FINAL
TEST AND DEMONSTRATION REPORT
FOR THE
PROTOTYPE DESIGN ROTATOR ADAPTER

Prepared For:
Logistics Support Laboratory
U.S. Army Belvoir RD&E Center
Fort Belvoir, Virginia 22060-5606

Contract No. DAAK70-81-D-0109
Task Order No. 0199

UNCLASSIFIED

Submitted By:
VSE Corporation
2550 Huntington Avenue
Alexandria, Virginia 22303

August 1986

VSE CORPORATION
2550 HUNTINGTON AVENUE
ALEXANDRIA, VIRGINIA 22303
FINAL
TEST AND DEMONSTRATION REPORT
FOR THE
PROTOYPE DESIGN ROTATOR ADAPTER

Prepared For:
Logistics Support Laboratory
U.S. Army Belvoir RD&E Center
Fort Belvoir, Virginia 22060-5606

Contract No. DAAK70-81-D-0109
Task Order No. 0199

UNCLASSIFIED

Submitted By:
VSE Corporation
2550 Huntington Avenue
Alexandria, Virginia 22303

August 1986
APPROVAL SHEET

TEST REPORT
FOR THE
PROTOTYPE DESIGN ROTATOR ADAPTER

CONTRACT NO. DAAK70-81-D-0109
TASK ORDER NO. 0199

PREPARED BY: [Signature] (Sr. Project Engineer) DATE: 28 Aug 86

CHECKED BY: [Signature] (Project Manager) DATE: 29 Aug 1986

CHECKED BY: [Signature] (Quality Control) DATE: 29 Aug 86

APPROVED BY: [Signature] (Group Manager) DATE: 29 Aug 1986
BACKGROUND

The U.S. Army has identified a requirement to rotate 20 foot and 40 foot ISO containers during loading and unloading operations using the Army 250 ton crane P&H Model 6250 and 20 foot and 40 foot Line Fast Corp. Model 7127 spreader bars. To accomplish the mission a Bromma Model EH3 Rotator was installed. The rotator is suspended by the double hook blocks of the 250 ton crane. In its present operating configuration, the spreader bar is attached to the rotator by slings. The sling attachments permit torsional oscillations which are unacceptable.

DESIGN DESCRIPTION

The rotator adapter is a device that will dampen or eliminate the torsional oscillation present in the container spreader sling arrangement. The rotator adapter would connect the Bromma Model Number EH3 Rotator to the Line Fast Corp. Model Number 7127, 20 foot and 40 foot spreader bars.

The Rotator Adapter consists of an I-beam spreader bar with a cross beam at each end. A clevis is centrally located on top of the center I-beam to connect to the rotator. The 20 foot spreader is connected using shackles between the lifteye of the spreader and a lifteye at the bottom of each end of the cross beams.

The 40 foot spreader mode setup would be as follows. Connect one end of sling legs to inner lifteyes marked "40 ft lifteye" with bolt type anchor shackles. Connect opposite end of sling legs to spreader bar lifteyes with bolt type anchor shackles.

The 20 foot spreader mode setup would be as follows. Run free end of sling leg over top of adaptor and to diagonally opposite leg and secure with bolt type anchor shackles through thimble eye. Interlock two bolt type spring shackles. Install one end in outer lifteye marked "20 ft lifteye". Install opposite end in 20 foot spreader bar lifteye. Repeat assembly at remaining three corners.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TEST AND DEMONSTRATION PURPOSE</td>
<td>1</td>
</tr>
<tr>
<td>2. SYSTEM DESCRIPTION</td>
<td>1</td>
</tr>
<tr>
<td>3. TEST PARAMETERS</td>
<td>1</td>
</tr>
<tr>
<td>4. TEST IDENTIFICATION</td>
<td>1</td>
</tr>
<tr>
<td>4.1 Tests to be Performed</td>
<td>1</td>
</tr>
<tr>
<td>5. TEST PROCEDURES</td>
<td>2</td>
</tr>
<tr>
<td>5.1 Proof Test with 20 Foot Spreader</td>
<td>2</td>
</tr>
<tr>
<td>5.2 Operational Demonstration with 20 Foot Spreader</td>
<td>2</td>
</tr>
<tr>
<td>5.3 Proof Test with 40 Foot Spreader</td>
<td>4</td>
</tr>
<tr>
<td>5.4 Operational Demonstration with 40 Foot Spreader</td>
<td>4</td>
</tr>
<tr>
<td>6. TEST RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>7. CONCLUSIONS</td>
<td>7</td>
</tr>
<tr>
<td>8. RECOMMENDATIONS</td>
<td>7</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 5.1</td>
<td>PROTOTYPE ROTATOR ADAPTER SYSTEM WITH 20 FOOT ISO SPREADER</td>
<td>3</td>
</tr>
<tr>
<td>FIGURE 5.2</td>
<td>PROTOTYPE ROTATOR ADAPTER SYSTEM WITH 40 FOOT ISO SPREADER</td>
<td>5</td>
</tr>
</tbody>
</table>

