PARALLEL CURRENT EFFECTS ON AURORAL E-REGION PLASMA
INSTABILITIES

P K CHATURVENDI ET AL 19 SEP 86 NRL-MR-5847

UNCLASSIFIED
Parallel Current Effects on Auroral E-Region Plasma Instabilities

P. K. Chaturvedi, J. D. Huba, S. L. Ossakow and P. Satyanarayana

Geophysical and Plasma Dynamics Branch
Plasma Physics Division

Science Applications International Corporation
McLean, VA 22102

This research was partially sponsored by the Office of Naval Research and the Defense Nuclear Agency under Subtask W99QMXWA, work unit 00010 and work unit title "Plasma Structure Evolution."

Approved for public release; distribution unlimited.
Parallel Current Effects on Auroral E-Region Plasma Instabilities

Chaturvedi, P.K., Huba, J.D., Ossakow, S.L. and Satyanaravana, P.*

We consider the effect of a field-aligned current on the development of plasma instabilities in the auroral electrojet. It is found that the inclusion of the parallel current modifies the threshold criteria for the onset of the Farley-Buneman instability, and may cause excitation of oblique ion sound waves. We apply these results to the auroral E-region and show that they may explain some observations of auroral irregularities, for example, the presence of type I irregularities for sub-threshold conditions (when the electron Hall drift is less than the ion-sound speed), and the observation of irregularities which are not highly field-aligned.
8a. NAME OF FUNDING/SPONSORING ORGANIZATION

Office of Naval Research
Defense Nuclear Agency

16. SUPPLEMENTARY NOTATION

This research was partially sponsored by the Office of Naval Research and the Defense Nuclear Agency under Subtask W99QMWA, work unit 00010 and work unit title "Plasma Structure Evolution."
PARALLEL CURRENT EFFECTS ON AURORAL E-REGION PLASMA INSTABILITIES

I. INTRODUCTION

It is generally agreed that the electrojet current in the auroral E-region is responsible for generation of the plasma density irregularities which have been detected by several experimental techniques [Fejer and Kelley, 1980]. The coherent radar backscatter returns at 50 MHz (which are caused by the presence of 3-meter size irregularities) have yielded a large amount of data on the features of these irregularities. These irregularities have been classified into three types based upon the doppler spectra of the radar returns. The type I irregularities display a narrow spectral peak around the ion sound velocity and are believed to be caused by the Farley-Buneman instability; this instability can occur when the electron Hall drift velocity exceeds the ion-sound velocity [Balsley and Ecklund, 1972]. The type II irregularities are believed to be a result of a nonlinear cascade by large scalesize irregularities that are generated by the gradient-drift instability mechanism (the Hall current acting upon a transverse gradient) and can be excited for electron drift speeds less than the ion sound velocity. The type II spectra are relatively broad around the $E \times B$ electron Hall drift velocity [Greenwald, 1974; Greenwald et al., 1975]. Both the type I and II spectra are caused by modes that are excited in the direction transverse to the ambient magnetic field (as the driving electric field is also perpendicular to the magnetic field).

However, there are many instances when the irregularity observations are found to show departures from the above patterns. There have been
observations of type I irregularities at a time when the electron Hall drift was subcritical, i.e., less than the ion sound speed, C_s [Siren et al., 1977]. There is now evidence of a new type of irregularity, termed type III, which displays even a narrower doppler spectra than the type I, but peaked around velocities less than the ion sound speed and not as highly field-aligned as the types I and II, i.e., has a finite structure along the magnetic field [Haldoupis et al., 1985; Fejer et al., 1984a; Greenwald et al., 1975]. A field-aligned current-driven electrostatic ion-cyclotron instability has been invoked to interpret these irregularities [D'Angelo, 1973; Chaturvedi, 1976; Ogawa et al., 1981; Fejer et al., 1984b; Bering, 1984; Haldoupis et al., 1985; Providakes et al., 1985; Satyanarayana et al., 1985]. However, the theory for the ion-cyclotron instability can only be justified in the upper E-region (altitudes > 130 km) where ions are magnetized ($\nu_{in} < Q_i$, where ν_{in} is the ion-neutral collision frequency and Q_i is the ion gyrofrequency), and care must be exercised while using the ion-cyclotron instability mechanism at lower altitudes where the ions are collisional, i.e., $\nu_{in} > Q_i$ (~ 100-120 km altitudes).

