CONJUNCTIVE ITEM RESPONSE THEORY KERNELS(U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF PSYCHOLOGY
R J JANNARONE AUG 86 86-1-ONR N00014-86-K-0817

UNCLASSIFIED
<table>
<thead>
<tr>
<th>Value</th>
<th>Other Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.8</td>
</tr>
<tr>
<td>1.1</td>
<td>3.2</td>
</tr>
<tr>
<td>1.25</td>
<td>3.6</td>
</tr>
<tr>
<td>1.4</td>
<td>4.0</td>
</tr>
<tr>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>
RESEARCH REPORT ONR-86-1

CONJUNCTIVE ITEM RESPONSE THEORY KERNELS

Robert J. Jannarone
Psychology Department
University of South Carolina
Columbia, SC 29208

August, 1986

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was sponsored by Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-86-K00817, Authority identification Number, NR 4421-544.
Conjunctive Item Response Theory Kernels

Robert J. Jannarone

Technical Report

From 3/1/86 to 8/15/86

DATE OF REPORT (Year, Month, Day)

8/15/86

PAGE COUNT

38

ABSTRACT

Conjunctive item response models are introduced such that (a) sufficient statistics for latent traits are not necessarily additive in item scores; (b) items are not necessarily locally independent; and (c) existing compensatory (additive) item response models including the binomial, Rasch, logistic, and general locally independent model are special cases. Simple estimates and hypothesis tests for conjunctive models are introduced and evaluated as well. Conjunctive models are also identified with cognitive models that assume the existence of several individually necessary component processes for a global ability. It is concluded that conjunctive models and methods may show promise for constructing improved tests and uncovering conjunctive cognitive structure. It is also concluded that conjunctive item response theory may help to clarify the relationships between local dependence, multidimensionality, and item response function form.
Acknowledgement

An early draft of this report was submitted to Psychometrika before I became affiliated with ONR. I wish to thank Ivo Moleenar and two Psychometrika reviewers for some useful suggestions that have been incorporated into this report.
Introduction

Research during the last decade has led to increased generality in item response theory. Important results include multidimensional item response models (Embretson, 1984; Fischer, 1973; McKinley & Reckase, 1983), locally dependent models (Kempf, 1977; Fischer & Formann, 1982), tests for unidimensional and locally independent models (Holland, 1981; Kelderman, 1984; Molenaar, 1983; Rosenbaum, 1984; Yen, 1981), and attempts to distinguish local dependence from multidimensionality (Goldstein, 1980; Hambleton, Swaminathan, Cook, Eignor, & Clifford 1978; Kelderman, 1984).

Applications of extended item response theory have also appeared, notably in componential reasoning models (Sternberg, 1977; Whitely, 1980). The componential approach involves breaking down each item reflecting a global ability or trait into subtask items. The subtask items presumably reflect component abilities/traits that are individually necessary for having the global attribute. Statistical procedures are then used to fit multidimensional item response models to subtask performance measures (Embretson, 1984; Fischer & Formann, 1982; Whitely, 1980).

Componential cognitive models as well as other serial process models (e.g., Anderson, 1981) imply a nonadditive combination rule for items that reflect distinct, individually necessary ability components. In particular, if binary items were used to reflect such components then the global trait would be reflected only if all component items were passed, as indicated by a product of item scores rather than a weighted sum. Parallel processes, on the other hand, would imply that items should be combined additively. Thus, serial process models are conjunctive in that all components are necessary for the process to occur, as potentially reflected by
multiplicative composites of item scores. In contrast, parallel processes are compensatory (Embretson, 1985) in that deficits in one component ability could be overcome by strengths in another, as reflected by additive composites of item scores. Moreover, additive item combination rules may be inappropriate for reflecting conjunctive/serial processes, whereas multiplicative item combination rules may be inadequate for reflecting compensatory/parallel processes.

Despite the above-cited recent advances in latent trait theory, no latent trait models have yet appeared with the potential for reflecting serial processing in standard paper and pencil tests. Standard test theory models including the Rasch, logistic, binomial, and classical models (Lord & Novick, 1968) lack this potential, because they imply sufficient statistics for latent traits that are additive in the item scores. Other special-purpose models have appeared for certain tests that are inherently conjunctive (Embretson, 1984; Stegelmann, 1983; Fischer & Formann, 1982). However, no general models currently exist for uncovering and reflecting conjunctive processes underlying standard tests. This is especially noteworthy given the prominence of serial process models in modern cognitive psychology.

Another existing gap in latent trait theory lies in the class of available locally dependent models. Although methods are available for detecting local dependence (Kelderman, 1984), weak variants of local independence have been formulated (Holland, 1981), and specialized locally dependent models have appeared (Embretson, 1984; Fischer & Formann, 1982; Kempf, 1977), no general family of locally dependent latent trait models has yet been introduced. (One general latent class model has been introduced, however--see Harper, 1972.) Furthermore, the lack of locally dependent models is directly connected with the lack of nonadditive models for conjunctive cognitive structure, as will be shown below.
The main purpose of this article is to provide a variety of kernels for item response models that reflect both conjunctive cognitive structure and local dependence. (The conditional distributions appearing in observable probability mixtures for these models are called kernels.) An auxiliary purpose is to demonstrate the utility of related procedures for estimating conjunctive item parameters and testing specific conjunctive/locally dependent structures.

Before describing conjunctive item response theory, the substance of conjunctivity and its connection to some related work will be illustrated.

Conjunctivity and configural scoring. For simplicity, suppose that a global trait (θ), say analogical reasoning ability, were tied to two individually necessary component abilities, say vocabulary (V) and inductive reasoning (I). Thus, items that were easy with respect to V yet moderately difficult with respect to I might reflect I alone, whereas items with the converse property might reflect V alone. If there were a few such pure items in an analogical reasoning test with the remaining items reflecting the global trait, then the test could be represented by Figure 1. As Figure 1 suggests, an optimal estimate of θ involving raw scores on \(x_3 \) through \(x_M \) might also involve \(x_1x_2 \), because passing both \(x_1 \) and \(x_2 \) is similar to passing each of the others, whereas passing either \(x_1 \) or \(x_2 \) alone is not.

More generally, a collection of \(M \) binary items may involve several conjunctive components. In this case an optimal estimate for θ might take the form,
\[\tilde{\theta} = t(\sum_{G_M} x_{m_1} \ldots x_{m_s} \alpha_{m_1 \ldots m_s}), \] (1)

where \(G_M \) is the power set \((G_M = \{(m_1, \ldots, m_s) \subseteq \{1, \ldots, M\}; s=1, \ldots, M\}) \), the \(M \) subscript will be deleted from \(G \) and similar expressions in the sequel. We point out that the existence of optimal estimates satisfying (1) with any of \(\alpha_{m_1 \ldots m_s} \neq 0 \) for \(s \geq 2 \) would preclude the existence of any additive test model, including the logistic (Birnbaum, 1968), Rasch (Rasch, 1980), binomial (Huynh, 1977), and classical models.

