Spatial Scale in Image Detection and Recognition

James H. Howard, Jr.
ONR Contract Number N00014-83-K-0481
Work Unit Number R&T 4424182

Technical Report ONR-86-25
Human Performance Laboratory
The Catholic University of America
February, 1986

Supported by the Engineering Psychology Programs,
Office of Naval Research

Approved for public release; distribution unlimited.
Spatial Scale in Image Detection and Recognition

James H. Howard, Jr.
ONR Contract Number N00014-83-K-0481
Work Unit Number R&T 4424182

Technical Report ONR-86-25
Human Performance Laboratory
The Catholic University of America
February, 1986

Supported by the Engineering Psychology Programs,
Office of Naval Research

Approved for public release; distribution unlimited.
Spatial Scale in Image Detection and Recognition

James H. Howard, Jr.

Human Performance Laboratory
The Catholic University of America
Washington, D.C. 20064

Engineering Psychology Programs
Office of Naval Research
Arlington, Virginia 22217

Approved for public release; distribution unlimited.

spatial scale, spatial frequency, image processing, man-machine interaction

Considerable recent physiological and psychophysical evidence suggests that the visual system operates as a series of independent channels or analyzers, each sensitive to image structure at a different spatial scale. In this view, image structure is processed separately at different scales by the various channels. Several individuals have argued that the broad, low-frequency channels respond to global or Gestalt properties of an image and are important in early processing—for instance, during an initial glance at an image. In contrast, the high-frequency channels are sensitive to local detail and are important in later visual...
processing when attention has been focused on a particular aspect of the image. Two experiments investigated the ability of human observers to detect and recognize simple objects in visual images. Prior to presentation, the images were transformed by spatial frequency filters to emphasize the global- (low spatial frequencies), local- (high spatial frequencies) or intermediate- (mid spatial frequencies) scale structure. Four categories of top-view ship hulls were synthesized for the experiments. In the first experiment separate groups of observers made both detection (which quadrant of the display contained a ship?) and recognition (which of the four ships occurred?) judgments. In the second experiment, observers also selected the filter condition to be displayed on each trial prior to the detection or recognition response.

The results showed that, as expected, filter condition had a large effect on recognition performance with the unfiltered images recognized better than the high-frequency images which in turn were recognized better than both the mid- and low-frequency images. As predicted, and in contrast to the recognition data, the low-frequency images led to better detection performance than either the mid- or the high-frequency conditions. The low-frequency images were also more easily detected than the unfiltered images. However, when permitted to select a filter condition to observe in the second experiment, observers did not select the optimal unfiltered image for recognition, but selected the original and the high-frequency images equally often. In contrast, for detection observers consistently selected the optimal low-frequency images. The observer selection results indicate that individuals are not always able to anticipate the viewing conditions which will lead to optimal perceptual performance. The implications of these results for human/computer interaction in image processing are discussed.
It is obvious that the physical world is highly structured and that this structure exists at many levels. For example, the surfaces of objects in an office possess a gross or very global structure as in the outline form of the desk, bookshelves or computer terminal. On the other hand, these objects may also be characterized in terms of their more detailed, local structure as in the shapes of individual books, desk drawers or the terminal keyboard. When light is reflected from these surfaces to create an image, intensity variations over the two image dimensions capture many aspects of this three-dimensional structure. The most fundamental problem of spatial vision is to understand the way in which this information is used to interpret the visual world. Although psychologists and others have been interested in this very basic perceptual problem for many years, a full understanding has remained elusive.

Computer vision theorists have argued recently that to be successful visual analyses must take place across several levels of image scale, with each level contributing to the overall understanding of the objects in the image (Marr, 1982; Yuille & Poggio, 1983; Crowley & Sanderson, 1984). Interestingly, considerable physiological and psychophysical evidence suggests that the mammalian visual system may operate in this fashion (Sekuler, 1974). Specifically, the visual system contains a series of independent channels or analyzers, each sensitive to image structure at a different scale (Julesz & Schumer, 1981). These channels are thought of as broadly-tuned spatial frequency filters (Julesz, 1980), bar detectors of varying widths or sizes (Macleod &
Rosenfeld, 1974), or zero-crossing filters of different bandwidths (Marr, 1982). In this view, image (and hence object) structure is processed separately at different scales by the various channels. For example, the global structure of an image is extracted independently of any local detail (or vice-versa), and some have argued that this global analysis may actually precede or dominate the more local analysis (Hughes, Layton, Baird, & Lester, 1984).

With the increasing evidence for the existence of these channels, research has turned to the question of their role or function in vision. Several individuals have argued that the broad, low-frequency channels respond to global or Gestalt properties of an image and are important in early processing—for instance, during an initial glance at an image (Broadbent, 1977; Julesz, 1980). In contrast, the high-frequency channels are sensitive to local detail and are important in later visual processing when attention has been focused on a particular aspect of the image. Despite the growing popularity of this view, relatively little experimental work has explored the implications of these hypothesized differences for visual perception. The experiments reported in this paper address this question by investigating the ability of human observers to detect and recognize simple objects in visual images. Prior to presentation, the images are transformed by spatial frequency filters to emphasize the global- (low spatial frequency), local- (high spatial frequency) or intermediate- (mid spatial frequencies) scale structure. The results support the hypothesis that spatial scale plays an important role in the detection and recognition of objects in visual imagery.
Evidence For Visual Channels

In 1843 Ohm proposed that the human auditory system can decompose a complex sound into its elementary frequency components (cited in Julesz, 1980). Ohm's Acoustical Law--as this proposal is known--paved the way for Helmholtz, von Bekesy, and ultimately Fletcher, to develop a view of the auditory system which is based on a set of broadly-tuned filters, called critical bands, each of which responds to only a subset of frequencies in the audible spectrum. These filters, or channels, form the basis of much of contemporary auditory theory. The argument that they exist is intuitively compelling since it is common experience to hear the tonal components when listening to a complex sound such as a musical chord.