In this report, we consider the plasma instability processes occurring at E-region altitudes, where ions are collisional, and include the effects of an equilibrium parallel current [Akasofu, 1984]. We find that the inclusion of a parallel electron drift makes possible the excitation of the Farley-Buneman (F-B) instability for electron Hall drifts lower than the ion-sound speed, and can result in the excitation of obliquely propagating F-B and ion-sound modes. In this regard, we mention that auroral irregularities have been observed in the regions of downward Birkeland currents (that are carried by the thermal electrons) [Tsunoda et al., 1976; McDiarmid and McNamara, 1978], and, in the vicinity of Harang Discontinuity [Sofko et al., 1985]. In this work, we have not considered any nonlocal
effects for these modes [Kaw, 1972; Moorcroft, 1984; St.-Maurice, 1985].
In the following, we first present a brief outline of the theoretical
approach and then discuss the results for the auroral E-region situation.

II. THEORY

A general dispersion relation describing the auroral E-region modes has
been given in many places; we consider the one derived by Fejer et al.
[1984b] using the two-fluid equations. The use of fluid equations is valid
for wavelengths greater than the ion-mean-free path (> a meter) [Schmidt
and Gary, 1973]. The coordinate system used here has the z-axis aligned
with the Earth's magnetic field, \(B_0 z \). An equilibrium transverse elec-
tric field, \(E_{ox} \), results in the electron Hall drift, \(v_{oy} \), along the y-axis
(East-West direction). An equilibrium parallel current, \(J_{oz} \), (carried by
thermal electrons with a drift velocity, \(v_{oz} \)) is assumed to be present.
The ions are assumed collisional (\(v_{in} \gtrsim \xi_i \)) and the electrons are
magnetized (\(v_{en} \ll \xi_e \)), where \(\xi_{en} \) and \(\xi_e = eB/\alpha_e c \) are, respective-
ly, the particle collision frequency with neutrals and the gyrofrequency, and \(m_\alpha \)
is the particle mass. For obliquely propagating modes
\([- \exp(ik_\perp y + ik_z z - i\omega t)]\), the dispersion relation is

\[
(\omega - k \cdot v_\perp)(v_{in} - i\omega) + \{\omega[g^2_i + (v_{in} - i\omega)^2] + ik^2 C_s^2 (v_{in} - i\omega)\} \frac{v_{in}}{\omega} = 0 \tag{1}
\]

where

\[
\psi = \frac{v_e v_{in}}{\Omega_i \Omega_1} \left(1 + \frac{g^2 e}{v_e^2} \frac{k^2}{\Omega_e} \right); C_s^2 = \frac{(T_e + T_i)}{m_1} \tag{2}
\]

In the above, recombination damping is neglected (as it is important only
for the long wavelength modes, whereas we are interested in the 3 meter
irregularities) and electron inertia is ignored. The symbols used have
their standard meanings: $k = k_y \hat{y} + k_z \hat{z}$ is the modal wavenumber and ω the complex frequency, v_0 is the equilibrium electron drift velocity with a Hall component ($v_{oy} \hat{y}$) and a parallel component ($v_{oz} \hat{z}$), and T_α is the temperature expressed in energy units.

For collisional altitudes ($v_{in} \gg Q_1$), we may rewrite eq. (1) as

$$(\omega - k \cdot v_0) + \left[\omega v_{in} - i \left(\omega^2 - k^2 c_s^2 \right) \right] \frac{v_{oy}}{v_{in}} = 0$$ (3)

This dispersion relation can be solved to yield the Farley-Buneman instability and the ion-acoustic instability, respectively, in the approximations $|\omega| < v_{in}$ and $|\omega| > v_{in}$. We now present the analytical expressions for the two cases, and will present some numerical results appropriate for the auroral electrojet in the next section.

A. Modified Farley-Buneman Instability

It is straightforward to obtain the usual result of the Farley-Buneman instability from the above (i.e., $k_z = 0$). One finds that [Fejer et al. 1984b] the real frequency and the growth rate are given as ($\omega = \omega_r + i \gamma$, $|\gamma| < \omega_r$)

$$\omega_r = \frac{1}{(1 + \Psi)} k_y v_{oy}$$ (4a)

and

$$\gamma = \frac{\Psi}{v_{in}(1 + \Psi)} \left(\omega_r^2 - k_y^2 c_s^2 \right)$$ (4b)

where $\Psi = v_e v_{in}/Q_1$. Instability occurs when $v_{oy} > (1 + \Psi) c_s$.

