A HOT GAS SOURCE FOR CONVECTIVE IGNITION STUDIES OF ENERGETIC MATERIALS(U) ARMY BALLISTIC RESEARCH LAB ABERDEEN PROVING GROUND MD M A DEWILDE AUG 86
A HOT GAS SOURCE FOR CONVECTIVE IGNITION STUDIES OF ENERGETIC MATERIALS

Mark A. DeWilde

August 1986

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND
Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memorandum Report BRL-MR-3543</td>
<td>60-1007794</td>
<td>11431198</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A HOT GAS SOURCE FOR CONVECTIVE IGNITION STUDIES OF ENERGETIC MATERIALS</td>
<td>Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHORS</th>
<th>7. CONTRACT OR GRANT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark A. DeWild</td>
<td>IIL161102AH43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>9. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Ballistic Research Laboratory ATTN: SLCBR-IB Aberdeen Proving Ground, MD 21005-5066</td>
<td>1L161102AH43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
<th>11. REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>August 1986</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>13. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. MONITORING AGENCY NAME & ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)</th>
<th>15. SECURITY CLASS. (OF THIS REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. DISTRIBUTION STATEMENT (OF THIS REPORT)</th>
<th>17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for Public Release; Distribution Unlimited.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SUPPLEMENTARY NOTES</th>
<th>19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Convective Ignition Hot Gas Source Furnaces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A novel hot gas source is described that possesses the capability of producing a continuous laminar flow of hot gas at temperatures from ambient to 900°C. Details of construction are given and a short description of intended application is provided.</td>
</tr>
</tbody>
</table>

NOTE: The text above is a natural representation of the information provided in the image. It has been formatted to ensure clarity and readability.
ACKNOWLEDGEMENTS

The author wishes to acknowledge Mr. Wade Scott for taking the pitot tube measurements in the table.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Design, Construction, Materials</td>
<td>1</td>
</tr>
<tr>
<td>III. Typical Operating Parameters</td>
<td>6</td>
</tr>
<tr>
<td>IV. Closing Comments</td>
<td>10</td>
</tr>
<tr>
<td>Distribution List</td>
<td>11</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Working Elements of Gas Source</td>
</tr>
<tr>
<td>2</td>
<td>Design of Heat Exchangers</td>
</tr>
<tr>
<td>3</td>
<td>Wiring of Heating Elements</td>
</tr>
<tr>
<td>4</td>
<td>Outlet Laminarization Nozzle</td>
</tr>
<tr>
<td>5</td>
<td>Gas Source Interior View</td>
</tr>
<tr>
<td>6</td>
<td>Completed Gas Source</td>
</tr>
<tr>
<td>7</td>
<td>Shadowgraph of Flow</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

In order to understand the ignition of propellant grains in a charge within a gun, it is desirable to study how the evolved hot gases that permeate the bed and flow over the individual grains cause ignition of those grains. The temperatures of these gases range from ambient, to the adiabatic flame temperatures characteristic of the propellant in use. The composition of the gases ranges from that of air, to mixtures of partial combustion products with air. The flows may be either laminar or turbulent. The difficulties of designing an apparatus to simulate all such conditions, led to the chosen regime, that of the early stages of bed ignition. In these stages, temperatures range from ambient to approximately 1000°C, flows are laminar, or just starting to break up into turbulence, and the gases are essentially air, or oxygen depleted air. The apparatus described produces these conditions.