Although Young proposed the existence of separate channels for color vision in the early 1800's, the analogous concept of independent channels in human spatial vision is a relatively recent proposal. Campbell and Robson (1968) were the first to suggest that vision may be based on a set of spatial frequency analyzers each of which responds to only a narrow range of spatial frequencies. This proposal suggests, unintuitively, that at some level in the visual system, a complex pattern may be decomposed into a finite set of simpler, periodic intensity patterns. Despite its lack of intuitive appeal, this basic idea has gained wide acceptance in recent years with significant support from both physiological and psychophysical findings (see reviews by Sekuler, 1974; DeValois & DeValois, 1980; Julesz & Schumer, 1981).
One implication of the multichannel model of spatial vision is that overall spatial sensitivity, as measured by the modulation transfer function (MTF) for example, reflects the envelope of a number of individual sensitivity curves. Two basic questions follow. First, how many individual channels exist, and second, what is the underlying sensory mechanism for each channel? Both questions are addressed in a model proposed by Wilson and Bergen (1979). The model proposes that four broadly-tuned, size-sensitive mechanisms exist at each point in the retina. Furthermore, the size of these units increases linearly with eccentricity on the retina, and the composite sensitivity at any point results from probability summation across the four units. The proposed units resemble the on-center, off-surround retinal cells described by Kuffler (1953), with a sensitivity profile characterized by a difference of Gaussian distributions—one narrow and positive (excitatory) and the other broad and negative (inhibitory). Although more recent work has reinterpreted these basic units to be zero-crossing (Marr, 1982) or other (e.g., Daugman, 1983) filters rather than size-sensitive units, the distinction between these interpretations is not especially important for this paper. The important point for the present argument is that at least four broadly-tuned visual channels seem to exist which respond to information at different spatial scales. Whether these channels reflect size sensitive units, zero-crossing filters, or spatial frequency filters is not of concern here.
Much of the psychophysical evidence for the existence of spatial channels is based on experiments with one-dimensional sinusoidal grating patterns. In this type of pattern, intensity varies sinusoidally in one dimension with this variation extended redundantly across the second dimension. Surprisingly few studies have used two-dimensional patterns as may occur in realistic imagery. Fortunately, in cases where complex imagery such as faces (Harmon & Julesz, 1973; Fiorentini, Maffei, & Sandini, 1983), scenes (Caelli, 1983) or complex textures (Ginsburg, 1978; Caelli, 1982) have been used, the results have been consistent with the multichannel model. The imagery investigated in the present experiments depicted simple top-view intensity profiles of simulated ship hulls on uncluttered backgrounds.

The Role of Channels in Spatial Vision

As the evidence for the existence of multiple, scale-sensitive channels has accumulated, increasing numbers of investigators have speculated on their possible role in spatial vision. Most discussions of this issue have pointed out that one should be cautious in assuming that the channels literally perform a spatial Fourier analysis which could lead to a reconstruction from the orthogonal components. The small number of channels and two-octave bandwidths proposed are too limiting for this purpose (Julesz, 1980). Rather, most speculation on the role of these channels has involved some kind of underlying attentional mechanism.
In an early proposal, Broadbent (1977) identified two gross stages in human visual analysis, an early, relatively automatic preattentive stage and a subsequent active, attentive analysis. In his view, the early processing is based on global information and serves to segregate "...detailed stimuli into bundles or segments that can be attended to or rejected as a whole" (p. 112). In contrast, the later processing is based on the detailed information in the image. He speculated further that the visual mechanism which accomplishes this analysis could very well be the scale-sensitive channels described in the previous section of this report.

A more complete attentional hypothesis has been developed by Julesz (Julesz, 1980; Julesz & Papathomas, 1984). He proposes that the spatial channels serve as a kind of "perceptual zoom lens" that permits an image to be analyzed at any of a number of levels. For example, "...a low-frequency channel will discard fine details and thereby emphasize the overall layout of the entire picture. A high-frequency channel brings the local details into prominence at the expense of the large-scale regions and structure" (1980, p. 309). He points out that the assumed two-octave bandwidths proposed for the filters would permit three "lenses" at low- (.5-2 cycles/degree of visual angle), mid- (2-8 cycles/degree), and high- (8-32 cycles/degree) spatial scales. Although some controversy exists (e.g., Gellatly, 1983), Julesz and Papathomas (1984) have recently presented some demonstrations which support what they term a strong version of this attentional hypothesis—that the spatial channels function in attention and that the observer can exert control over the specific channel that will be dominant at any
Related to this are some recent discussions of the relation between spatial scale and the traditional Gestalt distinction between "figure" and "ground." Julesz and his colleagues (Julesz, 1978; Julesz, 1980) have suggested that the "figure" portion of an image receives a more detailed analysis than the "ground" portion. Presumably, this would involve high- and low-frequency channels for the "figure" and "ground," respectively. This was supported in a simple, but informative visual detection experiment by Wong & Weisstein (1983). Prior to presenting a stimulus, observers were asked to fixate an ambiguous goblet/faces image and to indicate when a designated portion of it (e.g., goblet) was seen as figure. In this way a small test line could be presented in either a figure or a ground region of the display. Two line targets of different spatial frequency content were used, a sharply defined line which had a relatively broad spectrum, and a blurred line which had a markedly peaked spectrum with most of its energy at lower frequencies. In other words, the sharp target had considerably greater high frequency content than did the blurred target. The results of their experiments revealed that the high spatial frequency target was more accurately detected in a region perceived as "figure" whereas the low-frequency target was more accurately detected in a "ground" region. They concluded that the global character and the rapid response time (see following section) generally attributed to low spatial frequency channels make them well suited for processing image ground (Wong & Weisstein, 1983). This suggests that the subjective state of attending to a spatial...
Spatial scale

region--the figure--selectively activates the high detail channels. These results are consistent with the attentional hypothesis outlined earlier. Unfortunately, relatively few studies have actually examined the hypothesis empirically as in this case.

Global Precedence and Low-Frequency Dominance

An important aspect of Broadbent's discussion of the role of spatial channels in attention is the notion that the global (low-frequency) analysis temporally precedes the local (high-frequency) analysis. This refers to a recurring theme in recent visual information processing studies, and is sometimes referred to as the global precedence effect (Navon, 1977; Ward, 1982; Hughes, Layton, Baird, & Lester, 1984). As implied by the title of Navon's original 1977 article, the global precedence effect asserts that in a relative sense the global information in an image--"the forest"--will be processed before the local information--"the trees." Although the proposal is not without controversy (see for example, Miller, 1981; Ward, 1982), most agree that global dominance is often observed.

In a recent study, Hughes and his colleagues have examined the effect under a variety of conditions. They present the argument that local and global processing occurs concurrently and that the presence of global cues can serve to retard the processing of local information. They also speculate that global precedence may result from asymmetric neural inhibition between the local and global spatial frequency channels (Morrone, Burr, & Maffei, 1982 cited by Hughes et al, 1984). It is also interesting to note that Wilson &
Bergen (1979) attribute different temporal response characteristics to their four size-sensitive mechanisms. These findings are reminiscent of earlier work which revealed two types of temporal response in spatially-sensitive retinal cells. As Braddick, Campbell, and Atkinson (1978) summarize, "The X- or sustained cells show linear spatial summation, small receptive fields (and hence a good response to high spatial frequencies but a poor response to low), and a sustained temporal response. The Y- or transient cells are spatially nonlinear and respond to lower spatial frequencies than X-cells in the corresponding retinal region." (p. 27). Although the implication of these cells in the attentional processes that Broadbent (1977) distinguished would be very speculative, it is of interest that known temporal response properties of spatial vision channels are consistent with the attentional hypothesis.