APPENDIX A - Test Data Sheet
APPENDIX B - Exhibits 1-7
APPENDIX C - Rotator Adaptor Drawings
APPENDIX D - Certifications
1. TEST AND DEMONSTRATION PURPOSE:

The purpose of the test and demonstration will be to verify the design strength for the rotator adapter and demonstrate that the rotator adapter does eliminate or reduce the torsional oscillation of 20 foot and 40 foot containers.

2. SYSTEM DESCRIPTION:

A Bromma Rotator, model number EH3, is suspended from the dual hookblock of the Army's 250 ton container crane P&H Model 6250. The prototype rotator adapter is connected to the rotator by a clevis and pin connection through the rotator padeye. The rotator adapter is then connected to the Army's 20 foot ISO spreader. This connection is accomplished by linking a shackle at each lifting eye of the rotator adapter with the shackle at each lifting eye of the spreader.

A 40 foot spreader may be connected to the rotator adapter by using four rotator adapter slings attached to the inner lifting eyes marked "40 ft. lifteye" on the rotator adapter. The slings are then connected to the corresponding lifteyes on the 40 foot spreader.

3. TEST PARAMETERS:

3.1 The Maximum Shipping Weight (MSW) of the Army twenty (20) foot ISO container is 20 long tons (44,800 pounds). The proof test load will be 1.5 times (MSW). The operational demonstration load will be the MSW = 44,800 lbs.

\[1.5 \times (44,800) = 67,200 \text{ lbs vertical}. \]

3.2 The Maximum Shipping Weight (MSW) of a forty (40) foot ISO container is 30 long tons (67,200 pounds). The proof test load will be 1.5 times (MSW). The operational demonstration load will be the MSW = 67,200 lbs.

\[1.5 \times (67,200) = 100,800 \text{ lbs vertical}. \]

4. TEST IDENTIFICATION:

4.1 Tests to be performed - Four tests are to be performed. Two tests with a 20 foot spreader and two tests with a 40 foot spreader.

4.1.1 Proof Test with 20 Foot Spreader - To determine the capability of the rotator adapter to lift a 20 foot spreader and ISO container loaded to 1.5 times the Maximum Shipping Weight, (67,200 lbs), for a period of not less than five minutes.
4.1.2 Operational Demonstration with 20 foot Spreader - To determine the capability of the rotator adapter to eliminate or reduce torsional oscillation of a 20 foot spreader with a 20 foot ISO container loaded to its Maximum Shipping Weight of 44,800 lbs.

4.1.3 Proof Test with 40 foot Spreader - To determine the capability of the rotator adapter to lift a 40 foot spreader and ISO container loaded to 1.5 times the Maximum Shipping Weight, (100,800 lbs), for a period of not less than 5 minutes.

4.1.4 Operational Demonstration with 40 foot Spreader - To determine the capability of the rotator adapter to eliminate or reduce torsional oscillation of a 40 foot spreader with a 40 foot ISO container loaded to its Maximum Shipping Weight of 67,200 lbs.

5. TEST PROCEDURES:

5.1 Proof Test with 20 Foot Spreader

5.1.1 Assemble the Prototype Rotator Adapter as shown in Figure 5.1 using a 20 foot ISO spreader.

5.1.2 Lift a load equal to 1.5 times the Maximum Shipping Weight of a 20 foot ISO container, (67,200 lbs). The load is to be evenly distributed over the spreader pickup points. The load is to be lifted to a height of two feet.

5.1.3 Hold the load suspended for a minimum of five minutes.

5.1.4 Lower load and disconnect spreader and rotator adapter.

5.1.5 Examine rotator adapter and spreader for cracks, damage, and permanent deformation.

5.1.6 Any evidence of malfunction, damage, permanent deformation, inability to engage, lift, or disengage the rotator adapter or spreader shall constitute failure of the test.

