ON THE STABILITY OF A STRATIFIED SHEAR LAYER
NAVY RESEARCH LAB WASHINGTON DC P SATYANARAYANA ET AL
19 SEP 86 NRL-MR-5841

UNCLASSIFIED
On the Stability of a Stratified Shear Layer

P. SATYANARAYANA
Science Applications International Corporation
McLean, VA 22102

Y. C. LEE
Science Applications International Corporation
McLean, VA 22102

and
University of Maryland
College Park, MD 20742

J. D. HUBA
Geophysical and Plasma Dynamics Branch
Plasma Physics Division

This work was supported by the Defense Nuclear Agency under Subtask W99QMXWA,
work unit 00010 and work unit title "Plasma Structure Evolution."
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
On the Stability of a Stratified Shear Layer

The stability of a stratified shear layer is investigated using an exponential density profile and a laminar shear flow with a continuous velocity distribution. It is shown that an exact stability boundary can be obtained from an inhomogeneous inviscid fluid under the action of gravity without the need to impose the Boussinesq approximation. The stability boundary is given by $J - \frac{k^2}{\beta^2} (1 - \beta^{1/4} - \beta^2)$ where β is the ratio of the velocity and density gradient scale sizes, J is the Richardson number and k is the perpendicular wavenumber normalized to the velocity gradient scale size; this reduces to the stability boundary derived by Drazin in the limit $\beta = 0$. The solution allows for $c = \beta/2$ where c is the normalized phase velocity.
12. PERSONAL AUTHOR(S)

*Science Applications International Corporation, McLean, VA 22102
**University of Maryland, College Park, MD 20742
CONTENTS

I. INTRODUCTION .. 1
II. THEORY .. 2
III. SUMMARY ... 7
ACKNOWLEDGMENTS .. 7
REFERENCES .. 8
ON THE STABILITY OF A STRATIFIED SHEAR LAYER

I. INTRODUCTION

The Kelvin-Helmholtz instability is a widely studied instability driven by velocity shear in neutral fluids as well as in ionized gases1-5. In addition to various examples in neutral fluids, the situation of a shear layer under the action of gravity is also encountered in space (e.g., equatorial spread F, the plasmapause) and laboratory (e.g., laser fusion experiments) plasma phenomena. Recent observations show that large velocity shears exist at the equatorward edge of the diffuse auroral boundary7. Furthermore, the plasmapause boundary is conjectured to be unstable to a ballooning type shear flow instability8. In the case of the equatorial ionosphere, the plasma is confined by a uniform magnetic field and the flow velocity perpendicular to the magnetic field is sheared as a function of the altitude. Gravity is directed opposite to the density gradient so that the system is prone to gravity driven interchange as well as to the shear driven Kelvin-Helmholtz instability. Based on this geometry and physics, linear stability analysis has been performed on a collisional plasma in the equatorial F region of the ionosphere, and a general mode structure equation has been derived4,5 which reduces to the general Rayleigh equation dealt with in detail by Drazin2.

In the neutral fluid literature (for example, Drazin2) and by Vinas and Madden8, the Boussinesq approximation is generally assumed in performing the analysis of the general Rayleigh equation; this assumption...
amounts to ignoring all the density gradient terms except the density gradient term that contributes to the buoyancy. In this paper, we relax the Boussinesq approximation and show that the new stability boundary is different than that obtained by Drazin2: the stability boundary is dependent on the density gradient, leading to more stringent restrictions on the Richardson number, and the stability boundary is determined for modes with phase velocity half that of the peak background flow velocity. The following analysis is based on a smooth velocity profile and an exponential density gradient.

II. THEORY

The geometry of the plasma and field configuration used in the analysis is as follows: the magnetic field is uniform and in the z direction ($B = B \hat{z}$), the plasma is inhomogeneous along the x direction, $n = n_0(x)$, gravity is acting along the negative x direction $g = - g \hat{x}$, and the flow velocity along the y direction is sheared in the x direction, $V = - V_0(x) \hat{y}$.

We consider low frequency fluctuations ($\omega \ll \omega_{ce}$ where ω_{ce} is the electron cyclotron frequency) so that electron inertia is ignored. Two dimensional perturbations are considered. The perturbed quantities vary as $\phi = \phi(x) \exp \left(-i(k_y y - \omega t) \right)$, where $\omega = \omega_r + i \omega_i$. The equation that describes the perturbed electrostatic potential is given as

$$\frac{\partial^2 \phi}{\partial x^2} + p(X) \frac{\partial \phi}{\partial X} + q(X) \phi = 0,$$

where $p(X)$ and $q(X)$ are given by

$$p(X) = \frac{\partial^2 n_0}{\partial X^2},$$

$$q(X) = \frac{\partial n_0}{\partial X}.$$
\[q(X) = -\kappa^2 + \frac{1}{n} \left[\frac{\partial^2 U}{\partial x^2} + \frac{\text{sin } n_0}{\partial x} \frac{3U}{\partial x} + \frac{gL_v/V_y^2}{\partial x} \right] \text{sin } n_0, \]

(3)

where \(V_0 = \frac{\partial y}{\partial x} U(X), c = \omega/k_y V_y, x = x/L_v, \) and \(\kappa = k_y L_v. \) Here \(L_v \) and \(L_n \) are the gradient scale lengths of the velocity and density, respectively. Equation (1) is a general equation that describes Rayleigh-Taylor and Kelvin-Helmholtz instabilities for arbitrary density profiles and drift velocities. This equation is identical to that obtained for counter-streaming neutral fluids in a gravitational field.