Experiment 1

The purpose of this experiment is to investigate the ability of human observers to detect and recognize simple two-dimensional visual objects under conditions where the low-, mid-, or high-spatial frequency content is dominant. The objects were four simulated top views of ship hulls distinguished by the presence of one or two deck houses and by the presence of square or circular upper deck structures. The research summarized in the preceding discussion suggests that spatial frequency should be of major importance in determining the detection and recognition performance achieved with the spatially filtered images. For example, since the visual cues which permit the four ships to be discriminated involve
relatively fine detail and hence, primarily high spatial frequencies (see method for a more complete discussion), recognition performance should be best when high-frequencies are dominant but difficult or impossible when this information is reduced as in the low- and mid-dominant conditions. On the other hand, the low frequency channels should play a primary role in detection and, therefore, the low-dominant conditions should lead to optimal detection performance. By a parallel argument, the mid- and high-dominant images should be relatively difficult to detect.

To summarize, according to the attentional hypothesis for the ship images employed here, the low-frequency dominant imagery should lead to poor recognition performance, but to very good detection performance. In contrast, the high-frequency dominant images should lead to good recognition performance, but relatively poor detection performance.

Method

Observers. Six paid undergraduate volunteers served as observers in the experiment. Two served in both the detection and recognition tasks, two in only the detection task, and two in only the recognition task. All of the participants had normal or corrected-to-normal vision.

Apparatus. Image preparation, control of experimental events, and data analyses were carried out on a general purpose laboratory computer (Digital PDP-11/23). This computer served as a controlling host for a Gould Imaging and Graphics IP8400 image processing system.
which was used for on-line image processing, storage, and presentation. Participants were seated in a darkened room and viewed the test imagery on a high-resolution, 9 in (22.9 cm) diagonal, monochrome monitor (Cohu Model DM 9/C) at a viewing distance of 122 cm. The image was displayed with a resolution of 256 by 256 8-bit pixels in one quadrant of a 512 by 512 pixel display. Participants entered their responses on a standard terminal keyboard, and verbal feedback was displayed on the monitor by means of the IP8400 alphanumeric generator.

Imagery. Preparation of the test imagery involved several steps. Initially, top-view images of the four ships were created by varying a two dimensional intensity profile as shown in Figure 1. Ships A and C are characterized by a split deck house with square and circular upper deck structures, respectively. Ships B and D have a single deck house with square and circular upper deck structures, respectively. It is clear from Figure 1 that the differences among the four ships are based on a small number of pixels and hence on relatively high spatial frequencies. The gap distinguishing the split and full deck house is six pixels (.088 degree of visual angle at the 4 ft viewing distance), and the difference between the circular and square deck structures is three pixels on the diagonal (.044 degree).

Once the images were constructed, three transformed versions of each ship were created to emphasize low-, mid-, and high-spatial frequencies. Each ship image was Fourier transformed using an FFT algorithm (see Gonzales & Wintz, 1977). The frequency domain representation of each ship was then multiplied by circular low-pass
Figure 1. Unfiltered top-view images of simulated ship hulls. Ship A appears in the upper left, ship B in the upper right, ship C in the lower left, and ship D in the lower right.
and band-pass "pill-box" filters with two-octave bandwidths. The low-pass filter was centered at 1 cycle/degree (0-8 pixels), the mid-pass filter at 5 cycles/degree (9-32 pixels), and the high-pass filter (actually a band-pass filter) at 21 cycles/degree (33-128 pixels). The resulting data were then inverse transformed back into the image domain for presentation. Although two-octave filters were used, the resulting displayed imagery had somewhat broader bandwidths because of the mapping used to display the transformed images. The resulting images had dominant information in the low, mid, and high spatial frequency regions. These images are shown in Figure 2.

Finally, the transformed and original ship images were adjusted to have equivalent mean luminance when displayed on the calibrated monitor as measured by a Photo Research Model 502 spot photometer. Pilot experimentation was carried out to establish presentation durations and intensities which would yield acceptable performance levels in the detection and recognition tasks, that is, with neither floor nor ceiling effects in either task. For recognition, a display time of approximately 132 ms was used with a mean display luminance of approximately 15.52 cd/m2. For detection, the images were presented for a single frame time of approximately 33 ms and observers viewed the monitor through neutral density filters to achieve an overall reduction in display luminance of 4.3 log units from the recognition level.
Figure 2. Spatial frequency filtered images of simulated ship hulls. Within each filter condition ship A appears in the upper left, ship B in the upper right, ship C in the lower left, and ship D in the lower right.
Procedure. Prior to beginning the experiment, observers read instructions which explained the task. For detection they were told that a ship would occur on every trial and that only the quadrant in which it appeared was important--its identity could be ignored. Conversely, for recognition they were told to ignore the quadrant of presentation and to identify the ship. In the latter case, a sketch of the four ship types was provided. Testing took place in a darkened room and a ten-minute dark adaptation period preceded the detection sessions. Individual trials were similar for the detection and recognition sessions and began with a 500 ms presentation of a cross-hair fixation which divided the display into quadrants. Following this the cross-hair was replaced by one of the 4 ship images selected randomly. This remained visible for 33 ms for the detection trials (1 video frame time) or 132 ms for the recognition trials (4 frame times). Observers entered their response on a standard keyboard. For recognition trials, verbal feedback regarding the correct response was displayed on the monitor for 2 s. No feedback was provided on the detection trials. The duration of the inter-trial-interval varied depending on the time required to obtain the next image from a disk file, but was approximately 1.5 s. Observers completed 384 trials per session (6 occurrences of the 4 ships by 4 filter conditions by 4 quadrants) for 5 sessions totalling 1920 trials per individual.

Results and Discussion
Overall recognition performance. A mean percentage correct was calculated for each condition for each of the four observers across the five experimental test sessions. These overall means are presented in Figure 3 for the three filtered and the unfiltered images. These data were submitted to a three-way (filter condition by ship by day) repeated measures ANOVA. Several findings were of interest. First, as expected, a significant main effect of filter was obtained, $F(3,9)=26.56, p<.001$, with no significant interactions between filter and any of the other variables. A post-hoc analysis of these differences with Duncan’s New Multiple Range Test revealed that performance was significantly better for the unfiltered images (69%) than for any other condition, that the high-pass imagery was recognized more reliably (45%) than the mid- and low-pass cases (31% and 32%, respectively), and that the mid- and low-pass cases were not reliably different from each other.

Second, no main effect of ship occurred (43%, 45%, 43%, and 45% for ships A, B, C, and D, respectively), $F(3,9)<1.0$, and no significant interactions were obtained between ship and any other factor. This result indicates that no single ship had unique or idiosyncratic properties which may otherwise limit interpretation of the filter effect.