5.1.7 A test fixture may be used to apply load.

5.2 Operational Demonstration with 20 Foot Spreader

5.2.1 Assemble the Prototype Rotator Adapter as shown in Figure 5.1 using a 20 foot ISO spreader.

5.2.2 Lift a load equal to the maximum shipping weight of a 20 foot ISO container, (44,800 lbs). The load is to be evenly distributed over the spreader pickup points. The load is to be lifted to a height of two feet.
CAUTION: CONNECT SHACKLES ONLY TO THE OUTSIDE LIFTEYES MARKED "20 FT. LIFTEYE" ON THE ROTATOR ADAPTER

BROMMA EH3
ROTATOR

PROTOTYPE ROTATOR ADAPTER SYSTEM WITH 20 FOOT ISO SPREADER
FIGURE 5.1
5.2.3 Using the rotator controls, rotate the load clockwise 360°, stopping rotation every 90°, and measuring oscillation of the load. Record data on test data sheet (example Appendix A).

5.2.4 Using the rotator controls, rotate the load counterclockwise 360°, stopping rotation every 90°, and measuring oscillation of load. Record data on test data sheet (example Appendix A).

5.2.5 Lower load and disassemble components after completion of tests.

5.3 Proof Test with 40 Foot Spreader

5.3.1 Assemble the Prototype Rotator Adapter as shown in Figure 5.2 using a 40 foot ISO spreader.

5.3.2 Lift a load equal to 1.5 times the maximum shipping weight of a 40 foot ISO container (100,800 lbs). The load is to be evenly distributed over the spreader pickup points. The load is to be lifted to a height of two feet.

5.3.3 Hold the load suspended for a minimum of five minutes.

5.3.4 Lower load and disconnect spreader and rotator adaptor.

5.3.5 Examine rotator adapter and spreader for cracks, damage, and permanent deformation.

5.3.6 Any evidence of malfunction, damage, permanent deformation, inability to engage, lift, or disengage the rotator adapter or spreader shall constitute failure of the test.

5.3.7 A test fixture may be used to apply load.

5.4 Operational Demonstration with 40 Foot Spreader

5.4.1 Assemble the Prototype Rotator Adapter as shown in Figure 5.2 using a 40 foot ISO spreader.

5.4.2 Lift a load equal to the maximum shipping weight of a 40 foot ISO container (61,200 lbs). The load is to be evenly distributed over the spreader pickup points. The load is to be lifted to a height of two feet.

5.4.3 Using the rotator controls, rotate the load clockwise 360°, stopping rotation every 90°, and measuring oscillation of the load. Record data on test data sheet (example Appendix A).
CAUTION: CONNECT SLINGS ONLY TO THE INSIDE LIFTEYES MARKED "40 FT. LIFTEYE" ON THE ROTATOR ADAPTER

BROMMA EH3 ROTATOR

PROTOTYPE ROTATOR ADAPTER SYSTEM WITH 40 FOOT ISO SPREADER

FIGURE 5.2
5.4.4 Using the rotator controls, rotate the load counterclockwise 360°, stopping rotation every 90°, and measuring oscillation of the load. Record data on test data sheet (example Appendix A).

5.4.5 Lower load and disassemble components after completion of tests.

6. TEST RESULTS:

6.1 Proof Test with 20 foot Spreader - This test was conducted using the ROPCO, RPC Corporation test stand. The test stand was specifically designed to test ISO container lifting spreaders and associated material handling equipment. The testing was accomplished in accordance with test procedure Paragraph 5.1. See Appendix A, Test Data Sheet 1, for test data and Appendix D for ILO Form 4 Certification.

6.2 Operational Demonstration with 20 foot Spreader - The operational tests were not conducted by VSE. The Bromma EH3 Rotator was not available until the U.S. Army TRADOC demonstrations were conducted at Fort Eustis, VA. The operational demonstration of the Rotator Adapter with a 20 foot spreader was performed by the U.S. Army 7th Transportation Group on 18 June 1986. VSE personnel were not present due to funding limitations. It was reported that the demonstration was successful and that the oscillation during operations were reduced to acceptable levels.