II. DESIGN, CONSTRUCTION, MATERIALS*

The design of the active portion of the apparatus is shown in Figure 1. The system consists of five heat exchangers and six ceramic insulated heating elements, alternately stacked. The heat exchangers are plumbed in series as is shown in the figure. The entire assembly is placed in an insulating container to minimize heat loss and maximize ultimate attainable temperature. Figure 2 illustrates the design of one of the heat exchangers. The material chosen for construction was type 304 stainless steel, mainly for reasons of being on hand, although monel would be the material of choice for units subsequent to the original test model. Each exchanger consists of a single plate with long holes drilled through the length at equal spacings. To interconnect these drilled gas passages into a single path, channels are milled into the end of the plate between adjacent holes. Finally, small plates are welded over the channels to complete the closure of the gas passage. The total path length through each exchanger is 46 inches. Note that inlet and outlet are on the same end of the heat exchangers block. The heating elements (used for reasons of being on hand) were from the Lindberg Furnace Company, Model 7217100400C, rated at 625 watts 60 volts. The wiring of these elements is shown in Figure 3. The insulating material is four inches of standard insulating firebrick from the Babcock-Wilcox Company. The entire assembly is placed in a sheet metal box that is centered inside of another slotted sheet metal box, four to five inches larger in each dimension. This outer box provides ventilation around the inner box, and prevents any hot surfaces from being accessible by the user. An in-house fabricated heated nozzle is put on the outlet of the gas source, and serves to enlarge and laminarize the exiting flow. This nozzle is shown in Figure 4. A standard laboratory combustion tube furnace, one inch inside diameter, overall length of four to five inches is placed over the nozzle. The function of this tube furnace is to eliminate the cooling by the nozzle of the hot gas exiting the furnace. Initially, insulating material around the nozzle was tried, but due to the low heat capacity of air, and the high temperature differentials

*The use of manufacturer’s names and model numbers is not be be construed as an endorsement by the US Government. They are provided as a reference to the types of equipment used, and any equal product can be substituted.
Figure 1. Working Elements of Gas Source
LINDBERG
HEATING ELEMENTS
7217100400C

Figure 3. Wiring of Heating Elements
Figure 4. Outlet Laminarisation Nozzle

Material: 304 Stainless Steel or Monel
involved, the nozzle always stabilized at a temperature considerably lower
than that of the heat exchangers. The active heating method was adopted and
solved the problem that the insulation did not. Figure 5 illustrates the
completed furnace with the front insulation removed, and Figure 6, the
external completed appearance. Not shown in the illustrations are temperature
controllers for the heat exchangers and nozzle heaters. These are used to set
the operating parameters desired.

III. TYPICAL OPERATING PARAMETERS

In order to check the flow profile exiting the nozzle, pitot tube
measurements were taken at 0.100 inch increments across the nozzle, at a
distance of 0.4 inch from the end of the nozzle. Initial data as shown in the
table for a supply pressure of 40 psi into the furnace, with air at ambient
temperatures demonstrated a distinct dip in the flow profile at the center of
the nozzle. This was found to be caused by depressions in the center of the
screens, and was eliminated by more careful fabrication. After this
improvement, the flow at the center became flat to within experimental error.

<table>
<thead>
<tr>
<th>Position (inches)</th>
<th>Pitot Pressure (mm Hg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>0.1</td>
<td>0.59</td>
</tr>
<tr>
<td>0.2</td>
<td>1.42</td>
</tr>
<tr>
<td>0.3</td>
<td>1.35</td>
</tr>
<tr>
<td>0.4</td>
<td>1.30</td>
</tr>
<tr>
<td>0.5</td>
<td>1.30</td>
</tr>
<tr>
<td>0.6</td>
<td>1.39</td>
</tr>
<tr>
<td>0.7</td>
<td>1.37</td>
</tr>
<tr>
<td>0.8</td>
<td>1.36</td>
</tr>
<tr>
<td>0.9</td>
<td>0.43</td>
</tr>
<tr>
<td>1.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The typical operating temperatures used ranged from ambient to 1200°C for
the heat exchangers, and ambient to 1000°C for the nozzle heater. Typically,
the nozzle is held at the desired discharge temperature, and the heat
exchangers at the same temperature for very slow gas flows, or up to 200°C
warmer for higher flow rates. Figure 7 shows a shadowgraph of the gas exiting
the gas source, and indicates the laminar nature at this flow rate for a
distance downstream of the nozzle. The temperature of the gas for these
measurements was 800°C. Thermocouple measurements at a distance of 0.5 inches
from the nozzle indicate an operating temperature of 1000°C is attainable,
although extended operation at this temperature considerably shortens the life
of the heat exchangers. When dry nitrogen gas was heated to 630°C and
combustible materials placed in the gas flow, they could be made to pyrolyze,
but not burn until withdrawn from the flow into the oxygen containing room
air. If, however, gun propellants such as M-30 are placed in that same flow,
vigorous ignition and burning with little smoke occurs, thus simulating the
ignition of such materials in the oxygen-deficient gases in a gun tube.
Further studies using this tool are in progress. It was found that once the
Figure 5. Gas Source Interior View
Figure 6. Completed Gas Source
gas source has heated to the desired operating temperatures, the operation is steady state, i.e., there is extremely little drift in the outlet temperature over extended periods of time.