Third, a reliable main effect of day was observed, $F(4,12)=6.87, p<.01$, with overall performance increasing across the first four days and leveling off by the fifth day (37%, 40%, 45%, 49%, and 50% for the five days, respectively). Although not specifically predicted, a practice effect of this type is not unexpected. The further finding that no reliable interactions
Figure 3. Overall mean percent correct recognition for each of the four filter conditions, Experiment 1.
occurred between day and any other factor indicates that practice simply led to improved performance, regardless of the viewing condition.

Response bias in recognition. The above findings are consistent with our predictions. It would be difficult to account for the observed pattern of results by response bias alone. Nevertheless, overall performance level may reflect response bias tendencies as well as actual observer sensitivity to the image attributes.

A preliminary analysis was carried out to examine the recognition data for evidence of response bias. This analysis involved compiling the frequency of each recognition response for each filter condition and observer. Any tendency to favor a particular response regardless of the actual ship that was presented would indicate the presence of response bias. These frequencies were analyzed by a two-way, repeated measures ANOVA (filter condition by ship). No significant main effects or interactions were obtained. Hence, there was no systematic bias. Despite this, a detailed examination of individual data did suggest a slight response bias for one observer. Specifically, this individual displayed a tendency to indicate ship A or ship B (both with square deck structures) whenever an unfiltered or high-frequency image occurred (61% vs. 39%) and to indicate ship C or ship D (circular deck structures) whenever a mid- or low-frequency image occurred (65% vs. 35%). This suggests that the presence of high spatial frequencies led this individual to "see" a ship with sharp features (the square deck structures) rather than one with smooth features. Nevertheless,
this tendency was not sufficiently strong to play a major role in
the overall data.

Analysis of recognition confusions. The previous analyses have
shown that observers recognize the unfiltered and high-frequency
ships more reliably than they do the mid- and low-frequency ships,
and that this result cannot be attributed to response bias.
Additional analyses were carried out on the types of confusions
which actually occurred to obtain more information about what
aspects of the imagery made the mid- and low-conditions difficult.
Two by two confusion matrices were derived for each individual and
filter condition, one for the split/full deck house attribute and
the other for the square/circular deck structures attribute. A
response-bias free index of performance, d' (see Green & Swets,
1966), was then determined for each matrix by defining a hit as a
split-deck category response (ships A or C) given that a split-deck
occurred and a false alarm as a split-deck response when a full-deck
actually occurred (ships B or D). Analogous definitions were used
for the square/circular deck structures matrix.

A mean d' discrimination index was then determined for each
filter and attribute by averaging across individuals. These means
are shown in Figure 4. A two-way (filter by attribute), repeated
measures ANOVA revealed reliable main effects of both filter,
$F(3,9)=27.24, p<.001$, and attribute, $F(1,3)=27.24, p<.001$, as well
as a significant filter by attribute interaction, $F(3,9)=5.90,
p<.025$. As is evident in Figure 4, the filter effect obtained with
these bias-free means mirrors that reported for the overall
performance analysis (mean d's: unfiltered=2.18, high=1.04,
Figure 4. Overall mean d’ values by deck-structure and deck-house attribute for each of the four filter conditions. The deck-structure data are shown without cross hatching, the deck-house data with cross hatching.
low=.27, and mid=.28). The main effect of attribute reflects a large performance advantage for the split/full deck discrimination (mean $d' = 1.39$) over the circular/square structure discrimination (mean $d' = 0.50$). Furthermore, as seen in Figure 4, the reliable interaction indicates that this advantage occurred primarily for the unfiltered and high frequency images.

Recognition latency analysis. A mean response latency was determined for each condition and individual in the experiment. The results are shown in Figure 5. These data were analyzed by a three-way (filter condition by ship by day), repeated measures ANOVA. The analysis revealed a significant main effect of filter, $F(3,9) = 5.82$, $p < .025$; no other main effects or interactions were significant at the .05 level. Inspection of Figure 5 suggests that the main effect of filter condition reflects a partitioning of the latencies into two sets, relatively fast for the low-frequency images (1394 ms), and relatively slow for the unfiltered, high- and mid-frequency images (overall mean of 2031 ms). A follow-up post hoc analysis with Duncan’s New Multiple Range test confirmed this observation with reliable differences occurring across the slow and fast groups, but no reliable differences occurring within the slow conditions. Although individuals differed dramatically in their average response time (from 1442 ms to 2163 ms), each showed this pattern. These findings, coupled with the accuracy data, suggest that observers might have regarded the low-frequency images as a "lost cause" and responded relatively quickly whenever they occurred. On the other hand, a simple speed/accuracy tradeoff cannot account for the overall pattern of latencies because
Figure 5. Mean recognition response latency for each of the four filter conditions, Experiment 1.
observers took significantly longer to respond to the mid- than to the low-frequency images even though these two conditions did not differ in accuracy.

Summary of recognition results. Overall, the recognition findings were consistent with the predictions developed in the introduction. The low- and mid-frequency images were nearly impossible to recognize reliably under the conditions presented here, whereas the high-frequency and unfiltered images led to reasonably accurate recognition levels. Furthermore, a follow-on analysis of attribute confusions indicated that neither attribute could be discriminated in the low- and mid-frequency images, the higher frequency deck structures attribute was reasonably well discriminated for only the unfiltered images (mean $d' = 1.88$), and the lower frequency deck house attribute could be discriminated in both the unfiltered ($d' = 2.86$) and the high-frequency imagery ($d' = 1.82$). Finally, the pattern of response latencies was consistent with the accuracy analyses in suggesting that observers regarded the low-frequency images as very difficult or impossible to recognize.

Overall detection performance. The mean percentage correct detection was determined for each condition and each observer in the experiment. Since a four-alternative forced-choice detection procedure was used, unlike the overall recognition data, these data provide a bias-free index of detection performance (Green & Swets, 1966). These means are plotted by day in Figure 6 for each of the four filter conditions. A three-way (filter condition by ship by day) repeated measures ANOVA was carried out on these data. This analysis revealed significant main effects of filter, $F(3,9) = 70.51$, ...
Figure 6. Mean detection performance by testing day and filter condition, Experiment 1.
p<.001, and ship, F(3,9)=4.45, p<.05, as well as significant filter by ship, F(9,27)=5.66, p<.001, and filter by day, F(12,36)=3.99, p<.001, interactions. The reliable main effect of ship reflects a small performance difference across the four ships (66%, 69%, 69%, and 66% for ships A, B, C, and D, respectively). This difference will not be considered further.

As seen in Figure 6, the main effect of filter condition reflects the predicted detection advantage for the low-frequency images, with performance on this condition exceeding even that for the unfiltered condition (low=83%, unfiltered=76%, high=56%, and mid=54%). However, these findings must be interpreted within the context of the two reliable interactions. Consider first the filter by day interaction depicted in Figure 6. It is obvious by visual inspection that the four filters led to a consistent pattern of performance for all except the first day when a reversal of the high- and mid-frequency conditions occurred. Since this effect is small and theoretically-uninteresting, the interaction will not be considered further.