In this paper we consider an exponential profile for the density such that \(n_0(x) = n_0 \exp (\beta x) \) where \(\beta = L_v/L_n \) and represent the drift velocity by a smooth profile \(U(x) = \tanh (x). \) We let \(\beta \) be arbitrary and thus generalize the problem analyzed by Drazin. This is the main objective of this paper. The coefficients \(p(x) \) and \(q(x) \) can be rewritten as

\[p(x) = \beta \]

(4)

\[q(x) = -\kappa^2 + \frac{2\text{sech}^2 x (-2\tanh x + \beta)}{(c - U)} + \frac{J}{(c - U)^2} \]

(5)

where \(J = (\beta/L_n)/(V_y^2/L_v^2). \) Using the Boussinesq approximation Drazin set \(p = 0 \) and ignored \(\beta \) in the second term in \(q; \) this leads to the condition \(c = 0. \) We relax these assumptions in the following analysis.

Using the transformation \(\phi = t \exp \left[-\int dX \frac{p(X)}{2} \right] \) we write (1) as

\[\frac{\partial^2 \phi}{\partial x^2} = Q(X) \phi = 0 \]

(6)

where \(Q(X) = q - p'/(2) - p^2/c. \) Equations (4) and (5) together with (6) yield

\[\frac{\partial^2 \phi}{\partial x^2} + \left[-\kappa^2 - \frac{\beta^2}{4} + \frac{\text{sech}^2 x (-2\tanh x + \beta)}{(c - U)} + \frac{J}{(c - U)^2} \right] \phi = 0. \]

(7)
With U as the independent variable, (7) can be written as

$$(1 - U^2) \frac{\partial^2 \phi}{\partial U^2} - 2U \frac{\partial \phi}{\partial U} + \left[\frac{-\alpha^2 + \frac{s^2}{4}}{1 - U^2} \right] + 2 + \frac{2c - \varepsilon}{(U - c)} + \frac{J}{(U - c)^2(1 - U^2)} \phi = 0. \tag{8}$$

Equation (8) is a second order differential equation with four singular points at $U = -c, c, -1,$ and 1. The new terms in this equation are $-\left(\frac{s^2}{4}\right)/(1 - U^2)$ and $(2c - \varepsilon)/(U - c)$; the former, obtained by retaining the first derivative term in (1), introduces a lower cut-off in the wavenumber, and the latter, obtained by retaining the cross term involving the density inhomogeneity and velocity inhomogeneity, allows c to take the value $s/2$.

We assume a solution to (8) of the form

$$\phi = (U + 1)^{\mu_+} (U - 1)^{\mu_-} (U - c)^{\lambda}, \tag{9}$$

where the exponents μ_+ and λ are determined by

$$2\mu_+ = \left[\alpha^2 - \frac{s^2}{4} - \frac{J}{(1 - c^2)^2} \right]^{1/2}, \tag{10}$$

$$(\alpha^2 - \lambda)(1 - c^2) = -\frac{J}{(1 - c^2)}. \tag{11}$$

Note that for $c = 0$ and $s = 0$ the exponents (10) and (11) reduce to those given by Drazin2. These exponents have to satisfy the condition

$$(\mu_+ + \mu_- + \lambda)(\mu_+ + \mu_- + \lambda + 1) - 2 = 0, \tag{12}$$

as can be seen by matching the coefficients of the constant terms. From (12) we note that $\mu_+ + \mu_- + \lambda = 1$ or -2. The latter condition yields a convergent solution with the constraint $2c - s = 0$ or $c = s/2$.

4
Using the definitions for μ_+ and λ from (10) and (11) in the condition

$$\mu_+ + \mu_- + \lambda = 1,$$

we obtain

$$J = \hat{k}^2(1 - \beta^2/4 - \hat{k}^2).$$ \hspace{1cm} (14)

From (14) the maximum value of J is given as $J_{\text{max}} = (1 - \beta^2/4)^2/4$, which
occurs at $\hat{k}_{\text{max}} = (1/\sqrt{2})(1 - \beta^2/4)^{1/2}$. So the new stability condition is J
$> (1 - \beta^2/4)^2/4$.

