HIGH FREQUENCY ANALYSIS OF CIRCULAR ARCHES

Douglas H. Merkle
Laurence D. Merkle

4300 San Mateo, NE
Albuquerque, New Mexico 87110

September 1986

Final Report

Approved for public release; distribution unlimited.

AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirtland Air Force Base, NM 87117-6008
This final report was prepared by Applied Research Associates, Inc., Albuquerque, New Mexico, under Contract F29601-85-C-0029, Job Order 88091395, with the Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico. Dr Timothy J. Ross (NTES) was the Laboratory Project Officer-in-Charge.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been authored by a contractor of the United States Government. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the material contained herein, or allow others to do so, for the United States Government purposes.

This report has been reviewed by the Public Affairs Office and is releasable to the National Technical Information Services (NTIS). At NTIS, it will be available to the general public, including foreign nations.

If your address has changed, if you wish to be removed from our mailing list, or if your organization no longer employs the addressee, please notify AFML/NTES, Kirtland AFB, NM 87117-6008 to help us maintain a current mailing list.

This technical report has been reviewed and is approved for publication.

TIMOTHY J. ROSS
Project Officer

DAVID H. ARTMAN, JR
Major, USAF
Chief, Applications Branch

FOR THE COMMANDER

MAYNARD A. PLAMONDON
Chief, Civil Engr Rsch Div

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.
This report presents the theory of the dynamic response of a linearly elastic, circular arch, including the effects of both shear deformation and rotary inertia. The arch central angle is arbitrary, and the end restraints are linearly elastic. The theory is extended to include linear viscoelastic behavior, in which both arch and end restraints are governed by the same single linear rate sensitivity parameter.
SUMMARY

This report presents the theory of the dynamic response of a linearly elastic, circular arch, including the effects of both shear deformation and rotary inertia. The arch central angle is arbitrary, and the end restraints are linearly elastic. The theory is extended to include linear viscoelastic behavior, in which both arch and end restraints are governed by the same single linear rate sensitivity parameter.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Discussion</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Conclusions</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Bibliography</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>List of Symbols</td>
<td>17</td>
</tr>
</tbody>
</table>

APPENDICES

- **A** Governing Equations for the Dynamic Response of a Circular Arch, Including Both Shear and Rotary Inertia
 23
- **B** Matrix Form of the Governing Equations 38
- **C** Uncoupling the Equations of Motion 43
- **D** Expansion of the Characteristic Determinant 47
- **E** General Solution of the Characteristic Differential Equation 56
- **F** Characteristic Mode Functions 62
- **G** Symmetry 93
- **H** Mode Shape Determination 95
- **I** Orthogonality Relations 99
- **J** Transient Analysis 108
- **K** Viscoelastic Analysis 110
- **L** Numerical Analysis 113
<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Definition of Terms of Controlling the Dynamic Response of a Circular Arch</td>
<td>3</td>
</tr>
<tr>
<td>A1</td>
<td>Differential Element of a Circular Arch</td>
<td>24</td>
</tr>
<tr>
<td>A2</td>
<td>Normal Cross Section</td>
<td>26</td>
</tr>
<tr>
<td>A3</td>
<td>Differential Geometry in the Undeformed Arch</td>
<td>27</td>
</tr>
<tr>
<td>A4</td>
<td>Shear Stress Directions for a Deformed Arch Element when the Angle (\theta) is Acute</td>
<td>32</td>
</tr>
<tr>
<td>E</td>
<td>Argand Diagram Showing (A^3) and (B^3) when (R < 0)</td>
<td>60</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 Purpose

This report presents the theory of the dynamic response of a linearly elastic, circular arch, including the effects of both shear deformation and rotary inertia. The arch central angle is arbitrary, and the end restraints are linearly elastic. The theory is extended to include linear viscoelastic behavior, in which both arch and end restraints are governed by the same single linear rate sensitivity parameter.

1.2 Motivation

The work described herein is an analytical extension of results presented in Reference 1. The approach was motivated by Dr. Timothy Ross' success in explaining direct shear failure of dynamically loaded reinforced concrete box roof slabs using a Timoshenko beam model and an appropriate reinforced concrete direct shear failure criterion (Ref. 2).

1.3 Application

When the theoretical results presented herein have been evaluated numerically for prescribed arch central angle, end restraint, and loading, they will apply to the KACHINA arches tested at the Air Force Weapons Laboratory (Refs. 3-5). Admittedly reinforced concrete is not always linearly elastic, so application of the theory to the KACHINA arches will require judgment. Nevertheless, the convenience of a closed form solution afforded by elastic theory is too attractive not to exploit for the perspective it gives on overall dynamic behavior and the influence of structural and loading parameters.

1.4 Point of Departure

The point of departure for the dynamic analysis is the set of equations for the static behavior of a circular planar member presented by Connor in Chapter 14 of Reference 6. Other related work is presented in References 7-11.
Details of the dynamic analysis are contained in Appendices A-L. The discussion in Section 2 below summarizes each appendix in order. Because of the detailed treatment and the many equations, a few letter symbols have been used differently in separate appendices. However, symbols are defined where first used in each appendix, so there should be no confusion. See Appendix M.

2.0 DISCUSSION

Figure 1 shows a portion of a circular arch, and defines the terms which control its dynamic response. The arch centerline radius is R, and the central angle defining a particular plane normal cross section, PQ, in the undeformed arch is θ. The width and depth of the constant rectangular arch cross section are b and d. Deformation of the arch causes the centroid of a plane cross section PQ to displace tangentially by an amount u_1 and radially inward by an amount u_2, and the cross section to rotate through an angle ψ; but the section is assumed to remain plane, so that P^*Q^* is a straight line. The distributed tangential, radial, and moment loads acting at point 0 in the undeformed arch are b_1, b_2, and m. Notice that the angle ψ is an independent displacement parameter, so that P^*Q^* is generally not normal to the deformed centroidal axis. The angular amount by which section P^*Q^* deviates from being normal to the deformed centroidal axis is the arch shear deformation at point 0.

Appendix A begins by formulating the equations of motion for a differential arch element, using the internal stress resultants (Equations A14-A16). Next, the form of the displacement field is defined by assuming that plane cross sections normal to the undeformed arch centroidal axis remain plane during deformation. This is equivalent to expanding the displacements in a Taylor series in two variables about the centroid (arc length and inward radial position) and retaining only the constant and linear terms. Having assumed the form of the displacement field (Equation A23), the extensional and shear strains are obtained as functions of the displacement field parameters and their derivatives with respect to arc length (Equations A31-A33). Three
Figure 1. Definition of Terms Controlling the Dynamic Response of a Circular Arch.
strain parameters are defined at the centroid (Equations A34-A36), and then
the strain components anywhere in the arch are expressed as functions of the
strain parameters (Equations A37-A39). Normal and shear stresses are obtained
as functions of the strain parameters, using elastic stress-strain equations
(Equations A40 and A41), and then integrated over the cross section to obtain
the internal stress resultants as functions of the strain parameters
(Equations A42-A44). The stress resultant equations of motion, stress
resultant-strain component equations, and strain component-displacement
equations are summarized in matrix form in Equations A61, A63, and A64. Use
of matrix notation greatly simplifies the entire analysis. It is compact,
helps avoid algebraic errors, and even suggests analytical approaches not
obvious when equations are written out in detail.

The equations of motion in terms of displacement components and their deriva-
tives are obtained in matrix form in Appendix B, by substituting Equation A64
into Equation A63 and that result into Equation A61. The final result is
Equation B17.

Appendix C considers the homogeneous (free vibration) form of the equations of
motion (C2), and uses the classic separation of variables approach to define a
vibration mode (Equation C3). Free vibration in a single mode is shown to be
harmonic (Equation C15), and the mode shapes are shown to obey a coupled set
of three, linear, ordinary, second order differential equations (C18). The
three, coupled, mode shape differential equations are uncoupled by pre-
multiplying them by the adjoint of the coefficient operator matrix (Ref. 12),
but at the cost of having the resulting three separate identical linear ordi-
nary differential equations be of order six instead of two (Equations
C21-C23).

Equation C20 defines the sixth order, linear, ordinary differential operator,
Δ, which appears in each of Equations C21-C23. These are the spatial dif-
fferential equations which the mode shapes must satisfy. The operator, Δ, is
defined as a determinant, which when expanded yields a sixth order polynomial
in the frequency parameter, σ, (Equation D17) or a sixth order polynomial in
the spatial differential operator, D, (Equation D18). Equation D18 is the
more fundamental form, and shows the frequency dependence of its coefficients.
The last half of Appendix D discusses the way in which the coefficients in Equation D18 vary with frequency.

The operator, Δ, defined by Equation C20 is a sixth order, linear, ordinary differential operator, but the odd order derivatives are missing. Therefore, assuming the solution of the homogeneous equation $\Delta X = 0$ (Equation C21) to be of the form $X = Ke^{\lambda \theta}$ yields a cubic characteristic equation in λ^2 (E6). Whether the parameter λ is real, imaginary, or complex depends on the coefficients of the cubic equation. Appendix E discusses the algebraic solution of a cubic equation, as the basis for a detailed examination of the nature of the characteristic roots and their associated mode shape functions, which appears in Appendix F.

Appendix F examines the fifteen possible characteristic root combinations and their associated mode functions. The mode functions are a closed set of six linearly independent functions, in the sense that differentiation of any one yields a linear combination of the other five.

Appendix G establishes the derivative properties of symmetric and antisymmetric functions needed to define arch centerline boundary conditions for symmetric and antisymmetric modes.

Appendix H explains in detail how the natural frequencies and associated mode shapes are calculated for given arch boundary conditions. The feature which distinguishes this modal analysis from many others is the fact that the precise form of the frequency equation is frequency dependent.

Appendix I presents the arch modal orthogonality relations. The approach is that for a Sturm-Liouville problem, supplemented by Rayleigh's ingenious application of L'Hospital's Rule to find the integral of the inner product of a mode with itself over the arch length (Refs. 13 and 14).

Once the free vibration mode orthogonality relations have been established, the formal solution of a transient forced vibration problem becomes straightforward. Both the arch displacements and distributed loads are assumed to be expressible as modal series expansions, and the equations of motion are then scanned with a particular mode shape. The result is a single degree of freedom differential equation for the associated modal amplitude (J6), the solution of which is a Duhamel convolution integral (Equation J8).
Appendix K extends the above elastic arch analysis to the case of viscoelastic behavior. When both arch and boundary restraints are governed by the same single rate sensitivity parameter, the elastic modal analysis still applies.

Appendix L addresses the most difficult computational phase of arch modal analysis, finding the roots of the frequency equation (H7). The frequency equation is a complicated transcendental equation, usually involving both trigonometric and hyperbolic terms. The modal frequency parameter, \(\sigma \), not only appears implicitly in several places, but also controls the precise form of the frequency equation. Considerable care is needed in calculating the higher modal frequencies, because some of them are apt to be closely spaced.

3.0 CONCLUSIONS

The distinguishing feature of the closed form, dynamic arch analysis presented in this report is its extensive use of matrix notation. The analysis includes the effects of both shear deformation and rotary inertia on the transient response of both an elastic and a viscoelastic circular arch, having an arbitrary central angle and corresponding elastic or viscoelastic end restraints. The resulting equations are presented at a level of detail sufficient for direct computer programming, and a computer program (a modification of ZEROIN) is presented for finding the modal frequencies.

4.0 REFERENCES

5.0 BIBLIOGRAPHY

Flathau, W.J., R.A. Breckenridge, and C.K. Wiehele, Blast Loading and Response of Underground Concrete--Arch Protective Structures, Operation PLUMBBOB, Project 3.1, US Army Engineer Waterways Experiment Station and US Naval Civil Engineering Laboratory, WT 1420, (Jun 1959).

Hoppe, R., "Vibrationen eines Ringes in seiner Ebene," Journal fur Mathematik (Créil), Bd. 73, pp. 158-170, (1871).

Kennedy, T.E., "Dynamic Tests of a Model Flexible Arch Type Protective Shelter, US Army Engineer Waterways Experiment Station Miscellaneous Paper N-71-3, (Apr 1971).

Kennedy, T.E., and Ballard, J.T., "Dynamic Tests of a Model Flexible Arch Type Protective Shelter, US Army Engineer Waterways Experiment Station report TR I-768, (Apr 1967).

McGrath, R.K., Dynamic Response of Concrete Arch Bunkers, Laboratory Tests, US Army Engineer Waterways Experiment Station Miscellaneous Paper, (Apr 1971).

Newmark, N.M., Vulnerability of Arches, Preliminary Notes, paper for Physical Vulnerability Division, USAF, (rev. 21 May 1956).

Ross, T.J., Direct Shear Failure in Reinforced Concrete Beams Under Impulsive Loading, AFWL-TR-83-84, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, (Sep 1983).

Ross, T.J., Numerical Large Deflection Bending and Buckling Analysis of Arches, MS thesis, Rice University, (1973).

6.0 List of Symbols

Listed below are the symbols used in this report, and the page where each is introduced and defined. A semicolon indicates reuse of a symbol with a different definition.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>23; 47; 57</td>
</tr>
<tr>
<td>A(_1)</td>
<td>58</td>
</tr>
<tr>
<td>A(_2)</td>
<td>58</td>
</tr>
<tr>
<td>A(_3)</td>
<td>58</td>
</tr>
<tr>
<td>A(_j)</td>
<td>59</td>
</tr>
<tr>
<td>A(^*)</td>
<td>102</td>
</tr>
<tr>
<td>B</td>
<td>48; 57</td>
</tr>
<tr>
<td>B(_1)</td>
<td>58; 75</td>
</tr>
<tr>
<td>B(_2)</td>
<td>58</td>
</tr>
<tr>
<td>B(_3)</td>
<td>59</td>
</tr>
<tr>
<td>B(_j)</td>
<td>59</td>
</tr>
<tr>
<td>B(_k)</td>
<td>61</td>
</tr>
<tr>
<td>B</td>
<td>97</td>
</tr>
<tr>
<td>B(_ij)</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>48</td>
</tr>
<tr>
<td>C(_1)</td>
<td>35</td>
</tr>
<tr>
<td>C(_2)</td>
<td>35</td>
</tr>
<tr>
<td>C(_3)</td>
<td>36</td>
</tr>
<tr>
<td>C</td>
<td>95</td>
</tr>
<tr>
<td>(C)</td>
<td>97</td>
</tr>
<tr>
<td>D</td>
<td>4, 36</td>
</tr>
<tr>
<td>E</td>
<td>3, 33; 48</td>
</tr>
<tr>
<td>E(^*)</td>
<td>97</td>
</tr>
<tr>
<td>E(^*)</td>
<td>102</td>
</tr>
<tr>
<td>F</td>
<td>48</td>
</tr>
<tr>
<td>F</td>
<td>23</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>F₁</td>
<td>23</td>
</tr>
<tr>
<td>F₂</td>
<td>23</td>
</tr>
<tr>
<td>(F)</td>
<td>36</td>
</tr>
<tr>
<td>G</td>
<td>33</td>
</tr>
<tr>
<td>G</td>
<td>38</td>
</tr>
<tr>
<td>M</td>
<td>40</td>
</tr>
<tr>
<td>Hᵢ</td>
<td>108</td>
</tr>
<tr>
<td>Hⱼ</td>
<td>108</td>
</tr>
<tr>
<td>I</td>
<td>25</td>
</tr>
<tr>
<td>I</td>
<td>39</td>
</tr>
<tr>
<td>I₁</td>
<td>48</td>
</tr>
<tr>
<td>I₂</td>
<td>48</td>
</tr>
<tr>
<td>I₃</td>
<td>48</td>
</tr>
<tr>
<td>I₁ (X)</td>
<td>50</td>
</tr>
<tr>
<td>K</td>
<td>5, 50</td>
</tr>
<tr>
<td>K</td>
<td>41</td>
</tr>
<tr>
<td>K₀</td>
<td>53</td>
</tr>
<tr>
<td>K₁</td>
<td>53</td>
</tr>
<tr>
<td>K₂</td>
<td>53</td>
</tr>
<tr>
<td>K₃</td>
<td>53</td>
</tr>
<tr>
<td>[K]</td>
<td>104</td>
</tr>
<tr>
<td>L</td>
<td>56; 93</td>
</tr>
<tr>
<td>L</td>
<td>43</td>
</tr>
<tr>
<td>M</td>
<td>23</td>
</tr>
<tr>
<td>M</td>
<td>23</td>
</tr>
<tr>
<td>(N)</td>
<td>103</td>
</tr>
<tr>
<td>N₁</td>
<td>103</td>
</tr>
<tr>
<td>N₂</td>
<td>103</td>
</tr>
<tr>
<td>N₃</td>
<td>103</td>
</tr>
<tr>
<td>(N)₁</td>
<td>104</td>
</tr>
<tr>
<td>(N)₂</td>
<td>104</td>
</tr>
<tr>
<td>P</td>
<td>57</td>
</tr>
<tr>
<td>Q</td>
<td>57</td>
</tr>
<tr>
<td>R</td>
<td>2; 57</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>S</td>
<td>64</td>
</tr>
<tr>
<td>S</td>
<td>38</td>
</tr>
<tr>
<td>T</td>
<td>43</td>
</tr>
<tr>
<td>Ti</td>
<td>109</td>
</tr>
<tr>
<td>Tj</td>
<td>108</td>
</tr>
<tr>
<td>(U)</td>
<td>43</td>
</tr>
<tr>
<td>(U)i</td>
<td>44</td>
</tr>
<tr>
<td>(U)j</td>
<td>99</td>
</tr>
<tr>
<td>W1</td>
<td>99</td>
</tr>
<tr>
<td>W2</td>
<td>63</td>
</tr>
<tr>
<td>W3</td>
<td>63</td>
</tr>
<tr>
<td>W4</td>
<td>63</td>
</tr>
<tr>
<td>W5</td>
<td>63</td>
</tr>
<tr>
<td>W6</td>
<td>63</td>
</tr>
<tr>
<td>(W)</td>
<td>95</td>
</tr>
<tr>
<td>Wi</td>
<td>96</td>
</tr>
<tr>
<td>X</td>
<td>5, 43</td>
</tr>
<tr>
<td>Xi</td>
<td>101</td>
</tr>
<tr>
<td>Xj</td>
<td>101</td>
</tr>
<tr>
<td>Y</td>
<td>101</td>
</tr>
<tr>
<td>Yi</td>
<td>101</td>
</tr>
<tr>
<td>Yj</td>
<td>101</td>
</tr>
<tr>
<td>Z</td>
<td>101</td>
</tr>
<tr>
<td>Z1</td>
<td>101</td>
</tr>
<tr>
<td>Zj</td>
<td>101</td>
</tr>
<tr>
<td>a</td>
<td>51</td>
</tr>
<tr>
<td>b</td>
<td>2; 51</td>
</tr>
<tr>
<td>b1</td>
<td>2, 23</td>
</tr>
<tr>
<td>b2</td>
<td>2, 23</td>
</tr>
<tr>
<td>c</td>
<td>38</td>
</tr>
<tr>
<td>(b)</td>
<td>41; 54</td>
</tr>
<tr>
<td>c</td>
<td>41; 54</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
<tr>
<td>d*</td>
<td>33</td>
</tr>
<tr>
<td>e</td>
<td>5</td>
</tr>
<tr>
<td>f</td>
<td>104</td>
</tr>
<tr>
<td>f(x)</td>
<td>92</td>
</tr>
<tr>
<td>f_E(x)</td>
<td>92</td>
</tr>
<tr>
<td>f_0(x)</td>
<td>92</td>
</tr>
<tr>
<td>i</td>
<td>57</td>
</tr>
<tr>
<td>k</td>
<td>31</td>
</tr>
<tr>
<td>k'</td>
<td>37</td>
</tr>
<tr>
<td>m</td>
<td>2, 23</td>
</tr>
<tr>
<td>m'</td>
<td>23</td>
</tr>
<tr>
<td>(m)</td>
<td>43</td>
</tr>
<tr>
<td>n</td>
<td>52</td>
</tr>
<tr>
<td>p</td>
<td>43</td>
</tr>
<tr>
<td>pj</td>
<td>106</td>
</tr>
<tr>
<td>r</td>
<td>36; 62</td>
</tr>
<tr>
<td>r_1</td>
<td>25</td>
</tr>
<tr>
<td>r_2</td>
<td>25</td>
</tr>
<tr>
<td>r_2*</td>
<td>28</td>
</tr>
<tr>
<td>r_2**</td>
<td>28</td>
</tr>
<tr>
<td>s</td>
<td>23</td>
</tr>
<tr>
<td>t_1</td>
<td>23</td>
</tr>
<tr>
<td>t_2</td>
<td>23</td>
</tr>
<tr>
<td>t_3</td>
<td>23</td>
</tr>
<tr>
<td>u_1</td>
<td>2, 23</td>
</tr>
<tr>
<td>u_2</td>
<td>2, 23</td>
</tr>
<tr>
<td>u_3</td>
<td>23</td>
</tr>
<tr>
<td>u_2</td>
<td>28</td>
</tr>
<tr>
<td>(u)</td>
<td>38</td>
</tr>
<tr>
<td>x</td>
<td>29; 34</td>
</tr>
<tr>
<td>y</td>
<td>56</td>
</tr>
<tr>
<td>y_1</td>
<td>60</td>
</tr>
<tr>
<td>y_2</td>
<td>25; 60</td>
</tr>
<tr>
<td>y_3</td>
<td>25; 60</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>y_j</td>
<td>59</td>
</tr>
<tr>
<td>z</td>
<td>34; 53</td>
</tr>
<tr>
<td>Γ_i</td>
<td>106</td>
</tr>
<tr>
<td>Δ</td>
<td>4, 45</td>
</tr>
<tr>
<td>Ω</td>
<td>100</td>
</tr>
<tr>
<td>α_2</td>
<td>27, 28</td>
</tr>
<tr>
<td>α^*</td>
<td>110</td>
</tr>
<tr>
<td>γ_{12}</td>
<td>30</td>
</tr>
<tr>
<td>δ_1</td>
<td>31</td>
</tr>
<tr>
<td>δ_2</td>
<td>31</td>
</tr>
<tr>
<td>(δ)</td>
<td>38</td>
</tr>
<tr>
<td>δ_{ij}</td>
<td>106</td>
</tr>
<tr>
<td>ϵ_1</td>
<td>29</td>
</tr>
<tr>
<td>ϵ_2</td>
<td>29</td>
</tr>
<tr>
<td>η</td>
<td>110</td>
</tr>
<tr>
<td>θ</td>
<td>2</td>
</tr>
<tr>
<td>λ</td>
<td>5, 56</td>
</tr>
<tr>
<td>λ_1</td>
<td>56</td>
</tr>
<tr>
<td>λ_{II}</td>
<td>56</td>
</tr>
<tr>
<td>λ_{III}</td>
<td>56</td>
</tr>
<tr>
<td>λ_{11}</td>
<td>62</td>
</tr>
<tr>
<td>λ_{21}</td>
<td>62</td>
</tr>
<tr>
<td>λ_{31}</td>
<td>62</td>
</tr>
<tr>
<td>λ_{12}</td>
<td>63</td>
</tr>
<tr>
<td>λ_{22}</td>
<td>63</td>
</tr>
<tr>
<td>λ_{32}</td>
<td>63</td>
</tr>
<tr>
<td>λ_1</td>
<td>65</td>
</tr>
<tr>
<td>λ_2</td>
<td>65</td>
</tr>
<tr>
<td>λ_3</td>
<td>65</td>
</tr>
<tr>
<td>λ_n</td>
<td>106</td>
</tr>
<tr>
<td>ν</td>
<td>3, 37</td>
</tr>
<tr>
<td>ξ</td>
<td>110</td>
</tr>
<tr>
<td>π</td>
<td>58</td>
</tr>
<tr>
<td>ρ</td>
<td>3, 23</td>
</tr>
<tr>
<td>Symbol</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>σ</td>
<td>4, 45</td>
</tr>
<tr>
<td>σ_{11}</td>
<td>33</td>
</tr>
<tr>
<td>σ_{12}</td>
<td>33</td>
</tr>
<tr>
<td>σ_i</td>
<td>99</td>
</tr>
<tr>
<td>σ_j</td>
<td>99</td>
</tr>
<tr>
<td>τ</td>
<td>109</td>
</tr>
<tr>
<td>ϕ</td>
<td>64</td>
</tr>
<tr>
<td>ψ</td>
<td>2, 23</td>
</tr>
<tr>
<td>$\bar{\psi}$</td>
<td>23</td>
</tr>
<tr>
<td>ω</td>
<td>59</td>
</tr>
<tr>
<td>ω_1</td>
<td>61</td>
</tr>
<tr>
<td>ω_2</td>
<td>61</td>
</tr>
<tr>
<td>ω_3</td>
<td>61</td>
</tr>
<tr>
<td>ω_j</td>
<td>61</td>
</tr>
<tr>
<td>ω_k</td>
<td>61</td>
</tr>
</tbody>
</table>
APPENDIX A