6.3 Proof Test with 40 foot Spreader - This test was conducted using the ROPCO, RPC Corporation test stand. Due to the structural design of the test stand the slings used on the Rotator Adapter when connected to the 40 foot spreader created an interference with a structural support beam on the test stand. The adapter slings were tested separately. A tensile load of 77,104 lbs verified was applied at a sling angle of 40.8°. See Appendix D for ILO Form 4 Certification and RPC calculations for 40 foot sling assembly. The rotator adapter and 40 foot spreader combination was tested using shorter slings. This condition increases the compressive load on the spreader and the tensile load on the rotator adapter, creating worst case conditions. The testing was accomplished in accordance with test procedures Paragraph 5.1. See Appendix A, Test Data Sheet 1, for test data and Appendix D for ILO Form 4 Certification.

6.4 Operational Demonstration with 40 foot Spreader - The operational tests were not conducted by VSE. The Bromma EH3 Rotator was not available until the U.S. Army TRADOC demonstrations were conducted at Fort Eustis, VA. The operational demonstration of the Rotator Adapter with a 40 foot spreader was performed by the U.S. Army 7th Transportation Group on 18 June 1986. VSE personnel were not present due to funding limitations. It was reported that the demonstration
was successful and that the oscillation during operations were reduced to acceptable levels. The operation with the slings in the 40 foot mode was not as successful as in the 20 foot direct linkage mode. The oscillation was sufficiently greater in the 40 foot mode with slings. It was suggested that a 40 foot model of the rotator adapter may be a solution.

7. CONCLUSIONS:

The Rotator Adapter was inspected in accordance with VSE Quality Control End Item Final Inspection Requirements, see Appendix D, and accepted. The test and demonstration has proven the design is sufficiently strong enough and has achieved the design goal. The Rotator Adapter does effectively reduce the rotational oscillation of the Bromma Rotator when connected with 20 foot or 40 foot ISO spreaders. The 40 foot spreader mode utilizing slings does not reduce the rotational oscillation as effectively as the 20 foot spreader mode direct linkage.

8. RECOMMENDATIONS:

It is recommended that the Rotator Adapter in the 40 foot mode be redesigned. A possible consideration would be to use a large adapter capable of direct linkage to the 40 foot spreader such as used in the 20 foot spreader mode. The Rotator Adapter should be considered a short term solution to the problem. A long term solution may be to incorporate the rotator as part of the spreader frame itself. This would also eliminate excess weight and clear lift height usage.
APPENDIX A
TEST DATA SHEET 1

DATE: 29 May 1986
TEST TEAM: Terry Gryder, RPC
Rotator Adapter Proof
Jim Sturgill, RPC
TEST NO.: 5.1
Clint Mooney, RPJ
TIME: 4:00 P.M.
TEMPERATURE: 86°F
LOAD MASS (LBS): 67,200 lbs

TEST OBSERVERS: Paul Shively, BRDEC

<table>
<thead>
<tr>
<th>OSCIL-LATION</th>
<th>(INCHES)</th>
<th>COUNTER-CLOCKWISE</th>
<th>Robert LaChance, VSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>270°</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>360°</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: The test was conducted in accordance with test procedure 5.1 (Proof Test with 20 Foot Spreader). The test was performed using the ROPCO test stand. See Exhibit 1 & 2, Appendix B. A 1/4° deflection at the center of the Rotator Adapter was recorded under full load. No permanent deformation or abnormality which would render the adapter unsuitable for use was detected.

Jim Sturgill
TEST ENGINEER, RPC
DATE

Robert LaChance
QUALITY CONTROL, VSE
DATE
APPENDIX A
TEST DATA SHEET 2

DATE: 29 May 1986
TEST TEAM: Terry Gryder, RPC

Rotator Adapter Proof

TITLE: Test with 40 Foot Spreader
TEST TEAM:Jim Sturgill, RPC

TEST NO.: 5.3
TEST TEAM: Clint Mooney, RPJ

TIME: 1:30 P.M.

TEMPERATURE: 86°F

LOAD MASS (LBS): 100,800 lbs

TEST OBSERVERS: Paul Shively, BRDEC

<table>
<thead>
<tr>
<th>OSCIL-LATION</th>
<th>(INCHES)</th>
<th>COUNTER-CLOCKWISE</th>
<th>COUNTER-CLOCKWISE</th>
<th>Robert LaChance, VSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>270°</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>360°</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: The test was conducted in accordance with test procedure 5.3 (Proof Test with 40 Foot Spreader). The test was performed using the ROPCO test stand. See Exhibit 3 & 4, Appendix B. A 1/4" deflection at the center of the Rotator Adapter was recorded under full load. No permanent deformation or abnormality which would render the adapter unsuitable for use was detected.

