq i \leq K \] (34)

Therefore
\[\sum_{i=1}^{K} \alpha_i E\{W_{i,m}\} = \sum_{i=1}^{K} E\{N_i\} = E\{N\} \] (35)

From (25), (31) and (33) we find that
\[E\{W_{i,m}\} = E\{N_i\} + \frac{\gamma_i}{1-\gamma_i} (\sum_{j=1}^{i} \alpha_j) + 1 - \sum_{j=1}^{K} \alpha_j \] (36)

Finally, from (35) and (36) we conclude after some simple algebra, that
\[E\{N_i\} = \frac{\sum_{i=1}^{K} \sum_{j=i+1}^{K} \alpha_j \left(\frac{1}{1-\gamma_i} + \frac{\gamma_j}{1-\gamma_j} \right) + \sum_{i=1}^{K} \alpha_i}{1 - \sum_{i=1}^{K} \alpha_i} \] (37)

Formula (37) is derived in [8]. Formula (36) provides the expected delay of a message arriving at link i. Formula (30) provides the probability that a message arriving at link i will find the queue at the previous slot empty.

3.3 Queues with Input Controlled by a Markov Chain

Consider a discrete-time (slotted) queue. Let \(\Theta_n, n = 0,1,..., \) be the number of messages generated in a slot. Let \(X_n, n = 0,1,..., \) be a process with denumerable state space \(\mathcal{L} \), such that for any nonnegative integers \(n, h, r, r_1, \ldots, r_n \), and any \(j, i, i_1, \ldots, i_n \) from the state space \(\mathcal{L} \), the following equality holds:
\[P(\Theta_{n+1} = h, X_{n+1} = j / X_n = i, X_{n-1} = i_1, \ldots, X_0 = i_n, \Theta_n = r, \Theta_{n-1} = r_1, \ldots, \Theta_0 = r_n) \] (38)

\[= P(\Theta_{n+1} = h, X_{n+1} = j / X_n = i) = q_{i,j,h} \]

The length of message i is \(Z_i \) slots. The sequence \(Z_i, i = 1,2,..., \) consists of i.i.d. random variables and is independent of the sequences \(\Theta_n \) and \(X_n \). The output of many Random Access Algorithms as well as the output of other discrete-time queues, has the statistical structure of \(\Theta_n \).

\footnote{We adopt the notation, \(\sum_{i=a}^{b} = 0 \) if \(a > b \).}
A complete study of queues of the type described in the previous paragraph is outside the scope of the present paper. We will illustrate here how the steady state distribution of the delay is related to the steady state distribution of the queue length in the case where \(Z_i \) are geometrically distributed with parameter \(\lambda = 1.2, \ldots \).

\[
P(Z_i = k) = p(1-p)^{k-1}, \quad k = 1, 2, \ldots
\]

We will also assume that \(\Theta_n \) is either zero or one. The process \(X_n \) is a Markov chain with transition probabilities

\[
P(X_{n+1} = j/X_n = i) = \mu_{ij} = q_{i(j,1)} + q_{i(j,0)}
\]

We assume that \(X_n \) is irreducible, aperiodic and ergodic. The process \((X_n, \Theta_n)\), is also a Markov chain with transition probabilities

\[
P(X_{n+1} = j, \Theta_{n+1} = h/X_n = i, \Theta_n = r) = \mu_{i(j,1)h} = q_{i(j,1)}
\]

We assume that \((X_n, \Theta_n)\) is irreducible and aperiodic. Since \(X_n \) is ergodic, it follows that \((X_n, \Theta_n)\) is ergodic with stationary transition probabilities

\[
\pi_{h} = \sum_{j \in \mathcal{L}} q_{i(j,1)} \pi_{i}, \quad j \in \mathcal{L}, \quad h = 1, 0
\]

Formula (42) follows easily by noting that the numbers \(\pi_{h} \) satisfy the equilibrium equations for the Markov chain \((X_n, \Theta_n)\), and that \(\sum_{j \in \mathcal{L}} \pi_{j} = 1 \).

Let \(N_n \), \(N^b_m = N^b_{1,m} \), \(N^a_m = N^a_{1,m} \) be as defined in Section 3.2. Let also,

- \(\mathcal{N}^b_{(i,r),m} \): The number of messages in the queue, in the slot of the \(m \)th occurrence of state \((i,r)\) (i.e., the \(m \)th time that \(X_n = i, \Theta_n = r \) for some \(n \)).

- \(\mathcal{N}^a_{(i,r),m} \): The number of messages in the queue, in the slot before the \(m \)th occurrence of state \((i,r)\).

- \(\mathcal{J}_{(i,r),m} \): The number of arrivals in the slot of the \(m \)th occurrence of state \((i,r)\).

- \(\mathcal{W}_m \): The delay of the \(m \)th arrival in the system.