Warmup times for this furnace depend on temperature, and reach a maximum of two hours at 1000°C. The measurement times for thermal stability were 20 minutes, during which variations of ±5 degrees were observed, caused by the on-off heating cycles of the temperature controller. The use of power proportioning rather than time proportioning controllers could be expected to lessen this variation. The specific heat of air at 1000°C is approximately 0.257 cal/gm. At the same temperature, the density is approximately 2.7x10^-4 g/cc. This yields a heat capacity of 7.1x10^-5 cal/cc-deg C. The lowest and highest linear flow velocity of the nozzle were measured to be 1 cm/sec to 7 m/sec. The amount of heat available to a one square cm. area object of infinitesimal thickness blocking the flow for each degree of cooling of the gas ranges then from 7.1x10^-5 cal/sec to 520.7 cal/sec. Actual heat transfer to the object and cooling of the gas flow depends on shape, thermal conductivity of both gas and object, orientation, and numerous other factors. For the qualitative sorts of observations needed in the studies of propellant convective ignition these considerations were not of prime importance.

IV. CLOSING COMMENTS

The hot gas source described in this report has proven to have applications other than those originally intended. One researcher has duplicated this device and uses it to provide a flow of hot gas for environmental control within a high pressure propellant strand burner. Since the flows produced are laminar and their temperatures can be measured directly with thermocouples, they provide a convenient way to calibrate and test optical thermometry techniques in this temperature regime. Although not used for this purpose to date, the source should provide an excellent heat source for measuring heat flows into small objects and could be useful in convective heating and heat flow measurements.