For $k_z \neq 0$, we can write (3) as

$$\omega = \frac{k \cdot v_0}{(1 + \Psi)} + i \frac{(\omega^2 - k^2 c_s^2) \Psi}{v_{in}(1 + \Psi)}$$ (5)
where \(\hat{\Psi} \) has been defined in (2). From (5), we can write approximate expressions for real frequency and the growth rate of the modes as follows

\[
\omega_r = \frac{1}{1 + \hat{\Psi}} \left(k_y v_{oy} + k_z v_{oz} \right) \quad (6a)
\]

\[
y = \frac{\hat{\Psi}}{v_{in}(1 + \Psi)} \left(\omega_r^2 - k^2 c_s^2 \right) \quad (6b)
\]

The new instability condition is given by

\[
v_{oy} + \frac{k_z}{k_y} v_{oz} > \frac{k}{k_y} (1 + \hat{\Psi}) c_s \quad (7)
\]

For a parameter domain such that \((k_z/k)(Q_e/v_e) \gg 1 \) [and, \((Q_e/v_e)(v_{in}/Q_i)(k_z^2/k^2) > 1 \)], it may be readily verified that the growth rate (and the real frequency) in (6) maximize for \((k_z/k) \sim 2(v_{oy}/v_{oz}) \).

Note that this implies that the modes are not too highly field-aligned \((k_z/k >> v_e/Q_e) \). In the general case, the criteria determining the optimum growth rate (and the real frequency) are somewhat complex, and we have not attempted to present them here. For \(k_z = 0 \), (7) yields the usual instability criterion \((v_{oy} > (1 + \hat{\Psi}) c_s) \) of the Farley-Buneman instability. For \(k_z \neq 0 \) and \(v_{oz} = 0 \), we recover the result that the inclusion of parallel wavelengths increases the threshold value of electron drift required for the excitation \((v_{oy} > (1 + \hat{\Psi}) c_s) \) [Ossakow et al., 1975].

Since, \(\hat{\Psi} \gg 1 \) for the parameter domain of our interest, the requirement, \(v_{oy} > \hat{\Psi} c_s \), may be difficult to satisfy in actual situations. The drift velocity condition for instability in this case may be expressed as

\[
v_{oy} > \frac{k}{k_y} (1 + \hat{\Psi}) c_s - \frac{k_z}{k_y} v_{oz}
\]
It is clear from (7) that for sufficiently large values of v_{oz}, an obliquely propagating mode may still be excited and, further, the instability criterion may be met for $v_{oy} < C_s$.

B. Ion-Acoustic Instability

The ion-acoustic wave excitation by the Hall current in auroral electrojet has been discussed by Kaw [1973]. Here we include the effects of a parallel current on this mode. For $v_{in} < |\omega|$, we find from (3) that the dispersion relation for obliquely propagating ion sound waves is

$$\omega(\omega + i\overline{v}_{in}) - k^2 c_s^2 = - \frac{m_e k^2}{m_i k_z^2} v_e (\omega - k \cdot v_o) / \left(1 + \frac{v_e^2 k^2}{\omega^2 k_z^2}\right)$$

(8)

where $\overline{v}_{in} = v_{in} + (\pi/2)^{1/2}(\omega^4 / |k|^2 v_i^3) \exp \left(-\omega^2 / 2k^2 v_i^2\right)$, and we have included the ion-Landau damping effects for completeness. We can write the real frequency and growth rate for these modes from (8) as ($\omega = \omega_r + i\gamma$, $|\gamma| < \omega_r$),

$$\omega_r = k C_s$$

(9a)

$$\gamma = - \frac{1}{2} \overline{v}_{in} - \frac{1}{2} \frac{m_e k^2}{m_i k_z^2} v_e \left(1 - \frac{k \cdot v_o}{\omega_r}\right) / \left(1 + \frac{v_e^2 k^2}{\omega_r^2 k_z^2}\right)$$

(9b)