Prior studies of nonadditive item scoring methods seem to stem from Horst's so-called configural scoring methods (Horst, 1954; Bussmeyer & Jones, 1983; Gaier & Lee, 1953; Jannarone & Roberts, 1984; McDonald, 1967). Configural scoring simply reflects nonadditivity in prediction by regressing criterion variables on raw items in a scale as well as on their cross-products. For example if there were an external criterion, \(Y \), available in the Figure 1 case, then the configural approach would fit

\[E(Y|x) = \sum_{m=1}^{M} \alpha_{m} x_{m} + \sum_{m=1}^{M-1} \sum_{n=m+1}^{M} \alpha_{mn} x_{m} x_{n}, \] (2)

using regression methods, and ideally identify only \(\alpha_{12} \) and \(\alpha_{3} \) through \(\alpha_{M} \) as nonzero. Jannarone and Roberts (1984) used a configural variant to reflect nonadditivity in the absence of external criteria. They performed two-by-two analyses of variance to evaluate contributions of cross-products among each pair of items, but with the sum of the remaining \(M-2 \) item scores instead of an external variable as a criterion. Highly nonadditive item pairs were reflected by augmenting unit-weight scores with scores based on corresponding pairwise item cross-products, which are known as technical items (Fischer & Formann, 1982).
Configural scoring methods for binary items have not become popular, probably because they have not led to improved predictability under cross-validation. This problem is not only well known in external prediction (e.g., Wainwright, 1965) but also seems to hold in internal scale development (Jannarone & Roberts, 1984).

The failure of binary-item configural scores to cross-validate may be due to the lack of a justifying model for configural methods when items are binary. In particular, the only model that seems to justify configural scoring methods is a linear model with errors independent of observed scores. However, just as such models and methods have been found to be inappropriate for raw binary item scores, they seem to be inappropriate for binary item cross-products as well. For example, Jannarone and Roberts (personal communication) have found that their method leads to distorted conclusions for pairs of items that are very easy or very difficult, in line with similar problems that often occur when fitting linear models to binary items.

Rationale. So far it has been suggested that conjunctive processes should naturally be reflected through the use of item cross-products in latent trait estimates. Also, configural scoring methods seem to be the only methods developed up until now with provisions for such cross-products as a goal but with poor cross-validation as a result, evidently because they are not appropriate for binary data. Thus, configural scoring seems to be in the same state as the classical test model was before the development of item response theory. It seems natural to ask then, whether a viable set of binary item response models can be constructed that accommodate item cross-products. Given such models it should be possible to construct valid methods for identifying conjunctivity.
The models to be described in the sequel were developed with a justification for the inclusion of binary item cross-products as a goal. The basis that was ultimately selected for justifying item cross-products was their appearance in sufficient statistics for latent traits. For example, just as the Rasch kernel is based on the sum of item scores as a sufficient statistic, the conjunctive Rasch model to be described is based on a sufficient statistic involving the sum of item scores as well as item cross-product scores. Similarly, just as the logistic kernel is based on a weighted-sum sufficient statistic, the conjunctive logistic extension to be described is based on a weighted sum of item scores and cross-products.

Out of several bases for establishing satisfactory conjunctive models that were pursued, sufficiency was by far the most successful, yielding models that retain many advantages of their additive counterparts, as will be shown.

The conjunctive models and methods to be described have been designed to extend their compensatory (additive) counterparts, while including their strongest features. For example, the conjunctive Rasch extension, which will be described in detail, leads to:

(a) a variety of possible conjunctive models and corresponding sufficient statistics for \(\theta \)--for example, in order to accommodate the Figure 1 case with \(M=4 \), one extended Rasch model could yield the sufficient statistic, \(x_1x_2+x_3x_4 \), indicating that \(x_1 \) and \(x_2 \) have no unique additive contributions to \(\theta \), whereas another extended Rasch model could yield the sufficient statistic, \(x_1x_2+x_1+x_2+x_3+x_4 \), allowing \(x_1 \) and \(x_2 \) to have both additive and multiplicative contributions;

(b) item parameters that can be estimated independently of person parameters;
(c) consistent estimates of the item parameters;
(d) conditional maximum likelihood estimates of \(\theta \) given the item parameters; and finally
(e) methods for testing different conjunctive models such as those implied by the sufficient statistics in (a).

Also, the conjunctive logistic extension, which will be briefly described, yields sufficient statistics of the form, \(\sum m_1 \ldots m_s x_1 \ldots x_s \), as well as unique conditional maximum-likelihood ability parameter estimates. Thus, the conjunctive models as well as accompanying methods to be described have useful features along the lines of their additive counterparts.

From the viewpoint of efficient ability estimation, conjunctive methods may be seen as alternatives to the current test construction practice of deleting or replacing items that do not fit, say, an additive Rasch model. Conjunctive methods have the potential for considerable precision improvements, as can be seen from the technical item viewpoint (Fischer & Formann, 1982). Suppose for example that a pool of verbal analogies items behaved conjunctively, say with 10 items of the V type, 10 of the I type and 10 of the VI type. In this case standard item selection practice might lead to the retention of fewer than the 30 original items and as a result fewer than 31 distinct possible test scores, because many of the items would not fit a Rasch model. However, a conjunctive approach would not only retain all of original items, but also include 100 additional technical items obtained by multiplying each V item by each I item. Thus, it would be possible for individuals to have many more distinct test scores, given a conjunctive model, than 31, given a Rasch model. Consequently, conjunctively scored tests have the potential for increased precision. (On the other
hand, if the Rasch model held, attempts to include the 100 technical items would not increase precision at all.)

Some of the results to follow will show that such conjunctive structure may indeed be present in existing scales. These results will be given in terms of empirical tests for additivity among all possible item triplets in two selected measures. Other results will show the kind of precision increase that could be expected if conjunctive structure were properly reflected through a nonadditive sufficient statistic. These results will be in the form of maximum possible validity coefficients for certain nonadditive versus additive models. Details will be given in the sequel.

In practice, it would be useful not only to include the $\alpha_{m_1 \ldots m_5}$ instead of unit weights but also to identify the relative contributions of the individual components for each item. For example, if the Figure 1 case held for verbal analogies items, it seems likely that the relative contributions of V and I would vary over items. However, describing procedures for identifying such relative contributions are beyond this article's scope. In addition, only one of the simplest conjunctive extensions to be described, the conjunctive Rasch model, will be described in detail. Other conjunctive extensions will only be briefly introduced.