<table>
<thead>
<tr>
<th>No of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314</td>
<td>1</td>
<td>Director USA Air Mobility Rch and Development Lab. Ames Research Center Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>HQ DA DAMA-ART-M Washington, DC 20310</td>
<td>4</td>
<td>Commander USA Research Officer R. Ghirardelli D. Mann R. Singleton R. Shaw Research Triangle Park NC 27709</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Materiel Cmd. ATTN: AMCRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333</td>
<td>1</td>
<td>Commander ERADCOM Technical Library (Reports Section) Fort Monmouth, NJ 07703-5301</td>
</tr>
<tr>
<td>1</td>
<td>Commander Armament R&D Center USA AMCOM ATTN: SMCAR-TDC Dover, NJ 07801-5001</td>
<td>1</td>
<td>Commander USA Electronics Rch and Development Cmd Technical Support Activity Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>2</td>
<td>Commander Armament R&D Center USA AMCOM ATTN: SMCAR-TSS Dover, NJ 07801-5001</td>
<td>2</td>
<td>Commander USA AMCOM DRSMO-LCA-G D.S. Downs J.A. Lannon Dover, NJ 07801</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Armament Muni and Chemical Cmd ATTN: SMCAR-ESP-L Rock Island, IL 61299</td>
<td>1</td>
<td>Commander USA AMCOM DRSMO-LC, L. Harris Dover, NJ 07801</td>
</tr>
<tr>
<td>1</td>
<td>Director Benet Weapon Laboratory Armament R&D Center USA AMCOM ATTN: SMCAR-LCB-TL Watervliet, NY 12189</td>
<td>1</td>
<td>Commander USA AMCOM DRSMO-SCA-T L. Stiefel Dover, NJ 07801</td>
</tr>
<tr>
<td>1</td>
<td>Commander USA Aviation Rch and Development Cmd ATTN: AMSAV-E 4300 Gopdfellow Blvd. St. Louis, MO 63120</td>
<td>1</td>
<td>Commander USA AMCOM DRSMO-SCA-T L. Stiefel Dover, NJ 07801</td>
</tr>
<tr>
<td>No of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>1</td>
<td>Navy Strategic Systems Project Office</td>
</tr>
<tr>
<td></td>
<td>USA Missile Command</td>
<td></td>
<td>ATTN: R.D. Kinert, SP 2721</td>
</tr>
<tr>
<td></td>
<td>Research, Development,</td>
<td></td>
<td>Washington, DC 20376</td>
</tr>
<tr>
<td></td>
<td>Engineering Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSMSM-RD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL</td>
<td>1</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Naval Air Systems CmD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: J. Ramnarace, AIR-54111C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington, DC 20360</td>
</tr>
<tr>
<td></td>
<td>1 Commander</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USA Missile & Space Command</td>
<td>3</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Intelligence Center</td>
<td></td>
<td>Naval Ordnance Station</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATAMS-YDL</td>
<td></td>
<td>ATTN: C. Irish</td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL</td>
<td></td>
<td>S. Mitchell</td>
</tr>
<tr>
<td></td>
<td>35898</td>
<td></td>
<td>P.L. Stang,</td>
</tr>
<tr>
<td>2</td>
<td>Commander</td>
<td>1</td>
<td>Code 515</td>
</tr>
<tr>
<td></td>
<td>USA Missile Command</td>
<td></td>
<td>Indian Head, MD 20640</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSMS-RK, D.J. Ifshin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redstone Arsenal, AL</td>
<td>35898</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td>2</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>USA Tank Automotive CmD</td>
<td></td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSTA-TSL</td>
<td></td>
<td>ATTN: J.L. East, Jr., G-20</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48397-5000</td>
<td>2</td>
<td>Dahlgren, VA 22448</td>
</tr>
<tr>
<td>1</td>
<td>Director</td>
<td>4</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>USA TRADOC Systems Analysis</td>
<td></td>
<td>Naval Surface Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: ATAA-SL</td>
<td></td>
<td>ATTN: R. Bernecker, R-13</td>
</tr>
<tr>
<td></td>
<td>WSMR, NM 88002</td>
<td>2</td>
<td>G.B. Wilmot, R-16</td>
</tr>
<tr>
<td>2</td>