GOVERNING EQUATIONS FOR THE DYNAMIC RESPONSE OF A CIRCULAR ARCH, INCLUDING BOTH SHEAR AND ROTARY INERTIA

Figure A1 shows a differential element of a circular arch. For the sign convention shown, with right-handed, orthogonal unit vectors \(\mathbf{t}_1 ', \mathbf{t}_2 ' \), and \(\mathbf{t}_3 ' \),

\[
\mathbf{t}_3 ' = \mathbf{t}_1 ' \times \mathbf{t}_2 ' = \text{constant} \quad \text{[A1]}
\]

\[
\frac{d\mathbf{t}_1 '}{ds} = \frac{1}{R} \mathbf{t}_2 ' \quad \text{[A2]}
\]

\[
\frac{d\mathbf{t}_2 '}{ds} = -\frac{1}{R} \mathbf{t}_1 ' \quad \text{[A3]}
\]

If we set

\[
\mathbf{F} = F_1 \mathbf{t}_1 ' + F_2 \mathbf{t}_2 ' \quad \text{(internal force resultant)} \quad \text{[A4]}
\]

\[
\mathbf{M} = Mt_3 ' \quad \text{(internal moment resultant)} \quad \text{[A5]}
\]

\[
\mathbf{b} = b_1 \mathbf{t}_1 ' + b_2 \mathbf{t}_2 ' \quad \text{(external distributed load)} \quad \text{[A6]}
\]

\[
\mathbf{m} = mt_3 ' \quad \text{(external distributed moment)} \quad \text{[A7]}
\]

\[
\mathbf{u} = u_1 \mathbf{t}_1 ' + u_2 \mathbf{t}_2 ' \quad \text{(centroidal displacement)} \quad \text{[A8]}
\]

\[
\psi = \psi t_3 ' \quad \text{(cross-section rotation)} \quad \text{[A9]}
\]

then the translational equation of motion for the element is

\[
\mathbf{F} + \left[F + \frac{\partial \mathbf{F}}{\partial s} ds \right] + \mathbf{b} ds = \rho A ds \mathbf{u} \quad \text{[A10]}
\]

where \(\rho \) is mass density, and \(A \) is cross-sectional area.
Figure A1. Differential Element of a Circular Arch.
or
\[
\frac{d\vec{F}}{ds} + b = \rho \ddot{A}u
\]

[A11]

and the rotational equation of motion for the element is
\[
-\ddot{M} + \left(\ddot{M} + \frac{\partial \dot{M}}{\partial s} ds \right) + \dot{\vec{ds}} \times \vec{F} + \dot{m}ds = \rho I \dot{\vec{ds}}\vec{\psi}
\]

[A12]

where \(I \) is the moment of inertia. Then
\[
\frac{\partial \dot{M}}{\partial s} + \vec{t}_1 \times \vec{F} + \ddot{m} = \rho I \ddot{\vec{\psi}}
\]

[A13]

Substitution of Equations A2 through A9 into Equations A11 and A13 yields
\[
\frac{\partial F_1}{\partial s} - \frac{F_2}{R} + b_1 = \rho \ddot{A}u_1
\]

[A14]

\[
\frac{\partial F_2}{\partial s} + \frac{F_1}{R} + b_2 = \rho \ddot{A}u_2
\]

[A15]

\[
\frac{\partial M}{\partial s} + F_2 + m = \rho I \ddot{\vec{\psi}}
\]

[A16]

The next step in deriving the governing equations is to obtain expressions for the longitudinal extensional and shear strains at any point in an originally normal cross section. Consider a point \(Q \) in the undeformed arch shown in Figure A2, the position vector for which is denoted \(\vec{r}_2 \) in Figure A3. From Figures A2 and A3 we have
\[
\vec{r}_2 = \vec{r} + \vec{y}_2 \vec{t}_2 + \vec{y}_3 \vec{t}_3
\]

[A17]

so that in Figure A3,
\[
\vec{pp}_1 = \frac{\partial \vec{r}}{\partial s} ds = \vec{t}_1 ds
\]

[A18]
Figure A2. Normal Cross Section.
Figure A3. Differential Geometry in the Undeformed Arch.
The centroidal displacement vector of point P in the deformed arch is

$$\vec{u} = u_1 \vec{t}_1 + u_2 \vec{t}_2$$ \[A22\]

and the assumption that plane cross sections normal to the centroidal axis before deformation remain plane, and normal to the 1-2 plane during deformation yields an expression for the displacement vector of point Q in the deformed arch

$$\vec{u}_2 = \vec{u} + \psi \times y_2 \vec{t}_2 = (u_1 - \psi y_2) \vec{t}_1 + u_2 \vec{t}_2$$ \[A23\]

If P', Q', Q'_1, and Q'^* denote the displaced points P, Q, Q_1, and Q_2 in the deformed arch, then the position vectors of points P' and Q' are

$$\vec{r}' = \vec{r} + \vec{u}$$ \[A24\]

$$\vec{r}'_2 = \vec{r}'_2 + \vec{u}_2$$ \[A25\]

so that in the deformed arch, Equations A25 and A19 yield

$$\overline{QQ}_1 = \frac{\partial \vec{r}}{\partial s} ds = \left[1 - \frac{y_2}{R} \right] ds \overline{t}_1 = a_2 \overline{t}_1$$ \[A19\]

$$\overline{QQ}_2 = \frac{\partial \vec{r}}{\partial y_2} dy_2 = dy_2 \overline{t}_2$$ \[A20\]

where

$$a_2 = 1 - \frac{y_2}{R}$$ \[A21\]
and Equations A25 and A20 yield

\[
\frac{\sigma_{Q_2}}{\sigma_{Q_1}} = \frac{\partial r_2}{\partial y_2} dy_2 = \left[\frac{\partial u_2}{\partial y_2} dy_2 \right] \left[\frac{\partial u_2}{\partial y_2} dy_2 \right] \quad [A27]
\]

The components of strain are, therefore, assuming small displacements and rotations*,

\[
\varepsilon_1 = \sqrt{\frac{Q_{Q_1}}{Q_{Q_1}} - 1}
\]

\[
= \sqrt{\frac{\partial^2}{\partial y_1} \left(\frac{\partial^2}{\partial y_2} \right) + 2 \alpha_2 t_1 \cdot \frac{\partial^2}{\partial y_2} + \frac{\partial^2}{\partial y_2} \cdot \frac{\partial^2}{\partial y_2}} - 1
\]

\[
= \frac{1}{\alpha_2} \cdot \frac{\partial^2}{\partial y_2} + \frac{1}{2\alpha_2} \frac{\partial^2}{\partial y_2} \cdot \frac{\partial^2}{\partial y_2} \quad [A28]
\]

\[
\varepsilon_2 = \sqrt{\frac{Q_{Q_2}}{Q_{Q_2}} - 1}
\]

\[
= \sqrt{\frac{\partial^2}{\partial y_2} \left(\frac{\partial^2}{\partial y_2} \right) + \frac{\partial^2}{\partial y_2} \cdot \frac{\partial^2}{\partial y_2} + \frac{\partial^2}{\partial y_2} \cdot \frac{\partial^2}{\partial y_2}} - 1
\]

\[
= t_2 \cdot \frac{\partial^2}{\partial y_2} + \frac{1}{2} \frac{\partial^2}{\partial y_2} \cdot \frac{\partial^2}{\partial y_2} \quad [A29]
\]

*The surveyor's slope correction states that when \(x \ll 1 \)

\[
\sqrt{1 + x^2} \approx x \quad \sqrt{1 + x^2} - 1 \approx \frac{x^2}{2}
\]

29
\[\gamma_{12} = \frac{Q_{1}^{*} Q_{2}^{*}}{Q_{1} Q_{2}} \]

\[
\alpha_{2} \frac{\ddot{u}_{2}}{\dot{\gamma}_{2}} + \ddot{u}_{2} \frac{\ddot{u}_{2}}{\dot{\gamma}_{2}} + \ddot{u}_{2} \ddot{u}_{2} = \frac{\alpha_{2} \ddot{u}_{2}}{\dot{\gamma}_{2}} + \ddot{u}_{2} \frac{\ddot{u}_{2}}{\dot{\gamma}_{2}} + \ddot{u}_{2} \ddot{u}_{2} \]

\[= \frac{\alpha_{2} \ddot{u}_{2}}{\alpha_{2} \dot{\gamma}_{2}} \frac{\ddot{u}_{2}}{\dot{\gamma}_{2}} + \ddot{u}_{2} \frac{\ddot{u}_{2}}{\dot{\gamma}_{2}} + \ddot{u}_{2} \ddot{u}_{2} \]

Assuming the displacement derivatives are small with respect to unity permits neglect of the nonlinear terms in Equations A28, A29, and A30, which leaves, using Equations A21 and A23,

\[\varepsilon_{1} = \frac{1}{\alpha_{2} \dot{\gamma}_{2}} \frac{\ddot{u}_{2}}{\dot{\gamma}_{2}} \]

\[= \frac{1}{\gamma_{2} R} \left[\frac{\dot{u}_{1} - y_{2} \ddot{u}_{2}}{\dot{\gamma}_{2}} - \frac{\ddot{u}_{2}}{\dot{\gamma}_{2}} \right] \]

\[= \frac{1}{\gamma_{2} R} \left[\frac{\dot{u}_{1} - y_{2} \ddot{u}_{2}}{\dot{\gamma}_{2}} - \frac{u_{2}}{R} \right] \]

\[\text{[A31]} \]
\[\epsilon_2 = \tau_2 \cdot \frac{\partial u_2}{\partial y_2} = \tau_2 \cdot \left(-\psi \tau_1 \right) = 0 \] \[[A32] \]

\[\gamma_{12} = \tau_1 \cdot \frac{\partial u_2}{\partial y_2} + \frac{1}{\alpha_2} \tau_2 \cdot \frac{\partial u_2}{\partial s} = \tau_1 \cdot \left(-\psi \tau_1 \right) + \frac{1}{1 - \frac{y_2}{R}} \tau_1 \]

\[\begin{vmatrix} \frac{\partial u_1}{\partial s} - y_2 \frac{\partial \psi}{\partial s} \\ \frac{\partial y_1}{\partial s} \end{vmatrix} \tau_1 + \left(u_1 - y_2 \psi \right) \frac{\tau_2}{R} + \frac{\partial u_2}{\partial s} \tau_2 - u_2 \frac{\tau_1}{R} \]

\[= -\psi + \frac{1}{1 - \frac{y_2}{R}} \left[\frac{u_1 - y_2 \psi}{R} + \frac{\partial u_2}{\partial s} \right] \]

\[= \frac{1}{1 - \frac{y_2}{R}} \left[-\psi + \frac{u_1}{R} + \frac{\partial u_2}{\partial s} \right] \] \[[A33] \]

Note that \(\gamma_{12} \) is positive when the dot product \(\overline{Q} \cdot \overline{Q} \) is positive, which means that the angle \(\angle \overline{Q} \) is less than \(\pi/2 \). When this is the case, the direction of the shear stresses on a deformed arch element are as shown in Figure A4.

If we now set

\[\delta_1 = (\epsilon_1) y_2 = 0 = \frac{\partial u_1}{\partial s} - \frac{u_2}{R} \] \[[A34] \]

\[\delta_2 = (\gamma_{12}) y_2 = 0 = -\psi + \frac{u_1}{R} + \frac{\partial u_2}{\partial s} \] \[[A35] \]

\[k = \frac{\partial \psi}{\partial s} \] \[[A36] \]

then Equations A31, A32, and A33 can be written in the form

\[\epsilon_1 = \frac{\delta_1 - y_2 k}{1 - \frac{y_2}{R}} \] \[[A37] \]
Figure A4. Shear Stress Directions for a Deformed Arch Element When the Angle $Q_1^*Q_2^*$ is Acute.
\[\varepsilon_2 = 0 \]
\[\gamma_{12} = \frac{\delta_2}{1 - \frac{y_2}{R}} \]

Assuming zero initial strain, the longitudinal normal and transverse shear stresses are

\[\sigma_{11} = E \varepsilon_1 = \frac{E}{y_2} (\delta_1 - \gamma_2 k) \]
\[\sigma_{12} = G \gamma_{12} = \frac{G}{y_2} \frac{\delta_2}{1 - \frac{y_2}{R}} \]

where \(E \) is Young's modulus, and \(G \) is the shear modulus, so that the stress resultants, \(F_1 \), \(F_2 \), and \(M \) in Figure A1 are

\[F_1 = \iiint \sigma_{11} dy_2 dy_3 = E \delta_1 \left\{ \frac{dy_2}{y_2} \right\} \frac{dy_3}{1 - \frac{y_2}{R}} - Ek \left\{ \frac{y_2 dy_2}{y_2} \right\} \frac{dy_3}{1 - \frac{y_2}{R}} \]

\[F_2 = \iiint \sigma_{12} dy_2 dy_3 = G \delta_2 \left\{ \frac{dy_2}{y_2} \right\} \frac{dy_3}{1 - \frac{y_2}{R}} \]

\[M = - \iiint \sigma_{11} y_2 dy_2 dy_3 = -E \delta_1 \left\{ \frac{y_2 dy_2}{y_2} \right\} \frac{dy_3}{1 - \frac{y_2}{R}} + Ek \left\{ \frac{y_2^2 dy_2}{y_2} \right\} \frac{dy_3}{1 - \frac{y_2}{R}} \]

The three integrals appearing in Equations A42, A43, and A44 can be expressed in terms of a single integral. Referring to Figure A2, we write
\[- \frac{d}{2} \left(\frac{dy_2}{y_2} \right) = - R \ln \left(1 - \frac{y_2}{R} \right) \]
\[- \frac{d}{2} = R \ln \left(1 + \frac{d}{2R} \right) = d^* \] \[\text{[A45]} \]

Now
\[\frac{1}{1 - z} = \frac{1 - z + z}{1 - z} = 1 + z \left[\frac{1}{1 - z} \right] = 1 + z \left[1 + z \left[\frac{1}{1 - z} \right] \right] \]
so that
\[\frac{1}{1 - \frac{y_2}{R}} = 1 + \frac{y_2}{R} = 1 + \frac{y_2}{R} + \frac{\left[\frac{y_2}{R} \right]^2}{1 - \frac{y_2}{R}} \] \[\text{[A46]} \]

Thus
\[- \frac{d}{2} \left(\frac{y_2 \, dy_2}{1 - \frac{y_2}{R}} \right) = R(d^* - d) \] \[\text{[A47]} \]
\[- \frac{d}{2} \left(\frac{y_2 \, dy_2}{1 - \frac{y_2}{R}} \right) = R^2(d^* - d) \] \[\text{[A48]} \]

Now
\[\ln \left(\frac{1 + x}{1 - x} \right) = 2 \left[x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \ldots \right] = 2 \sum_{j=1}^{\infty} \frac{x^{2j - 1}}{2j - 1} \] \[\text{[A49]} \]
so that if we set
\[\frac{d}{2R} = x \] \[\text{[A50]} \]
then Equation A45 yields
\[
\begin{aligned}
\frac{d}{d^2} \left(\frac{dy_2}{1 - \frac{y_2}{R}} \right) & = R \ln \left[\frac{1 + x}{1 - x} \right] = \left[\frac{d}{d} \right] \ln \left[\frac{1 + x}{1 - x} \right] d \\
& = \frac{\ln \left[\frac{1 + x}{1 - x}\right]}{2x} d = \left[\frac{d^*}{d} \right] d = C_1 d \\
\text{[A51]}
\end{aligned}
\]

where

\[
C_1 = \frac{d^*}{d} = \frac{\ln \left[\frac{1 + x}{1 - x}\right]}{2x} = 1 + \frac{x^2}{3} + \frac{x^4}{5} + \frac{x^6}{7} + \ldots \\
\text{[A52]}
\]

and therefore

\[
(C_1) d/R = 0 = 1 \\
\text{[A53]}
\]

Equation A47 can be written in the form

\[
\begin{aligned}
\frac{d}{d^2} \left(\frac{y_2 dy_2}{1 - \frac{y_2}{R}} \right) & = \left[\frac{d^*}{d} - 1 \right] d^2 = C_2 d^2 \\
\text{[A54]}
\end{aligned}
\]

where

\[
C_2 = \frac{d^*}{d} - 1 = \frac{C_1 - 1}{2x} = \frac{x^3}{6} + \frac{x^5}{10} + \frac{x^7}{14} + \ldots \\
\text{[A55]}
\]

and therefore,

\[
(C_2) d/R = 0 = 0 \\
\text{[A56]}
\]

Equation A48 can be written in the form
\[
- \frac{d}{2} \left(\frac{y_2^2 dy_2}{1 - \frac{y_2^2}{R}} \right) = 12 \left[\frac{d^*}{d - 1} \right] \frac{d^3}{12} = C_3 \frac{d^3}{12} \tag{A57}
\]

where

\[
C_3 = \frac{12 \left[\frac{d^*}{d - 1} \right]}{\left[\frac{d}{R} \right]^2} = \frac{3(C_1 - 1)}{x^2} = 1 + 3 \left[\frac{x^2}{5} + \frac{x^4}{7} + \ldots \right] \tag{A58}
\]

and therefore,

\[
(C_3)_{d/R=0} = 1 \tag{A59}
\]

Values of \(C_1\), \(C_2\), and \(C_3\) are tabulated below to four significant figures as a function of \(d/R\).