From (14) we see that for $\beta = 1$ the critical Richardson number is 9/64,
which means that for $J > 9/64$ the flow is stable; the cutoff wavenumber is
$\hat{k} = \sqrt{3}/2$. In comparison, for a Boussinesq fluid the critical J is 1/4 and
the cutoff \hat{k} is 1. Finally, the stability boundary is not neutral as was
the case with a Boussinesq fluid, but the waves have a phase velocity that
is half that of the peak background flow velocity, i.e., $c = 1/2$ as opposed
to $c = 0$ for a Boussinesq fluid. Finally, for a fluid in a gravity free
field ($J = 0$) the Kelvin-Helmholtz unstable domain is given by $0 < \hat{k}$
$< (1 - \beta^2)^{1/2}$. These conclusions can be clearly seen in Fig. 1, where we
plot J versus \hat{k}. The figure shows the stability boundary for various values
of β. It is worth noting that for $\beta > 2$, that is if the density gradient
scale length is half the velocity gradient scale length or less, the Kelvin-
Helmholtz instability is stable and the system is unstable to the gravity
driven interchange, i.e., only when $J < 0$.

We apply the results to the plasmapause boundary based on the
observations of velocity shears observed by Kelley7 and compare our results
with those of Vinas and Madden8. The velocity shear V_0/L_γ is estimated to
be 0.17 Hz; when mapped to the plasmapause region7 this yields a local
Richardson number of -0.18 [see Ref. 8]. Vinas and Madden8 show
that $\delta = 1.5$, which when substituted into (15) yields the critical Richardson number $J < 0.047$ for instability. Thus, our calculations suggest that such strong shears may not drive shear flow instability if steep density gradients exist at the same time.

Figure 1. The stability boundary J versus k for $\delta = 0.0, 0.5, 1.0, 1.5, 2.0, \text{ and } 2.5$. The plasma is unstable (stable) in regions below (above) each curve. The case $\delta = 0$ corresponds to the Boussinesq fluid treated by Drazin. Note that for $\delta \geq 2$, $J < 0$ is required for instability.
III. SUMMARY

In summary, we have shown that the mode equation for a stratified shear layer under the action of gravity can be solved for stability boundary without the need to impose the Boussinesq approximation. For $L_H = L_V \beta = 1$, the critical Richardson number is $9/6^2$ as opposed to $1/4$ and the unstable wavenumber domain is smaller with a cut off for $J = 0$ at $k = \sqrt{3}/2$ rather than at $k = 1$. In addition, the waves do not have a zero phase velocity but a phase velocity that is half the peak background flow velocity. These changes are due to the density gradient terms that were ignored using the Boussinesq approximation. In addition, we have shown that plasmapause boundary may not be unstable to shear flow ballooning instability if strong density gradients exist in conjunction with strong shears at the diffuse auroral boundary at ionospheric heights.

ACKNOWLEDGMENTS

This work was supported by the Defense Nuclear Agency.
REFERENCES

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, DC 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM 6E 685
WASHINGTON, DC 20301
01CY ATTN C-650
01CY ATTN C-832 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA 22209
01CY ATTN NUCLEAR MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1660 WIESEL AVENUE
RESTON, VA 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DNST
03CY ATTN RAEE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
01CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT PROGRAM MANAGEMENT OFFICE
WASHINGTON, DC 20330
01CY ATTN J-3 WMMCCS EVALUATION OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
01CY ATTN JSTPS/JLKS
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20301
01CY ATTN STRATEGIC & SPACE SYSTEMS (OS)

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO, F. NILES
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>Attorneys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environ. Res. Labs</td>
<td>Comsat Laboratories</td>
<td>G. Hyde</td>
</tr>
<tr>
<td></td>
<td>22300 Comsat Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clarksville, MD 20871</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN R. HYDE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace Corp.</td>
<td>Los Angeles, CA 90009</td>
<td>T. Garfunkel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN T. SALMI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN V. Josephson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN S. Bower</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN D. Olsen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austin Res. Assoc., Inc.</td>
<td>Austin, TX 78758</td>
<td>L. Sloan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN R. Thompson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN C. Prettie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN S. Brecht</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boeing Co., Inc.</td>
<td>Seattle, WA 98124</td>
<td>G. Keister</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN D. Murray</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN G. Hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN J. Kenney</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles Stark Draper Lab., Inc.</td>
<td>Cambridge, MA 02139</td>
<td>D. Cox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN J. P. Gilmore</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornell University</td>
<td>Ithaca, NY 14850</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OICY ATTN C. P. Farley, Jr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ElectroSpace Sys., Inc.</td>
<td>Boulder, CO 80302</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Los Angeles, CA 90009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunnyside, CA 94086</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berkeley, CA 94701</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philadelphia, PA 1910</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Electric Co., Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Sci. Lab.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Electric Tech. Services Co., Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hines</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courant St.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syracuse, NY 13201</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stork Draper Lab., Inc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysical Institute</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University of Alaska</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairbanks, AK 99701</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(All Class ATTN: Security Officer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OICY ATTN T. N. Davis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OICY ATTN Neal Brown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The above list is a representation of the text content in the image. It includes the names of various companies and their respective locations, along with the names of their contacts. Each entry is formatted to show the company name, address, and the attorneys' names, indicating the structure of the document. The list is organized alphabetically by company name.
END
1-87
DTIC