Physically, the current-driven ion-acoustic instability is related to the parallel dissipative motion of electrons. In the absence of equilibrium currents ($v_o = 0$), the second term in (9b) represents the damping of the mode by the collisional parallel electron motion (v_e) that inhibits them from being redistributed in wave potential in Boltzmann-like distribution $[n_e - n_0 \exp (e\Phi/T_e)]$, thereby making the density-potential relationship
complex. In the presence of equilibrium currents (v_o), the electrons "see" the waves at a Doppler-shifted frequency ($\omega - k \cdot v_o$); for equilibrium drift velocity larger than the wave phase velocity in the drift direction ($\omega < k \cdot v_o$), the wave energy in the drift frame becomes negative. Thus, the dissipation of the negative energy wave leads to a wave growth. The second term in the denominator in the growth term in (9b) results from the transverse collisional motion of electrons, and has an effect of reducing the growth rate. For the case of Hall currents, $v_o = v_{oy} e_y$, we recover from (9b), the instability discussed by Kaw [1973]. For a parallel current, $v_o = v_{oz} e_z$, a collisional ion-acoustic instability is obtained. In general, the instability criterion may be written down as,

$$
\frac{k_y v_{oy}}{k C_s} + \frac{k_z v_{oz}}{k C_s} > 1 + \frac{\bar{v}_{in}}{v_e} \frac{k^2 m_i}{k^2 m_e} \left[1 + \frac{v^2_e}{g^2 k z^2} \right]
$$

where as noted before, \bar{v}_{in} includes the ion-Landau damping effects. In the upper auroral E-region where v_{in} is sufficiently small (so that $v_{in} < \omega - kC_s$), we find that a parallel current (in possible conjunction with the Hall current) may drive an oblique ion-sound mode unstable. This result may have relevance to the observations of non-field-aligned auroral irregularities [Haldoupis et al., 1985]. We also mention that, as noted by Kaw [1973], the time-dependence of the ion sound wave frequency due to the evolution of electron temperature (T_e) in a collisional medium is not a problem here. In the partially ionized auroral E-region, T_e reaches a steady state value in an energy relaxation time ($m_e v_e / m_i$)$^{-1}$ after which it stays constant, the neutrals providing the sink of energy. Further, the experimental observations of enhanced electron temperatures (which make $T_e / T_i > 1$) [Schlegel and St.-Maurice, 1981] suggest a possible excitation of ion-sound waves, as the thresholds for excitation at $T_e / T_i > 1$ are lower.
than the case with $T_e = T_i$ [Kindel and Kennel, 1971].

III. DISCUSSION

In the above, we have included the effects of a parallel equilibrium current (carried by drifting electrons) on the excitation of the Farley-Buneman and ion acoustic instabilities in the auroral electrojet. The presence of a parallel current modifies the dispersion equation for these modes, and makes possible the excitation of obliquely propagating modified Farley-Buneman and ion acoustic modes for sub-critical levels of electron Hall drift ($v_{oy} \leq C_s$). We now present some numerical estimates for the threshold requirements on the parallel currents for the excitation of these modes in the auroral E-region.

We numerically solve (3) for parameters appropriate to the auroral electrojet region. For an altitude of 105 km we consider the following typical parameters: $v_e = 3.5 \times 10^4$ sec$^{-1}$, $v_{in} = 2.5 \times 10^3$ sec$^{-1}$, $Q_e = 8.8 \times 10^6$ sec$^{-1}$, $Q_i = 1.8 \times 10^2$ sec$^{-1}$, and $C_s = 350$ m/sec. For a 3 m wavelength waves we note that $v_{in}/kC_s = 3.5$. In Fig. 1 we plot the real frequency ω_r/kC_s vs k_z/k_y (Fig. 1a) and the growth rate γ/kC_s vs k_z/k_y (Fig. 1b) for $v_{oy}/C_s = 1.0$ and $v_{oz}/C_s = 0$ (A), 25 (B), 50 (C) and 75 (D). We note the following. First in the absence of a parallel current ($v_{oz} = 0$), the turn-on criterion for instability is $v_{oy} > (1 + \gamma)C_s$. Since we have taken $v_{oy}/C_s = 1$ we expect the Farley-Buneman mode to be stable and this is clearly evident from curve A in Fig. 1b (i.e., $\gamma < 0$). Second, for finite values of v_{oz} and k_z unstable modes can be excited (e.g., see curves C and D of Fig. 1b). The band of unstable modes corresponds to modes with $\omega_r > kC_s$ (e.g., see curves C and D of Fig. 1a). Third, for sufficiently large values of k_z/k_y (for our parameters $k_z/k_y > 0.02$), the unstable modes become damped (i.e., $\gamma < 0$). This is because $\omega_r \propto (k_z/k_y)^{-1}$ for large k_z/k_y (i.e., $k_z/k_y > v_e/Q_e$); as k_z/k_y increases, ω_r decreases and
eventually \(\omega_r < kC_s \) so that \(\gamma < 0 \). And fourth, increasing values of \(v_{oz}/C_s \) lead to enhanced growth rates and a broader range of instability in \(k_z/k_y \).