A specialized Rasch model developed by Fischer and Formann (1982) for describing Rorschach test data as well as Kempf's (1977) dynamic test model seem to be special cases of the conjunctive models to follow.

Conjunctive Rasch Models

The conjunctive Rasch kernel. One familiar form for the usual Rasch model (e.g. Andersen, 1980) is
Conjunctive Kernels 10

\[\Pr\{X=x\} = \int_{-\infty}^{\infty} \Pr\{X=x|\theta\} dG(\theta) \]

\[= \int_{-\infty}^{\infty} \prod_{m=1}^{M} \frac{\exp\{(\theta - \beta_m)x_m\}}{1 + \exp\{(\theta - \beta_m)\}} dG(\theta), \tag{3} \]

where \(x = (x_1, \ldots, x_M) \) is a realization of \(X = (X_1, \ldots, X_M) \), and \(G(\theta) \) is the latent trait distribution function. We will use the following equivalent formulation, because it can be directly extended to reflect conjunctive structure:

\[\Pr\{X=x\} = \int_{-\infty}^{\infty} \nu(\theta) \exp\{\sum_{m=1}^{M} x_m(\theta - \beta_m)\} dG(\theta), \tag{4} \]

where

\[\nu(\theta) = \left[\sum_{m=1}^{M} u_m(\theta - \beta_m) \right]^{-1}, \]

and \(X=\{y: u_m=0,1; m=1,\ldots,M\} \), the set of all \(2^M \) possible score patterns. With either formulation it is easy to verify that local independence holds, that is for any \(\theta \in (-\infty, \infty) \),

\[\Pr\{X=x|\theta\} = \prod_{m=1}^{M} \Pr\{X_m=x_m|\theta\}. \tag{5} \]

Our conjunctive extension replaces the Rasch kernel in (4) with

\[\Pr \{X=x|\theta\} = \nu(\theta) \exp\{\sum_{m=1}^{M} x_m(\theta - \beta_m)\}, \tag{6} \]

where

\[\nu(\theta) = \left[\sum_{m=1}^{M} u_m(\theta - \beta_m) \right]^{-1}. \tag{7} \]
Conjunctive Kernels

and

\[R \subseteq G = \{(m_1, \ldots, m_s) : (1, \ldots, M) ; s=1, \ldots, M\}. \]

(We need to consider subsets of \(G \) because the kernel (6) is not identified when \(R=G \) as we will show below.) As a first example, a conjunctive kernel corresponding to Figure 1 would have \(R=\{(1,2),3,\ldots,M\} \). As a second example, two models that Fischer and Formann (1982, equations (16) and (17)) describe for Rorschach plate responses involves 10 pairs of subitems, \((1a,1b,\ldots,10a,10b)\), such that each pair behaves conjunctively. The appropriate restricted summation set for that model would be \(R=\{1a,1b,(1a,1b),2a,2b,(2a,2b),\ldots,10a,10b,(10a,10b)\} \). Fischer and Formann motivate their model as an additive Rasch model involving 20 physical items as well as 10 technical items. (Restrictions of model (6) could be thought of in a similar way, once it is noticed that all physical items may not necessarily appear, whereas many other technical items may appear.)

We point out that conjunctive Rasch kernels violate local independence in general, even though the technical and physical items may be factored in the numerator of (6) into

\[
\exp\{\sum_{R \subseteq m_1}^{R \subseteq m_s} x_m (\theta-\beta_{m_1} \ldots m_s)\} = \prod_{R \subseteq m_1}^{R \subseteq m_s} \exp\{x_m (\theta-\beta_{m_1} \ldots m_s)\}.
\]

The local dependence is determined in the denominator of (6) through the functional dependence among the physical and technical items. For example, if \(M=2 \) and \(R=\{1,2,(1,2)\} \) then
\[v(\theta) = \frac{1}{R} \sum_{u_1=0}^{1} \sum_{u_2=0}^{1} \exp\{u_1(\theta - \beta_1) + u_2(\theta - \beta_2) + u_1u_2(\theta - \beta_{12})\} \]

\[= 1 + \exp\{\theta - \beta_1\} + \exp\{\theta - \beta_2\} + \exp\{\theta - \beta_1 - \beta_2\} \]

\[+ (\theta - \beta_2) + (\theta - \beta_{12}) \]

\[\neq v_1(\theta)v_2(\theta)v_{12}(\theta), \quad (8) \]

for any \(v_1 \) and \(v_{12} \). As a result,

\[\Pr_{R\{X_2=x_2|X_1=0;\theta\}} = \frac{\exp\{(\theta - \beta_2)x_2\}}{1 + \exp\{\theta - \beta_2\}}, \]

but

\[\Pr_{R\{X_2=x_2|X_1=1;\theta\}} = \frac{\exp\{(2\theta - \beta_2 - \beta_{12})x_2\}}{1 + \exp\{2\theta - \beta_2 - \beta_{12}\}} \neq \Pr_{R\{X_2=x_2|X_1=0;\theta\}}. \quad (9) \]

Given the conjunctive Rasch kernel (6), we have

\[\Pr_{R\{X=x\}} = \exp\{-\sum_{R \in M_1} \ldots \sum_{R \in M_s} \beta_{m_1} \ldots \beta_{m_s}\} \int_{-\infty}^{\infty} v(\theta) \exp\{\theta t(x)\} dG(\theta) \]

\[= \Pr_{R\{X=x, T=t(x)\}}, \quad (10) \]

where

\[t(x) = \sum_{R \in M_1} \ldots \sum_{R \in M_s} x_{m_1} \ldots x_{m_s}. \quad (11) \]

By the factorization theorem \(t_R \) is a sufficient statistic for \(\theta \). In addition, \(R \) can be chosen so that either \(t_R \) is additive, satisfying the Rasch model, or multiplicative, yielding a class of conjunctive/locally dependent models indexed by \(R \). Finally, it is easy to verify that kernels satisfying (6)
are well-defined probability functions for all \(R \subseteq G \) and real \(\beta_{m_1 \ldots m_s} \). (For any \(x \) the numerator is positive and the denominator is simply the sum of all possible numerators.)

(A potentially puzzling point should be clarified here. In most treatments of item response models, local independence is treated as an axiom, leading to kernels that are expressible as individual item probability products. In contrast, kernel (6) has been derived not from local independence but from the requirement that item cross-products appear in the sufficient statistic for \(\theta \). It only happens that the numerator of (6) can be analyzed into a product involving one factor for each physical and technical item. Fortunately, only the numerator of (6) can be factored into such a product, not the entire expression. Thus, (6) implies local dependence, in line with the cognitive dependence that should be associated with conjunctive processes as in Figure 1.)