The more important interaction occurred between filter and ship. Does this suggest that the four ships led to meaningfully different detection performance for the different filter conditions? The relevant means are shown in Table 1. A simple effects analysis revealed a highly significant main effect of filter for each of the four ships, indicating that a filter effect did occur for each of the four ships as suggested by Table 1. Furthermore, post hoc comparisons were carried out on each simple effects analysis with Duncan's Test. This revealed that both the low-frequency and
Table 1

Mean correct detection (%) by ship and filter condition.

<table>
<thead>
<tr>
<th>Ship</th>
<th>Low</th>
<th>Mid</th>
<th>High</th>
<th>Unfilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>82.3</td>
<td>55.0</td>
<td>47.9</td>
<td>78.4</td>
</tr>
<tr>
<td>B</td>
<td>84.2</td>
<td>55.8</td>
<td>54.6</td>
<td>80.6</td>
</tr>
<tr>
<td>C</td>
<td>85.3</td>
<td>53.6</td>
<td>64.9</td>
<td>72.9</td>
</tr>
<tr>
<td>D</td>
<td>81.4</td>
<td>50.6</td>
<td>57.5</td>
<td>73.6</td>
</tr>
</tbody>
</table>
unfiltered images were detected reliably better than the mid- and high-frequency images for all ships, but that the low-frequency condition was detected reliably better than the unfiltered images only for ship C.

In summary, detection was better for images containing low spatial frequencies (80% overall for the low-frequency and unfiltered images) than for images containing only the higher spatial frequencies (55% overall for the mid- and high-frequency images). In addition, the fact that there was a consistent tendency, statistically reliable for ship C, for the low-frequency images to produce better detection than the broad-band, unfiltered images, suggests that the presence of high spatial frequencies in the images might have interfered with the observers' ability to detect the ships.

Detection latency analysis. A mean detection response latency was determined for each individual and condition. A three-way (filter condition by ship by day) repeated measures ANOVA revealed a significant main effect of filter, $F(3,9)=5.07$, $p=.025$, and a significant filter by ship interaction, $F(9,27)=2.71$, $p=.025$. No other effects were significant at the .05 level. As in the case of the recognition latencies, inspection of the overall means for each filter condition reveals a partitioning into fast and slow responses. However, in this case the two conditions that led to accurate detection also led to fast responses (934 ms on the average) whereas those that led to poor detection (mid- and high-frequency) showed slow responding (1019 ms on the average).
Before considering these findings further, the filter by ship interaction must be considered. The relevant means as well as the F's resulting from a simple effects analysis on each ship are shown in Table 2. As may be seen, a reliable simple effect of filter occurred for each of the four ships and a similar "fast/slow" pattern of latencies occurred for all but ship C. Post hoc follow-on analyses with Duncan's Test revealed (a) that the low-frequency and unfiltered image latencies did not differ for any ship, (b) that the low-frequency images were detected significantly faster than the mid- and high-frequency images for all ships, and (c) that the unfiltered images were significantly faster than the mid- and high-frequency images for only ships A and B. These latency results are consistent with the detection accuracy data in distinguishing the images with low-frequency content (the unfiltered and low-frequency images) from those with relatively little low-frequency information (the mid- and high-frequency images). Although highly speculative in the context of this experiment, it is interesting that the relatively faster response times observed for the low-frequency images is consistent with the known temporal characteristics of the low-spatial frequency channels reviewed in the introduction.

Experiment 2

The results of Experiment 1 were consistent with the attentional hypothesis on the role of spatial scale in visual perception. Different ranges of spatial frequencies led to optimal performance for the detection and recognition tasks. An additional
Table 2
Mean detection response latency (ms) by ship and filter condition.

<table>
<thead>
<tr>
<th>Ship</th>
<th>Low</th>
<th>Mid</th>
<th>High</th>
<th>Unfilt</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>944</td>
<td>1027</td>
<td>1025</td>
<td>923</td>
<td>980</td>
</tr>
<tr>
<td>B</td>
<td>913</td>
<td>1012</td>
<td>1030</td>
<td>937</td>
<td>973</td>
</tr>
<tr>
<td>C</td>
<td>916</td>
<td>1036</td>
<td>982</td>
<td>961</td>
<td>974</td>
</tr>
<tr>
<td>D</td>
<td>926</td>
<td>1027</td>
<td>1014</td>
<td>958</td>
<td>982</td>
</tr>
<tr>
<td>Mean</td>
<td>924</td>
<td>1025</td>
<td>1013</td>
<td>945</td>
<td></td>
</tr>
</tbody>
</table>
question raised by Julesz and Papathomas (1984) concerns the ability of observers to regulate the attended spatial frequency channels on a voluntary basis. Their demonstration supported what they referred to as a "strong" form of the hypothesis in revealing that some voluntary control does exist. This leads to the further question of whether, if given a choice, observers would voluntarily select imagery that had been spatially filtered to include an optimal frequency band. This question is investigated in the second experiment. In particular, the detection and recognition tasks of Experiment 1 were replicated, but in Experiment 2, observers were given control over the filter condition viewed on each trial. Immediately prior to image presentation the observer selected which of the four filter conditions to present (low-, mid-, or high-frequency dominant, or unfiltered). If the observers are sensitive to the role of spatial frequency filtering on detection and recognition performance then performance should be optimized by the selection of low-frequency images for the detection task and unfiltered images for the recognition task. This finding would suggest that individuals have a reliable "meta-perception" or intuition regarding what will contribute to good performance in a simple perceptual task (Nisbett & Wilson, 1977; Ericsson & Simon, 1980).

Method

Observers. Eight undergraduate volunteers served in the Experiment, four in the recognition task and four in the detection task. All reported normal or corrected-to-normal vision, and none
Spatial scale participated in Experiment 1.

Apparatus. The apparatus was identical to that used in Experiment 1.

Imagery. The imagery was identical to that used in Experiment 1.

Procedure. The procedure of Experiment 1 was used, but prior to beginning each trial the observer pressed a key to select which of the four filter conditions to observe. As a result, the frequency of occurrence of each filter condition was an additional dependent variable in this experiment. No specific instructions were given regarding which filter condition to select, observers were told simply to select the imagery which would make their task easiest. As in Experiment 1, feedback was provided following the recognition responses, and no feedback was given during detection.

Results and Discussion

Filter selection for the recognition task. The mean frequency of selection was determined for each filter condition and observer in the experiment. The results of this analysis are shown in Table 3. As is evident from the table, two of the four observers showed a decided preference for the unfiltered images, selecting these images on 97% and 66% of the trials, whereas the remaining two observers preferred the high-pass images with selection on 58% and 98% of the trials. The selection of the high-pass imagery by the latter two individuals is curious given the finding of Experiment 1 that high-pass filtered imagery led to poorer recognition performance
Table 3
Mean relative frequency of filter selection and percentage correct recognition (shown in parentheses) for each of four observers.