In Fig. (1c), we have plotted the critical Hall drift required for the excitation of the instability in presence of \(v_{oz} \) and \(k_z \). It can be readily seen that for sufficiently large value of \(v_{oz} \), the instability may occur for \(v_{oy}/C_s < 1 \) (for oblique modes).

At somewhat higher altitudes in the E region, the ion-neutral collision frequency decreases so that \(v_{in} < \omega_r \). For example at \(\sim 115 \) km we consider the following parameters: \(v_e = 5.3 \times 10^3 \text{ sec}^{-1} \), \(v_{in} = 3.6 \times 10^2 \text{ sec}^{-1} \), \(\Omega_e = 8.8 \times 10^6 \text{ sec}^{-1} \), \(\Omega_i = 1.8 \times 10^2 \text{ sec}^{-1} \), and \(C_s = 350 \text{ m/sec} \). For 3 m wavelength modes, we note that \(v_{in}/kC_s = 0.5 < 1 \), and ion acoustic waves may be excited. In Fig. 2 we plot the real frequency \(\omega_r/kC_s \) vs. \(k_z/k_y \) (Fig. 2a) and the growth rate \(\gamma/kC_s \) vs. \(k_z/k_y \) (Fig. 2b) for the above parameters with \(v_{oy}/C_s = 1.0 \) and \(v_{oz}/C_s = 0 \) (A), 25 (B), 50 (C), and 75 (D). The important features are the following. First, as in Fig. 1, for \(v_{oz} = 0 \) there are no unstable modes (curve A of Fig. 2b). As \(k_z/k_y \) becomes large we note that \(\omega_r - kC_s \) and \(\gamma - v_{in}/2 \) in accordance with (9). Second, for finite values of \(v_{oz} \) and \(k_z \) unstable modes can be excited (as in Fig. 1). In this case we note that the threshold parallel velocity for instability is lower than in the previous case; for example, for \(k_z/k_y = 5.0 \times 10^{-3} \) the threshold velocity is \(v_{oz} = 17 C_s \) for the parameters used in Fig. 2 while it is \(v_{oz} = 29 C_s \) for those used in Fig. 1. Third, the unstable waves have maximum growth rates somewhat larger than those shown in Fig. 1, and peak at somewhat lower values of \(k_z/k_y \). And fourth, the most significant difference between Figs. 1 and 2 is the asymptotic behavior of \(\omega_r \) and \(\gamma \) for large \(k_z/k_y \). In Fig. 1, both \(\omega_r \) and \(\gamma \) monotonically decrease for large values of \(k_z/k_y \); however, in Fig. 2, \(\omega_r \) and \(\gamma \) asymptote to \(k_tC_y \) and \(-v_{in}/2 \), respectively for large \(k_z/k_y \). This difference may have observable consequences with regard to the nonlinear
evolution of these modes. We will discuss this shortly. We mention here that Fejer et al. [1984b] have discussed the properties of the two-stream ion-cyclotron mode in the presence of parallel and cross-field currents at an altitude where \(\nu_{in}/Q_1 \sim 1 \).

We see from the above results that for oblique modes \((k_z \neq 0) \), the threshold Hall drift for the excitation of the Farley-Buneman instability is very high. Thus, for the excitation with \(v_{oz} = 0 \) and \(k_z/k = 0.02 \), the criterion is \(v_{oy} \geq 3.5 \) km/sec. Such drift velocities would correspond to transverse electric fields \(\geq 175 \) mV/m, a value that is much larger than the reported (though infrequent) measurements of fields up to 150 mV/m. However, there are also measurements, at times, of large scale parallel currents on the order of tens of \(\mu A/m^2 \) in the high latitude ionosphere [e.g., Bythrov et al., 1984]. These currents close in the E-region [Akasofu, 1984]. Thus, obliquely propagating modes in the E-region would be affected by plasma flows both in the transverse as well as in the parallel direction. For a current \(J_{oz} = 94 \mu A/m^2 \) [Bythrov et al., 1984], with \(n_0 = 10^4 \) cm\(^{-3} \), the parallel electron drift velocity computed from the expression, \(J_{oz} = n_0 e v_{oz} \), is \(v_{oz} = 60 \) km/s. One finds from Fig. 1 that, for oblique propagation in the presence of such a parallel drift velocity, the Farley-Buneman instability may still directly generate 3 meter irregularities for the sub-critical electrojet velocities, i.e., \(v_{oy} < C_s \), or \(E_{ol} < 20 \) mV/m. The Doppler returns in this case would be peaked around a velocity different from the electron Hall drift. We note that an excitation for the sub-threshold conditions of type I irregularities has been reported [Siren et al., 1977]. Further, for parameters listed above for \(\sim 105 \) km. altitude, and for \(v_{oz} = 100 C_s \) and \(k_z/k_y = 0.02 \), one finds that the electron Hall drift required for excitation (from (7)) is