<table>
<thead>
<tr>
<th>(d/R)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>.10</td>
<td>1.001</td>
<td>.0083</td>
<td>1.002</td>
</tr>
<tr>
<td>.20</td>
<td>1.003</td>
<td>.0168</td>
<td>1.006</td>
</tr>
<tr>
<td>.30</td>
<td>1.008</td>
<td>.0253</td>
<td>1.014</td>
</tr>
<tr>
<td>.40</td>
<td>1.014</td>
<td>.0342</td>
<td>1.025</td>
</tr>
<tr>
<td>.50</td>
<td>1.022</td>
<td>.0433</td>
<td>1.039</td>
</tr>
</tbody>
</table>

If we define the angular differential operator, \(D\), to be

\[
\frac{3}{\theta} = D \tag{A60}
\]

then Equations A14, A15, and A16 can be written in the form
\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
F_1 \\
F_2 \\
M
\end{bmatrix}
+ \begin{bmatrix}
b_1 \\
b_2 \\
m
\end{bmatrix} = \begin{bmatrix}
u_1 \\
u_2 \\
r\psi
\end{bmatrix}
\]

where

\[
r = \sqrt{\frac{I}{A}} = \sqrt{\frac{bd^3}{12}} = \frac{d}{2\sqrt{3}}
\]

Equations A42, A43, and A44 can be written in the form

\[
\begin{bmatrix}
F_1 \\
F_2 \\
M
\end{bmatrix} = EA \begin{bmatrix}
0 & C_1 & -C_2r \\
0 & \frac{1}{2(1+\nu)} & 0 \\
-C_2r & 0 & C_3
\end{bmatrix} \begin{bmatrix}
\delta_1 \\
\delta_2 \\
rk
\end{bmatrix}
\]

where \(\nu\) is Poisson's ratio. Equations A34, A35, and A36 can be written in the form

\[
\begin{bmatrix}
\delta_1 \\
\delta_2 \\
rk
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
r\psi
\end{bmatrix}
\]

Equations A61, A63, and A64 are the governing equations for the dynamic response of a circular arch, including both shear and rotary inertia, with one exception. That exception is replacement of the constant \(C_1\) in the second of Equations A63 by the transverse shear coefficient, \(k'\), to account for the fact that the arch cross section does not remain plane (Ref. 15).

APPENDIX B

MATRIX FORM OF THE GOVERNING EQUATIONS

Equations A61, A63, and A64 can be written in matrix form by setting

\[G = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & R & 0 \end{bmatrix} \quad \text{[B1]} \]

\[S = \begin{bmatrix} c_1 & 0 & -c_{2r} \\ 0 & \frac{k'}{2(1 + \nu)} & 0 \\ -c_{2r} & 0 & c_3 \end{bmatrix} \quad \text{[B2]} \]

\[\{F\} = \begin{bmatrix} F_1 \\ F_2 \\ M \end{bmatrix} \quad \text{[B3]} \]

\[\{\delta\} = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \rho k \end{bmatrix} \quad \text{[B4]} \]

\[\{u\} = \begin{bmatrix} u_1 \\ u_2 \\ \rho \psi \end{bmatrix} \quad \text{[B5]} \]

\[\{b\} = \begin{bmatrix} b_1 \\ b_2 \\ m \end{bmatrix} \quad \text{[B6]} \]
The equations of motion (A61) then take the form

\[\frac{1}{R} (D\mathbf{I} + \mathbf{g})\{F\} + \{b\} = \rho A \{\ddot{u}\} \]

[B7]

where \(\mathbf{I} \) is the identity matrix.

the stress resultant-strain equations (A63) take the form

\[\{F\} = \mathbf{EAS} \{\delta\} \]

[B8]

and the strain-displacement equations (A64) take the form

\[\{\delta\} = \frac{1}{R} (D\mathbf{I} - \mathbf{G}^T)\{u\} \]

[B9]

Substitution of Equations B8 and B9 into Equation B7 yields

\[\frac{E A}{R^2} (D\mathbf{I} + \mathbf{g})S(D\mathbf{I} - \mathbf{G}^T)\{u\} + \{b\} = \rho A \{\ddot{u}\} \]

[B10]

or

\[\frac{E A}{R^2} (D\mathbf{S} + \mathbf{G}S)(D\mathbf{I} - \mathbf{G}^T)\{u\} + \{b\} = \rho A \{\ddot{u}\} \]

or

\[\frac{E A}{R^2} \left[D\mathbf{S}^T - DS\mathbf{G}^T + D\mathbf{G}S - GSG\mathbf{T} \right] \{u\} + \{b\} = \rho A \{\ddot{u}\} \]

or

\[\frac{E A}{R^2} \left[D^2\mathbf{S} + D(\mathbf{G}S - S\mathbf{G}) - GSG\mathbf{T} \right] \{u\} + \{b\} = \rho A \{\ddot{u}\} \]

[B11]

The matrices in Equation B11 are computed below.
Note that the matrix H is antisymmetric.
If we set
\[c^2 = \frac{E}{\rho} \quad [B16] \]
then Equation B11 can be written in the form
\[
\{\ddot{u}\} - \left[\begin{array}{c} c \end{array}\right]^2 \left[D^2 S + DH - K\right]\{u\} = \frac{1}{\rho A} \{b\} \quad [B17]
\]
Equation B17 is the governing equation for the dynamic response of a circular arch, including both shear and rotary inertia, written in matrix form. The matrices \(S\) and \(K\) are symmetric, and the matrix \(H\) is antisymmetric, i.e.,
\[
S^T = S \quad [B18]
\]
\[
K^T = K \quad [B19]
\]
\[
H^T = -H \quad [B20]
\]
Note also that Equation A62 yields
\[
\frac{d}{r} = 2\sqrt{3} \quad [B21]
\]
so that we can write

\[c_2^d \bar{r} = 2\sqrt{3} c_2 \]

[B22]
APPENDIX C
UNCOUPLING THE EQUATIONS OF MOTION

For free vibration, we set
\[\{b\} = \{0\} \]
\[[C1] \]

in Equation B17, and obtain
\[\{\ddot{u}\} - \left[\begin{array}{c} c \\ R \end{array} \right] (D^2S + DH - K) \{u\} = \{0\} \]
\[[C2] \]

Assuming a separable solution, we set
\[\{u\} = T\{U\} \]
\[[C3] \]
where \(T \) is a function of time only, and
\[\{u\} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \]
\[[C4] \]
where \(X \), \(Y \), and \(Z \) are functions of \(\theta \) only.

Substitution of Equation C3 into Equation C2 yields
\[\ddot{T}\{U\} - \left[\begin{array}{c} c \\ R \end{array} \right] T(D^2S + DH - K)\{U\} = \{0\} \]
\[[C5] \]
or
\[\ddot{T}\{U\} - \left[\begin{array}{c} c \\ R \end{array} \right] L\{U\} = \{0\} \]
\[[C6] \]
where \(L \) is the linear, spatial, matrix differential operator,
\[L = D^2S + DH - K \]
\[[C7] \]
It is convenient to define a diagonal matrix containing the elements \(X \), \(Y \), and \(Z \).
$$\begin{bmatrix} \bar{U}_1 \end{bmatrix} = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$ \[\text{[C8]}\]

(The notation \[\text{[]}\] denotes a diagonal matrix.)

as well as the identity vector

$$\{m\} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$ \[\text{[C9]}\]

so that

$$\begin{bmatrix} \bar{U}_1 \end{bmatrix}^{-1} \{U\} = \{m\}$$ \[\text{[C10]}\]

and

$$\begin{bmatrix} \bar{U}_1 \end{bmatrix}\{m\} = \{U\}$$ \[\text{[C11]}\]

Premultiplication of Equation C6 by \(\begin{bmatrix} \bar{U}_1 \end{bmatrix}^{-1}\) yields

$$T\{m\} - \begin{bmatrix} C \\ R \end{bmatrix}^2 T \begin{bmatrix} \bar{U}_1 \end{bmatrix}^{-1} \{U\} = \{0\}$$ \[\text{[C12]}\]

and division by \(T\) yields

$$\frac{T\{m\}}{T} = \begin{bmatrix} C \\ R \end{bmatrix}^2 \begin{bmatrix} \bar{U}_1 \end{bmatrix}^{-1} \{U\}$$ \[\text{[C13]}\]

Since the LHS of Equation C13 is a function of time only, and the RHS is a function of \(\theta\) only, for arbitrary values of \(T\) and \(\theta\), both sides must be constant, so that

$$\frac{T\{m\}}{T} = \begin{bmatrix} C \\ R \end{bmatrix}^2 \begin{bmatrix} \bar{U}_1 \end{bmatrix}^{-1} \{U\} = -p^2\{m\}$$ \[\text{[C14]}\]

44
and therefore
\[T + p^2 T = 0 \] \hspace{0.5cm} [C15]

The function \(T \) is therefore harmonic. Premultiplication of the last two parts of Equation C14 by \(\mathbf{U} \) now yields

\[\begin{bmatrix} C \end{bmatrix}^2 \mathbf{L} \mathbf{U} = -p^2 \mathbf{U} \]

or

\[\mathbf{L} \mathbf{U} = -\frac{\partial^2}{\partial t^2} \mathbf{U} = -\sigma^2 \mathbf{U} \] \hspace{0.5cm} [C16]

where

\[\sigma = \frac{\partial}{\begin{bmatrix} C \\ R \end{bmatrix}} \] \hspace{0.5cm} [C17]

Equation C16 can be written in the form

\[(\mathbf{L} + \sigma^2 \mathbf{I}) \mathbf{U} = \{0\} \] \hspace{0.5cm} [C18]

The linear differential operator coefficient matrix \((\mathbf{L} + \sigma^2 \mathbf{I})\) in Equation C18 is coupled, but the system of ordinary differential equations can be uncoupled by premultiplying by the adjoint of the coefficient matrix.

\[(\mathbf{L} + \sigma^2 \mathbf{I})^* (\mathbf{L} + \sigma^2 \mathbf{I}) \mathbf{U} = \Delta \mathbf{I} \mathbf{U} = \Delta \mathbf{U} = \{0\} \] \hspace{0.5cm} [C19]

where \(\Delta \) is the determinant of the coefficient matrix in Equation C18.

\[\Delta = \left| \mathbf{L} + \sigma^2 \mathbf{I} \right| \] \hspace{0.5cm} [C20]
Equation C19 shows that X, Y, and Z each satisfies the same linear, ordinary differential equation:

\[\Delta X = 0 \] \hspace{2cm} [C21]
\[\Delta Y = 0 \] \hspace{2cm} [C22]
\[\Delta Z = 0 \] \hspace{2cm} [C23]

The system of equations is thus uncoupled.
APPENDIX D
EXPANSION OF THE CHARACTERISTIC DETERMINANT

In Equations C21, C22, and C23, the linear, ordinary, differential operator \(\Delta \) represents the expansion of a determinant.

\[
\Delta = \begin{vmatrix} L + \sigma^2 I \end{vmatrix}
\]

where

\[
L = D^2 S + DH - K
\]

and

\[
S = \begin{bmatrix} C_1 & 0 & -2v^3 C_2 \\ 0 & \frac{k'}{2(1 + \nu)} & 0 \\ -2v^3 C_2 & 0 & C_3 \end{bmatrix}
\]

\[
H = \begin{bmatrix} 0 & -\frac{k'}{2(1 + \nu)} - C_1 & 0 \\ \frac{k'}{2(1 + \nu)} + C_1 & 0 & -\frac{k'R}{2r(1 + \nu)} - 2v^3 C_2 \\ 0 & \frac{k'R}{2(1 + \nu)} + 2v^3 C_2 & 0 \end{bmatrix}
\]

\[
K = \begin{bmatrix} \frac{k'}{2(1 + \nu)} & 0 & -\frac{k'R}{2r(1 + \nu)} \\ 0 & C_1 & 0 \\ -\frac{k'R}{2r(1 + \nu)} & 0 & \frac{k'R^2}{2r^2(1 + \nu)} \end{bmatrix}
\]

To facilitate the expansion of \(\Delta \), let

\[
C_1 = A
\]
\[
\frac{k'}{2(1 + \nu)} = B \tag{D4}
\]
\[C_3 = C \tag{D5}\]
\[2\sqrt{3}C_2 = E \tag{D6}\]
\[\frac{R}{r} = F \tag{D7}\]

Then Equations C7, D1, D2, and B15 yield

\[
L = D^2 \begin{bmatrix}
A & 0 & -E \\
0 & B & 0 \\
-E & 0 & C
\end{bmatrix} + D \begin{bmatrix}
0 & -(A+B) & 0 \\
(A+B) & 0 & -(BF+E) \\
0 & (BF+E) & 0
\end{bmatrix}
\]

\[
= \begin{bmatrix}
B & 0 & -BF \\
0 & A & 0 \\
-BF & 0 & BF^2
\end{bmatrix}
\]

\[
= \begin{bmatrix}
AD^2-B & -(A+B)D & -ED^2+BF \\
(A+B)D & BD^2-A & -(BF+E)D \\
-ED^2+BF & (BF+E)D & CD^2-BF^2
\end{bmatrix} \tag{D8}
\]

so that Equation C20 takes the form

\[
\Delta = \begin{bmatrix}
(AD^2-B)+\sigma^2 & -(A+B)D & -ED^2+BF \\
(A+B)D & (BD^2-A)+\sigma^2 & -(BF+E)D \\
-ED^2+BF & (BF+E)D & (CD^2-BF^2)+\sigma^2
\end{bmatrix} \tag{D9}
\]

Equation D9 is very similar to the determinant which arises in calculating principal stresses, so that the expansion of Equation D9 is known to take the form

\[
\Delta = \sigma^6 + I_1\sigma^4 + I_2\sigma^2 + I_3 \tag{D10}
\]
where

\[I_1 = \text{Tr} (L) \quad [D11] \]

\[
I_2 = \begin{vmatrix}
AD^2 - B & -(A+B)D \\
(A+B)D & BD^2 - A
\end{vmatrix} + \begin{vmatrix}
BD^2 - A & -(BF+E)D \\
(BF+E)D & CD^2 - BF^2
\end{vmatrix} \\
+ \begin{vmatrix}
CD^2 - BF^2 & -ED^2 + BF \\
-ED^2 + BF & AD^2 - B
\end{vmatrix} \quad [D12]
\]

\[
I_3 = |L| = \begin{vmatrix}
AD^2 - B & -(A+B)D & -ED^2 + BF \\
(A+B)D & BD^2 - A & -(BF+E)D \\
-ED^2 + BF & (BF+E)D & CD^2 - BF^2
\end{vmatrix} \quad [D13]
\]

Equations D11, D12, and D13 yield

\[I_1 = (A + B + C^2)D - (A + B + BF^2) \quad [D14] \]

\[I_2 = (AB + BC + AC - E^2)D^4 \]

\[+ (2AB - AC + 4BEF + E^2 - BC - ABF^2)D^2 + (AB + ABF^2) \quad [D15] \]

\[I_3 = (ABC - BE^2)(D^2 + 1)^2D^2 \quad [D16] \]

Substitution of Equations D14, D15, and D16 into Equation D10 yields

\[\Delta = \sigma^6 + \left[(A + B + C)D^2 - (A + B + BF^2) \right] \sigma^4 \]

\[+ \left[(AB + BC + AC - E^2)D^4 + (2AB - AC + 4BEF + E^2 - BC - ABF^2)D^2 \right] \]

\[+ (AB + ABF^2) \sigma^2 \]

\[+ \left[(ABC - BE^2)D^6 + 2(ABC - BE^2)D^4 + (ABC - BE^2)D^2 \right] \quad [D17] \]

Finally, \(\Delta \) can be expressed as a polynomial in the operator \(D \).
\[\Delta = (ABC - BE^2)D^6 + \left[(AB + BC + AC - E^2)\sigma_2 + 2(ABC - BE^2)\right]D^4 \\
+ \left[(A + B + C)\sigma_4 + (2AB - AC + 4BEF + E^2 - BC - ABF^2)\right]D^2 \\
+ (ABC - BE^2)D^2 + \left[\sigma^6 - (A + B + BF^2)\right]D^2 + (AB + ABF^2)\sigma^2 \]

[D18]

All the coefficients in Equation D18 can be expressed in terms of the invariants of the matrices \(S, H, K\), and \(S - K\), where \(I_j(x)\) is the \(j\)th invariant of the matrix, \(x\).

\[I_1(S) = A + B + C \]

[D19]

\[I_2(S) = AB + BC + AC - E^2 \]

[D20]

\[I_3(S) = ABC - BE^2 \]

[D21]

\[I_1(H) = 0 \]

[D22]

\[I_2(H) = A^2 + 2AB + B^2 + B^2F^2 + 2BEF + E^2 \]

[D23]

\[I_3(H) = 0 \]

[D24]

\[I_1(K) = A + B + BF^2 \]

[D25]

\[I_2(K) = AB + ABF^2 \]

[D26]

\[I_3(K) = 0 \]

[D27]

\[S - K = \begin{bmatrix} A-B & 0 & BF-E \\ 0 & B-A & 0 \\ BF-E & 0 & C-BF^2 \end{bmatrix} \]

[D28]

\[I_2(S - K) = -A^2 + 2AB - B^2 - B^2F^2 + 2BEF - E^2 \]

[D29]

\[I_2(S - K) - I_2(S) - I_2(K) + I_2(H) = 2AB - AC + 4BEF + E^2 - BC - ABF^2 \]

[D30]
Thus, Equation D18 can be written in the form

\[
\Delta = I_3(S)\sigma^6 + \left[I_2(S)\sigma^2 + 2I_3(S)\right]\sigma^4
\]

\[
+ \left[I_1(S)\sigma^4 + \left[I_2(S-K) - I_2(S) - I_2(K) + I_2(H)\right]\sigma^2 + I_3(S)\right]\sigma^2
\]

\[
+ \left[\sigma^6 - I_1(K)\sigma^4 + I_2(K)\sigma^2\right]
\]

[D31]

Substitution of Equations D3 - D7 into Equations D19, D20, D21, D25, D26, and D30 yields

\[
I_1(S) = \left[C_1 + C_3\right] + \frac{k'}{2(1 + \nu)}
\]

[D32]

\[
I_2(S) = \frac{k'}{2(1 + \nu)} \left[C_1 + C_3\right] + \left[C_1C_3 - 12C_2^2\right]
\]

[D33]

\[
I_3(S) = \frac{k'}{2(1 + \nu)} \left[C_1C_3 - 12C_2^2\right]
\]

[D34]

\[
I_1(K) = C_1 + \frac{k'}{2(1 + \nu)} \left[1 + \left[\frac{R}{r}\right]^2\right]
\]

[D35]

\[
I_2(K) = \frac{C_1k'}{2(1 + \nu)} \left[1 + \left[\frac{R}{r}\right]^2\right]
\]

[D36]

\[
I_2(S - K) - I_2(S) - I_2(K) + I_2(H)
\]

\[
= \frac{k'}{2(1 + \nu)} \left[2C_1 - C_3 + 8\sqrt{3}C_2 \left[\frac{R}{r}\right] - C_1 \left[\frac{R}{r}\right]^2\right]
\]

\[
- \left[C_1C_3 - 12C_2^2\right]
\]

[D37]

Therefore, if we set

\[
a = \frac{I_2(S)}{I_3(S)}\sigma^2 + 2
\]

[D38]

\[
b = \frac{I_1(S)\sigma^4 + \left[I_2(S-K) - I_2(S) - I_2(K) + I_2(H)\right]\sigma^2}{I_3(S)} + 1
\]

[D39]
\[c = \frac{\sigma^6 - I_1(K)\sigma^4 + I_2(K)\sigma^2}{I_3(S)} \]

then Equation D31 can be written in the form

\[\Delta = I_3(S) \left(b \sigma^6 + a \sigma^4 + b \sigma^2 + c \right) \]

Inspection of Equations A52, A55, and A58 shows that \(I_3(S) \), as defined by Equation D34, is always positive.