The forms that item response functions take for conjunctive models are relatively complicated. Unlike the additive locally independent case (5), which leads to the simple and well-known item response functions,

\[
Pr\{X_m = 1 | \theta\} = \frac{1}{1 + \exp(-\theta \beta_m)} , \quad m=1, \ldots, M,
\]

the conjunctive/locally dependent item response functions satisfying (6) cannot in general be simplified beyond the basic form,

\[
Pr\{X_m = 1 | \theta\} = v_R(\theta) \sum_{X \in X} \exp\{ \sum_{x \in X} (\theta - \beta_{m_1 \ldots m_s} \ldots m_s)\}, \quad m=1, \ldots, M.
\]

However, for some simple conjunctive kernels such as in the above first (Figure 1) example, item response functions are correspondingly simpler. For that example, it can be shown that if \(m=3,4,\ldots, M \), then
\[\Pr\{X_m=1|\theta\} = \frac{1}{1+\exp\{\theta-\beta_m\}}, \]

in line with the additive case, but if \(m=1 \) or \(2 \) then

\[\Pr\{X_m=1|\theta\} = \frac{\exp\{\theta-\beta_m\}(1+\exp\{2\theta-\beta_m-\beta_{12}\})}{1+\exp\{\theta-\beta_3\} + \exp\{\theta-\beta_m\}(1+\exp\{2\theta-\beta_3-\beta_{12}\})}. \]

Estimation. This section follows developments by Andersen (Andersen, 1982) and Kelderman (Kelderman, 1984) for the Rasch model. (\(R \) subscripts are omitted in the sequel.) We have,

\[\Pr\{T=t\} = C(t) \int_{-\infty}^{\infty} \nu(\theta) \exp\{\theta t\} dG(\theta), \]

where

\[C(t) = \sum_{\mathbf{m}_1 \ldots \mathbf{m}_s} \exp\{-\sum_{R} x_{R \mathbf{m}_1 \ldots \mathbf{m}_s} \beta_{R \mathbf{m}_1 \ldots \mathbf{m}_s}\} \]

and

\[T=\{\mathbf{x}:\sum_{R} x_{R \mathbf{m}_1 \ldots \mathbf{m}_s} = t\}. \]

Thus from (9),

\[\Pr\{\mathbf{x}=\mathbf{x}|T=t\} = \frac{1}{C(t)} \exp\{-\sum_{R} x_{R \mathbf{m}_1 \ldots \mathbf{m}_s} \beta_{R \mathbf{m}_1 \ldots \mathbf{m}_s}\}, \mathbf{x} \in \mathbf{x}, \quad (12) \]

\[= 0 \text{ elsewhere.} \]

Equation (12) leads to consistent item parameter estimates and hypothesis tests, following known procedures for both additive Rasch model estimation (Rasch, 1980) and multinomial hypothesis testing (Landis & Koch, 1979). As an estimation example, if the model in Figure 1 held with \(M=4 \), then \(t=x_1x_2+x_3x_4 \) would be a sufficient statistic for \(\theta \) and the following equation would hold:
where $\chi(j) = -\log[C(j)]$ (j=0,1,2). (For this example there are four possible values of the sufficient statistic: $t=0,1,2$, and 3; $t=3$ is not included in (13) because only one possible pattern, $(1,1,1,1)$, could yield $t=3$, hence $\Pr\{X=x\mid T=3\}$ would be completely determined. Also, the design matrix in (13) is not of full rank, although this could easily be remedied through reparameterization.) Thus, consistent estimates for the item parameters can be easily obtained after replacing the left-hand side of (13) with logs of corresponding relative frequencies (although required sample sizes could be very large for some items). For some restricted kernels, more elegant estimation procedures seem possible, such as conditional maximum likelihood approaches following those of Andersen (Andersen, 1982, p. 245 ff.) for the additive Rasch kernel.
As (13) suggests, four-fold item contingencies can always be explained completely with enough conjunctive item parameters. Furthermore, it is easy to show that any M-fold item contingencies can be explained perfectly by some conjunctive Rasch model. In this sense conjunctive Rasch models are as general as would ever be necessary.

Equations of the form (13) can be easily used to show that Rasch conjunctive models with \(R=G \) are unidentifiable. For example, 7 additive and technical item parameters would be involved when \(M=3 \) and \(R=G \), although only 6 conditional probabilities could be obtained that are not necessarily 0 or 1. Thus, the 6 x 7 design matrix in the version of (13) with \(R=G \) would have rank of at most 6 and consequently the 7 parameters could never be identified. Restricted conjunctive Rasch models may also be unidentifiable, especially when subsets of the total number of items must be used to estimate parameters, for example when some of the \(2^M \) possible cells in an M-item frequency table are empty. In such instances graph-theoretic methods due to Fischer (1981) could be used to establish identifiability conditions and conjunctive models could be chosen accordingly.

For tests of even moderate length, the number of possible conjunctive item parameters can be prohibitively large, due to the small cell sizes expected in corresponding \(2^M \) frequency tables. The problem can be alleviated by imposing theoretical restrictions on the structure, as in the above Rorschach example. Also, very simple conjunctive structures may be assumed, such as the involvement of pair-wise item cross-products only, and simple methods may be used to uncover them, such as looking only at three-way item contingencies to evaluate a given cross-product parameter. This latter approach will be illustrated in the following sections. Even so, the simple estimation and hypothesis testing procedures described here would have major defects for the global treatment of large test structures.
Turning next to ability estimation, we will simply point out that unique maximum likelihood estimates of θ exist, given the item parameters, under any conjunctive version of (6) and (7). The existence of such estimates for all t except $t=0$ and $t=(1,1,\ldots,1)$ follows because the kernel (6) is a distribution from the one-parameter exponential family (see Andersen, 1980, Section 3.3). Given such unique estimates as well as the existence of unique item parameter estimates already illustrated, feasible ability estimation procedures are assured. (The argument parallels that of Birnbaum, 1968, p. 458).