Jim Sturgill
TEST ENGINEER, RPC

Robert LaChance
QUALITY CONTROL, VSE

DATE

16 Aug 86
ROTATOR ADAPTER W/40 FOOT SPREADER
EXHIBIT 3
APPENDIX B
ROTATOR ADAPTER W/20 FOOT SPREADER
EXHIBIT 4
APPENDIX B
APPENDIX C

ROTATOR ADAPTOR DRAWINGS
VSE Corporation

Project Title
CRANE/ROTATOR ADAPTOR

Subject
CRANE/ROTATOR ADAPTOR ASSEMBLY

Prepared by
Dellen

Date 03/27/86

Checked by
R. McMillan

Date
July 86

Notes:

1. UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN INCHES.
2. place decimals 1.
3. place decimals 0.00
4. ALL WELDS TO BE IN ACCORDANCE WITH DRAWING 13214E9223, TYPE I, CLASS I
5. REMOVE FIND NO. 7 & 11 BEFORE PAINTING.
6. INSTALL FIND NO. 5 & 12 AFTER PAINTING.
7. TREATMENT AND PAINTING TO BE IN ACCORDANCE WITH MIL-T-704, TYPE F.
 a. PRETREATMENT, JOD-PL15328
 b. PRIMER, MIL-P-52192
 c. FINISH, MIL-C-22750
 d. COLOR NO., 34087 OLIVE DRAK
8. ESTIMATED GROSS SHIPPING WEIGHT APPROX 3896 LBS

List of Material

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sling Leg</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>Bolt Type Anchor & Chain Suckle</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Style G-2130</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>VSE I.D. Plate</td>
<td>1</td>
</tr>
<tr>
<td>B6</td>
<td>Master Carr 901244 714</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>Retainer Block</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>Clevis Pin</td>
<td>14</td>
</tr>
<tr>
<td>A</td>
<td>Caution Label Plate</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Angular Plate 17.00 x 28.50</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Short Boom Assembly</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Long Boom Assembly</td>
<td>1</td>
</tr>
</tbody>
</table>

Specification

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sling Leg</td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>Bolt Type Anchor & Chain Suckle</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Style G-2130</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>VSE I.D. Plate</td>
<td>1</td>
</tr>
<tr>
<td>B6</td>
<td>Master Carr 901244 714</td>
<td>8</td>
</tr>
<tr>
<td>A</td>
<td>Retainer Block</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>Clevis Pin</td>
<td>14</td>
</tr>
<tr>
<td>A</td>
<td>Caution Label Plate</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Angular Plate 17.00 x 28.50</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Short Boom Assembly</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Long Boom Assembly</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes

- UNLESS OTHERWISE SPECIFIED: DIMENSIONS ARE IN INCHES.
- PLACE DECIMALS 1.
- PLACE DECIMALS 0.00
- ALL WELDS TO BE IN ACCORDANCE WITH DRAWING 13214E9223, TYPE I, CLASS I
- REMOVE FIND NO. 7 & 11 BEFORE PAINTING.
- INSTALL FIND NO. 5 & 12 AFTER PAINTING.
- TREATMENT AND PAINTING TO BE IN ACCORDANCE WITH MIL-T-704, TYPE F.
 - PRETREATMENT, JOD-PL15328
 - PRIMER, MIL-P-52192
 - FINISH, MIL-C-22750
 - COLOR NO., 34087 OLIVE DRAK
- ESTIMATED GROSS SHIPPING WEIGHT APPROX 3896 LBS
PROJECT TITLE: Crane/Rotator Adaptor

SUBJECT: Crane/Rotator Adaptor Assembly

PREPARED BY: [Signature]
DATE: 03/27/86

CHECKED BY: [Signature]
DATE: 04/28/86

SHEET 4 OF 8

VIEW A-A

Scale: 1/8

Dimensions and measurements are shown on the diagram, including distances and annotations for assembly and design specifications.
SLING LEG, 40 FT SPREADER BAR, FREE END FASTEN AS SHOWN WHEN WORKING WITH 20 FT SPREADER BAR.

SLING LEG ADAPTOR END RUN OVER TOP OF ADAPTOR & TO DIAGONALLY OPPOSITE LEG AS SHOWN.
APPENDIX D

CERTIFICATIONS
CERTIFICATE OF TEST EXAMINATION OF CHAIN, RINGS, HOOKS, SHACKLES, SWIVELS, PULLEY BLOCKS, LATCHES AND SPREADER FRAMES

This certificate is issued to comply with existing regulations of the United States of America and of the American Bureau of Shipping.