Referring to Equations D32-D37, we see that

\[\frac{I_2(S)}{I_3(S)} = \frac{C_1 + C_3}{C_1C_3 - 12c_2^2} \cdot \frac{2(1 + \nu)}{k'} \]

\[\frac{I_1(S)}{I_3(S)} = \frac{2(1 + \nu)}{k'} \left[\frac{C_1 + C_3}{C_1C_3 - 12c_2^2} \right] + \frac{1}{C_1C_3 - 12c_2^2} \]

\[\frac{I_2(S - K) - I_2(S) - I_2(K) + I_3(H)}{I_3(S)} = \frac{2C_1 - C_3 + 8\sqrt{3}c_2 \left[\frac{R}{r} \right] - C_1 \left[\frac{R}{r} \right]^2}{C_1C_3 - 12c_2^2} - \frac{2(1 + \nu)}{k'} \]

\[\frac{I_1(K)}{I_3(S)} = \frac{2(1 + \nu)}{k'} \left[\frac{C_1}{C_1C_3 - 12c_2^2} \right] + \frac{1 * \left[\frac{R}{r} \right]^2}{C_1C_3 - 12c_2^2} \]

\[\frac{I_2(K)}{I_3(S)} = \frac{C_1}{C_1C_3 - 12c_2^2} \left[1 + \left[\frac{R}{r} \right]^2 \right] \]
and if we set
\[
\frac{1}{c_1 c_3 - 12 c_2^2} = K_0 \tag{D47}
\]
\[
\frac{c_1}{K_0} = K_1 \tag{D48}
\]
\[
\frac{c_2}{K_0} = K_2 \tag{D49}
\]
\[
\frac{c_3}{K_0} = K_3 \tag{D50}
\]
\[
\frac{2(1 + \nu)}{k'} = n \tag{D51}
\]
\[
\frac{R}{r} = z \tag{D52}
\]

then Equations D38-D40 can be written in the form
\[
a = (K_1 + K_3 + n)\sigma^2 + 2 \tag{D53}
\]
\[
b = \left[n(K_1 + K_3) + K_0 \right] \sigma^4 + \left[K_1(2 - z^2) + 8\sqrt{3}k_2z - K_3 - n \right] \sigma^2 + 1 \tag{D54}
\]
\[
c = nK_0\sigma^6 - \left[nK_1 + K_0(1 + z^2) \right] \sigma^4 + K_1(1 + z^2)\sigma^2 \tag{D55}
\]

The coefficients K_0, K_1, K_2, and K_3 are functions of d/R.

<table>
<thead>
<tr>
<th>d/R</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>K_0</th>
<th>K_1</th>
<th>K_2</th>
<th>K_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>0</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>.10</td>
<td>1.001</td>
<td>.0083</td>
<td>1.002</td>
<td>0.998</td>
<td>0.999</td>
<td>0.0083</td>
<td>1.000</td>
</tr>
<tr>
<td>.20</td>
<td>1.003</td>
<td>.0168</td>
<td>1.006</td>
<td>0.994</td>
<td>0.997</td>
<td>0.0167</td>
<td>1.000</td>
</tr>
<tr>
<td>.30</td>
<td>1.008</td>
<td>.0253</td>
<td>1.014</td>
<td>0.986</td>
<td>0.994</td>
<td>0.0249</td>
<td>1.000</td>
</tr>
<tr>
<td>.40</td>
<td>1.014</td>
<td>.0342</td>
<td>1.025</td>
<td>0.975</td>
<td>0.989</td>
<td>0.0334</td>
<td>1.000</td>
</tr>
<tr>
<td>.50</td>
<td>1.022</td>
<td>.0433</td>
<td>1.039</td>
<td>0.962</td>
<td>0.983</td>
<td>0.0417</td>
<td>1.000</td>
</tr>
</tbody>
</table>

53
Using the commonly accepted value

\[k' = \frac{5}{6} \approx \frac{n^2}{12} \]

Equation D51 yields

\[n = \frac{12(1 + \nu)}{5} \]

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>2.64</td>
</tr>
<tr>
<td>0.15</td>
<td>2.76</td>
</tr>
<tr>
<td>0.20</td>
<td>2.88</td>
</tr>
<tr>
<td>0.25</td>
<td>3.00</td>
</tr>
<tr>
<td>0.30</td>
<td>3.12</td>
</tr>
<tr>
<td>0.35</td>
<td>3.24</td>
</tr>
</tbody>
</table>

Assuming, based on the values tabulated on the previous page, that

\[K_0 = K_1 = K_3 = 1 \]

\[K_2 = 0 \]

Equations D53, D54, and D55 reduce to

\[a = (2 + n)\sigma^2 + 2 \]

\[b = (2n + 1)\sigma^4 - (z^2 + n - 1)\sigma^2 + 1 \]

\[c = \left[n\sigma^4 - (z^2 + n + 1)\sigma^2 + (1 + z^2) \right] \sigma^2 \]

and if we assume that

\[n = 3 \]

\[z^2 + n + 1 = z^2 \]

Equations D58-D60 reduce to

\[a = 5\sigma^2 + 2 \]
\[b = 7\sigma^4 - z^2\sigma^2 + 1 \quad [062] \]
\[c = 3\sigma^4 - z^2\sigma^2 + \sigma^2 \quad [063] \]

Equations D53-D55 and D58-D63 show the relation between structural parameters and frequency, and the coefficients of the characteristic equation, D41, under various assumed (approximate) conditions.
APPENDIX E

GENERAL SOLUTION OF THE CHARACTERISTIC DIFFERENTIAL EQUATION

The constant $I_3 \ (S)$ in Equation D41 is nonzero, and can therefore be ignored. We therefore seek the general solution of the homogeneous, linear, ordinary differential equation

$$LX = 0 \quad [E1]$$

where

$$L = D^6 + aD^4 + bD^2 + c \quad [E2]$$

$$D = \frac{d}{d\theta} \quad [E3]$$

The solution of Equation E1 is assumed to be of the form

$$X = Ke^{\lambda \theta} \quad [E4]$$

and substitution of Equation E4 into Equation E1 yields

$$(\lambda^6 + a\lambda^4 + b\lambda^2 + c)Ke^{\lambda \theta} = 0 \quad [E5]$$

If a nontrivial solution exists, it must be that

$$\lambda^6 + a\lambda^4 + b\lambda^2 + c = 0 \quad [E6]$$

Equation E6 is a cubic equation in λ^2, and therefore has three roots:

$$\lambda_1^2, \lambda_II^2, \text{ and } \lambda_III^2$$

Equation E6 can therefore be written in the form

$$[\lambda^2 - \lambda_1^2][\lambda^2 - \lambda_II^2][\lambda^2 - \lambda_{III}^2] = \lambda^6 + a\lambda^4 + b\lambda^2 + c = 0 \quad [E7]$$

Comparison of Equations E6 and E7 shows that

$$a = -\left[\lambda_1^2 + \lambda_{II}^2 + \lambda_{III}^2\right] \quad [E8]$$

$$b = \left[\lambda_1^2 \lambda_{II}^2 + \lambda_{II}^2 \lambda_{III}^2 + \lambda_{III}^2 \lambda_1^2\right] \quad [E9]$$

$$c = -\lambda_1^2 \lambda_{II}^2 \lambda_{III}^2 \quad [E10]$$
The classic algebraic solution of a cubic equation (E6) begins by setting

\[x^2 = y - \frac{a}{3} \]

[E11]

in order to obtain the reduced cubic equation

\[y^3 - Py - Q = 0 \]

[E12]

where

\[P = \frac{a^2}{3} - b \]

[E13]

\[Q = \frac{ab}{3} - \frac{2a^3}{27} - c \]

[E14]

The solution of Equation E12 is obtained by assuming it to be of the form

\[y = A + B \]

[E15]

which leads to the requirement that

\[AB = \frac{p}{3} \]

[E16]

and

\[A^3 + B^3 = Q \]

[E17]

Equations E16 and E17 generate a quadratic equation, the roots of which are

\[A^3 = \frac{Q}{2} + \sqrt{\left(\frac{Q}{2}\right)^2 - \left[\frac{p}{3}\right]^3} \]

[E18]

\[B^3 = \frac{Q}{2} - \sqrt{\left(\frac{Q}{2}\right)^2 - \left[\frac{p}{3}\right]^3} \]

[E19]

and if we set

\[R = \left[\frac{Q}{2}\right]^2 - \left[\frac{p}{3}\right]^3 \]

[E20]
then Equations E18 and E19 can be written in the form

\[A^3 = \frac{Q}{2} + \sqrt[3]{R} \] \hspace{1cm} [E21] \\
\[B^3 = \frac{Q}{2} - \sqrt[3]{R} \] \hspace{1cm} [E22]

The nature of the roots \(A^3 \) and \(B^3 \) is determined by the relative values of \(P \) and \(Q \).

If

\[\left[\frac{P}{3} \right]^3 \leq \left[\frac{Q}{2} \right]^2 \] \hspace{1cm} [E23]

then the quantity \(R \) defined by Equation E20 is nonnegative, so that \(\sqrt[3]{R} \), \(A^3 \), and \(B^3 \) are real. Then if we set

\[A = \left[\frac{Q}{2} + \sqrt[3]{R} \right]^{1/3} \] \hspace{1cm} [E24] \\
\[B = \left[\frac{Q}{2} - \sqrt[3]{R} \right]^{1/3} \] \hspace{1cm} [E25]

and then, using \(\pi \) as the constant, 3.14159..., set

\[A_1 = A \] \hspace{1cm} [E26] \\
\[A_2 = A e^{\frac{2\pi}{3}} \] \hspace{1cm} [E27] \\
\[A_3 = A e^{-\frac{2\pi}{3}} \] \hspace{1cm} [E28] \\
\[B_1 = B \] \hspace{1cm} [E29] \\
\[B_2 = B e^{\frac{2\pi}{3}} \] \hspace{1cm} [E30]
\[B_3 = B e^{-\frac{2\pi}{3}} \]

then Equations E16 and E17 will be satisfied by setting

\[y_j = A_j + B_j \quad (j = 1, 2, 3) \]

If, on the other hand,

\[\left[\frac{p}{3} \right]^3 > \left[\frac{q}{2} \right]^2 \]

then the quantity \(R \) defined by Equation E20 is negative, so that \(\sqrt{R} \) is imaginary and \(A^3 \) and \(B^3 \) are complex. Then if we set

\[A^3 = \frac{Q}{2} + i \sqrt{\left[\frac{p}{3} \right]^3 - \left[\frac{q}{2} \right]^2} \]

\[B^3 = \frac{Q}{2} - i \sqrt{\left[\frac{p}{3} \right]^3 - \left[\frac{q}{2} \right]^2} \]

then we can show the complex quantities \(A^3 \) and \(B^3 \) in an Argand diagram (Figure E). Note that Equation E33 guarantees that \(P \) is positive.

Figure E yields

\[A^3 = \left[\frac{p}{3} \right]^{3/2} e^{i3\omega} \]

\[B^3 = \left[\frac{p}{3} \right]^{3/2} e^{-i3\omega} \]
Figure E. Argand Diagram Showing A^3 and B^3
When $R < 0$.

\[
\sqrt[3]{\frac{p}{3}} - \frac{q}{2} = \sqrt{-R}
\]

\[
\sqrt[3]{\frac{p}{3}} + \frac{q}{2} = \sqrt{-R}
\]

3ω
where
\[
\cos 3\omega = \frac{q}{\left[\begin{array}{c} p \\ 3 \end{array}\right]^{3/2}} \quad (0 \leq 3\omega \leq \pi)
\]
\[\text{[E38]}\]

If we set
\[
\omega_1 = \omega
\]
\[\text{[E39]}\]
\[
\omega_2 = \omega - \frac{2\pi}{3}
\]
\[\text{[E40]}\]
\[
\omega_3 = \omega + \frac{2\pi}{3}
\]
\[\text{[E41]}\]

and then set
\[
A_j = \left[\begin{array}{c} p \\ 3 \end{array}\right]^{1/2} e^{i\omega_j} \quad (j = 1, 2, 3)
\]
\[\text{[E42]}\]
\[
B_k = \left[\begin{array}{c} p \\ 3 \end{array}\right]^{1/2} e^{i\omega_k} \quad (j = 1, 2, 3)
\]
\[\text{[E43]}\]

then Equations E16 and E17 will be satisfied by setting
\[
y_j = A_j + B_j = 2\sqrt{\frac{p}{3}} \cos \omega_j \quad (j = 1, 2, 3)
\]
\[\text{[E44]}\]

Finally, in keeping with Equation E11, we write
\[
\lambda_1^2 = y_1 - \frac{a}{3}
\]
\[\text{[E45a]}\]
\[
\lambda_II^2 = y_2 - \frac{a}{3}
\]
\[\text{[E45b]}\]
\[
\lambda_{III}^2 = y_3 - \frac{a}{3}
\]
\[\text{[E45c]}\]

We now need to determine whether the roots \(\lambda_1^2\), \(\lambda_{II}^2\), and \(\lambda_{III}^2\) are real or complex, and if real, whether they are positive or negative.
APPENDIX F
CHARACTERISTIC MODE FUNCTIONS

The exact nature of the three roots, λ_{I}^2, λ_{II}^2, and λ_{III}^2, defined by Equations E45, determines the forms of the arch mode shapes. The three roots are determined by the coefficients a, b, and c, which appear in Equation E2 and are defined by Equations D38-D40, D53-D55, D58-D60, or D61-D63.

First, note that Equation D53 guarantees the coefficient "a" will always be positive.

\[a > 0 \] \[\text{[F1]}\]

Now consider Equation E12:

\[y^3 - Py - Q = 0 \] \[\text{[E12 bis]}\]

The various root combinations for Equation E12, and the arch mode shapes associated with each are discussed in detail below.

Case 1: $P = Q = 0$

In Case 1, Equation E12 reduces to

\[y^3 = 0 \] \[\text{[F2]}\]

and the roots are

\[y_1 = y_2 = y_3 = 0 \] \[\text{[F3]}\]

Therefore Equations E45 yield

\[\lambda_{I}^2 = \lambda_{II}^2 = \lambda_{III}^2 = - \frac{a}{3} \] \[\text{[F4]}\]

so that

\[\lambda_{11} = \lambda_{21} = \lambda_{31} = i\sqrt{\frac{a}{3}} \] \[\text{[F5]}\]
\begin{align*}
\lambda_{12} = \lambda_{22} = \lambda_{32} &= -\sqrt{\frac{3}{3}} \\
\text{If we set} \\
\lambda_1 = \lambda_2 = \lambda_3 &= \lambda = \sqrt{\frac{3}{3}}
\end{align*}

then because of the repeated nature of the roots, the mode functions are

\begin{align*}
W_1 &= \cos \lambda \theta \\
W_2 &= \sin \lambda \theta \\
W_3 &= \theta \cos \lambda \theta \\
W_4 &= \theta \sin \lambda \theta \\
W_5 &= \theta^2 \cos \lambda \theta \\
W_6 &= \theta^2 \sin \lambda \theta
\end{align*}

Case 2: \(P = 0; Q > 0 \)

In Case 2, Equation E12 reduces to

\[y^3 - |Q| = 0 \]

so that

\[y^3 = |Q| \]

Now let

\[r = |Q|^{1/3} > 0 \]

Then

\[y_1 = r \]

\[y_2 = \text{re}^{i\frac{2\pi}{3}} = \frac{r}{2}(-1 + i\sqrt{3}) \]
\[y_3 = re^{-i\frac{2\pi}{3}} = -\frac{r}{2}(1 + iv\sqrt{3}) \] \[\text{[F19]} \]

and Equations E45 yield

\[\lambda_1^2 = r - \frac{a}{3} \] \[\text{[F20]} \]

\[\lambda_{II}^2 = -\left[\frac{r}{2} + \frac{a}{3}\right] + \frac{irv\sqrt{3}}{2} = Se^{i\phi} \] \[\text{[F21]} \]

\[\lambda_{III}^2 = -\left[\frac{r}{2} + \frac{a}{3}\right] - \frac{irv\sqrt{3}}{2} = Se^{-i\phi} \] \[\text{[F22]} \]

where

\[s^2 = \left[\frac{r}{2} + \frac{a}{3}\right]^2 + \frac{3r^2}{4} = r^2 + ra + \frac{a^2}{9} \] \[\text{[F23]} \]

\[\phi = \cos^{-1}\left[\frac{r + a}{2 + \frac{a}{3}}\right] \] \[\text{[F24]} \]

\[a \]

Case 2a: \(r - 3 > 0 \)