<td>Commandant</td>
<td>5</td>
<td>Silver Spring, MD 20910</td>
</tr>
<tr>
<td></td>
<td>USA Infantry School</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: ATSH-CD-CSO-OR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fort Benning, GA 31905</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Commander</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>USA Development and Employment Agency</td>
<td></td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>Fort Lewis, WA 98433</td>
<td>5</td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Department of the Navy</td>
<td></td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: R.S. Miller,</td>
<td></td>
<td>ATTN: K.J. Graham</td>
</tr>
<tr>
<td></td>
<td>Code 432</td>
<td></td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td></td>
<td>800 N. Quincy Street</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22217</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 | Commanding Officer
Naval Underwater System
Center Weapons Dept.
ATTN: R.S. Lazar/Code 36301
Newport, RI 02840 | 1 | Aerojet Solid
Propulsion Company
ATTN: P. Michel
Sacramento, CA 95813 |
| 1 | Superintendent
Naval Postgraduate School
Dept. of Aeronautics
ATTN: D.W. Netzer
Monterey, CA 93940 | 1 | Applied Combustion
Technology, Inc.
ATTN: A.M. Varney
P.O. Box 17885
Orlando, FL 32860 |
| 6 | AFRPL (DRSC)
ATTN: R. Geisler
D. George
B. Goshgarian
J. Levine
W. Roe
D. Weaver
Edwards AFB, CA 93523 | 2 | Atlantic Research Corp.
ATTN: M.K. King
5390 Cherokee Avenue
Alexandria, VA 22314 |
| 1 | Air Force Armament Laboratory
ATTN: AFATL/DLODL
ATTN: O.K. Heiney
Eglin AFB, FL 32542-5000 | 2 | AVCO Everett Research
laboratory Division
ATTN: D. Stickler
2385 Revere Beach Parkway
Everett, MA 02149 |
| 2 | AFSOR
ATTN: L.H. Caveny
J.M. Tishkoff
Bolling Air Force Base
Washington, DC 20332 | 1 | Battelle Memorial Institute
Tactical Technology Center
ATTN: J. Huggins
505 King Avenue
Columbus, OH 43201 |
| 1 | AFRL/SUL
Kirtland AFB, NM 87117 | 2 | Exxon Research &
Engineering Company
ATTN: A. Dean
M. Chou
P.O. Box 45
Linden, NJ 07036 |
| 1 | NASA
Langley Research Center
ATTN: G.B. Northam/MS 168
Hampton, VA 2365 | | Ford Aerospace and
Communications Corp.
DIVAD Division
Div. Hq., Irvine
ATTN: D. Williams
Main Street & Ford Road
Newport Beach, CA 92663 |
| 4 | National Bureau of Standards
ATTN: J. Hastie
M. Jacox
T. Kashiwagi
H. Semerjian
US Dept. of Commerce
Washington, DC 20234 | 1 | |
<table>
<thead>
<tr>
<th>No of Copies</th>
<th>Organization</th>
<th>No of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Electric Armament & Electrical Systems</td>
<td>1</td>
<td>IBM Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: M.J. Bulman Lakeside Avenue Burlington, VT 05402</td>
<td></td>
<td>ATTN: A.C. Tam Research Division 5600 Cottage Road San Jose, CA 95193</td>
</tr>
<tr>
<td>1</td>
<td>General Electric Co.</td>
<td>1</td>
<td>Director Lawrence Livermore National Laboratory ATTN: C. Westbrook Livermore, CA 94550</td>
</tr>
<tr>
<td></td>
<td>ATTN: M. Iapp Schenectady, NY 12301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Electric Ordnance Systems</td>
<td>1</td>
<td>Lockheed Missiles & Space Company ATTN: George Lo 3251 Hanover Street Dept. 52-35/B204/2 Palo Alto, CA 94304</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Mandzy 100 Plastics Avenue Pittsfield, MA 01203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>General Motors Resch Lab Physics Department</td>
<td>1</td>
<td>Los Alamos National Lab ATTN: B. Nichols T7, MS-B284 P.O. Box 1663 Los Alamos, NM 87545</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. Teets Warren, MI 48090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hercules, Inc. Alleghany Ballistics Lab.</td>
<td>1</td>
<td>Olin Corporation Smokeless Powder Operations ATTN: R.L. Cook P.O. Box 222 St. Marks, FL 32355</td>
</tr>
<tr>
<td></td>
<td>ATTN: R.R. Miller P.O. Box 210 Oumberland, MD 21501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hercules, Inc. Bacchus Works</td>