<table>
<thead>
<tr>
<th>(1) Distinguishing Number or Marks</th>
<th>(2) Description of Gear</th>
<th>(3) Number Tested</th>
<th>(4) Date of Test</th>
<th>(5) Proof Load Applied (lbs)</th>
<th>(6) Safe Working Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Sling Leg, 40 Ft. Spreader bar Lift per Dwg. 9390</td>
<td>Set of Four (4) Slings</td>
<td>5/29/86</td>
<td>77,104 # vert. applied to complete set with a 40.8° sling angle</td>
<td>67,200 # vertical with 58.38° applied to complete sling set</td>
</tr>
<tr>
<td>S/N 682093</td>
<td>Crane/Rotator Adapter Ass'y with 40' Spdr. per 9386 Sh't. 3 of 8</td>
<td>1</td>
<td>5/29/86</td>
<td>100,800 # vert. with 45° sling angle</td>
<td>67,200 #</td>
</tr>
<tr>
<td>S/N 682093</td>
<td>Crane/Rotator Adapter Ass'y with 20' Spdr. per 9386 Sh't. 2 of 8</td>
<td>1</td>
<td>5/29/86</td>
<td>67,200 # vert. with a 90° sling angle</td>
<td>67,200 #</td>
</tr>
</tbody>
</table>

(7) Name and address of makers or suppliers: RPC Corporation, Post Office Box 451, Roxboro, NC 27573

(8) Name and address of company making the test and examination: RPC Corporation, Post Office Box 451, Roxboro, NC 27573

(9) Position of Signatory in company: Chief Engineer

I certify that on the 29 day of May 1986 the above gear was tested and examined by a competent person in the manner set forth on the reverse side of this certificate: that the examination showed that the said gear withstood the proof load without injury of deformation; and that the safe working load of said gear is as shown in Column 6.

(Signature) [Signature]

(Date) May 29, 1986

In substantial agreement with I.L.O. Form No. 4
INSTRUCTIONS

Chains, rings, shackles and other loose gear (whether accessory to a machine or not) shall be tested with a proof load equal to that shown against the article in the following table:

<table>
<thead>
<tr>
<th>Article of Gear</th>
<th>Proof Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain, ring, hook, shackle, swivel latch or spreader frame.</td>
<td>100 percent in excess of the safe working load.</td>
</tr>
<tr>
<td>Pulley blocks:</td>
<td></td>
</tr>
<tr>
<td>Single-sheave block</td>
<td>300 percent in excess of the safe working load.</td>
</tr>
<tr>
<td>Multiple-sheave block with safe working load up to and including 20 tons.</td>
<td>100 percent in excess of the safe working load.</td>
</tr>
<tr>
<td>Multiple-sheave block with safe working load over 20 tons up to and including 40 tons.</td>
<td></td>
</tr>
<tr>
<td>Pitched chains used with hand-operated pulley blocks and rings, hooks shackles or swivels permanently attached thereto.</td>
<td>50 percent in excess of the safe working load.</td>
</tr>
<tr>
<td>Hand-operated pulley blocks used with pitched chains and rings, hooks, shackles or swivels permanently attached thereto.</td>
<td>50 percent in excess of the safe working load.</td>
</tr>
</tbody>
</table>

After being tested, all the gear shall be examined, the sheaves and the pins of the pulley blocks being removed for the purpose, to see whether any part has been damaged or permanently deformed by the test.

NOTE: The expression "ton" means a ton of 1,000 kg, or 2,200 lb.
VSE QUALITY CONTROL
END ITEM FINAL INSPECTION REQUIREMENTS
(EIFIR)
ROTATOR ADAPTER VSE DRAWING 9386
PJO 0300.0199

PURPOSE

This EIFIR provides a checklist for the minimum inspection requirements to be performed on the rotator adapter, produced by RPC Corporation. It shall serve as an inspection record including a Certification of Conformance on the rotator adapter. The inspection requirements herein do not relieve VSE of any other contract requirements nor do they waive the Government's right to require additional inspection for determining conformance to other requirements. Acceptance by the VSE inspector does not constitute final acceptance by the Government.