For Case 2a, we set

\[\lambda_{11} = \sqrt{r - \frac{a}{3}} \] \[\text{[F25]} \]

\[\lambda_{12} = -\sqrt{r - \frac{a}{3}} \] \[\text{[F26]} \]

\[\lambda_{21} = \sqrt{Se^{i\phi}} = \sqrt{S}\left[\cos\frac{\phi}{2} + i\sin\frac{\phi}{2}\right] \] \[\text{[F27]} \]
\[
\lambda_{22} = -\sqrt{\text{Se}^2} = -\sqrt{\text{Se}} \left[\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \tag{F28}
\]

\[
\lambda_{31} = \sqrt{\text{Se}}^{-i} = \sqrt{\text{Se}} \left[\cos \frac{\phi}{2} - i \sin \frac{\phi}{2} \right] \tag{F29}
\]

\[
\lambda_{32} = -\sqrt{\text{Se}^2} = \sqrt{\text{Se}} \left[-\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \tag{F30}
\]

and then set

\[
\lambda_1 = \sqrt{r - \frac{a}{3}} \tag{F31}
\]

\[
\lambda_2 = \sqrt{\text{Se}} \cos \frac{\phi}{2} \tag{F32}
\]

\[
\lambda_3 = \sqrt{\text{Se}} \sin \frac{\phi}{2} \tag{F33}
\]

so that the mode functions are

\[
W_1 = \cosh \lambda_1 \theta \tag{F34}
\]
\[
W_2 = \sinh \lambda_1 \theta \tag{F35}
\]
\[
W_3 = \cosh \lambda_2 \theta \cos \lambda_3 \theta \tag{F36}
\]
\[
W_4 = \cosh \lambda_2 \theta \sin \lambda_3 \theta \tag{F37}
\]
\[
W_5 = \sinh \lambda_2 \theta \cos \lambda_3 \theta \tag{F38}
\]
\[
W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \tag{F39}
\]
Case 2b: $r - 3 < 0$

For Case 2b, we set

\[
\lambda_{11} = i \sqrt{\frac{a}{3} - r} \tag{F40}
\]

\[
\lambda_{12} = -i \sqrt{\frac{a}{3} - r} \tag{F41}
\]

\[
\lambda_{21} = \sqrt{5} \left[\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \tag{F27 bis}
\]

\[
\lambda_{22} = -\sqrt{5} \left[\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \tag{F28 bis}
\]

\[
\lambda_{31} = \sqrt{5} \left[\cos \frac{\phi}{2} - i \sin \frac{\phi}{2} \right] \tag{F29 bis}
\]

\[
\lambda_{32} = \sqrt{5} \left[-\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \tag{F30 bis}
\]

and then set

\[
\lambda_1 = \sqrt{\frac{a}{3} - r} \tag{F42}
\]

\[
\lambda_2 = \sqrt{5} \cos \frac{\phi}{2} \tag{F32 bis}
\]

\[
\lambda_3 = \sqrt{5} \sin \frac{\phi}{2} \tag{F33 bis}
\]
so that the mode functions are

\[W_1 = \cos \lambda_1 \theta \]
\[W_2 = \sin \lambda_1 \theta \]
\[W_3 = \cosh \lambda_2 \theta \cos \lambda_3 \theta \]
\[W_4 = \cosh \lambda_2 \theta \sin \lambda_3 \theta \]
\[W_5 = \sinh \lambda_2 \theta \cos \lambda_3 \theta \]
\[W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \]

Case 3: \(P = 0; Q < 0 \)

In Case 3, Equation E12 reduces to

\[y^3 + |Q| = 0 \]

so that

\[y^3 = -|Q| \]

Now let

\[r = |Q|^{1/3} > 0 \]

Then

\[y_1 = -r \]

\[y_2 = re^{\frac{i\pi}{3}} = \frac{r}{2}[1 + i\sqrt{3}] \]

\[y_3 = re^{-\frac{i\pi}{3}} = \frac{r}{2}[1 - i\sqrt{3}] \]

and Equations E45 yield

\[\lambda_1 = -\left[r + \frac{a}{3} \right] \]
\[\lambda_{II}^2 = \left(\frac{r - a}{2} \right) + i \frac{r \sqrt{3}}{2} = S e^{i\phi} \]

\[\lambda_{III}^2 = \left(\frac{r - a}{2} \right) - i \frac{r \sqrt{3}}{2} = S e^{-i\phi} \]

where

\[s^2 = \left(\frac{r - a}{2} \right)^2 + \frac{3r^2}{4} = r^2 - ra + \frac{a^2}{9} \]

\[\phi = \cos^{-1} \left[\frac{r - a}{2} \right] \]

We now set

\[\lambda_{11} = i \sqrt{r + \frac{a}{3}} \]

\[\lambda_{12} = -i \sqrt{r + \frac{a}{3}} \]

\[\lambda_{21} = \sqrt{S} e^{i\frac{\phi}{2}} = \sqrt{S} \left[\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \]

\[\lambda_{22} = -\sqrt{S} e^{-i\frac{\phi}{2}} = -\sqrt{S} \left[\cos \frac{\phi}{2} - i \sin \frac{\phi}{2} \right] \]

\[\lambda_{31} = \sqrt{S} e^{-i\frac{\phi}{2}} = \sqrt{S} \left[\cos \frac{\phi}{2} - i \sin \frac{\phi}{2} \right] \]

\[\lambda_{32} = -\sqrt{S} e^{i\frac{\phi}{2}} = -\sqrt{S} \left[\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \]
\[\lambda_{32} = -\sqrt{S} \text{e}^{-i\frac{\phi}{2}} = \sqrt{S} \left[-\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right] \]

[F30 bis]

and then set

\[\lambda_1 = \sqrt{r + \frac{a}{3}} \]

[F57]

\[\lambda_2 = \sqrt{S} \cos \frac{\phi}{2} \]

[F32 bis]

\[\lambda_3 = \sqrt{S} \sin \frac{\phi}{2} \]

[F33 bis]

so that the mode functions are

\[W_1 = \cos \lambda_1 \theta \]

[F43 bis]

\[W_2 = \sin \lambda_1 \theta \]

[F44 bis]

\[W_3 = \cosh \lambda_2 \theta \cos \lambda_3 \theta \]

[F36 bis]

\[W_4 = \cosh \lambda_2 \theta \sin \lambda_3 \theta \]

[F37 bis]

\[W_5 = \sinh \lambda_2 \theta \cos \lambda_3 \theta \]

[F38 bis]

\[W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \]

[F39 bis]

Case 4: P > 0; Q = 0

In Case 4, Equation E12 reduces to

\[y^3 - |P| y = y[y^2 - |P|] = 0 \]

[F58]

Now let

\[r = \sqrt{|P|} \]

[F59]

Then

\[y_1 = 0 \]

[F60]

\[y_2 = r \]

[F61]

\[y_3 = -r \]

[F62]
and Equations E45 yield

\[\lambda_1^2 = \frac{-a}{3} \]
\[\lambda_{II}^2 = r - \frac{a}{3} \]
\[\lambda_{III}^2 = -\left[r + \frac{a}{3} \right] \]

Case 4a: \(r - \frac{a}{3} \geq 0 \)

For Case 4a, we set

\[\lambda_{11} = i\sqrt{\frac{a}{3}} \]
\[\lambda_{12} = -i\sqrt{\frac{a}{3}} \]
\[\lambda_{21} = \sqrt{r - \frac{a}{3}} \]
\[\lambda_{22} = -\sqrt{r - \frac{a}{3}} \]
\[\lambda_{31} = i\sqrt{\frac{r + a}{3}} \]
\[\lambda_{32} = -i\sqrt{\frac{r + a}{3}} \]
and then set

\[\lambda_1 = \sqrt{\frac{a}{3}} \]

[F72]

\[\lambda_2 = \sqrt{r - \frac{a}{3}} \]

[F73]

\[\lambda_3 = \sqrt{r + \frac{a}{3}} \]

[F74]

so that the mode functions are

\[W_1 = \cos \lambda_1 \theta \]

[F43 bis]

\[W_2 = \sin \lambda_1 \theta \]

[F44 bis]

\[W_3 = \cosh \lambda_2 \theta \]

[F75]

\[W_4 = \sinh \lambda_2 \theta \]

[F76]

\[W_5 = \cos \lambda_3 \theta \]

[F77]

\[W_6 = \sin \lambda_3 \theta \]

[F78]

Case 4b: \(r - \frac{a}{3} < 0 \)

For Case 4b, we set

\[\lambda_{11} = i \sqrt{\frac{a}{3}} \]

[F66 bis]

\[\lambda_{12} = -i \sqrt{\frac{a}{3}} \]

[F67 bis]

\[\lambda_{21} = i \sqrt{\frac{a}{3} - r} \]

[F79]
\[\lambda_{22} = -i \sqrt{\frac{a}{3}} - r \]
\[\lambda_{31} = i \sqrt{r + \frac{a}{3}} \]
\[\lambda_{32} = -i \sqrt{r + \frac{a}{3}} \]

and then set

\[\lambda_1 = \sqrt{\frac{a}{3}} \]
\[\lambda_2 = \sqrt{\frac{a}{3}} - r \]
\[\lambda_3 = \sqrt{r + \frac{a}{3}} \]

so that the mode functions are

\[W_1 = \cos \lambda_1 \theta \]
\[W_2 = \sin \lambda_1 \theta \]
\[W_3 = \cos \lambda_2 \theta \]
\[W_4 = \sin \lambda_2 \theta \]
\[W_5 = \cos \lambda_3 \theta \]
\[W_6 = \sin \lambda_3 \theta \]

Case 5: \(P < 0; Q = 0 \)

In Case 5, Equation E12 reduces to

\[y^3 + |p|y = y[y^2 + |p|] = 0 \]
Now let

\[r = \sqrt{|P|} \] \hspace{1cm} [F59 bis]

Then

\[y_1 = 0 \]
\[y_2 = ir \]
\[y_3 = -ir \]

and Equations E45 yield

\[\lambda_1^2 = -\frac{a}{3} \] \hspace{1cm} [F63 bis]
\[\lambda_{II}^2 = -\frac{a}{3} + ir = Se^{i\phi} \] \hspace{1cm} [F87]
\[\lambda_{III}^2 = -\frac{a}{3} - ir = Se^{-i\phi} \] \hspace{1cm} [F88]

where

\[s^2 = \frac{a^2}{9} + r^2 \] \hspace{1cm} [F89]
\[\phi = \cos^{-1}\left(-\frac{a}{3S}\right) \] \hspace{1cm} [F90]

We now set

\[\lambda_{11} = i\sqrt{\frac{a}{3}} \] \hspace{1cm} [F66 bis]
\[\lambda_{12} = -i\sqrt{\frac{a}{3}} \] \hspace{1cm} [F67 bis]
\[\lambda_{21} = iSe^{i\frac{\phi}{2}} = \sqrt{S}\left(\cos\frac{\phi}{2} + i\sin\frac{\phi}{2}\right) \] \hspace{1cm} [F27 bis]
\[\lambda_{22} = -\sqrt{S} e^{i2} = -\sqrt{S} \left(\cos^2 \phi + i \sin^2 \phi \right) \]
[F28 bis]

\[\lambda_{31} = \sqrt{S} e^{-i2} = \sqrt{S} \left(\cos^2 \phi - i \sin^2 \phi \right) \]
[F29 bis]

\[\lambda_{32} = -\sqrt{S} e^{-i2} = \sqrt{S} \left(-\cos^2 \phi + i \sin^2 \phi \right) \]
[F30 bis]

and then set

\[\lambda_1 = \sqrt{a} \]
[F72 bis]

\[\lambda_2 = \sqrt{S} \cos^2 \phi \]
[F32 bis]

\[\lambda_3 = \sqrt{S} \sin^2 \phi \]
[F33 bis]

so that the mode functions are

\[W_1 = \cos \lambda_1 \theta \]
[F43 bis]

\[W_2 = \sin \lambda_1 \theta \]
[F44 bis]

\[W_3 = \cosh \lambda_2 \theta \cos \lambda_3 \theta \]
[F36 bis]

\[W_4 = \cosh \lambda_2 \theta \sin \lambda_3 \theta \]
[F37 bis]

\[W_5 = \sinh \lambda_2 \theta \cos \lambda_3 \theta \]
[F38 bis]

\[W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \]
[F39 bis]

Case 6: \(P < 0; Q \neq 0 \)

In Case 6,

\[\begin{bmatrix} P^3 \\ 3 \end{bmatrix} < 0 \]
[F91]

so that Equation E20 yields
and therefore Equations E21 and E22 yield

\[
A^3 = \frac{Q}{2} + \sqrt{R} > 0
\]

\[F93\]

\[
B^3 = \frac{Q}{2} - \sqrt{R} < 0
\]

\[F94\]

Now let

\[
A = \left(\frac{Q}{2} + \sqrt{R}\right)^{1/3}
\]

\[F95\]

\[
B = \left|\frac{Q}{2} - \sqrt{R}\right|^{1/3}
\]

\[F96\]

and then set

\[
A_1 = A
\]

\[F97\]

\[
A_2 = Ae^{\frac{2\pi i}{3}} = \frac{A}{2}(-1 + i\sqrt{3})
\]

\[F98\]

\[
A_3 = Ae^{-\frac{2\pi i}{3}} = -\frac{A}{2}(1 + i\sqrt{3})
\]

\[F99\]

\[
B_1 = -B
\]

\[F100\]

\[
B_2 = Be^{\frac{\pi i}{3}} = \frac{B}{2}(1 + i\sqrt{3})
\]

\[F101\]

\[
B_3 = Be^{-\frac{\pi i}{3}} = \frac{B}{2}(1 - i\sqrt{3})
\]

\[F102\]
Then Equation E32 yields

\[y_1 = A_1 + B_1 = A - B \]
\[y_2 = A_2 + B_2 = \frac{1}{2} \left[(-A + B) + i\sqrt{3}(A+B) \right] \]
\[y_3 = A_3 + B_3 = \frac{1}{2} \left[(-A + B) - i\sqrt{3}(A + B) \right] \]

so that Equations E45 yield

\[\lambda_{11}^2 = (A - B) - \frac{a}{3} \]
\[\lambda_{II}^2 = \left[\frac{-A + B}{2} - \frac{a}{3} \right] + \frac{\sqrt{3}}{2}(A + B) = Se^{i\phi} \]
\[\lambda_{III}^2 = \left[\frac{-A + B}{2} - \frac{a}{3} \right] - \frac{\sqrt{3}}{2}(A + B) = Se^{-i\phi} \]

where

\[s^2 = \frac{A^2 - 2AB + B^2}{4} - \left(\frac{-A + B}{3} \right) + \frac{a^2}{9} + \frac{3}{4}(A^2 + 2AB + B^2) \]
\[= (A^2 + AB + B^2) + (\frac{A - B}{3}) + \frac{a^2}{9} \]
\[\phi = \cos^{-1} \left[-\frac{A - B + \frac{a}{3}}{s} \right] \]

Case 6a: \((A - B) - \frac{a}{3} \geq 0 \)

For Case 5a, we set

\[\lambda_{11} = \sqrt{(A - B) - \frac{a}{3}} \]
\[\lambda_{12} = -\sqrt{(A - B) - \frac{a}{3}} \]

[F112]

\[\lambda_{21} = \sqrt{S}e^{i2} = \sqrt{S}\left[\cos\phi + i \sin\phi \right] \]

[F27 bis]

\[\lambda_{22} = -\sqrt{S}e^{i2} = -\sqrt{S}\left[\cos\phi + i \sin\phi \right] \]

[F28 bis]

\[\lambda_{31} = \sqrt{S}e^{-i2} = \sqrt{S}\left[\cos\phi - i \sin\phi \right] \]

[F29 bis]

\[\lambda_{32} = -\sqrt{S}e^{-i2} = -\sqrt{S}\left[-\cos\phi + i \sin\phi \right] \]

[F30 bis]

and then set

\[\lambda_1 = \sqrt{(A - B) - \frac{a}{3}} \]

[F113]

\[\lambda_2 = \sqrt{S} \cos\phi \]

[F32 bis]

\[\lambda_3 = \sqrt{S} \sin\phi \]

[F33 bis]

so that the mode functions are

\[W_1 = \cosh \lambda_1^\theta \]

[F34 bis]

\[W_2 = \sinh \lambda_1^\theta \]

[F35 bis]

\[W_3 = \cosh \lambda_2^\theta \cos \lambda_3^\theta \]

[F36 bis]

\[W_4 = \cosh \lambda_2^\theta \sin \lambda_3^\theta \]

[F37 bis]

\[W_5 = \sinh \lambda_2^\theta \cos \lambda_3^\theta \]

[F38 bis]

\[W_6 = \sinh \lambda_2^\theta \sin \lambda_3^\theta \]

[F39 bis]
Case 6b: \((A - B) - \frac{a}{3} < 0\)

For Case 6b, we set

\[
\lambda_{11} = i\sqrt{\frac{a}{3} - (A - B)} \quad \text{[F114]}
\]

\[
\lambda_{12} = -i\sqrt{\frac{a}{3} - (A - B)} \quad \text{[F115]}
\]

\[
\lambda_{21} = \sqrt{S}\left[\cos\phi_2 + i\sin\phi_2\right] \quad \text{[F27 bis]}
\]

\[
\lambda_{22} = -\sqrt{S}\left[\cos\phi_2 + i\sin\phi_2\right] \quad \text{[F28 bis]}
\]

\[
\lambda_{31} = \sqrt{S}\left[\cos\phi_2 - i\sin\phi_2\right] \quad \text{[F29 bis]}
\]

\[
\lambda_{32} = -\sqrt{S}\left[-\cos\phi_2 + i\sin\phi_2\right] \quad \text{[F30 bis]}
\]

and then set

\[
\lambda_1 = \sqrt{\frac{a}{3} - (A - B)} \quad \text{[F116]}
\]

\[
\lambda_2 = \sqrt{S}\cos\phi_2 \quad \text{[F32 bis]}
\]

\[
\lambda_3 = \sqrt{S}\sin\phi_2 \quad \text{[F33 bis]}
\]

so that the mode functions are

\[
W_1 = \cos\lambda_1\theta \quad \text{[F43 bis]}
\]

\[
W_2 = \sin\lambda_1\theta \quad \text{[F44 bis]}
\]

\[
W_3 = \cosh\lambda_2\theta \cos\lambda_3\theta \quad \text{[F36 bis]}
\]

\[
W_4 = \cosh\lambda_2\theta \sin\lambda_3\theta \quad \text{[F37 bis]}
\]
\[W_5 = \sinh \lambda_2 \theta \cos \lambda_3 \theta \]
\[W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \]
\[F38 \text{ bis} \]

\[W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \]

Case 7: \(0 < P \leq \frac{3}{2} \); \(Q > 0\)

In Case 7,

\[0 < \left(\frac{p}{3}\right)^3 \leq \left(\frac{q}{2}\right)^2 \]

so that Equation E20 yields

\[0 \leq \left[\sqrt{R} = \sqrt{\left(\frac{q}{2}\right)^2 - \left(\frac{p}{3}\right)^2} \right] < \left(\frac{q}{2}\right) \]

\[F118 \]

and therefore Equations E21 and E22 yield

\[A^3 = \frac{Q}{2} + \sqrt{R} > 0 \]

\[F119 \]

\[B^3 = \frac{Q}{2} - \sqrt{R} > 0 \]

\[F120 \]

Now let

\[A = \left[\frac{Q}{2} + \sqrt{R} \right]^{1/3} \]

\[F121 \]

\[B = \left[\frac{Q}{2} - \sqrt{R} \right]^{1/3} \]

\[F122 \]

and then set

\[A_1 = A \]

\[F97 \text{ bis} \]

\[A_2 = \text{Ae}^{\frac{i2\pi}{3}} = \frac{A}{2}(-1 + i\sqrt{3}) \]

\[F98 \text{ bis} \]
\[A_3 = A e^{-\frac{2\pi}{3}} = -\frac{A}{2}(1 + i\sqrt{3}) \]
\[\text{[F99 bis]} \]

\[B_1 = B \]
\[\text{[F123]} \]

\[B_2 = B e^{\frac{i2\pi}{3}} = \frac{B}{2}(-1 + i\sqrt{3}) \]
\[\text{[F124]} \]

\[B_3 = B e^{-\frac{i2\pi}{3}} = -\frac{B}{2}(1 + i\sqrt{3}) \]
\[\text{[F125]} \]