\[
v_{oy} \geq 2.336 C_s \frac{k_z C_s}{k_y s}
\]

\(10 \)
which gives a required drift speed \(v_{oy} \) of only 118 m/s, or a Doppler shift of 39 Hz at 50 MHz, in agreement with the Type III observations of the Univ. of Saskatchewan group. However, we wish to mention here that the large parallel currents are also accompanied by enhancements in the ambient density. Thus, the computation of parallel electron drift velocity from the observed current for the corresponding density (as has been done above), often leads to values of drift speeds that fail to meet the thresholds required for excitation. A possibility, that needs to be experimentally checked, is that these large structured currents cause a structure in the density also, with the regions of low density experiencing the plasma wave excitation. We further note here that it has been suggested that the field aligned current generated ion-sound turbulence may be taken into account by introducing an effective (anomalous) electron collision frequency (\(\nu^* \)), and this large \(\nu^* \) may then be used to explain the excitation of oblique Farley-Bunemen instability [Volosevich and Liperovskiy, 1975]. The recent observations of non-field-aligned radar echoes by Haldoupis et al. [1986] can be explained by this theory if \(\nu^* = 300 \nu_e \). However, the present theories of plasma turbulence seem unable to account for such a large anomalous enhancement of \(\nu_e \).

We have noted earlier that the ion-acoustic instability is likely to occur at upper E-region altitudes, where the ion-neutral collision frequency is smaller than the wave frequency. The electrojet current (the electron Hall drift) is maximum at - 105-110 km altitudes, and decreases upwards. Thus, ion sound wave excitation may be primarily caused by the field-aligned currents, with possible contributions from the electrojet. For \(k_z/k_y = .01 \) and \(v_{in}/v_e = 10 \), we find from Fig. 2 that a transverse field of ~ 20 mV/m and \(v_{oz} = 25 \) km/sec could result in the wave excitation. Larger transverse electric fields and/or larger parallel currents can
result into excitation of modes with higher k_z/k_y. We note that the Harang discontinuity observations of Sofko et al. [1985] show a transition from near ion-acoustic to subcritical (type III-like) velocities, and then back to near ion-acoustic velocity in the period of less than 2 minutes (See Fig. 6 of Sofko et al. [1985]). These observations are in agreement with the above ideas of a short-lived parallel current influencing the auroral electrojet instabilities. We find from the above estimates that in general the linear excitation of modes with large k_z/k_y \approx 0.2 involves threshold requirements which appear difficult to satisfy, based upon the observed magnitudes of currents. Therefore, we suggest the possibility that the modes that are excited linearly with small k_z saturate nonlinearly by generating modes with larger k_z that are frequently observed. A theory suggesting this effect has recently been proposed [Rosenbluth and Sudan, 1986].

In conclusion, we have suggested here that the field-aligned currents may influence the generation of small-scale plasma irregularities in the auroral electrojet, via the Farley-Buneman and ion-acoustic instabilities. This effect could explain the generation of irregularities that are non-field aligned, or, are generated under the subcritical conditions. These irregularities are detected by the VHF radar, and, usually appear to be colocated with the electrojets. We also note that auroral irregularities have been detected in the regions of the downward Birkeland currents [Tsunoda et al., 1976; McDiarmid and McNamara, 1978]. Large field-aligned currents are usually associated with disturbed geomagnetic conditions, and some of these observations have shown such a correlation. Although, we have not considered any nonlocal effects, considering the small scalesizes ($\lambda_\perp \approx$ 3 meter, λ_\parallel \approx 30 - 300 meters) of interest, the basic effect of parallel currents modifying the threshold criteria of electrojet current-driven modes should be good to lowest order.
ACKNOWLEDGMENT

We thank Dr. J.A. Fedder for helpful discussions. We also acknowledge the correspondence with Prof. G. Sofko on the observations by his group. We thank one of the referees for valuable comments and suggestions that have led to improvements in the paper. This work was supported by ONR and DNA.