Part
Rotator Adapter Serial No. 9386

Quality Control Inspector Date 29 Apr 86

Symbols:
(✓) Acceptable (X) Unacceptable
INSTRUCTIONS TO INSPECTOR

1. Final inspection shall be accomplished in accordance with the requirements of applicable specifications and drawings.

2. For unacceptable items, see DEFICIENCY SHEET (Appendix A).

3. One copy of the EIFIR, including appendix A, shall be retained in the QC file.

4. The order of examination, inspections, and testing may be varied to be compatible with plant facilities and inspection and testing procedures.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Characteristics</th>
<th>Inspector Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DRAWING 9307</td>
<td>Dimensions as specified</td>
<td>1 ✓</td>
</tr>
<tr>
<td></td>
<td>Welds as specified</td>
<td>✓</td>
</tr>
<tr>
<td>2. DRAWING 9308</td>
<td>Dimensions as specified</td>
<td>1 ✓</td>
</tr>
<tr>
<td></td>
<td>Welds as specified</td>
<td>✓</td>
</tr>
<tr>
<td>3. DRAWING 9309</td>
<td>Dimensions as specified</td>
<td>1 ✓ 2 ✓</td>
</tr>
<tr>
<td></td>
<td>Welds as specified</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>4. DRAWING 9311</td>
<td>Dimensions as specified</td>
<td>1 ✓ 2 ✓</td>
</tr>
<tr>
<td></td>
<td>Welds as specified</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>5. DRAWING 9313</td>
<td>Dimensions as specified</td>
<td>1 ✓ 2 ✓ 3 ✓ 4 ✓</td>
</tr>
<tr>
<td></td>
<td>Marking as specified</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>6. DRAWING 9314</td>
<td>Dimensions as specified</td>
<td>1 ✓</td>
</tr>
<tr>
<td></td>
<td>Hardness Certificate</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Finish as specified</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Marking as specified</td>
<td>✓</td>
</tr>
<tr>
<td>7. DRAWING 9315</td>
<td>Dimensions as specified</td>
<td>1 ✓ 2 ✓ 3 ✓ 4 ✓</td>
</tr>
<tr>
<td></td>
<td>Finish as specified</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Marking as specified</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>DRAWING 9386</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Dimensions as specified</td>
<td>✓</td>
</tr>
<tr>
<td>9</td>
<td>Dimensions as specified</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>Dimensions as specified</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>Dimensions as specified</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>Dimensions as shown</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>Certification Certificate of welders</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>Certification of material for:</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>Copy of Purchase orders for:</td>
<td>✓</td>
</tr>
</tbody>
</table>
APPENDIX A

DEFICIENCY SHEET

Rotator Adapter, Serial No. ____________________________

Contract No. DAAK70-81-D-0109 TASK ORDER 0199 Date________________

All unacceptable items shall be listed on this DEFICIENCY SHEET along with a brief description of the deficiency and corrective action taken. The inspector shall initial this sheet opposite each item upon completion of approved corrective action.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description of Deficiency</th>
<th>Corrective Action</th>
<th>Inspector Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>STAMPING MISSING</td>
<td>STAMPING COMPLETED</td>
<td>LWL 29 May, 86</td>
</tr>
<tr>
<td>11</td>
<td>STAMPING MISSING</td>
<td>STAMPING COMPLETED</td>
<td>LWL 29 May, 86</td>
</tr>
<tr>
<td>8</td>
<td>STENCILING NOT COMPLETED</td>
<td>STENCILING COMPLETED</td>
<td>LWL 2 June, 86</td>
</tr>
</tbody>
</table>

Reviewed by ____________________________ Approved by ____________________________

(Quality Control Inspector)
TEST RESULTS

Date Test Conducted: 5/29/1986 Report No. LA8675
Conducted for: RPC Corporation
Location: Roxboro, N.C.
Identification: DAAK70-81-D-0109
Type of Test: MT-MIL-1-6868
Material Tested: Steel Weldment
Unit: Prototype Rotator Adapter

At the request of Mr. J. D. STURGILL, P.E., this laboratory conducted a magnetic particle inspection on the subject ROTATOR ADAPTER.

The inspection was conducted in accordance with MIL-1-6868 dry powder method.

No recordable indications were detected during the inspection.

Test conducted by

William W. Lugmayer
Lugmayer Associates, Inc.
TO: PRC CORPORATION
P. O. BOX 451
ROXBORO, NC 27537

RE: Purchase Order No. 14363

AFFIDAVIT

I hereby certify that the following material shipped **MAY 27, 1986** was made or tested under my supervision.