Then Equation E32 yields

\[y_1 = A_1 + B_1 = A + B \]
\[\text{[F126]} \]

\[y_2 = A_2 + B_2 = \frac{A + B}{2}(-1 + i\sqrt{3}) \]
\[\text{[F127]} \]

\[y_3 = A_3 + B_3 = -\frac{A + B}{2}(1 + i\sqrt{3}) \]
\[\text{[F128]} \]

so that Equations E45 yield

\[\lambda_1^2 = (A + B) - \frac{a}{3} \]
\[\text{[F129]} \]

\[\lambda_{II}^2 = -\left[\frac{A + B}{2} + \frac{a}{3}\right] + i\frac{\sqrt{3}}{2}(A + B) = \text{Se}^i\phi \]
\[\text{[F130]} \]

\[\lambda_{III}^2 = -\left[\frac{A + B}{2} + \frac{a}{3}\right] - i\frac{\sqrt{3}}{2}(A + B) = \text{Se}^{-i}\phi \]
\[\text{[F131]} \]

where

\[s^2 = \frac{(A + B)^2}{4} + \frac{(A + B)a}{3} + \frac{a^2}{9} + \frac{3}{4}(A + B)^2 \]

\[= (A + B)^2 + \frac{(A + B)a}{3} + \frac{a^2}{9} \]
\[\text{[F132]} \]
\[\phi = \cos^{-1} \left(-\frac{A + B + a}{\frac{2}{3}} \right) \]

Case 7a: \((A + B) - \frac{a}{3} > 0\)

For Case 7a, we set

\[\lambda_1 = \sqrt{(A + B) - \frac{a}{3}} \]

\[\lambda_2 = -\sqrt{(A + B) - \frac{a}{3}} \]

\[\lambda_{21} = \sqrt{\text{Se}^{i2}} = \sqrt{\left[\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right]} \]

\[\lambda_{22} = -\sqrt{\text{Se}^{-i2}} = -\sqrt{\left[\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right]} \]

\[\lambda_{31} = \sqrt{\text{Se}^{-i2}} = \sqrt{\left[\cos \frac{\phi}{2} - i \sin \frac{\phi}{2} \right]} \]

\[\lambda_{32} = -\sqrt{\text{Se}^{-i2}} = \sqrt{\left[-\cos \frac{\phi}{2} + i \sin \frac{\phi}{2} \right]} \]

and then set

\[\lambda_1 = \sqrt{(A + B) - \frac{a}{3}} \]

\[\lambda_2 = \sqrt{\cos \frac{\phi}{2}} \]

\[\lambda_3 = \sqrt{\sin \frac{\phi}{2}} \]
so that the mode functions are

\[
\begin{align*}
W_1 &= \cosh \lambda_1 \theta \\
W_2 &= \sinh \lambda_1 \theta \\
W_3 &= \cosh \lambda_2 \theta \cos \lambda_3 \theta \\
W_4 &= \cosh \lambda_2 \theta \sin \lambda_3 \theta \\
W_5 &= \sinh \lambda_2 \theta \cos \lambda_3 \theta \\
W_6 &= \sinh \lambda_2 \theta \sin \lambda_3 \theta
\end{align*}
\]

[F34 bis] [F35 bis] [F36 bis] [F37 bis] [F38 bis] [F39 bis]

Case 7b: \((A + B) - \frac{a}{3} < 0\)

For Case 7b, we set

\[
\begin{align*}
\lambda_{11} &= i \sqrt{\frac{a}{3} - (A + B)} \\
\lambda_{12} &= -i \sqrt{\frac{a}{3} - (A + B)}
\end{align*}
\]

[F137] [F138]

\[
\begin{align*}
\lambda_{21} &= \sqrt{5} \left[\cos \frac{\Phi}{2} + i \sin \frac{\Phi}{2} \right] \\
\lambda_{22} &= -\sqrt{5} \left[\cos \frac{\Phi}{2} + i \sin \frac{\Phi}{2} \right] \\
\lambda_{31} &= \sqrt{5} \left[\cos \frac{\Phi}{2} - i \sin \frac{\Phi}{2} \right] \\
\lambda_{32} &= \sqrt{5} \left[-\cos \frac{\Phi}{2} + i \sin \frac{\Phi}{2} \right]
\end{align*}
\]

[F27 bis] [F28 bis] [F29 bis] [F30 bis]

and then set

\[
\begin{align*}
\lambda_1 &= \sqrt{\frac{a}{3} - (A + B)} \\
\lambda_2 &= \sqrt{5} \cos \frac{\Phi}{2}
\end{align*}
\]

[F139] [F32 bis]
\[\lambda_3 = \sqrt{3} \sin \frac{\phi}{2} \quad [F33 \text{ bis}] \]

so that the mode functions are

\[W_1 = \cos \lambda_1 \theta \quad [F43 \text{ bis}] \]
\[W_2 = \sin \lambda_1 \theta \quad [F44 \text{ bis}] \]
\[W_3 = \cosh \lambda_2 \theta \cos \lambda_3 \theta \quad [F36 \text{ bis}] \]
\[W_4 = \cosh \lambda_2 \theta \sin \lambda_3 \theta \quad [F37 \text{ bis}] \]
\[W_5 = \sinh \lambda_2 \theta \cos \lambda_3 \theta \quad [F38 \text{ bis}] \]
\[W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \quad [F39 \text{ bis}] \]

Case 8: \(0 < P \leq \frac{3}{2} \left[\frac{Q}{2} \right]^{2/3} \); \(Q < 0 \)

In Case 8,

\[0 < \left[\frac{P}{3} \right] \leq \left[\frac{Q}{2} \right]^{2} \quad [F117 \text{ bis}] \]

so that Equation E20 yields

\[0 \leq \left[\sqrt{R} = \sqrt{\left[\frac{Q}{2} \right]^{2} - \left[\frac{P}{3} \right]} \right] < \left| \frac{Q}{2} \right| \quad [F118 \text{ bis}] \]

and therefore Equations E21 and E22 yield

\[A^3 = \frac{Q}{2} + \sqrt{R} < 0 \quad [F140] \]
\[B^3 = \frac{Q}{2} - \sqrt{R} < 0 \quad [F141] \]

Now let

\[A = \left| \frac{Q}{2} + \sqrt{R} \right|^{1/3} \quad [F142] \]
\[B = \left| \frac{Q}{2} - \sqrt{R} \right|^{1/3} \quad [F143] \]
and then set
\[A_1 = -A \] \hspace{1cm} \text{(F144)}
\[A_2 = Ae^{\frac{i\pi}{3}} = \frac{A}{2}(1 + i\sqrt{3}) \] \hspace{1cm} \text{(F145)}
\[A_3 = Ae^{-\frac{i\pi}{3}} = \frac{A}{2}(1 - i\sqrt{3}) \] \hspace{1cm} \text{(F146)}
\[B_1 = -B \] \hspace{1cm} \text{(F147)}
\[B_2 = Be^{\frac{i\pi}{3}} = \frac{B}{2}(1 + i\sqrt{3}) \] \hspace{1cm} \text{(F148)}
\[B_3 = Be^{-\frac{i\pi}{3}} = \frac{B}{2}(1 - i\sqrt{3}) \] \hspace{1cm} \text{(F149)}

Then Equation E32 yields
\[y_1 = A_1 + B_1 = -(A + B) \] \hspace{1cm} \text{(F150)}
\[y_2 = A_2 + B_2 = \frac{A + B}{2}(1 + i\sqrt{3}) \] \hspace{1cm} \text{(F151)}
\[y_3 = A_3 + B_3 = \frac{A + B}{2}(1 - i\sqrt{3}) \] \hspace{1cm} \text{(F152)}

so that Equations E45 yield
\[\lambda_1^2 = -\left[(A + B) + \frac{a}{3}\right] \] \hspace{1cm} \text{(F153)}
\[\lambda_{II}^2 = \left[\frac{A + B}{2} - \frac{a}{3}\right] + \frac{i\sqrt{3}}{2}(A + B) = Se^{\phi} \] \hspace{1cm} \text{(F154)}
\[\lambda_{III}^2 = \left[\frac{A + B}{2} - \frac{a}{3}\right] - \frac{i\sqrt{3}}{2}(A + B) = Se^{-\phi} \] \hspace{1cm} \text{(F155)}
where

\[S^2 = \frac{(A + B)^2}{4} - \frac{(A + B)a}{3} + \frac{a^2}{9} + \frac{3}{4}(A + B)^2 \]

\[= (A + B)^2 - \frac{(A + B)a}{3} + \frac{a^2}{9} \tag{F156} \]

\[\phi = \cos^{-1}\left[\frac{A + B - a}{2} - \frac{a}{S} \right] \tag{F157} \]

We then set

\[\lambda_{11} = i\sqrt{(A + B) + \frac{a}{3}} \tag{F158} \]

\[\lambda_{12} = -i\sqrt{(A + B) + \frac{a}{3}} \tag{F159} \]

\[\lambda_{21} = \sqrt{S} e^{i\frac{\phi}{2}} = \sqrt{S}\left[\cos\frac{\phi}{2} + i \sin\frac{\phi}{2} \right] \tag{F27 bis} \]

\[\lambda_{22} = -\sqrt{S} e^{i\frac{\phi}{2}} = -\sqrt{S}\left[\cos\frac{\phi}{2} + i \sin\frac{\phi}{2} \right] \tag{F28 bis} \]

\[\lambda_{31} = \sqrt{S} e^{-i\frac{\phi}{2}} = \sqrt{S}\left[\cos\frac{\phi}{2} - i \sin\frac{\phi}{2} \right] \tag{F29 bis} \]

\[\lambda_{32} = -\sqrt{S} e^{-i\frac{\phi}{2}} = -\sqrt{S}\left[-\cos\frac{\phi}{2} + i \sin\frac{\phi}{2} \right] \tag{F30 bis} \]

and then set

\[\lambda_1 = \sqrt{(A + B) + \frac{a}{3}} \tag{F160} \]

\[\lambda_2 = \sqrt{S} \cos\frac{\phi}{2} \tag{F32 bis} \]
\[\lambda_3 = \sqrt{S \sin_2} \]

so that the mode functions are

- \(W_1 = \cos \lambda_1 \theta \)
- \(W_2 = \sin \lambda_1 \theta \)
- \(W_3 = \cosh \lambda_2 \theta \cos \lambda_3 \theta \)
- \(W_4 = \cosh \lambda_2 \theta \sin \lambda_3 \theta \)
- \(W_5 = \sinh \lambda_2 \theta \cos \lambda_3 \theta \)
- \(W_6 = \sinh \lambda_2 \theta \sin \lambda_3 \theta \)

Case 9: \(P > \left(\frac{q}{2} \right)^{2/3} \); \(q \neq 0 \)

In Case 9,

\[\left[\frac{P}{2} \right]^3 > \left[\frac{q}{2} \right]^2 \]

so that Equation E20 yields

\[R = \left[\frac{q}{2} \right]^2 - \left[\frac{P}{2} \right]^3 < 0 \]

We therefore define

\[\omega = \frac{1}{3} \cos^{-1} \left[\frac{\left[\frac{q}{2} \right]}{\left[\frac{P}{2} \right]^{3/2}} \right] \quad (0 \leq \omega \leq \frac{\pi}{3}) \]

and then set

\[\omega_1 = \omega \]
\[\omega_2 = \omega - \frac{2\pi}{3} \]
\[\omega_3 = \omega + \frac{2\pi}{3} \]

[E41 bis]

and, following Equation E44, set

\[y_1 = 2\sqrt{\frac{p}{3}} \cos \omega_1 \]

[F164]

\[y_2 = 2\sqrt{\frac{p}{3}} \cos \omega_2 \]

[F165]

\[y_3 = 2\sqrt{\frac{p}{3}} \cos \omega_3 \]

[F166]

The following diagram shows that, since

\[0 < \omega < \frac{\pi}{3} \]

[F167]

then

\[y_1 > y_2 > y_3 \]

[F168]
We then set

\[\lambda_{I}^2 = y_1 - \frac{a}{3} \quad [F169] \]

\[\lambda_{II}^2 = y_2 - \frac{a}{3} \quad [F170] \]

\[\lambda_{III}^2 = y_3 - \frac{a}{3} \quad [F171] \]

These cases are possible, as shown below.

<table>
<thead>
<tr>
<th>(\lambda_{I}^2)</th>
<th>(\lambda_{II}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 0)</td>
<td>(< 0)</td>
</tr>
<tr>
<td>(9a)</td>
<td>(9b)</td>
</tr>
<tr>
<td>(9c)</td>
<td></td>
</tr>
</tbody>
</table>

Case 9a: \(\lambda_{I}^2 \geq 0; \lambda_{II}^2 \geq 0 \)

In Case 9a, we set

\[\lambda_{11} = \sqrt{y_1 - \frac{a}{3}} \quad [F172] \]

\[\lambda_{12} = -\sqrt{y_1 - \frac{a}{3}} \quad [F173] \]

\[\lambda_{21} = \sqrt{y_2 - \frac{a}{3}} \quad [F174] \]

\[\lambda_{22} = -\sqrt{y_2 - \frac{a}{3}} \quad [F175] \]

\[\lambda_{31} = iy_{1} - y_{3} \quad [F176] \]

\[\lambda_{32} = -iy_{1} - y_{3} \quad [F177] \]
and then set

\[\lambda_1 = \sqrt{y_1 - \frac{a}{3}} \]
\[\lambda_2 = \sqrt{y_2 - \frac{a}{3}} \]
\[\lambda_3 = \sqrt{\frac{a}{3} - y_3} \]

so that the mode functions are

\[W_1 = \cosh \lambda_1 \theta \]
\[W_2 = \sinh \lambda_1 \theta \]
\[W_3 = \cosh \lambda_2 \theta \]
\[W_4 = \sinh \lambda_2 \theta \]
\[W_5 = \cos \lambda_3 \theta \]
\[W_6 = \sin \lambda_3 \theta \]

Case 9b: \(\lambda_1^2 > 0; \lambda_2^2 < 0 \)

In Case 9b, we set

\[\lambda_{11} = \sqrt{y_1 - \frac{a}{3}} \]
\[\lambda_{12} = -\sqrt{y_1 - \frac{a}{3}} \]
\[\lambda_{21} = i\sqrt{\frac{a}{3} - y_2} \]
\[\lambda_{22} = -i\sqrt{\frac{a}{3} - y_2} \]
\[\lambda_{31} = i\sqrt{\frac{a}{3} - y_3} \]
and then set
\[\lambda_1 = \sqrt{y_1 - \frac{a}{3}} \]
\[\lambda_2 = \sqrt{\frac{a}{3} - y_2} \]
\[\lambda_3 = \sqrt{\frac{a}{3} - y_3} \]

so that the mode functions are
\[W_1 = \cosh \lambda_1 \theta \]
\[W_2 = \sinh \lambda_1 \theta \]
\[W_3 = \cos \lambda_2 \theta \]
\[W_4 = \sin \lambda_2 \theta \]
\[W_5 = \cos \lambda_3 \theta \]
\[W_6 = \sin \lambda_3 \theta \]

Case 9c: \(\lambda_1^2 < 0 \)

In Case 9c, we set
\[\lambda_{11} = i \sqrt{\frac{a}{3} - y_1} \]
\[\lambda_{12} = -i \sqrt{\frac{a}{3} - y_1} \]
\[\lambda_{21} = i \sqrt{\frac{a}{3} - y_2} \]
\[\lambda_{22} = -i \sqrt{\frac{a}{3} - y_2} \]
\[\lambda_{31} = i \sqrt{\frac{a}{3}} - y_3 \]
[F176 bis]

\[\lambda_{32} = -i \sqrt{\frac{a}{3}} - y_3 \]
[F177 bis]

and then set

\[\lambda_1 = \sqrt{\frac{a}{3}} - y_1 \]
[F186]

\[\lambda_2 = \sqrt{\frac{a}{3}} - y_2 \]
[F183 bis]

\[\lambda_3 = \sqrt{\frac{a}{3}} - y_3 \]
[F180 bis]

so that the mode functions are

\[W_1 = \cos \lambda_1 \theta \]
[F43 bis]

\[W_2 = \sin \lambda_1 \theta \]
[F44 bis]

\[W_3 = \cos \lambda_2 \theta \]
[F82 bis]

\[W_4 = \sin \lambda_2 \theta \]
[F83 bis]

\[W_5 = \cos \lambda_3 \theta \]
[F77 bis]

\[W_6 = \sin \lambda_3 \theta \]
[F78 bis]

Cases 1-9 (Summary)

For convenience, the above cases are summarized below.

<table>
<thead>
<tr>
<th>Case</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(P = Q = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(P = 0; \ Q > 0)</td>
</tr>
<tr>
<td>2a</td>
<td>(r - a/3 > 0)</td>
</tr>
<tr>
<td>2b</td>
<td>(r - a/3 < 0)</td>
</tr>
<tr>
<td>3</td>
<td>(P = 0; \ Q < 0)</td>
</tr>
<tr>
<td>Case</td>
<td>Criteria</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>4</td>
<td>(P > 0; \ Q = 0)</td>
</tr>
<tr>
<td>4a</td>
<td>(r - a/3 \geq 0)</td>
</tr>
<tr>
<td>4b</td>
<td>(r - a/3 < 0)</td>
</tr>
<tr>
<td>5</td>
<td>(P < 0; \ Q = 0)</td>
</tr>
<tr>
<td>6</td>
<td>(P < 0; \ Q \neq 0)</td>
</tr>
<tr>
<td>6a</td>
<td>((A - B) - a/3 \geq 0)</td>
</tr>
<tr>
<td>6b</td>
<td>((A - B) - a/3 < 0)</td>
</tr>
<tr>
<td>7</td>
<td>(0 < P \leq 3 \left[\frac{Q}{2} \right]^{2/3}; \ Q > 0)</td>
</tr>
<tr>
<td>7a</td>
<td>((A + B) - a/3 \geq 0)</td>
</tr>
<tr>
<td>7b</td>
<td>((A + B) - a/3 < 0)</td>
</tr>
<tr>
<td>8</td>
<td>(0 < P \leq 3 \left[\frac{Q}{2} \right]^{2/3}; \ Q < 0)</td>
</tr>
<tr>
<td>9</td>
<td>(P > 3 \left[\frac{Q}{2} \right]^{2/3}; \ Q \neq 0)</td>
</tr>
<tr>
<td>9a</td>
<td>(\lambda_1^2 \geq 0; \ \lambda_{II}^2 \geq 0)</td>
</tr>
<tr>
<td>9b</td>
<td>(\lambda_1^2 \geq 0; \ \lambda_{II}^2 < 0)</td>
</tr>
<tr>
<td>9c</td>
<td>(\lambda_1^2 < 0)</td>
</tr>
</tbody>
</table>
APPENDIX G

SYMMETRY

Any function, \(f(x) \), can be expressed as the sum of a symmetric (even) function, \(f_E(x) \), and an antisymmetric (odd) function, \(f_O(x) \),

\[
f(x) = f_E(x) + f_O(x)
\]

where

\[
f_E(x) = \frac{f(x) + f(-x)}{2}
\] \[G2\]

\[
f_O(x) = \frac{f(x) - f(-x)}{2}
\] \[G3\]

From Equations G2 and G3 come the definitions of an even and an odd function.

\[
f_E(-x) = f_E(x)
\] \[G4\]

\[
f_O(-x) = -f_O(x)
\] \[G5\]

From the definition of a derivative, and using the notation

\[
L = \lim_{\Delta x \to 0}
\] \[G6\]

we obtain

\[
f'_E(-x) = L \left[\frac{f_E(-x) - f_E(-x-\Delta x)}{\Delta x} \right]
\]

= \[
L \left[\frac{f_E(x) - f_E(x+\Delta x)}{\Delta x} \right] = -f'_E(x)
\] \[G7\]

\[
f'_O(-x) = L \left[\frac{f_O(-x) - f_O(-x-\Delta x)}{\Delta x} \right]
\]

= \[
L \left[\frac{-f_O(x) + f_O(x+\Delta x)}{\Delta x} \right] = f'_O(x)
\] \[G8\]
It follows that the even and odd derivatives of even and odd functions are even or odd according to the table below.