Hypothesis testing. We will illustrate one of several possible approaches for which the latent trait distribution need not be specified. For any $R \in G$ we have,

\[
Pr\{X=x\} = Pr\{X=x|T=t(x)\} Pr\{T=t(x)\}
\]

\[
= \frac{\prod_{u \in T} \sum_{\beta \in S} \exp\{-\sum_{m} \beta_m \} \sum_{\mu \in T} \exp\{-\sum_{m} \mu_m \}}{\sum_{\beta \in S} \exp\{-\sum_{m} \beta_m \} \sum_{\mu \in T} \exp\{-\sum_{m} \mu_m \}}
\]

(14)

Turning again to the Figure 1 example, when $M=3$ and $t=1$ (14) yields

\[
Pr\{X=(0,0,1)\} = \frac{e^{-\beta_3}}{3e^{-\beta_3} + e^{-\beta_12}} [Pr\{X=(0,0,1)\} + Pr\{X=(1,0,1)\} + Pr\{X=(0,1,1)\} + Pr\{X=(1,1,0)\}] = 0,
\]

(15a)

\[
Pr\{X=(1,0,1)\} = \frac{e^{-\beta_3}}{3e^{-\beta_3} + e^{-\beta_12}} [Pr\{X=(0,0,1)\} + Pr\{X=(1,0,1)\} + Pr\{X=(0,1,1)\} + Pr\{X=(1,1,0)\}] = 0,
\]

(15b)

\[
Pr\{X=(0,1,1)\} = \frac{e^{-\beta_3}}{3e^{-\beta_3} + e^{-\beta_12}} [Pr\{X=(0,0,1)\} + Pr\{X=(1,0,1)\} + Pr\{X=(0,1,1)\} + Pr\{X=(1,1,0)\}] = 0,
\]

(15c)
and

\[
\Pr\{X=(1,1,0)\} = \frac{\beta_{12}}{3e} \left[\Pr\{X=(0,0,1)\} + \Pr\{X=(1,0,1)\} + \Pr\{X=(0,1,1)\} + \Pr\{X=(1,1,0)\} \right] = 0,
\]

(15d)

When \(t = 0 \) (14) yields

\[
\Pr\{X=(0,0,0)\} = \frac{1}{3} \left[\Pr\{X=(0,0,0)\} + \Pr\{X=(0,1,0)\} + \Pr\{X=(1,0,0)\} \right] = \Pr\{X=(0,0,0)\} = \Pr\{X=(1,0,0)\}
\]

(15e)

(15f)

(15g)

Now since consistent estimates of \(\beta_{12} \) and \(\beta_3 \) exist, standard methods can be used to test equations (15) by simultaneously evaluating any exhaustive, linearly independent set of resulting functions. (e.g., Koch & Landis, 1977).

For example, (15) may be tested by evaluating

\[
H_0: f(\hat{p}) = 0,
\]

where \(f_1(\hat{p}) \) through \(f_3(\hat{p}) \) are the left-hand sides of (15a) through (15c), respectively, \(f_4(\hat{p}) = \Pr\{X=(0,0,0)\} - \Pr\{X=(0,1,0)\} \), \(f_5(\hat{p}) = \Pr\{X=(0,1,0)\} - \Pr\{X=(1,0,0)\} \), \(f_6(\hat{p}) = \Pr\{X=(1,0,1)\} \), \(f_7(\hat{p}) = \Pr\{X=(0,0,1)\} \), \(f_8(\hat{p}) = \Pr\{X=(0,1,1)\} \), \(f_9(\hat{p}) = \Pr\{X=(1,1,0)\} \), \(f_{10}(\hat{p}) = \Pr\{X=(0,0,0)\} \), \(f_{11}(\hat{p}) = \Pr\{X=(0,1,0)\} \), \(f_{12}(\hat{p}) = \Pr\{X=(1,0,0)\} \), where \(T \) denotes transposition. (In the \(f_j(\hat{p}) \) \(\beta_{12} \) and \(\beta_3 \) are replaced with appropriate functions of \(\hat{p} \) based on an expression like (13).) The test statistic is

\[
f(\hat{p})^T S_f f(\hat{p}),
\]

where \(\hat{p} \) is the vector of relative frequencies corresponding to \(\hat{p} \), and

\[
S_f = \frac{1}{N} \left[\frac{\partial f_j}{\partial p_j} \right] ^T \hat{p} \left[\frac{\partial f_j}{\partial p_j} \right] \left[\frac{\partial f_j}{\partial p_j} \right].
\]
where \((D_\hat{\theta})_{i i} = \hat{p}_i, (D_\theta)_{i j} = 0 \) for \(i \neq j; j = 1, \ldots, 7 \), and \(N_\theta \) is the total observed frequency associated with the relative frequencies in \(\hat{p} \). (\(N_\hat{\theta} \) is the same as overall sample size unless some individuals have some missing item responses.) The sampling distribution for the test statistic is asymptotically chi square with 5 degrees of freedom (as sample size increases--sample size should be sufficiently large that \(f \) is approximately 5-variate normal).

Other conjunctive and additive Rasch models may be tested similarly.

Potential conjunctive model utility. We will briefly illustrate the potential for improved ability estimation, the potential for uncovering conjunctive structure, and some preliminary evidence that test data are nonadditive.

Several indices of estimator precision could be used to compare conjunctive with compensatory model performance. These include analytic as well as Monte Carlo measures of ability-estimator squared error, efficiency, bias, and how precisely the estimators rank-order individuals with respect to latent traits. We have chosen an analytic measure of rank-ordering precision, namely the product-moment correlations of latent traits with Bayes estimates (based on squared-error-loss), equivalent to the validity (Lord & Novick, 1968) of Bayes estimators. (The Bayes estimates to be evaluated are based on prespecified, discrete latent trait distributions defined on a small set of points.) We chose this measure because Bayes estimate-latent trait correlations are the best possible validity coefficients for any model (Rao, 1965, p. 265), hence useful global indices of optimal test efficiency. In addition, these correlations may be nearly achievable in practice, given the large test sizes available in educational
testing applications. Finally, Bayes estimates and their validities can be easily machine-computed and evaluated (given a discrete prior on a small point set) without using Monte Carlo methods.

Returning once again to the Figure 1 case, we will compare Bayes validities from three kernels, each based on $M = M_v + M_I + M_{VI}$ items. The compensatory comparison kernel has a sufficient statistic of the form,

$$
\sum_{m=1}^{M_v + M_I + M_{VI}} x_m
$$

and equivalent items with zero-valued parameters. The two conjunctive kernels to be compared both involve three equivalent item sets—M_v items of the V type, M_I items of the I type and M_{VI} of the global type—along with zero-valued item parameters. The first conjunctive kernel has the sufficient statistic,

$$
\sum_{m=1}^{M_v} \sum_{n=M_v+1}^{M_v+M_I} x_m x_n + \sum_{m=M_v+1}^{M_v+M_{VI}} x_m
$$

and the second conjunctive kernel has the sufficient statistic,

$$
\sum_{m=1}^{M_v} \sum_{n=M_v+1}^{M_v+M_{VI}} x_m x_n + \sum_{m=M_v+1}^{M_v+M_I+M_{VI}} x_m
$$

Kernel (18) extends (17) to include items that are both compensatory and conjunctive. Equation (18) is considerably less restrictive than (17) and more in line with the configural model (2).