<td>1</td>
<td>Paul Gough Associates ATTN: P.S. Gough 1048 South Street Portsmouth, NH 03801</td>
</tr>
<tr>
<td></td>
<td>ATTN: K.P. McCarty P.O. Box 98 Magna, UT 84044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Hercules, Inc. Bacchus Works</td>
<td>1</td>
<td>Princeton Combustion Research Labs, Inc. ATTN: M. Summerfield N.A. Massina 475 US Highway One Monmouth Junction, NJ 08852</td>
</tr>
<tr>
<td></td>
<td>ATTN: P.S. Gough 1048 South Street Portsmouth, NH 03801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Honeywell, Inc. Defense Systems Div.</td>
<td>2</td>
<td>Hughes Aircraft Company ATTN: T.E. Ward 8433 Fallbrook Avenue Canoga Park, CA 91303</td>
</tr>
<tr>
<td></td>
<td>ATTN: D.E. Broden/ MS MN50-2000 600 2nd Street NE Hopkins, MN 55343</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Rockwell International Corporation</td>
<td>1</td>
<td>University of Florida</td>
</tr>
<tr>
<td></td>
<td>Rocketdyne Division</td>
<td></td>
<td>Dept. of Chemistry</td>
</tr>
<tr>
<td></td>
<td>ATTN: J.E. Flanagan/HBO2</td>
<td></td>
<td>ATTN: J. Winefordner</td>
</tr>
<tr>
<td></td>
<td>6633 Canoga Avenue</td>
<td></td>
<td>Gainesville, FL 32611</td>
</tr>
<tr>
<td></td>
<td>Canoga Park, CA 91304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sandia National Labs.</td>
<td>1</td>
<td>Georgia Inst. of Technology</td>
</tr>
<tr>
<td></td>
<td>Combustion Science Dept.</td>
<td></td>
<td>School of Aerospace Eng.</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. Cattolica</td>
<td></td>
<td>ATTN: E. Price</td>
</tr>
<tr>
<td></td>
<td>D. Stephenson</td>
<td></td>
<td>Atlanta, GA 30332</td>
</tr>
<tr>
<td></td>
<td>P. Mattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Livermore, CA 94550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sandia National Labs.</td>
<td>2</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>ATTN: M. Smooke</td>
<td></td>
<td>School of Aerospace Eng.</td>
</tr>
<tr>
<td></td>
<td>Division 8353</td>
<td></td>
<td>ATTN: W.C. Strahle</td>
</tr>
<tr>
<td></td>
<td>Livermore, CA 94550</td>
<td></td>
<td>B.T. Zinn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atlanta, GA 30332</td>
</tr>
<tr>
<td>1</td>
<td>Science Applications, Inc.</td>
<td>1</td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>23146 Camorah Crest</td>
<td></td>
<td>ATTN: R. Krier</td>
</tr>
<tr>
<td></td>
<td>Woodland Hills, CA 91364</td>
<td></td>
<td>144 MEB, 1206</td>
</tr>
<tr>
<td>2</td>
<td>Univ. of California, Santa Barbara</td>
<td>1</td>
<td>W.Green Street</td>
</tr>
<tr>
<td></td>
<td>Quantum Institute</td>
<td></td>
<td>Urbana, IL 61801</td>
</tr>
<tr>
<td></td>
<td>ATTN: K. Schofield</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M. Steinberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santa Barbara, CA 93106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>University of Southern California</td>
<td>1</td>
<td>Johns Hopkins Univ./APL Chemical Propulsion</td>
</tr>
<tr>
<td></td>
<td>Dept. of Chemistry</td>
<td></td>
<td>Information Agency</td>
</tr>
<tr>
<td></td>
<td>ATTN: S. Benson</td>
<td></td>
<td>ATTN: T.W. Christian</td>
</tr>
<tr>
<td></td>
<td>Los Angeles, CA 90007</td>
<td></td>
<td>Johns Hopkins Road</td>
</tr>
<tr>
<td>1</td>
<td>Case Western Reserve University</td>
<td>1</td>
<td>Laurel, MD 20707</td>
</tr>
<tr>
<td></td>
<td>Division of Aerospace Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Tien</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cleveland, OH 44135</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Chemistry</td>
<td></td>
<td>ATTN: G.M. Faeth</td>
</tr>
<tr>
<td></td>
<td>ATTN: E. Grant</td>
<td></td>
<td>K.K. Kuo</td>
</tr>
<tr>
<td></td>
<td>Baker Laboratory</td>
<td></td>
<td>H. Palmer</td>
</tr>
<tr>
<td></td>
<td>Ithaca, NY 14853</td>
<td></td>
<td>M. Micci</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>University Park, PA 16802</td>
</tr>
</tbody>
</table>