REFERENCES

Fig. 1 — Plot of $\omega / k C_s$ vs k_z / k_y for the parameters $v_{oy} / C_s = 1.0$, $v_m / k_y C_s = 3.5$, $\nu_e / \Omega_e = 4.0 \times 10^{-3}$, $\nu_i / \Omega_i = 14.0$, and $v_{oz} / C_s = 0$, 25, 50, and 75 (denoted by A, B, C, and D, respectively), and the perpendicular threshold velocity v_{ox} / C_s vs k_y / k_z for the same parameters. (a) The real frequency ω_r / k_C vs k_z / k_y.
Fig. 1 (Continued) — Plot of $\omega / k_y C_s$ vs k_z / k_y for the parameters $v_{yz} / C_s = 1.0$, $v_{iz} / k_y C_s = 3.5$, $v_{e} / \Omega_e = 4.0 \times 10^{-3}$, $v_i / \Omega_i = 14.0$, and $v_{oz} / C_s = 0$, 25, 50, and 75 (denoted by A, B, C, and D, respectively), and the perpendicular threshold velocity v_{yz} / C_s vs k_z / k_y for the same parameters. (b) The growth rate $\gamma / k_y C_s$ vs k_z / k_y.
Fig. 1 (Continued) — Plot of $\omega/k_y C_s$ vs k_z/k_y for the parameters $v_{yo}/C_s = 1.0$, $v_{in}/k_y C_s = 3.5$, $v_e/\Omega_e = 4.0 \times 10^{-3}$, $v_i/\Omega_i = 14.0$, and $v_{eo}/C_s = 0, 25, 50, \text{ and } 75$ (denoted by A, B, C, and D, respectively), and the perpendicular threshold velocity v_{yo}/C_s vs k_y/k_z for the same parameters. (c) The perpendicular threshold velocity v_{yo}/C_s vs k_y/k_z.
Fig. 2 — Plot of $\omega / k_y C_s$ vs k_z / k_y for the parameters $v_{op} / C_s = 1.0$, $v_{in} / k_y C_s = 0.25$, $\nu_e / \Omega_e = 6.0 \times 10^{-4}$, $\nu_{in} / \Omega_i = 2.0$, and $v_{op} / C_s = 0, 25, 50,$ and 75 (denoted by A, B, C, and D, respectively). (a) The real frequency $\omega / k_y C_s$ vs k_z / k_y.
Fig. 2 (Continued) — Plot of $\omega/k_y C_y$ vs k_z/k_y for the parameters $\nu_m/C_y = 1.0$, $\nu_m/k_y C_y = 0.25$, $\nu_z/\Omega_s = 6.0 \times 10^{-4}$, $\nu_m/\Omega_s = 2.0$, and $\nu_m/C_y = 0.25$, 50, and 75 (denoted by A, B, C, and D, respectively). (b) The growth rate $\gamma/k_y C_y$ vs k_z/k_y.

20
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, DC 20331

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 686
WASHINGTON, DC 20331
O1CY ATTN C-686
O1CY ATTN J-3'2 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
400 WILSON BLVD.
ARLINGTON, VA 22209
O1CY ATTN NUCLEAR
O1CY ATTN MONITORING RESEARCH
O1CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
360 WIEHLE AVENUE
RESTON, VA 22091
O1CY ATTN CODE R4'3
O1CY ATTN CODE R3'2

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
O1CY ATTN STVL
O1CY ATTN STIL
O1CY ATTN DSTD
O1CY ATTN RAAN

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND AFB, NM 87115
O1CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAC/DNA
BUILDING 20675
KIRTLAND AFB, NM 87115
O1CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
O1CY ATTN DOCUMENT CONTROL

JOINT PROGRAM MANAGEMENT OFFICE
WASHINGTON, DC 20330
O1CY ATTN J-3 WMCCS EVALUATION
OFFICE

DIRECTOR
JOINT STRAT TCT PLANNING STAFF
OFFUTT AFB
OMAHA, NE 68113
O1CY ATTN JSTPS/JLKS
O1CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
O1CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09112
O1CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20330
O1CY ATTN STRATEGIC & SPACE
SYSTMS (OS)