<table>
<thead>
<tr>
<th>Observer</th>
<th>Low</th>
<th>Mid</th>
<th>High</th>
<th>Unfilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.12</td>
<td>.21</td>
<td>.58 (46)</td>
<td>.09</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>--</td>
<td>.98 (60)</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>.02</td>
<td>--</td>
<td>--</td>
<td>.97 (82)</td>
</tr>
<tr>
<td>4</td>
<td>.02</td>
<td>--</td>
<td>.32</td>
<td>.66 (88)</td>
</tr>
</tbody>
</table>
Spatial scale

than did unfiltered imagery. Recognition performance is examined next.

Recognition performance. The mean percentage correct was determined for each preferred viewing condition for each of the four observers, collapsed across the five test sessions. These results appear in parentheses in Table 3. The two observers who showed a preference for the high-frequency imagery performed substantially poorer (53% correct) than the two with a preference for the unfiltered imagery (85% correct). This is consistent with the pattern of Experiment 1 which revealed better recognition performance for the unfiltered (69%) than for the high-frequency images (45%). Nevertheless, the overall performance levels achieved in this experiment were higher than those observed in the first experiment.

As in Experiment 1, an additional response-bias free analysis was carried out on the two by two confusion matrices for the deck-house and deck-structures attributes. The results of this analysis were consistent with those of Experiment 1 in revealing superior overall performance for the deck-house attribute (mean $d' = 2.60$) than for the deck-structures attribute (mean $d' = 1.72$). Furthermore, this analysis also supported the asymmetry between the two categories of observers identified above. Individuals who selected the high-frequency imagery did substantially worse on both attributes than those who selected the unfiltered imagery (deck-structures: mean $d' = .73$ vs. 2.72; deck-house: mean $d' = 1.86$ vs. 3.34). As in the case of the overall performance data, these analyses also show better performance for both
attributes in this experiment (mean $d' = 1.72$ and 2.60) than in the first experiment (mean $d' = .50$ and 1.39).

The key to understanding the overall differences between the results of this experiment and those of Experiment 1 may lie in the overall practice obtained under each viewing condition. Since each observer in Experiment 2 tended to select only one of the four image types for presentation, the selected type (either high-frequency or unfiltered) occurred far more frequently than in Experiment 1. In particular, individuals who selected the unfiltered imagery averaged 1579 presentations, whereas those who selected the high-frequency imagery averaged 1490 presentations. In both cases, the preferred filter condition appeared more than three times as often in this experiment than in Experiment 1. This suggests that additional practice with the selected imagery led to better overall recognition performance than found in Experiment 1.

Filter selection for the detection task. As in the case of recognition, the relative frequency of filter selection was determined for each filter condition and observer. These results are shown in Table 4. As seen in the table, each of the four observers had a clear preference for the low-pass imagery with selection for more than 90% of the trials. This finding is consistent with the results of Experiment 1 which demonstrated optimal detection performance for this filter condition. The result also stands in sharp contrast to the selection results for the recognition condition in which two of the four observers had a selection preference for a non-optimal filter.
Table 4
Mean relative frequency of filter selection and percentage correct detection (shown in parentheses) for each of four observers.

<table>
<thead>
<tr>
<th>Observer</th>
<th>Low</th>
<th>Mid</th>
<th>High</th>
<th>Unfilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.87 (80)</td>
<td>.02</td>
<td>.02</td>
<td>.09</td>
</tr>
<tr>
<td>2</td>
<td>.91 (81)</td>
<td>--</td>
<td>--</td>
<td>.09</td>
</tr>
<tr>
<td>3</td>
<td>.91 (46)</td>
<td>.03</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>4</td>
<td>.95 (87)</td>
<td>.01</td>
<td>.02</td>
<td>.02</td>
</tr>
</tbody>
</table>
Detection performance. The mean percentage correct was determined for the preferred low-pass imagery for each of the four observers, collapsed across the five test sessions. These results are shown in parentheses in Table 4. With the exception of observer 3 who found the task extremely difficult, overall detection performance (74% with and 83% without Observer 3) was comparable to that obtained in Experiment 1 (83% overall). This comparability occurred despite the fact that observers in the present experiment received substantially more practice with the low-frequency imagery (mean number of trials = 1739) than did the observers in Experiment 1 (480 trials). This suggests that unlike recognition, detection levels are nearly optimal and further improvements would not be expected with more practice.

General Discussion

Overall, the results of this study are consistent with the attentional hypothesis on the role of spatial scale in image perception. In Experiment 1, different ranges of spatial frequencies led to optimal performance for the detection and recognition tasks. Experiment 2 showed further that, when given a choice, observers may not always select imagery which contains spatial frequencies which lead to optimal recognition performance. Several aspects of these results are discussed further below.

As noted above, the recognition findings were consistent with the predictions developed in the introduction. In the first experiment the unfiltered and high-frequency images were recognized substantially better than the other images. A follow-on analysis
indicated further that the higher frequency deck-structure (circular/square) was nearly impossible to discriminate in all but the unfiltered images, whereas the lower-frequency deck-house (split/full) discrimination was comparatively easy for both the high-frequency and unfiltered images. To understand this result, it is necessary to consider the spatial-frequencies involved in the two discriminations. In a simplified first analysis it can be argued that the six-pixel discrimination required to distinguish the split from full deck house would have a fundamental spatial frequency of 21.33 c/i (cycles/image) or 5.63 c/d (cycles/degree of visual angle) (128/6 = 21.33 c/i), whereas the three-pixel difference between the circular and square deck structures has a fundamental of 42.67 c/i or 11.26 c/d (cf. Ginsburg, 1978; p. 44). From this perspective, the observation that low- and mid-frequency images led to poor discrimination is not surprising—the information was simply not provided within the passbands of these filters to permit discrimination (.26 c/d - 2.11 c/d for low, 2.38 c/d - 8.44 c/d for mid).

However, this simplified analysis falls short of telling the whole story. For even relatively simple shapes such as those used to construct the ship images investigated here, differences between objects in the spatial frequency domain are far more subtle and complex than is suggested in the above analysis. For example, Figure 7 displays the two-dimensional Fourier transform of the difference between a circular and square shape as used in the deck-structures attribute. Examination of this figure makes it clear that the frequency-domain differences between these two simple
Figure 7. Log display of two-dimensional spectral magnitude data for the difference between a circle and square (as in the deck-structure attribute). The display is centered at the constant or d.c. point with spatial frequency increasing outward from this point.
shapes are broadly distributed across the spectrum. In terms of the filters used in this investigation, information sufficient for discrimination exists in all three frequency bands. The real issue, then, concerns the ability of the human observer to make use of this information.