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>EVEN</th>
<th>ODD</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVEN</td>
<td>EVEN</td>
<td>ODD</td>
</tr>
<tr>
<td>ODD</td>
<td>ODD</td>
<td>EVEN</td>
</tr>
</tbody>
</table>
APPENDIX H

MODE SHAPE DETERMINATION

Equations B5, C3, and C4 express the centroidal translation and rotation of a plane cross section of a circular arch vibrating in a single mode in separable form,

\[
(u) = \begin{bmatrix} u_1 \\ u_2 \\ \psi \end{bmatrix} = T (U) = T \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}
\]

[HI]

where, referring to Figure A1

- \(u_1 \) = centroidal tangential displacement, in the direction of increasing \(\theta \)
- \(u_2 \) = centroidal inward radial displacement
- \(\psi \) = clockwise rotation
- \(r \) = arch cross-section radius of gyration, defined in Equation A62
- \(T \) = modal amplitude, a function of time only
- \(X, Y, Z \) = mode shapes, functions of the arch angle, \(\theta \), only

Equation HI is the general definition of a structural vibratory mode, i.e., a condition in which the relative displacements of all points on the structure remain constant, and the absolute displacements are proportional to a single scalar function of time. The configuration defined is that of the arch cross-section centroidal axis, not its neutral axis, because the centroidal axis location is independent of cross-section rotation.

When the arch undergoes free vibration, Equation C15 shows that the modal amplitude, \(T \), is harmonic with angular frequency \(\omega \).

\[
T + \omega^2 T = 0
\]

[C15 bis]

Appendix F shows that the three mode shapes, \(X \) (for centroidal tangential displacement), \(Y \) (for centroidal radial displacement), and \(Z \) (for plane cross-section rotation) can each be expressed as a linear combination of six mode functions,

\[
(U) = C (W)
\]

[H2]
where

\[(U) = 3 \times 1 \text{ column matrix of mode shapes}\]

\[(W) = 6 \times 1 \text{ column matrix of mode functions}\]

\[C = 3 \times 6 \text{ rectangular matrix of mode shape coefficients}\]

Each of the six mode functions, \(W_i\) \((i=1,6)\), satisfies Equation E2, which is a homogeneous, linear, ordinary differential equation with constant coefficients, of order six. Equation E2 is derived from Equations C18, which are three independent, homogeneous, linear, ordinary differential equations with constant coefficients, of order two. Equations C18 are the fundamental equations describing arch free vibration, and Equation E2 was derived from them for the sake of convenience, to uncouple the system (cf. Equations C21-C23). However, the price of uncoupling the system is that Equation H2 is too general. Unless restrictions are placed on the mode shape coefficients, Equations C18 will not be satisfied. To determine what restrictions must be placed on the mode shape coefficients, we substitute Equation H2 into Equation C18 and obtain

\[(L + \sigma^2 I) (U) = C (L + \sigma^2 I) (W) = 0 \] \[H3\]

where

\[\sigma = \frac{p}{[C/R]} \] \[C17 \text{ bis}\]

\[c^2 = \frac{E}{\rho} \] \[B16 \text{ bis}\]

and

\[E = \text{Young's elastic modulus} \]

\[\rho = \text{mass density} \]

\[R = \text{arch centroidal radius} \]

The six mode functions, \(W_i\), are a closed set, in the sense that differentiation of any one mode function yields a linear combination of the other five. Equations H3 are thus a set of three homogeneous linear equations in
the six mode functions. But the six mode functions are linearly independent, so the coefficient matrix in the resulting equations must be the null matrix (all elements zero), i.e.,

\[C(L + \sigma^2)(W) = C E (W) = (0) \] \hspace{1cm} [H4]

where

\[C E = 0 \] \hspace{1cm} [H5]

However, since Equation E2 already represents all three of Equations C18 taken together, only two rows of Equation H4 are linearly independent. Therefore only 12 of the 18 scalar equations represented by Equation H5 are independent. Equation H5 therefore yields expressions for 12 of the 18 mode shape coefficients as linear combinations of the remaining 6.

The relative values of the six remaining mode shape coefficients are determined from the six arch boundary conditions, which take the form

\[B (C) = (0) \] \hspace{1cm} [H6]

where

\[(C) = 6 \times 1 \text{ column matrix of remaining mode shape coefficients} \]
\[B = 6 \times 6 \text{ square matrix} \]

The elements of the \(B \) matrix are linear combinations of the six mode functions, defined in Appendix F, evaluated at an arch boundary, the precise forms of which depend on the frequency parameter, \(\sigma \). For a nontrivial solution to Equation \([H6]\) to exist, the determinant of the \(B \) matrix must vanish.

\[|B| = 0 \] \hspace{1cm} [H7]

When this happens, the frequency parameter, \(\sigma \), corresponds to a natural or modal frequency.

What makes the arch vibration problem more complicated than some other structural vibration problems is the fact that the precise form of the
transcendental frequency equation generated by Equation H7 depends on the frequency parameter, σ. Thus in a trial and error solution to find the natural frequencies and mode shapes of a circular arch, the form of the frequency equation varies with the trial frequency parameter, σ.
The basic equations for the mode shapes of a circular arch are

\[(L + \sigma^2 I)\{u\} = \{0\}\] \[[C18\ bis]\]

where

\[
L = \begin{bmatrix}
AD^2-B & -(A+B)D & -ED^2+BF \\
(A+B)D & BD^2-A & -(BF+E)D \\
-ED^2+BF & (BF+E)D & CD^2-BF^2
\end{bmatrix}
\]

and

\[
D = \frac{d}{d\theta}
\]

\[A = C_1\] \[[D3\ bis]\]

\[B = \frac{k'}{2(1+\nu)}\] \[[D4\ bis]\]

\[C = C_3\] \[[D5\ bis]\]

\[E = 2\sqrt{3}C_2\] \[[D6\ bis]\]

\[F = \frac{R}{r}\] \[[D7\ bis]\]

The constants \(C_1\), \(C_2\), and \(C_3\) are functions of the ratio of arch depth to radius, as shown in the table following Equation A58.

To investigate the modal orthogonality relations we evaluate Equation C18 for modes \(i\) and \(j\).

\[(L + \sigma^i I)\{u\}_i = \{0\}\] \[[I1]\]

\[(L + \sigma^j I)\{u\}_j = \{0\}\] \[[I2]\]
Premultiplying Equation 11 by \([U]_j^T \), and premultiplying Equation 12 by
\([U]_i^T \) yields

\[
[U]_j^T [U]_i + \sigma_i^2 [U]_j^T [U]_i = 0
\] \[\text{[I3]}\]

\[
[U]_i^T [U]_j + \sigma_j^2 [U]_i^T [U]_j = 0
\] \[\text{[I4]}\]

Subtracting Equation I4 from Equation I3 yields

\[
[U]_j^T [U]_i - [U]_i^T [U]_j = \left[\sigma_i^2 - \sigma_j^2\right] [U]_i^T [U]_j = 0
\] \[\text{[I5]}\]

or

\[
\left[\sigma_i^2 - \sigma_j^2\right] [U]_i^T [U]_j = (U)_i [U]_j \quad \text{or} \quad [U]_i^T [U]_j = B_{ij}
\] \[\text{[I6]}\]

It remains to be shown that the RHS of Equation I5 is the derivative of a function which has equal values at \(\theta = 0 \) and \(\theta = \Omega \), so that

\[
(U)_i^T [U]_j = B_{ij}
\] \[\text{[I7]}\]

Eqs. 16 and 17 are satisfied, then integration of Equation I5 on \(\theta \) between 0 and \(\Omega \) yields

\[
\int_0^\Omega \left[\sigma_i^2 - \sigma_j^2\right] [U]_i^T [U]_j \, d\theta = \int_0^\Omega B_{ij} \, d\theta = [B_{ij}(\theta)]_0^\Omega = 0
\] \[\text{[I8]}\]

When \(i \neq j \), so that \(\sigma_i^2 \neq \sigma_j^2 \), Equation I8 yields

\[
\int_0^\Omega [U]_i^T [U]_j \, d\theta = 0 \quad (i \neq j)
\] \[\text{[I9]}\]

Thus the \(i \)th and \(j \)th modes are orthogonal over the closed interval
\(0 \leq \theta \leq \Omega \), provided Equations I6 and I7 are satisfied.
To prove Equation 16 we expand its LHS using Equation 08, and obtain

\[B_{ij} = A \left[x_i x_j' - x_j x_i' \right] - (A + B) \left[x_i y_j' - x_j y_i' \right] - E \left[x_i z_j'' - x_j z_i'' \right] \]

\[+ (A + B) \left[y_i x_j' - y_j x_i' \right] + B \left[y_i y_j'' - y_j y_i'' \right] - (BF + E) \left[y_i z_j' - y_j z_i' \right] \]

\[- E^2 \left[z_i x_j'' - z_j x_i'' \right] + (BF + E) \left[z_i y_j' - z_j y_i' \right] + C \left[z_i z_j'' - z_j z_i'' \right] \]

\[= A \left[x_i x_j'' - x_j x_i'' \right] + B \left[y_i y_j'' - y_j y_i'' \right] + C \left[z_i z_j'' - z_j z_i'' \right] \]

\[- (A + B) \left[x_i y_j' + x_j y_i' \right] - \left[x_j y_i' + x_i y_j' \right] \]

\[- (BF + E) \left[y_i z_j' + y_j z_i' \right] - \left[y_j z_i' + y_i z_j' \right] \]

\[+ E \left[z_i x_j'' - z_j x_i'' \right] - \left[z_j x_i'' - z_i x_j'' \right] \] \[\text{[I10]} \]

Now

\[\left[x_i x_j' \right]' - \left[x_i x_j \right]' = x_i' x_j' + x_i x_j' - x_i x_j' = x_i x_j'' - x_j x_i'' \] \[\text{[I11]} \]

and

\[\left[z_i x_j' \right]' - \left[z_i x_j \right]' = z_i' x_j' + z_i x_j' - z_i x_j' = z_i'' x_j'' - z_j x_i'' \] \[\text{[I12]} \]

Therefore, Equation I10 can be written in the form

\[B_{ij} = A \left[x_i x_j' \right]' - \left[x_i x_j \right]' + B \left[y_i y_j' \right]' - \left[y_i y_j \right]' \]

\[+ C \left[z_i z_j' \right]' - \left[z_i z_j \right]' - (A + B) \left[x_i y_j' \right]' - \left[x_j y_i' \right]' \]
\[- (BF + E) \left[(Y_j Z_j)' - (Y_j Z_i)' \right] \]
\[+ E \left[(Z_i X_j)' - (Z_i X_j)' - (Z_i X_i)' + (Z_i X_i)' \right] \]

Each term on the RHS of Equation 113 is a derivative, so Equation 16 is proven.

To prove Equation 17 we expand Equations B8 and B9.

\[\{F\} = E^* A^* S \{\delta\} \]
\[\{\delta\} = \frac{1}{R} (DI - G^T) \{u\} \]

where, to avoid confusion with symbols already used in this appendix

\[E^* = \text{Young's elastic modulus} \]
\[A^* = \text{arch cross-sectional area} \]

Substituting Equations B9 and C3 into Equation B8 yields

\[\{F\} = \frac{E^* A^*}{R} S (DI - G^T) \{u\} = \frac{E^* A^*}{R} (DS - SG^T) \{u\} \]
\[= \frac{E^* A^*}{R} T (DS - SG^T) \{u\} \]

Now

\[S = \begin{bmatrix} C_1 & 0 & -2\sqrt{3}C_2 \\ 0 & \frac{k}{2(1+\nu)} & 0 \\ -2\sqrt{3}C_2 & 0 & C_3 \end{bmatrix} \]

[B2,822 bis]
\[
\begin{pmatrix}
0 & C_1 & 0 \\
\frac{k'}{2(1+\nu)} & 0 & \frac{k'R}{2r(1+\nu)} \\
0 & -2\sqrt{3}C_2 & 0
\end{pmatrix}
\]

so that

\[
\begin{pmatrix}
C_1D & -C_1 & -2\sqrt{3}C_2D \\
\frac{k'}{2(1+\nu)} & \frac{k'}{2(1+\nu)}D & \frac{k'R}{2r(1+\nu)} \\
-2\sqrt{3}C_2D & 2\sqrt{3}C_2 & C_3D
\end{pmatrix}
\]

\[
\begin{pmatrix}
AD & -A & -ED \\
B & 8D & -BF \\
-ED & E & CD
\end{pmatrix}
\]

Now if

\[
\{F\} = \begin{bmatrix} F_1 \\ F_2 \\ M \\ r \end{bmatrix} = \{N\}^T = \begin{bmatrix} N_1 \\ N_2 \\ N_3 \end{bmatrix}
\]

then substituting Equations I15, I16, and C3 into Equation I14 yields

\[
N_1 = \frac{E_A^*}{R} \left[A(X' - Y) - EZ' \right]
\]

\[
N_2 = \frac{E_A^*}{R} \left[B(X + Y' - FZ) \right]
\]

\[
N_3 = \frac{E_A^*}{R} \left[E(Y - X') + CZ' \right]
\]

By rearranging terms, Equation I13 can be written in the form

\[
B_{ij}' = \left[X_i \left(A \left[X_j' - Y_j \right] - EZ_j' \right) \right] - \left[X_j \left(A \left[X_i' - Y_i \right] - EZ_i' \right) \right]
\]
Substituting Equations 117, 118, and 119 into Equation 120 yields
\[B_{ij}' = \frac{R}{E^*A} \left[(U_i^T N_j - (U_j^T N_i) \right] \]

and substituting Equation 121 into Equation 18 yields
\[\left[\sigma_i^2 - \sigma_j^2 \right] \int_0^\Omega (U_i^T U_j) d\theta = \frac{R}{E^*A} \left[(U_i^T N_j - (U_j^T N_i) \right] = 0 \]

The conditions under which Equation 122 is valid for \(i \neq j \) must still be determined.

Consider the elastic restraint conditions
\[\{N\} = [K] \{U\} \quad (\theta = 0) \]
\[\{N\} = -[K] \{U\} \quad (\theta = \Omega) \]

Substituting Equations 123 into Equation 122 yields
\[\left[\sigma_i^2 - \sigma_j^2 \right] \int_0^\Omega (U_i^T U_j) d\theta = \frac{R}{E^*A} \left[(U_i^T [K] \{U\}_j - (U_j^T [K] \{U\}_i) \right] = 0 \]

Thus Equations 123 are the conditions under which Equation 19 is valid.

One last task remains to complete the orthogonality analysis. That is to find the integral of the inner product of a mode shape with itself over the closed interval \(0 \leq \theta \leq \Omega \). When \(i = j \), Equation 122 reduces to the indeterminate form
As suggested by Rayleigh (Refs. 13 and 14), L'Hospital's Rule can be used to evaluate the integral in question by considering a set of functions identical in form to \(\{ U \} \) and \(\{ N \} \), except with \(\sigma \) the independent variable instead of \(\theta \). Thus if we set

\[
\begin{align*}
\sigma_i &= \sigma \\
\sigma_j &= \sigma + d\sigma
\end{align*}
\]

then applying L'Hospital's Rule to Equation 122 yields

\[
2\sigma \, d\sigma \int_0^\Omega \{ U \}^T \{ U \} \, d\theta = \frac{R d\sigma}{E^A} \left[\{ \bar{U} \}^T \{ N \} - \{ U \}^T \{ \bar{N} \} \right]_0^\Omega
\]

or

\[
\int_0^\Omega \{ U \}^T \{ U \} \, d\theta = \frac{R}{2E^A} \sigma \left[\{ \bar{U} \}^T \{ N \} - \{ U \}^T \{ \bar{N} \} \right]_0^\Omega
\]

The derivatives with respect to \(\sigma \) on the RHS of Equation 133 can be evaluated as follows. All elements of \(\{ U \} \) and \(\{ N \} \) have the general form

\[
f = f (\lambda_1 \theta, \lambda_2 \theta, \lambda_3 \theta)
\]
where
\[\lambda_n = \lambda_n(\sigma) \quad (n = 1, 2, 3) \]

therefore
\[\frac{df}{d\sigma} = \frac{df}{d\lambda_n} \lambda_n \quad \text{(sum on } n) \]

The derivatives with respect to \(\lambda \) are easily evaluated by the chain rule.
\[\frac{df}{d\lambda_n} = \theta \frac{df}{d(\lambda_n \theta)} \]

The derivative of \(\lambda_n \) with respect to \(\sigma \) can be evaluated by differentiating Equation E6, which yields
\[(6\lambda^5 + 4a\lambda^3 + 2b\lambda) \lambda + (a\lambda^4 + b\lambda^2 + c) = 0 \]

so that
\[\lambda_n = -\frac{a\lambda_n^4 + b\lambda_n^2 + c}{2\lambda_n[3\lambda_n^4 + 2a\lambda_n^2 + b]} \]

Because of the factor \(\theta \) in Equation I37, the RHS of Equation I33 vanishes at the lower limit, and therefore Equation I33 reduces to
\[\Omega \int_0^{\Gamma_i} (\bar{U}_1^T \bar{N}_i) d\theta = \int_0^{\Gamma_i} \left[(\bar{U}_1^T \bar{N}_i) - (U_1^T \bar{N}_i) \right] d\theta = \Omega \]

It is convenient to normalize the mode shapes so that
\[\Gamma_i = 1 \]

and in that case
\[\int_0^\Omega (U_1^T U_j) d\theta = \delta_{ij} \]
The orthogonality condition, I42, is used in Appendix J to obtain transient vibration solutions by expressing both the arch displacements and the forcing functions in modal series form. See Equations J2 and J3.
Equations B17 and C7 describe the transient response of a circular arch. The basic equation is

\[
(\ddot{u}) - \left[\frac{c}{R}\right]^2 L(u) = \frac{1}{\rho A}(b) \quad [J1]
\]

Both the displacements and the externally applied loads are assumed to be expressible in a modal series expansion of the form

\[
(u) = \sum_{j=1}^{\infty} T_j(U)_j \quad [J2]
\]

\[
(b) = \sum_{j=1}^{\infty} H_j(U)_j \quad [J3]
\]

where the mode shapes satisfy the relations

\[
L(U)_j = -\sigma_j^2(U)_j = -\left[\frac{c}{R}\right]^2 (U)_j \quad \text{(no sum)} \quad [C16]
\]

and

\[
\int_{0}^{\Omega} (U)_1^T(U)_j d\theta = \delta_{ij} \quad [I42]
\]

Premultiplying Equation J3 by \((U)_1^T\) and integrating on \(\theta\) from 0 to \(\Omega\) yields

\[
H_i = \int_{0}^{\Omega} (U)_1^T(b) d\theta \quad [J4]
\]
Substituting Equations J2, J3, and C16 into Equation J1 yields

\[\sum_{j=1}^{\infty} T_j(U)_j + \sum_{j=1}^{\infty} p_j^2 T_j(U)_j = \frac{1}{\rho A} \sum_{j=1}^{\infty} H_j(U)_j \]

[\text{J5}]

Premultiplying Equation J5 by \((U)^T\) and integrating on \(\theta\) from 0 to \(\Omega\) yields

\[T_i + p_i^2 T_i = \frac{1}{\rho A} H_i \]

[\text{J6}]

so that, assuming

\[T_i(0) = T_i(0) = 0 \]

[\text{J7}]

the solution is

\[T_i(t) = \frac{1}{\rho A} \int_{0}^{t} H_i(\tau) \sin p_i(t - \tau) d\tau \]

[\text{J8}]

which completes the formal analysis.
APPENDIX K
VISCOELASTIC ANALYSIS

The dynamic analysis of a viscoelastic circular arch turns out to be a fairly simple extension of the results for an undamped elastic arch, when the rate-sensitive behavior is governed by a single parameter.