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
O1CY ATTN DELAS-EO, F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
O1CY ATTN ATC-T MELVIN T. CAPPs
O1CY ATTN ATC-Q W. DAVIES
O1CY ATTN ATC-R DON RUSS
COMSAT LABORATORIES
22300 COMSAT DRIVE
CLARKSBURG, MD 20871
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1359
RICHARDSON, TX 75080
01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC.
606 Wilshire Blvd.
Santa Monica, CA 90401
01CY ATTN C.B. GABBARD
01CY ATTN R. LELEVIER

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M.H. BORTNER
SPACE SCI LAB

GENERAL ELECTRIC TECH SERVICES
CO., INC.
HMES
COURT STREET
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
01CY ATTN J.M. AEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGER

KAMAN TEMPO-CENTER FOR ADVANCED
STUDIES
816 STATE STREET (P.O DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIAC
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM McNAMARA
01CY ATTN B. GAMBILL
IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375
DR. H. GURSKY - CODE 4100
DR. J.M. GOODMAN - CODE 4180
DR. P. RODRIGUEZ - CODE 4750
DR. P. MANGE - CODE 4101
DR. R. MEIER - CODE 4140
CODE 2628 (12 COPIES)
CODE 1220

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PLASMA FUSION CENTER
CAMBRIDGE, MA 02139
LIBRARY, NW16-252
DR. T. CHANG
DR. R. LINDZEN

NASA
GOODSPRINGS SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. N. MAYNARD (CODE 696)
DR. R.F. BENSON
DR. K. MAEDA
DR. S. CURTIS
DR. M. DUBIN

NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20360
DR. T. CZUBA

NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
MR. R. ROSE - CODE 532

DIRECTOR OF SPACE AND ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. G.W. ADAMS
DR. K. DAVIES
DR. R. F. DONNELLY

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
DR. S. JOINER

LABORATORY FOR PLASMA AND FUSION ENERGIES STUDIES
UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
JHAN VARYAN HELLMAN,
REFERENCE LIBRARIAN

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
DR. J. AARONS
DR. M. MENDILLO

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. B. FEJER
DR. R. SUDAN
DR. D. FARLEY
DR. M. KELLEY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. M.B. McELROY

INSTITUTE FOR DEFENSE ANALYSIS
1801 N. BEAUREGARD STREET
ARLINGTON, VA 22211
DR. E. BAUER
PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
DR. J. S. NISBET
DR. P. R. ROHRBAUGH
DR. L. A. CARPENTER
DR. M. LEE
DR. R. DIVANY
DR. P. BENNET
DR. E. KLEVANS

PRINCETON UNIVERSITY
PLASMA PHYSICS LABORATORY
PRINCETON, NJ 08540
DR. F. PERKINS

SAIC
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
DR. D. A. HAMLIN
DR. L. LINSON
DR. E. FRISIAN

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
DR. R. TSUNODA
DR. WALTER G. CHESNUT
DR. CHARLES L. RINO
DR. J. VICKREY
DR. R. LIVINGSTON

STANFORD UNIVERSITY
STANFORD, CA 94305
DR. P. M. BANKS
DR. R. HELLIWELL

U.S. ARMY ABERDEEN RESEARCH
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD
DR. J. HEIMRER

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
DR. L. C. LEE

UNIVERSITY OF CALIFORNIA
LOS ALAMOS NATIONAL LABORATORY
J-10, MS-664
LOS ALAMOS, NM 87545
DR. M. PONGRATZ
DR. D. SIMONS
DR. G. BARASCH
DR. L. DUNCAN
DR. P. BERNHARDT
DR. S. P. GARY

UNIVERSITY OF ILLINOIS
DEPT. OF ELECTRICAL ENGINEERING
1406 W. GREEN STREET
URBANA, IL 61801
DR. EREHAN KUDEKI

UNIVERSITY OF CALIFORNIA, LOS ANGELES
405 HILGARD AVENUE
LOS ANGELES, CA 90024
DR. F. V. CORONITI
DR. C. KENNEDY
DR. A. L. WONG

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20740
DR. K. PAPADOPOULOS
DR. E. OTT

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20801
DR. R. GREENWALD
DR. C. MENG
DR. T. POTEHRA

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI
DR. E. OVERMAN

UNIVERSITY OF TEXAS
AT DALLAS
CENTER FOR SPACE SCIENCES
P.O. BOX 688
RICHARDSON, TX 75080
DR. R. HEILIS
DR. W. HANSON
DR. J. P. MCGILL
END
11-86
DTIC