Insert Table 1 about here
Table 1 gives validity comparisons for kernels (16), (17), and (18), six different latent trait distributions, and three scale size configurations: $M_v = M_I = M_{VI} = 5, 10, \text{and } 15$. The results range from much higher conjunctive model validity than additive model validity for low-variance latent trait distributions to slightly higher additive model validity for the highest-variance distribution.

In evaluating the potential for uncovering conjunctive structure, we will provide performance data from hypothesis tests that are similar to the test illustrated in the previous section. The tests evaluate two prespecified structures among a pair of items, labelled items 1 and 2 below: additive pair-wise structure satisfying (16) and purely conjunctive pair-wise structure satisfying (17). Although only the structure between items 1 and 2 will be of interest, a third item, labelled item 3 below, will be included in order to resolve the two structures empirically.

The test for pair-wise additivity evaluates kernels of the form,

$$\Pr\{X=x|\theta\} = v(\theta)\exp\left\{\sum_{m=1}^{3} x_m (\theta - \beta_m)\right\}, \quad (19)$$

whereas the test for pure pair-wise conjunctivity evaluates kernels of the form,

$$\Pr\{X=x|\theta\} = v_R(\theta)\exp\{x_1 x_2 (\theta - \beta_{12}) + x_3 (\theta - \beta_3)\}. \quad (20)$$

To the extent that these two tests reject kernels when appropriate, it should be possible to partition pairs of scale items into the V, I, and VI types suggested by Figure 1. However, additive and conjunctive kernels for pairs of items satisfying (18) cannot be directly tested using item triplets, because (18) requires more estimated parameters than three-way item contingencies can yield. Even so, if both kernels (19) and (20) were rejected an additive and conjunctive kernel satisfying (18) would be implied.
Each entry in Table 2 gives correct rejection proportions among 100 .05-level tests. The first two columns correspond to tests for the additivity associated with (19), given either conjunctivity and additivity as in (18) or pure conjunctivity as in (20). The last two columns correspond to tests for the conjunctive kernel (20), given either pure additivity as in (19) or conjunctivity and additivity as in (18). Rows correspond to different latent trait distributions as in Table 1, and each entry in parentheses gives correct rejection proportions among 100 tests based on 1,000, 5,000, and 10,000 simulated observations, from left to right.

Table 2 shows that even 10,000 observations are not enough to yield high correct rejection rates when latent trait distributions have low variances, especially for the additivity test. However, correct rejection rates are very high when latent trait distributions have high variances. This makes sense because individuals having extreme latent trait values will tend to show much different test patterns for the three models than individuals with less extreme values. Overall Type I error rates for the tests of (19) and (20) were obtained by noting whether or not the data for columns one and two of Table 2 led to rejections of models (19) and (20), respectively. These Type I error rates were .047 and .054, respectively.

As the results in Table 2 clearly show, the tests for resolving items into additive and conjunctive subsets could lead to a substantial proportion of incorrect item classifications. Moreover, the incorrect classification rates would be even higher if more complicated conjunctive structures existed involving more than two component processes. These problems
may be lessened if enough correct classifications can be obtained in practice to suggest a theoretical basis for grouping items, given their cognitive content. For example, if the most significant items included in an empirically determined analogical reasoning component clearly contained a pure vocabulary element, correct decisions could be made about other items that were less significant based on their vocabulary content. Whether such theoretical cues will in fact aid in correctly resolving items remains to be seen. (Of course, matters would be simpler from a methodological viewpoint if cognitive theory suggested certain structures at the outset and the above methods were used only to check them—practitioners, on the other hand, might welcome these methods as exploratory aids in uncovering conjunctive structures.)

Although detailed empirical results are beyond this article's scope, two preliminary results seem promising. We have performed additivity tests for all item triplets based on 1,000 scores from a 50-item verbal analogies test (from the Spring, 1970 normative sample of the Level 3, Form A, Verbal School and College Ability subtest, provided by Educational Testing Service) as well as a 42-item personality scale (the Responsibility Scale from the CPI (Megargee, 1972)—respondents were high school males). Among the respective 19,600 and 11,480 triplet tests performed at the .01 level, 4,378 or 37% of the verbal analogies results were significant and 2,092 or 18% of the personality results were significant. Since Rasch nonadditivity far exceeded chance levels in these data, it seems that fitting conjunctive models could improve trait estimation efficiency. Moreover, for scales such as these, where there is reason to expect some conjunctive structure, fitting simple conjunctive models may be a useful alternative to the current practice of deleting items that do not fit a given additive model.
Other Conjunctive Kernels

In this section, conjunctive extensions will be first be given for three other compensatory item response models: the binomial model,

$$\Pr\{X=x\} = \int_0^1 \prod_{m=1}^M \pi_m^{x_m} (1-\pi_m)^{1-x_m} dH(\pi),$$

the logistic model,

$$\Pr\{X=x\} = \int_{-\infty}^\infty \prod_{m=1}^M \frac{\exp\{x_m \alpha_m (\theta-\beta_m)\}}{1+\exp\{x_m \alpha_m (\theta-\beta_m)\}} dS(\theta),$$

and the general item response model,

$$\Pr\{X=x\} = \int_{-\infty}^\infty \prod_{m=1}^M \tau_m(\theta)^{x_m} (1-\tau_m(\theta))^{1-x_m} dU(\theta),$$

where the monotone increasing item response functions, $\tau_m(\theta)$, satisfy $0<\tau_m(\theta)<1$. The conjunctive extensions are respectively,

$$\Pr\{X=x\} = \int_0^1 \gamma(\pi) \prod_{\mathcal{R}} \pi_{m_1}^{x_{m_1}} \cdots x_{m_s}^{x_{m_s}} dH(\pi),$$

$$\Pr\{X=x\} = \int_{-\infty}^\infty \delta(\theta) \exp\{\Sigma \alpha_{m_1} \cdots \alpha_{m_s} \} \prod_{\mathcal{R}} \tau_{m_1(\theta)}^{x_{m_1}} \cdots \tau_{m_s(\theta)}^{x_{m_s}} (\theta-\beta_{m_1} \cdots \beta_{m_s}) dS(\theta),$$

and

$$\Pr\{X=x\} = \int_{-\infty}^\infty \epsilon(\theta) \prod_{\mathcal{R}} \tau_{m_1(\theta)}^{x_{m_1}} \cdots \tau_{m_s(\theta)}^{x_{m_s}} dU(\theta),$$

where γ, δ and ϵ are normalizing functions and H, S, and U are distribution functions, analogous to ν and G respectively, for the conjunctive Rasch model.
Among these conjunctive kernels the binomial with $R=G$ is the least interesting, because the values of its sufficient statistic are in one-to-one correspondence with the usual number-correct binomial statistic, hence it has no potential for improved precision over the usual binomial model. However, restricted versions are more useful as for example in (17) and (18), which are actually restricted conjunctive binomial kernels.