In the first experiment observers were not able to distinguish the more subtle deck-structures attribute on the basis of a subset of spatial frequencies regardless of where these frequencies fell (i.e., low-, mid-, or high-band). Only the unfiltered images produced reliable discrimination for this attribute. This suggests that the overall spectral configuration or pattern of spatial frequencies is of primary importance for discrimination and hence recognition.

The results of the second experiment suggest further that substantial improvements in recognition performance can occur with additional practice. This finding must be interpreted cautiously, however, since the image selection paradigm investigated in the second experiment may have produced quite a different perceptual task than that investigated in the more conventional paradigm used in the first experiment. In particular, the observers in Experiment 2 were effectively classifying imagery falling within a single spatial frequency band. In contrast, observers in Experiment 1 received imagery from four spatial frequency bands (low, mid, high and unfiltered). This distinction may have permitted the former individuals to treat each of the four images (4 ships x 1 filter condition) as a unique entity to be categorized in a paired-associate fashion, whereas the observers in Experiment 1 had
the more difficult task of either learning categories for 16 unique images (4 ships x 4 filter conditions) or of determining general features or characteristics for the four ships which would apply across the various filter conditions. Additional experimentation is required to understand more fully the performance differences obtained between Experiments 1 and 2.

Detection. The detection results obtained in the present study are also consistent with the hypotheses developed in the introduction. For the luminance and exposure conditions investigated here, the low spatial frequency imagery led to unambiguously better detection performance than did imagery from the three other spatial frequency bands. Furthermore, although observers in the second experiment received considerably more practice with the low-frequency imagery than did observers in the first experiment, no overall detection performance difference occurred between the two experiments. This suggests that detection performance was nearly optimal with this imagery in both cases. Despite this, however, an alternative to the attentional hypothesis can be proposed to account for the detection results. Specifically, the 1 cycle/degree center frequency of the low-pass spatial frequency filters investigated here would be expected to yield maximum contrast sensitivity at the low luminance levels used (Campbell & Robson, 1968). This alone could account for the superior detection performance observed for this filter condition. More interesting, however, is the finding that overall detection was better for the low frequency (83% correct) than for the unfiltered (76%) imagery despite the fact that the unfiltered imagery obviously
Spatial scale

contains the low frequency information. As indicated previously, this suggests a possible interference effect of the higher frequency information contained in the original, unfiltered imagery. As in the case of recognition, this underscores the importance of the overall pattern of spatial frequencies for detection performance.

Implications for image processing and image quality metrics. Image processing and enhancement techniques are widely used in Navy applications such as reconnaissance, weather forecasting, and sonar imaging. In many such applications, a human observer is required to apply image enhancement algorithms on an interactive basis to improve image quality for the task at hand. Two aspects of this problem deserve further comment in light of the findings reported here, the role of the human observer in interaction, and the perceptual basis for assessing image quality.

First, the present study was only part of a larger project to investigate human-computer interaction in image processing and was not designed to examine fully-interactive capabilities. Despite this, however, a limited "interactive" capability was provided in Experiment 2 when observers were required to select which of four spatial frequency filter conditions to observe on each trial—a first step in the investigation of fully-interactive systems. The results of this experiment revealed that some observers did not select the optimal spatial frequency parameters for image recognition. Additional research is called for on the problem of determining what an observer knows of the conditions that will lead to optimal performance. Previous research by Peterson, Goppelt, & Grossman (1984) has shown that spatial frequency filtering can lead
to improved recognition performance for infrared ship images. The results reported here suggest that observers may not be able to take advantage of such image processing tools in an interactive imaging environment without some kind of additional decision aid or expert system to assist them.

Second, image "quality" has received considerable attention in the image processing literature (Snyder, Shedivy, & Maddox, 1982). The objective of image quality research is to determine a scale or metric of image quality suitable for predicting the ability of observers to extract information from images. Although not designed to investigate this problem, the findings of the present study suggest that singular measures of image quality necessarily fail to capture the perceptual complexity of imagery for all tasks. For example, one could argue that the low-pass imagery provided very high quality for detection but low quality for recognition, whereas the reverse was true for recognition. No simple measure can provide an accurate sense of image quality without considering the observer's task. Additional work such as that carried out by Kuperman (1985) is needed to place image quality metrics on a more secure theoretical footing.
References

Spatial scale

OFFICE OF NAVAL RESEARCH
Engineering Psychology Program

TECHNICAL REPORTS DISTRIBUTION LIST

OSD

CAPT Paul R. Chatelier
Office of the Deputy Under Secretary of Defense
OUSDRE (E&LS)
Pentagon, Room 3D129
Washington, D.C. 20301

Department of the Navy
Engineering Psychology Program
Office of Naval Research
Code 1142EP
800 North Quincy Street
Arlington, VA 22217-5000 (3 copies)

Aviation & Aerospace Technology Programs
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Physiology and Neurobiology Program
Office of Naval Research
Code 1141NP
800 North Quincy Street
Arlington, VA 22217-5000

CAPT. P. M. Curran
Code 125
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Charles Holland
Office of Naval Research
Code 1133
800 N. Quincy Street
Arlington, VA 22217-5000

J. Randy Simpson
Statistics Program Code 1111SP
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Lyle D. Broemeling
Code 1111SP
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Information Sciences Division
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

CAPT William M. Houk
Commanding Officer
Naval Medical R&D Command
Bethesda, MD 20814-5055

Dr. Randall P. Schumaker
NRL A. I. Center
Code 7510ical R&D Command
Naval Research Laboratory
Washington, D.C. 20375-5000
Department of the Navy

Special Assistant for Marine Corps Matters
Code OOMC
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Mr. R. Lawson
ONR Detachment
1030 East Green Street
Pasadena, CA 91106-2485

CDR James Offutt
Office of the Secretary of Defense
Strategic Defense Initiative Organization
Washington, D.C. 20301-7100

Director
Technical Information Division
Code 2627
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Michael Melich
Communications Sciences Division
Code 7500
Naval Research Laboratory
Washington, D.C. 23075-5000

Dr. J. S. Lawson, Jr.
4773-C Kahala Avenue
Honolulu, HI 96816

Dr. Neil McAlister
Office of Chief of Naval Operations
Command and Control
OP-094H
Washington, D.C. 20350

Dr. A. F. Norcio
Computer Sciences & Systems
Code 7592
Naval Research Laboratory
Washington, DC 20375-5000

Dr. James McMichael
Office of the Chief of Naval Operations, OP987H
Technology Assessment Division
Washington, D.C. 20350

Mr. John Davis
Combat Control Systems Department
Code 35
Naval Underwater Systems Center
Newport, RI 02840

Human Factors Department
Code N-71
Naval Training Systems Center
Orlando, FL 32813