When the arch is viscoelastic, Equations A40 and A41 have the forms

\[\sigma_{11} = E\epsilon_1 + \alpha^* \dot{\epsilon}_1 = E[\epsilon_1 + \frac{\alpha^*}{E}\dot{\epsilon}_1] \] \hspace{1cm} [K1]

\[\sigma_{12} = G\gamma_{12} + \eta \dot{\gamma}_{12} = G[\gamma_{12} + \frac{\eta}{G} \dot{\gamma}_{12}] \] \hspace{1cm} [K2]

If we assume that

\[\frac{\alpha^*}{E} = \frac{\eta}{G} = \xi \] \hspace{1cm} [K3]

then Equations K1 and K2 can be written in the form

\[\sigma_{11} = E (\epsilon_1 + \xi \dot{\epsilon}_1) \] \hspace{1cm} [K4]

\[\sigma_{12} = G (\gamma_{12} + \xi \dot{\gamma}_{12}) \] \hspace{1cm} [K5]

and therefore Equation B8 has the form

\[(F) = EAS (\delta) + \xi (\dot{\delta}) \] \hspace{1cm} [K6]

and Equations B17 and C7 have the form

\[(\ddot{u}) - [\frac{c}{R}]^2 L \{\dot{u} + \xi (\dot{\delta})\} = \frac{1}{\rho A} (b) \] \hspace{1cm} [K7]
Equation C6, which describes free vibration in a normal mode, has the form

\[\ddot{T}(U) - \begin{bmatrix} 0 \\ \mathcal{R} \end{bmatrix} (T + \xi \dot{T}) \mathcal{L}(U) = 0 \]

[K8]

and Equations C12 and C14 have the forms

\[\ddot{T}(m) - \begin{bmatrix} 0 \\ \mathcal{R} \end{bmatrix} (T + \xi \dot{T}) \begin{bmatrix} -1 \\ \mathcal{L} \end{bmatrix}(U) = 0 \]

[K9]

\[\ddot{T}(m) = \begin{bmatrix} \mathcal{C} \\ \mathcal{R} \end{bmatrix} \begin{bmatrix} \mathcal{U} \end{bmatrix}^{-1} \mathcal{L}(U) = -p^2(m) \]

[K10]

Equation C15 has the form

\[\ddot{T} + \xi p^2 \dot{T} + p^2 T = 0 \]

[K11]

but Equation C16 remains the same.

\[\mathcal{L}(U) = -\frac{p^2}{\mathcal{C}^2}(U) = \sigma^2(U) \]

[C16 bis]

Equations C14 and C16 have the forms

\[(F) = \frac{\mathcal{E} \star \mathcal{A}}{\mathcal{R}} (T + \xi \dot{T})(\mathcal{D} \mathcal{S} - \mathcal{S} \mathcal{G}^T)(U) \]

[K12]

\[(F) = (T + \xi \dot{T})(N) \]

[K13]

Equations C23 remain the same, and substituting Equations C23 into Equation K13 yields

\[(F) = (T + \xi \dot{T}) K_j(U) = K_j(U) + \xi(U) \]

(\(\theta = 0 \))

[K14a]

\[(F) = -(T + \xi \dot{T}) K_j(U) = -K_j(U) + \xi(U) \]

(\(\theta = \Omega \))

[K14b]
Thus, in order for the modal orthogonality conditions to remain valid, the support restraints must also be viscoelastic, with ξ as the single rate sensitivity parameter. This will guarantee that the form of Equation 124 will be preserved.

The transient analysis problem is approached by substituting Equations J2 and J3 into Equation K7, which yields

$$\sum_{j=1}^{\infty} \hat{T}_j(U)_j + \sum_{j=1}^{\infty} p_j^2 [T_j + \xi_t]_j(U)_j = \frac{1}{\rho A} \sum_{j=1}^{\infty} H_j(U)_j$$ \[K15\]

Premultiplying Equation [K15] by $(U)_j^T$ and integrating from 0 to Ω yields

$$T_i + \xi \rho p_i + p_i^2 T_i = \frac{1}{\rho A} H_i$$ \[K16\]

The form of the convolution integral which is the solution to Equation K16 depends on the values of ξ and p_i. When $\xi p_i < 2.0$ the modal damping is less than critical; when $\xi p_i = 2.0$ the modal damping is critical; and when $\xi p_i > 2.0$ the modal damping is greater than critical.
APPENDIX L
NUMERICAL ANALYSIS

The most difficult computational phase of the arch modal analysis is finding the roots of the frequency equation (H7). A sample problem for a Timoshenko beam was solved numerically on the AFRL CRAY. The solution involved eleven program segments, which were stored in six files. These program segments are described below. The function used was Equation 5-14 of Reference 2.

Program TEST
This is the main program in the solution. It performs all of the I/O, determines the interval and tolerance for root finding, and specifies the number of roots sought.

Function PRPCOM
This function's purpose is to prepare the common region PARAM, which contains the function parameters C12, C22, R, L, and THETA. The meanings of these variables are given below, along with the other variables of PRPCOM.

\[
\begin{align*}
C12 &= C_1^2 \\
C22 &= C_2^2 \\
R &= r \\
L &= l \\
E &= E \\
G &= G \\
\text{RHO} &= \rho \\
I &= I \\
KPRIME &= K' \\
RBIG &= R \\
\text{THETA} &= \theta
\end{align*}
\]

- \(C_1^2\) square of longitudinal wavespeed
- \(C_2^2\) square of shear wavespeed
- \(r\) radius of gyration
- \(l\) length of beam
- \(E\) beam modulus of elasticity
- \(G\) beam elastic shear modulus
- \(\rho\) beam density
- \(I\) beam moment of inertia
- \(K'\) shear deformation coefficient
- \(R\) rotational beam-end restraint
- \(\theta\) \(EI/RBIG\)

113
Subroutine ZEROIN
This is a modified version of the ZEROIN routine found in Reference 16. The modifications were necessary to allow the routine to search for more than one root. The roots are stored in the array ROOT as they are found, and the routine continues searching until it has found the desired number of roots, or until it cannot find any more. For a discussion of the methods used to find the roots, see Reference 16.

Function SGN
This simple function returns 1.0 if its argument is positive, 0.0 if the argument is zero, and -1.0 if the argument is negative. This is used by ZEROIN.

Function G
This routine uses deflation to allow ZEROIN to find more than one root of the function. Deflation is a technique by which previously found roots are eliminated, but other roots remain. The basic idea is to find the roots of $g(x) = f(x)/\Pi(x - r_i)$, where r_i indicates a previously found root, and Π denotes a product. In this way, the roots are eliminated. Note that extreme care must be taken when evaluating the function at points close to a previous root.

Function FACT
This simple function returns the factorial of its integer argument. It is used by Function G.

Function F
This is the function whose roots are of interest. The function parameters are contained in the common region PARAM. For the trial function they were used to find XI (ξ) and GAMMA (γ), which are used to find K1 and K2. The function is then evaluated piece by piece, since it is quite complicated.

Function F1
This function is used to find XI and GAMMA.

Function F2
This function is used to find K1 and K2.

Function DERIV
As mentioned above, care must be taken when evaluating the function $g(x) = \frac{f(x)}{\pi(x - r_i)}$ near $x = r_i$, a previous root. At such a point, L'Hopital's Rule must be applied. This means that the derivative of $f(x)$ at $x = r_i$ must be found. This function calculates the n^{th} derivative of $f(x)$ at some point.

A Closer Look at G and DERIV
As mentioned above,

$$g(x) = \frac{f(x)}{\pi(x - r_i)}$$

where $f(x)$ is the function of interest and r_i is a previously found root. This definition allows us to ignore all previous roots without losing any others. A simple example will help illustrate. If

$$f(x) = (x-1)(x-2)(x-3)$$

then the roots are $x = 1, 2, 3$. Suppose that in our first search we find that $x = 3$ is a root. Then

$$g(x) = \frac{[(x-1)(x-2)(x-3)]/(x-3)}{(x-3)} = (x-1)(x-2)$$

We have eliminated the root $x = 3$, but have retained $x = 1$ and $x = 2$, so that one of them will be discovered. Note that once all the roots have been discovered, $g(x) = 1$, so no more roots will be mistakenly discovered.

This method works equally well for functions other than polynomials, but it is more difficult to demonstrate. The problem with the method is that when ZEROIN tries to evaluate the function at a previous root, it obtains

$$g(x) = \frac{f(x)}{(x-r_i)} = 0/0$$

which the computer cannot evaluate. However, through the application of L'Hopital's Rule, we obtain

$$g(x) = \frac{f(x)}{\pi(x - r_i)} = \left[f'(x)/\left[\frac{d}{dx}[\pi(x-r_i)] \right] \right]_{x=r_i}$$

115
The method used to compute derivatives is quite simple. It is based on the slope interpretation of the derivative:

\[
\frac{df}{dx} \bigg|_{x=x_0} = \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{2\Delta x} \quad [L6]
\]

or

\[
\frac{f(x_1) - f(x_1 - h)}{h} \quad [L7]
\]

where \(x_1 = x_0 + \Delta x, \ h = 2\Delta x. \)

Higher order derivatives are found simply from lower order derivatives

\[
\frac{df(n)}{d^{(n)}x} \bigg|_{x=x_0} = \frac{\left[\frac{df(n-1)}{d^{(n-1)}x} \bigg|_{x=x_1} \right] - \left[\frac{df(n-1)}{d^{(n-1)}x} \bigg|_{x=x_1 - h} \right]}{h} \quad [L8]
\]

This procedure is implemented easily using the array DFNDNX. In the first step of the routine, enough points \((n + 1)\) are chosen to evaluate the \(n^{th}\) derivative. The points are evenly spaced \((h\) is the interval width for adjacent points\), and the point at which the \(n^{th}\) derivative is desired is at the midpoint of the interval. As the points are chosen, the function is evaluated at each point; and these values are stored in DFNDNX(1,i), \(i = 1, n + 1\). In the third step, each adjacent pair of values is used to compute a single value for the derivative. This step is repeated until there is only one value. This is the \(n^{th}\) derivative.

For example, if \(f(x) = x^3 + x^2 + x \), and the \(4^{th}\) derivative of \(f \) is desired at \(x = 1.0 \), then DFNDNX will contain \((\text{if } h = 0.01)\)
These values are correct, since
\begin{align*}
 f'(x) &= 3x^2 + 2x + 1 \\
 f''(x) &= 6x + 2 \\
 f'''(x) &= 6 \\
 f^{\text{iv}}(x) &= 0
\end{align*}

Values for less well-behaved functions will have greater error.

Solving for Roots of Other Functions

When seeking the roots of other functions, the user should use the function \(f \) to compute the function. Any necessary parameters can be calculated or assigned in PRPCOM, and passed through the common region PARAM. The function \(f \) must be a function of one variable. The user must be aware of the meanings of the arguments of ZEROIN.

\begin{align*}
a & \quad \text{the lower bound of the interval} \\
b & \quad \text{the upper bound of the interval} \\
f & \quad \text{the function of interest} \\
tol & \quad \text{the tolerance (maximum uncertainty) of the independent variable (root)}
\end{align*}
nroot the number of roots desired
root the roots
iroot the number of roots found

Thus, in order to solve another function, both \(f \) and \(PRPCOM \) must be rewritten, as must lines 9-14 of TEST. All other code is completely compatible.
real function deriv(f,n,x,h)
implicit none
real f,x,h
integer n
common /machin/ eps
real eps
external fndeps
n cannot be greater than 10 unless array dimensions are increased
real xl(l1),dfndnx(l1,l1)
real tol,xtemp,dfn,dnx
integer i,j,maxj
if(eps.eq.0.0)call fndeps
tol=2.0*eps*x
xl(1)=x-(float(n)/2.0)*h
xtemp=x(1)
dfndnx(1,1)=f(xtemp)
do 10 i=2,n+1
xl(i)=xl(i)+float(i-1)*h
xtemp=x(i)
dfndnx(1,i)=f(xtemp)
10 continue
do 15 i=1,n+1
15 continue
do 30 i=2,n+1
maxj=n+2-i
do 20 j=1,maxj
dfndnx(i,j)=dfndnx(i-1,j+1)/h-dfndnx(i-1,j)/h
20 continue
30 continue
do 50 i=1,n+1
50 continue
deriv=ddfndnx(n+1,1)
return
end
subroutine fndeps
common /machin/ eps
real eps
creal tol
ceps=1.0
10 eps=eps/2.0
tol=1.0+eps
if(tol.gt.1.0)goto 10
retun
end
real function f(p)
imPLICIT none
real p
common /param/ c12, c22, r, l, theta
real c12, c22, r, l, theta
real f1, f2
external f1, f2
real xi, gamma, k1, k2
real fsign, temp
real xil, gl, co1, co2, co3, co4, co5, co6, t1, t2, t3, t4
f=0.0
if (p.eq.0.0) goto 99
fsign=-1.0
xi=f1(fsign, p)
fsign=+1.0
gamma=f1(fsign, p)
fsign=-1.0
temp=xi
k1=f2(fsign, temp, p)
fsign=+1.0
temp=gamma
k2=f2(fsign, temp, p)
xil=xi**1
if (xil.gt.5000.0) xil=5000.0
gl=gamma**1
co1=2.0
co2=2.0*theta*(gamma+xil*k2/k1)
co3=2.0*theta*(xil*gamma*k1/k2)
co4=2.0*theta*theta*gamma*xil
co5=(k2/k1)*(1.0+((theta*xil)**2))
co6=(k1/k2)*(1.0+((theta*gamma)**2)-1.0)
t1=co1*(1-cosh(xil)*cos(gl))
t2=co2*cosh(xil)*sin(gl)
t3=co3*sinh(xil)*cos(gl)
t4=(co4+co5+co6)*sinh(xil)*sin(gl)
f=t1+t2-t3+t4
99 continue
end
real function f1(s, p)
real s, p

common /param/ c12, c22, r1, theta
real c12, c22, r1, theta

real t1, t2, t3, t4, t5

t1 = 2 * (1.0 / c12 + 1.0 / c22) * p * p / 2.0

t2 = (1.0 / c22 - 1.0 / c12) * (p * p / 4.0)

t3 = (p / r) ** 2 / c12

t4 = t2 + t3

t5 = t1 + sqrt(t4)

f1 = sqrt(t5)

return
end

real function f2(s, t, p)
real s, t, p

common /param/ c12, c22, r1, theta
real c12, c22, r1, theta

real t1, t2, t3, t4

t1 = c22 / (r * r)

t2 = t1 - rho * rho

t3 = s * c12 * t * t

t4 = t1 * t

f2 = (t2 + t3) / t4

return
end

real function g(f, x, root, nroot)
implicit none
real f, x
real root(*)
integer nroot
external f

external fndeps
common /machin/ eps
real eps

c real deriv
integer fact
external deriv, fact

II
real tol, h
integer i, n, nfact
logical atroot

if (eps.eq.0.0) call fndeps
tol=abs(2.0*eps*x)
if (tol.lt. eps) tol=eps
atroot=.false.
n=0
do 10 i=1, nroot
 if (abs(x-root(i)).gt.to1) goto 10
 n=n+1
 atroot=.true.
10 continue

nfact=fact(n)
h=0.001
write(7,100)nfact
100 format(' evaluating limit', i5)
 if (atroot) g=deriv(f,n,x,h)/float(nfact)
 if (.not.(atroot)) g=f(x)
do 40 i=1, nroot
 if (abs(x-root(i)).lt. tol) goto 40
write(7,200)
200 format(' deflating function')
g=g/(x-root(i))
do 40 continue
return
end

integer function fact(n)
integer n

integer i
fact=1
do 10 i=2, n
 fact=fact*i
10 continue
return
end

real function prpcom(dummy)
implicit none
real dummy

...
common /param/ c12,c22,r,l,theta
real c12,c22,r,l,theta

real e,g,rho,b,i,kprime,rbig

e=4.08e06
g=1.70e06
rho=2.247e-04
r=1.386
b=1.0
l=48.0
i=9.216
kprime=0.822467
rbig=1.0e06

theta=e*i/r
c12=e/rho
c22=kprime*g/rho

return
end

 subroutine zeroin(ax,bx,f,tol,nroot,root,iroot)
 implicit none
 real ax,bx,f,tol,nroot,root(*)
 integer nroot,iroot

 external fndeps
 common /machin/ eps
 real eps

 real g,sgn
 external g,sgn

 real a,b,c,d,e
 real tol,xm
 real fa,fb,fc
 real p,q,r,s.

 compute eps, the relative machine precision
 if (eps.eq.0.0) call fndeps

 initialization
 iroot=0
 a=ax

 123
b=bx
fa=g(f, a, root, iroot)
fb=g(f, b, root, iroot)

begin step

20 c=a
fc=fa
d=b-a
g=d

30 if (abs(fc).ge.abs(fb)) goto 40
 a=b
 b=c
 fc=fb
 fb=fc
 fc=fa

convergence test

40 toll=2.0*eps*abs(b)+0.5*tol
 xm=.5*(c-b)
 if (abs(xm).le.toll) goto 90
 if (fb.eq.0.0) goto 90

is bisection necessary?

 if (abs(xm).lt.toll) goto 70
 if Cabs(fc).lt.abs(fb)) goto 70

is quadratic interpolation possible?

 if (a.ne.c) goto 50

linear interpolation

 s=fb/fa
 p=2.0*xm*s
 q=1.0-s
 goto 60

inverse quadratic interpolation

50 q=fa/fc
 r=fb/fc
 s=fb/fa
 p=s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0))
 q=(q-1.0)*(r-1.0)*(s-1.0)

adjust signs

60 if (p.gt.0.0)q=-q
 p=abs(p)

is interpolation acceptable?

 if ((2.0*p).ge.(3.0*xm*q-abs(toll*q))) goto 70
 if (p.ge.abs(0.5*xm*q)) goto 70
 e=d
d=p/q
 goto 80

70 d=xm
e=d

80 a=b
 f=b=fb
 if (abs(d).gt.toll)b=b+d
 if (abs(d).le.toll)b=b+sign(toll,xm)
f=b=s(f,b,root,iroot)
 if ((fb*(fc/abs(fc))).gt.0.0) goto 20
 goto 30

90 if (sgn(fa).ne.sgn(fb))goto 95
 if (sgn(fc).ne.sgn(fb))goto 95
 if (fb.eq.0.0)goto 95
 return

95 iroot=iroot+1
 root(iroot)=b
 if (iroot.eq.nroot)return

 a=ax
 b=bx
 goto 15
end

real function sgn(a)
 implicit none
 real a
 if (a.eq.0.0) goto 10
 sgn=a/abs(a)
 return

10 sgn=0.0
 return
end

program test
 implicit none
 real prpcom
 external f,zero1,prpcom
 real a,wpri,too,root(100),dummy
 integer i,nroot,iroot
c open(unit=7, file='output')
a = 0.0
wprime = prpcom(dummy)
tol = 1.0e-6
c nroot = 20
call zeroin(a, wprime, f, tol, nroot, root, iroot)
write(7, 90)iroot
do 10 i = 1, iroot
 write(7, 100) root(i)
10 continue
c 90 format(' zeroin found ', i5, ' roots')
100 format(a12.6)
stop
end

zeroin found 8 roots
0.000000e+00
0.000000e+00
0.142336e+05
0.369554e+04
0.147244e+04
0.750657e+03
0.202099e+03
0.288620e+02
END

12-86

DTTC