15
<table>
<thead>
<tr>
<th>No of Copies</th>
<th>Organization</th>
<th>No of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polytechnic Institute of NY</td>
<td>1</td>
<td>Thiokol Corporation</td>
</tr>
<tr>
<td></td>
<td>ATTN: S. Lederman</td>
<td></td>
<td>Elkton Division</td>
</tr>
<tr>
<td></td>
<td>Route 110</td>
<td></td>
<td>ATTN: W.N. Brundige</td>
</tr>
<tr>
<td></td>
<td>Farmingdale, NY 11735</td>
<td></td>
<td>P.O. Box 241</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elkton, MD 21921</td>
</tr>
<tr>
<td>2</td>
<td>Princeton University</td>
<td>3</td>
<td>Thiokol Corporation</td>
</tr>
<tr>
<td></td>
<td>Forrestal Campus Library</td>
<td></td>
<td>Huntsville Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: K. Brezinsky</td>
<td></td>
<td>ATTN: D.A. Flanagan</td>
</tr>
<tr>
<td></td>
<td>I. Glassman</td>
<td></td>
<td>Huntsville, AL 35807</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 710</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Princeton, NJ 08540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Princeton University</td>
<td>3</td>
<td>Thiokol Corporation</td>
</tr>
<tr>
<td></td>
<td>MAE Dept.</td>
<td></td>
<td>Wasatch Division</td>
</tr>
<tr>
<td></td>
<td>ATTN: P.A. Williams</td>
<td></td>
<td>ATTN: J.A. Peterson</td>
</tr>
<tr>
<td></td>
<td>Princeton, NJ 08544</td>
<td></td>
<td>P.O. Box 524</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brigham City, UT 84302</td>
</tr>
<tr>
<td>1</td>
<td>Science Applications, Inc.</td>
<td>1</td>
<td>United Technologies</td>
</tr>
<tr>
<td></td>
<td>ATTN: H.S. Pergament</td>
<td></td>
<td>ATTN: A.C. Eckbreth</td>
</tr>
<tr>
<td></td>
<td>1100 State Road,</td>
<td></td>
<td>East Hartford, CT 06108</td>
</tr>
<tr>
<td></td>
<td>Bldg. N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Princeton, NJ 08540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Space Sciences, Inc.</td>
<td>2</td>
<td>United Technologies Corp.</td>
</tr>
<tr>
<td></td>
<td>ATTN: M. Farber</td>
<td></td>
<td>ATTN: R.S. Brown</td>
</tr>
<tr>
<td></td>
<td>Monrovia, CA 91016</td>
<td></td>
<td>R.O. McLaren</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P.O. Box 358</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sunnyvale, CA 94088</td>
</tr>
<tr>
<td>4</td>
<td>SRI International</td>
<td>1</td>
<td>Universal Propulsion Company</td>
</tr>
<tr>
<td></td>
<td>ATTN: S. Barker</td>
<td></td>
<td>ATTN: H.J. McSpadden</td>
</tr>
<tr>
<td></td>
<td>D. Crosley</td>
<td></td>
<td>Black Canyon Stage 1</td>
</tr>
<tr>
<td></td>
<td>D. Golden</td>
<td></td>
<td>Box 1140</td>
</tr>
<tr>
<td></td>
<td>Tech. Lib</td>
<td></td>
<td>Phoenix, AZ 85029</td>
</tr>
<tr>
<td></td>
<td>333 Ravenwood Avenue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menlo Park, CA 94025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Stevens Institute of Technology</td>
<td>1</td>
<td>Verity Technology, Inc.</td>
</tr>
<tr>
<td></td>
<td>Davidson Laboratory</td>
<td></td>
<td>ATTN: E.B. Fisher</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. McAlevy, III</td>
<td></td>
<td>P.O. Box 22</td>
</tr>
<tr>
<td></td>
<td>Hoboken, NJ 07030</td>
<td></td>
<td>Brighamville, NY 14026</td>
</tr>
<tr>
<td>1</td>
<td>Teledyne McCormack-Selph</td>
<td>1</td>
<td>California Institute</td>
</tr>
<tr>
<td></td>
<td>ATTN: C. Leveritt</td>
<td></td>
<td>of Technology</td>
</tr>
<tr>
<td></td>
<td>3601 Union Road</td>
<td></td>
<td>Jet Propulsion Lab.</td>
</tr>
<tr>
<td></td>
<td>Hollister, CA 95023</td>
<td></td>
<td>ATTN: M.W. Beckstead</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Provo, UT 84601</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>California Institute of Technology</td>
<td>2</td>
<td>Southwest Research Institute</td>
</tr>
<tr>
<td></td>
<td>ATTN: F.E.C. Culick/</td>
<td></td>
<td>ATTN: R.E. White</td>
</tr>
<tr>