To simplify the notation we will omit the indices \(m, n \) whenever there is no danger for confusion. We consider that \((X_n, \Theta_n)\) is the underlying Markov chain. Then,

\[
D_{(i,r)} = \mathbb{E} \{ \Theta_{n+1}/X_n = i, \Theta_n = r \} = \sum_{j \in \mathcal{L}} q_{i(j,1)}
\]

We assume that

\[
\sum_{i \in \mathcal{L}} \sum_{r \in \mathcal{R}} D_{(i,r)} \pi_{i} = \sum_{i \in \mathcal{L}} \sum_{j \in \mathcal{L}} q_{i(j,1)} \pi_{i} < \rho
\]

Under (44), the system can be considered in steady state.\(^2\) From Corollary 3, we obtain

\[
P(N^b = l) \sum_{i \in \mathcal{L}} \sum_{j \in \mathcal{L}} q_{i(j,1)} \pi_{i} = \sum_{i \in \mathcal{L}} D_{(i,r)} \pi_{i} P(\mathcal{N}^b_{(i,r),1} = l)
\]

\(^2\) The existence of steady state can be established, for example, by the methods of Ch.1 in: Borovkov, A. A. Stochastic Processes in Queueing Theory. New York: Springer-Verlag 1976.
\[P(N_{i,j}^b = l) = \left(\sum_{i \in L^c} q_{i,j} \right) \pi_{i,j} = \sum_{i \in L^c} \pi_{i,j} q_{i,j} P(N_{i,j}^b = l), \quad j \in L, \quad \rho = 0,1 \]
(45.b)

\[P(N = l) = \sum_{i \in L^c} \sum_{j = 1}^{2} \pi_{i,j} P(N_{i,j}^b = l) \]
(45.c)

Observe that

\[N_{i,j}^b = N_{i,j}^b - J_{i,j} + r, \quad i \in L, \quad \rho = 0,1 \]
(46)

Therefore,

\[P(N_{i,j}^b = l) = P(N_{i,j}^b = l - 1) (1 - \rho) + P(N_{i,j}^b = l) \rho, \quad l = 1,2, \ldots, i \in L \]
(47.a)

\[P(N_{i,j}^b = 0) = 0, \quad i \in L \]
(47.b)

\[P(N_{i,j}^b = l) = P(N_{i,j}^b = l - 1) (1 - \rho) + P(N_{i,j}^b = l + 1) \rho, \quad l = 1,2, \ldots, i \in L \]
(47.c)

\[P(N_{i,j}^b = 0) = P(N_{i,j}^b = 0) + P(N_{i,j}^b = 1) \rho, \quad i \in L \]
(47.d)

Equations (45) and (47) relate the steady state distribution of \(N_{n}^b \) to the steady state distribution of \(N_n \). Since

\[W_m = \begin{cases}
Z_m & \text{if } N_m^b = 0 \\
N_m^b & \text{if } N_m^b = 1,2, \ldots \\
\sum_{i=1}^{N_m^b} Z_i + Z_m - 1 & \text{if } N_m^b = 2,3, \ldots
\end{cases} \]
(48)

where the random variables \(Z_i \) are independent geometrically distributed, the steady state distribution of \(W_m \) can be determined from the distribution of \(N_m^b \).

4. CONCLUSIONS

We presented the relation between the time average of a process and the average of the same process as observed by arrivals, in discrete time. The observing process is controlled by an underlying Markov chain and is usually identified with the arrival process, but the derived relations are independent of this identification. The results were applied to the study of certain discrete-time systems. It is believed that the results will facilitate the analysis of other discrete-time systems, and that they have counterparts in continuous-time systems.
REFERENCES

DISTRIBUTION LIST

Copy No.

1 - 6
Director, Naval Research Laboratory
Attention: Code 2627
Washington, D.C. 20375

7
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000
Attention: R. N. Madan
Code 1114SE

8 - 13
R. N. Madan
Code 1114SE
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

14
Office of Naval Research Resident Representative, N66002
Joseph Henry Building, Room 623
2100 Pennsylvania Avenue, N.W.
Washington, D.C. 20037
Attention: Mr. Michael McCracken
Administrative Contracting Officer

15 - 26
Defense Technical Information Center, S47031
Bldg. 5, Cameron Station
Alexandria, VA 22314

27 - 31
L. Georgiadis, EE

32
P. Kazakos, EE

33 - 34
E. H. Pancake, Clark Hall

35
SEAS Publications Files
The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment of approximately 1,500 students with a graduate enrollment of approximately 560. There are 150 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering, Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer Science. Within these disciplines there are well equipped laboratories for conducting highly specialized research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate degrees. In addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2,000 faculty and a total of full-time student enrollment of about 16,400), also offers professional degrees under the schools of Architecture, Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engineering research program. The School of Engineering and Applied Science is an integral part of this University community which provides opportunities for interdisciplinary work in pursuit of the basic goals of education, research, and public service.