For the conjunctive logistic kernel, similar arguments to those given earlier for the Rasch conjunctive model identify

$$
\sum_{R} a_{m_1 \ldots m_s} x_{m_1} \ldots x_{m_s}
$$

(24)

as a sufficient statistic for θ (given the $a_{m_1 \ldots m_s}$). Functionally, the $a_{m_1 \ldots m_s}$ can provide for differential weights in item cross-product terms as well as raw item terms. However, the logistic extension has the same liabilities relative to the Rasch extension as does the logistic model relative to the Rasch model. For example, the distribution of X given t is not independent of θ for the logistic conjunctive kernel.

Finally, it may be shown that the above four discrete conjunctive kernels follow the same generality hierarchy as their compensatory counterparts. That is, for the following ordering of conjunctive kernels---(1) binomial, (2) Rasch, (3) logistic and (4) general---each among models (1) through (3) is a special case of its successors.

Conjunctive extensions of kernels for the classical test theory model may also be constructed, as will be shown next. Using the preceding notation, the classical model requires that X have conditional expectation $E[X|\theta]=\sigma^2 e_1 m$, where $\sigma^2 e_1 m$ is the classical model item error variance and $e_1 m$ is an M-vector of ones.
Now it is well known that the classical model requirements are satisfied when X is continuous and its M-variate kernel density has the normal form,

$$f(x|\theta) = \zeta(\theta, \sigma_e^2)\exp\{-\frac{1}{2}(x-I_M^T\theta)^T V^{-1}(x-I_M^T\theta)\}, \tag{25}$$

where $V = I_M \sigma_e^2$, I_M is the $(M \times M)$ identity matrix, and

$$\zeta(\theta, \sigma_e^2) = \left[\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \exp\{-\frac{1}{2}(w-I_M^T\theta)^T V^{-1}(w-I_M^T\theta)\}du_1\ldots du_M\right]^{-1}.$$

Also, it can be shown that if (25) holds then $x_1^{+} + \ldots + x_M$ is sufficient for θ. We introduce the following general conjunctive extension of the normal kernel (25). For $w^T = (x_1, \ldots, x_M, x_1^2, \ldots, x_1^{2\cdot}, \ldots, x_M^2)$, let

$$g(x|\theta) = \zeta(\theta, \sigma_e^2)\exp\{-\frac{1}{2}(w-I_M^T\theta)^T V^{-1}(w-I_M^T\theta)\},$$

where $V = I_M \sigma_e^2$ and

$$\zeta(\theta, \sigma_e^2) = \left[\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \exp\{-\frac{1}{2}(t-I_M^T\theta)^T V^{-1}(t-I_M^T\theta)\}du_1\ldots du_M\right]^{-1},$$

where $t^T = (u_1, \ldots, u_M, u_1u_2, \ldots, u_1^{2\cdot}u_M)$. It may be shown that if (26) holds $g(x|\theta)$ is a bona fide probability density; $x_1^{+} + \ldots + x_M + x_1^2x_2^{+} \ldots + x_1x_2^{2\cdot} + \ldots x_M^{2\cdot}$ is sufficient for θ; the items are locally dependent (note that ζ cannot be analyzed into physical and technical item factors due to functional dependencies among the w_m, just as ν cannot be so factored for the Rasch case—the two kernels are thus very closely related); and although (26) may not be adequately identified as it stands (as with the unrestricted conjunctive Rasch kernel) it may be restricted as in the previously described
discrete cases to yield sufficient statistics of the form (11)--in particular if any subvector of w and corresponding submatrix of V_w replaces w and V_w respectively in (26), then terms in the sufficient statistic for θ will correspond to the elements retained in the subvector. Also, (26) may be extended to include weighted-sum sufficient statistics of the form (24) by replacing V_w with a nondiagonal positive definite matrix. Finally, estimation and hypothesis testing seem feasible given the similarity of (26) to the multivariate normal kernel and the fact that (26) belongs in the multi-parameter exponential family.
Conclusion

Future directions. Conjunctive model aspects requiring more work include resolving identifiability and capitalizing-on-chance problems, developing efficient estimation procedures such as conditional maximum likelihood for the Rasch extensions, formulating extensions with guessing provisions for multiple choice tests, and determining whether these models are useful in practice. Conjunctive models might also be used to resolve certain issues regarding dimensionality, item response function form, and local dependence. For example, all five kernels presented seem to imply that a model may be both unidimensional and locally dependent, in contrast to some seemingly sensible assertions (Andrich, 1984). Finally, a closer look at the conjunctive kernels that have only been briefly mentioned here could be useful. For example, it seems likely that the conjunctive extensions of the normal ogive and Thurstonian choice models could be based on variants of kernel (26), or its continuous logistic analog (Yellot, 1977). Such extensions could provide some needed flexibility in the available models for choice data. Thus, with the continuous as well as discrete kernels presented, many questions remain unanswered.

Summary. First, an item response theory has been introduced that includes multiplicative sufficient statistics based on locally dependent models, which have a conjunctive cognitive structure interpretation. Second, it has been shown that consistent estimation and ad hoc hypothesis testing procedures exist for conjunctive models and that more efficient methods seem possible. Third, these ad hoc procedures have been used to show that conjunctive models may have promise for constructing more efficient tests and uncovering conjunctive structure in large samples. Finally, it is clear that major work remains before concluding whether or not conjunctive models are useful in practice.
References