<table>
<thead>
<tr>
<th>GALLONS</th>
<th>MATERIAL</th>
<th>SPECIFICATION</th>
<th>BATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>COATING COMPOUND</td>
<td>DOD-P-15328D AM 1</td>
<td>P-94927</td>
</tr>
<tr>
<td></td>
<td>METAL PRETREATMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MFG. DATE 10/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ACID COMPONENT</td>
<td>W/DOD-P-15328D AM 1</td>
<td>T-16710</td>
</tr>
<tr>
<td></td>
<td>COMP. II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MFG. DATE 10/85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PRIMER COATING, EPOXY PART A</td>
<td>MIL-P-52192B AM 1 COMP L</td>
<td>P-96808</td>
</tr>
<tr>
<td></td>
<td>MFG. DATE 5/86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PRIMER COATING, EPOXY PART B</td>
<td>MIL-P-52192B AM 1 COMP L</td>
<td>P-96809</td>
</tr>
<tr>
<td></td>
<td>MFG. DATE 5/86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I also certify that the above material meets the requirements of the specification referred to. Test results are on file and subject to examination.

S. M. Reddout, Quality Control Dept.
PRATT & LAMBERT, INC.
Wichita Division
P. O. Box 2153
16116 E. Thirteenth Street
Wichita, Kansas 67201
(316) 733-1361
Certification

DATE May 27, 1986

THIS IS TO CERTIFY THAT PARTS NUMBER 9314 Pin
FOR RPC CORPORATION WERE
METALLURGICALLY PROCESSED IN STRICT ACCORDANCE
WITH APPLICABLE SPECIFICATIONS.

[Signature]

AUTHORIZED SIGNATURE
VSE TEST CALCULATIONS
For 40' SLING ASSEMBLY

Given:
1. Geometry

\[\theta = 58.385^\circ \]
\[\text{Load} = 194.162 \]

2. Test load factor = 1.5 \((67.2 \times 1.5) = 100.8 \, \text{K} \)

What is cable test load? where \(P = \frac{TL \times 1.5}{4 \times \sin 68.385^\circ} \)

\[P = \frac{67.2 \, \text{K} \times 1.5}{4 \times \sin 58.385^\circ} = 29.592 \, \text{K} \]

What is spreader compression load?

\[P_c = \frac{119.52}{228} \times (29.592) = 15.512 \, \text{k} \]

Check: \(P_c = 29.592 \times \cos 58.385^\circ = 15.512 \, \text{k} \)

Given:
1. Test sling loading \(\times 4 = 36.5^\circ \)
2. Required cable pull on test = 29.592k
3. Spreader is good for 45\(^\circ\) &. Proof tested for 78.2k

What is the required test load?

\[29.592 = \frac{TL \times 1.5}{4 \times \sin 36.5^\circ} \]

\[TL = \frac{29.592 \times (4 \times \sin 36.5^\circ)}{4} = 70.408 \]

What is spreader compression load at the equivalent test load \(TL \)?

\[P_c = 29.592 \times \cos 36.5^\circ = 23.788 > 15.592 \times \cos 58.385^\circ \]

Compressive load may be lower. - Check 45\(^\circ\).

1. 45\(^\circ\) Vertical Proof test = 78.2k \(\Rightarrow P_v = \frac{78.2}{4} = 19.55k \)
2. 45\(^\circ\) \(P_c = P_v = 19.55 \, \text{k} \).
\[\cos \theta = \frac{218.084}{c_3 + 225.18} = 0.757 \]
\[\theta = 40.82^\circ \]

\[h = ? \]

Diagram with labeled measurements such as 22.8, 225.180, 35.750, 77.5, 288.180, and others.
Given

1. Test sling loading $F = 40.82$
2. $P = 29.592 \text{ k}$
3. Spreader is good for 45° & & proof tested for 78.2.

What is the required load?

$$TL = \frac{29.592 \cdot 4 \cdot \sin 40.82}{40.82} = 77.375 \text{ k}$$

What is spreader compression load at the equivalent test load of 77.375 k

Area test cylinders = 93.46 in² \Rightarrow PSI = 828 psi

$$P_c = \frac{29.592 \cdot \cos 40.82}{22.734 \text{ k}} > 19,550 \text{ k}$$

Say 825 psi, $\text{ok per discussion with Bob LaCerva 5/23/82}$

Conclusion use 40.82 &

Use following equipment

1. VSE purchased sling attached is a spreader (ROPCO or VSE?)
2. Triangle plates attached to each end pair of sling
3. Short ROPCO's test slings attached to triangle plate & force collar
4. Pull test assembly at 77.375 k test setting.