<td></td>
<td>MC 301-46</td>
<td></td>
<td>A.B. Wenzel</td>
</tr>
<tr>
<td></td>
<td>204 Karman Lab.</td>
<td></td>
<td>8500 Culebra Road</td>
</tr>
<tr>
<td></td>
<td>Pasadena, CA 91125</td>
<td></td>
<td>San Antonio, TX 78228</td>
</tr>
<tr>
<td>1</td>
<td>Univ. of California,</td>
<td>1</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Berkeley</td>
<td></td>
<td>Dept. of Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td>Mechanical Engineering Department</td>
<td></td>
<td>ATTN: R. Hanson</td>
</tr>
<tr>
<td></td>
<td>ATTN: J. Daily</td>
<td></td>
<td>Stanford, CA 93106</td>
</tr>
<tr>
<td></td>
<td>Berkeley, CA 94720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Univ. of California,</td>
<td>1</td>
<td>University of Texas</td>
</tr>
<tr>
<td></td>
<td>Los Alamos National Laboratory</td>
<td></td>
<td>Dept. of Chemistry</td>
</tr>
<tr>
<td></td>
<td>ATTN: T.D. Butler</td>
<td></td>
<td>ATTN: W. Gardiner</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1663,</td>
<td></td>
<td>Austin, TX 78712</td>
</tr>
<tr>
<td></td>
<td>Mail Stop 8216</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los Alamos, NM 87545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Purdue University</td>
<td>1</td>
<td>University of Utah</td>
</tr>
<tr>
<td></td>
<td>School of Aeronautics and Astronautics</td>
<td></td>
<td>Dept. of Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td>ATTN: R. Click</td>
<td></td>
<td>ATTN: G. Flandro</td>
</tr>
<tr>
<td></td>
<td>J.R. Osborn</td>
<td></td>
<td>Salt Lake City, UT 84112</td>
</tr>
<tr>
<td></td>
<td>Grissom Hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>West Lafayette, IN 47907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Purdue University</td>
<td></td>
<td>Virginia Polytechnic Institute & State University</td>
</tr>
<tr>
<td></td>
<td>School of Mechanical Engineering</td>
<td></td>
<td>ATTN: J.A. Schetz</td>
</tr>
<tr>
<td></td>
<td>ATTN: N.M. Laurendeau</td>
<td></td>
<td>Blackburg, VA 24061</td>
</tr>
<tr>
<td></td>
<td>S.N.B. Murthy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Sweeney</td>
<td></td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td></td>
<td>TSPC Chaffee Hall</td>
<td></td>
<td>Dir, USAMSAA</td>
</tr>
<tr>
<td></td>
<td>West Lafayette, IN 47906</td>
<td></td>
<td>ATTN: AMXSY-D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AMXSY-MP, H. Cohen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cdr, USATECOM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: AMSTE-TO-F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cdr, CRDC, AMCCOM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: SMCCR-RSP-A</td>
</tr>
<tr>
<td>1</td>
<td>Rensselaer Polytechnic Institute</td>
<td></td>
<td>SMCCR-MU</td>
</tr>
<tr>
<td></td>
<td>Dept. of Chemical Engineering</td>
<td></td>
<td>SMCCR-SPS-IL</td>
</tr>
<tr>
<td></td>
<td>ATTN: A. Fontijn</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Troy, NY 12181</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number ____________________ Date of Report __________

2. Date Report Received ____________________

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) ____________________

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.) ____________________

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate. ____________________

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) ____________________

Name ____________________

CURRENT ADDRESS
Organization ____________________
Address ____________________
City, State, Zip ____________________

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name ____________________

OLD ADDRESS
Organization ____________________
Address ____________________
City, State, Zip ____________________

(Remove this sheet along the perforation, fold as indicated, staple or tape closed, and mail.)
END

10-86

DTIC