<table>
<thead>
<tr>
<th>Latent Trait Distributions</th>
<th>Additive(16)</th>
<th>Conjunctive(17)</th>
<th>Conjunctive and additive (18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasinormal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.75)</td>
<td>(59,72,79)</td>
<td>(83,93,95)</td>
<td>(85,95,97)</td>
</tr>
<tr>
<td>(1.5)</td>
<td>(82,89,93)</td>
<td>(91,95,96)</td>
<td>(93,96,97)</td>
</tr>
<tr>
<td>(3.0)</td>
<td>(93,97,98)</td>
<td>(94,96,97)</td>
<td>(96,97,97)</td>
</tr>
<tr>
<td>Uniform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.75)</td>
<td>(72,83,88)</td>
<td>(91,96,96)</td>
<td>(92,97,98)</td>
</tr>
<tr>
<td>(1.5)</td>
<td>(90,95,96)</td>
<td>(94,96,97)</td>
<td>(96,97,97)</td>
</tr>
<tr>
<td>(3.0)</td>
<td>(96,98,99)</td>
<td>(95,97,97)</td>
<td>(96,97,98)</td>
</tr>
</tbody>
</table>

a Latent trait distributions are discrete with positive probability on 5 points: -\(\theta\), -\(\theta/2\), 0, \(\theta/2\) and \(\theta\). Numbers in parentheses below this heading are values of \(\theta\). Quasinormal distributions assign probabilities of .07, .24, .38, .24, and .07 respectively to the 5 points, whereas uniform distributions assign .2 to each point.

b The numbers to the right of kernel labels are the text equations that describe the kernels fully.

c Each triplet gives Bayes estimate-latent trait correlations based, from left to right, on 5, 10, and 15 items of each type (\(M_v\), \(M_l\), and \(M_{vl}\) in equations 16, 17, and 18).
Table 2
Correct Rejection Percentages for Additive and Conjunctive Tests (among 100 .05 level tests for each entry).

<table>
<thead>
<tr>
<th>Latent Trait Distributions<sup>a</sup></th>
<th>Test for Additive Model(16) When the True Model is Quasinormal</th>
<th>Test for Additive Model(16) When the True Model is (17)</th>
<th>Test for Conjunctive Model(17) When the True Model is (18)</th>
<th>Test for Conjunctive Model(17) When the True Model is (18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasinormal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.75)</td>
<td>(4, 9, 9)<sup>b</sup></td>
<td>(8,22, 44)</td>
<td>(25, 70, 93)</td>
<td>(17, 84, 99)</td>
</tr>
<tr>
<td>(1.5)</td>
<td>(13, 35, 66)</td>
<td>(20,83,100)</td>
<td>(92,100,100)</td>
<td>(98,100,100)</td>
</tr>
<tr>
<td>(3.0)</td>
<td>(47,100,100)</td>
<td>(30,98,100)</td>
<td>(100,100,100)</td>
<td>(100,100,100)</td>
</tr>
<tr>
<td>Uniform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(.75)</td>
<td>(5, 11, 23)</td>
<td>(11,46, 76)</td>
<td>(30,100,100)</td>
<td>(70,100,100)</td>
</tr>
<tr>
<td>(1.5)</td>
<td>(33, 98, 99)</td>
<td>(49,98,100)</td>
<td>(100,100,100)</td>
<td>(100,100,100)</td>
</tr>
<tr>
<td>(3.0)</td>
<td>(91,100,100)</td>
<td>(59,99,100)</td>
<td>(100,100,100)</td>
<td>(100,100,100)</td>
</tr>
</tbody>
</table>

^a Latent trait distributions are discrete with positive probability on 5 points: -θ, -θ/2, 0, θ/2 and θ. Numbers in parentheses below this heading are values of θ. Quasinormal distributions assign probabilities of .07, .24, .38, .24, and .07 respectively to the 5 points, whereas uniform distributions assign .2 to each point.

^b Each triplet gives correct rejection percentages for .05 level chi-square tests from simulations based, from left to right, on 1000, 5000, and 10,000 observations.
Figure 1
A Simple Conjunctive Model
ONR Distribution List
University of South Carolina/Jannarone

Personnel Analysis Division,
AF/MPXA
5C360, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

Dr. Phipps Arabie
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Eva L. Baker
UCLA Center for the Study
of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code N711
Naval Training Systems Center
Orlando, FL 32813

Dr. Bruce Bloxom
Administrative Sciences
Code 54B1
Navy Postgraduate School
Monterey, CA 93943-5100

Dr. R. Darrell Bock
University of Chicago
NORC
6030 South Ellis
Chicago, IL 60637

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstraat
1120 Brussels, BELGIUM

Dr. Robert Breaux
Code N-095R
Naval Training Systems Center
Orlando, FL 32813

Dr. Robert Brennan
American College Testing
Programs
P.O. Box 168
Iowa City, IA 52243

Dr. Patricia A. Butler
OERI
555 New Jersey Ave., NW
Washington, DC 20208

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514
Dr. Robert Carroll
OP 01B7
Washington, DC 20370

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. James A. Earles
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Robert Carroll
OP 01B7
Washington, DC 20370

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. James A. Earles
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. John M. Eddins
University of Illinois
252 Engineering Research Laboratory
103 South Mathews Street
Urbana, IL 61801

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser
Lawrence, KS 66045

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. Benjamin A. Fairbank
Performance Metrics, Inc.
5825 Callaghan
Suite 25
San Antonio, TX 78228

Dr. Leonard Feldt
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52240
Dr. William E. Nordbrock
FMC-ADCO Box 25
APO, NY 09710

Dr. Melvin R. Novick
356 Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Director Manpower and Personnel
Laboratory,
NPRDC (Code 06)
San Diego, CA 92152-6800

Library, NPRDC
Code P201L
San Diego, CA 92152-6800

Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

Office of Naval Research,
Code 1142PT
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Special Assistant for Marine
Corps Matters,
ONR Code OOMC
800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Roger Pennell
Air Force Human Resources
Laboratory
Lowry AFB, CO 80230

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235

Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152-6800

Dr. Robert Sasmor
HQDA DAMA-ARL
Pentagon, Room 3E516
Washington, DC 20310-0631
USA

Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. W. Steve Sellman
OASD(MRA&L)
2B269 The Pentagon
Washington, DC 20301
University of South Carolina/Jannarone

Dr. Kazuo Shigemasu
7-9-24 Kugenuma-Kaigan
Fujusawa 251
JAPAN

Dr. William Sims
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. H. Wallace Simsiko
Manpower Research
and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Dr. Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

Maj. Bill Strickland
AF/MPXOA
4E168 Pentagon
Washington, DC 20330

Dr. Hariharan Swaminathan
Laboratory of Psychometric and
School of Education
University of Massachusetts
Amherst, MA 01003

Mr. Brad Sympson
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research
Laboratory
Urbana, IL 61801

Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820

Dr. Robert Tsutakawa
University of Missouri
Department of Statistics
222 Math. Sciences Bldg.
Columbia, MO 65211

Dr. Ledyard Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820

Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E. Street, NW
Washington, DC 20415

Dr. David Vale
Assessment Systems Corp.
2233 University Avenue
Suite 310
St. Paul, MN 55114

Dr. Frank Vicino
Navy Personnel R&D Center
San Diego, CA 92152-6800
END
10-86
DTIC