Mr. Norm Beck
Combat Control Systems Department
Code 35
Naval Underwater Systems Center
Newport, RI 02840

Human Factors Engineering
Code 441
Naval Ocean Systems Center
San Diego, CA 92152

Dr. Gary Poock
Operations Research Department
Naval Postgraduate School
Monterey, CA 93940

Mr. H. Talkington
Engineering & Computer Science
Code 09
Naval Ocean Systems Center
San Diego, CA 92152

CDR Paul Girard
Command & Control Technology Department, Code 40
Naval Ocean Systems Center
San Diego, CA 92152
JANUARY 1986

Department of the Navy

Mr. Paul Heckman
Naval Ocean Systems Center
San Diego, CA 92152

Dr. William Uttdl
Naval Ocean Systems Center
Hawaii Laboratory
P. O. Box 997
Kailua, HI 96734

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Washington, D. C. 20380

Dr. L. Chmura
Computer Sciences & Systems
Code 7592
Naval Research Laboratory
Washington, D. C. 20375-5000

Dr. Michael Letsky
Office of the Chief of Naval Operations (OP-01B7)
Washington, D. C. 20350

Professor Douglas E. Hunter
Defense Intelligence College
Washington, D. C. 20374

CDR C. Hutchins
Code 55
Naval Postgraduate School
Monterey, CA 93940

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 North Quincy Street
Arlington, VA 22217-5000

Professor Michael Sovereign
Joint Command, Control & Communications Curriculum
Code 74
Naval Postgraduate School
Monterey, CA 93943

Commander
Naval Air Systems Command
Crew Station Design
NAVAIR 5313
Washington, D. C. 20361

Mr. Philip Andrews
Naval Sea Systems Command
NAVSEA 61R
Washington, D. C. 20362

Aircrew Systems Branch
Systems Engineering Test Directorate
U.S. Naval Test Center
Patuxent River, MD 20670

Mr. Milton Essogloou
Naval Facilities Engineering Command
R&D Plans and Programs
Code 03T
Hoffman Building II
Alexandria, VA 22332

CAPT Robert Biersner
Naval Biodynamics Laboratory
Michoud Station
Box 29407
New Orleans, LA 70189

Dr. Arthur Bachrach
Behavioral Sciences Department
Naval Medical Research Institute
Bethesda, MD

Dr. George Moeller
Human Factors Engineering Branch
Naval Submarine Base
Submarine Medical Research Lab.
Groton, CT 06340
Department of the Navy

Head
Aerospace Psychology Department
Naval Aerospace Medical Research Lab
Pensacola, FL 32508

Commanding Officer
Naval Health Research Center
San Diego, CA 92152

Dr. Jerry Tobias
Auditory Research Branch
Submarine Medical Research Lab
Naval Submarine Base
Groton, CT 06340

Dr. Robert Blanchard
Code 71
Navy Personnel Research and Development Center
San Diego, CA 92152-6800

LCDR T. Singer
Human Factors Engineering Division
Naval Air Development Center
Warminster, PA 18974

Mr. Jeff Grossman
Human Factors Division, Code 71
Navy Personnel R&D Center
San Diego, CA 92152-6800

LT. Dennis McBride
Human Factors Branch
Pacific Missile Test Center
Point Mugu, CA 93042

Dr. Kenneth L. Davis
Code 1114
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

LCDR R. Carter
Office of Chief on Naval Operations
(OP-01B)
Washington, D.C. 20350

Dean of the Academic Departments
U. S. Naval Academy
Annapolis, MD 21402

CDR W. Moroney
Naval Air Development Center
Code 602
Warminster, PA 18974

Dr. Harry Crisp
Code N 51
Combat Systems Department
Naval Surface Weapons Center
Dahlgren, VA 22448

Mr. John Quirk
Naval Coastal Systems Laboratory
Code 712
Panama City, FL 32401

Human Factors Branch
Code 3152
Naval Weapons Center
China Lake, CA 93555

CDR Kent S. Hull
MS 239-21
NASA/Ames Research Center
Moffett Field, CA 94035

Dr. Rabinder N. Madan
Code 1114SE
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Eugene E. Gloye
ONR Detachment
1030 East Green Street
Pasadena, CA 91106-2485
Other Government Agencies

Dr. M. C. Montemerlo
Information Sciences &
Human Factors Code RC
NASA HQS
Washington, D.C. 20546

Dr. Donald D. Hoffman
University of California
(Irvine)
School of Social Sciences
Irvine, CA 92717

Dr. Alan Leshner
Deputy Division Director
Division of Behavioral and
Neural Sciences
National Science Foundation
1800 G. Street, N.W.
Washington, D.C. 20550

Dr. T. B. Sheridan
Dept. of Mechanical
Engineering
Massachusetts Institute of
Technology
Cambridge, MA 02139

Dr. Clinton Kelly
Defense Advanced Research
Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

Dr. Daniel Kahneman
The University of British
Department of Psychology
#154-2053 Main Mall
Vancouver, British Columbia
Canada V6T 1Y7

Dr. Stanley Deutsch
NAS-National Research Council
(COHF)
2101 Constitution Avenue, N.W.
Washington, D.C. 20418

Dr. Amos Tversky
Dept. of Psychology
Stanford University
Stanford, CA 94305

Dr. Meredith P. Crawford
American Psychological
Association
Office of Educational Affairs
1200 17th Street N.W.
Washington, D.C. 20036

Dr. Jesse Orlansky
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311

Dr. Harry Snyder
Dept. of Industrial Engineering
Virginia Polytechnic Institute
and State University
Blacksburg, VA 24061

Dr. Deborah Boehm-Davis
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Amos Freedy
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Ao (2 copies)

Other Organizations

Dr. Amos Freedy
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364
Other Organizations

Dr. David Van Essen
California Institute of Tech.
Division of Biology
Pasadena, CA 91125

Dr. James H. Howard, Jr.
Department of Psychology
Catholic University
Washington, D.C. 20064

Dr. William Howell
Department of Psychology
Rice University
Houston, TX 77001

Dr. Christopher Wickens
Department of Psychology
University of Illinois
Urbana, IL 61801

Dr. Robert Wherry
Analytics, Inc.
2500 Maryland Road
Willow Grove, PA 19090

Dr. Edward R. Jones
Chief, Human Factors Engineering
McDonnell-Douglas Astronautics Co.
St. Louis Division
Box 516
St. Louis, MO 63166

Dr. Lola L. Lopes
Department of Psychology
University of Wisconsin
Madison, WI 53706

Dr. Joaquin Fuster
University of California at
Los Angeles
760 Westwood Plaza
Los Angeles, CA 90024

Dr. Stanley N. Roscoe
New Mexico State University
Box 5095
Las Cruces, NM 88003

Mr. Joseph G. Wohl
Alphatech, Inc.
3 New England Executive Park
Burlington, MA 10803

Dr. Marvin Cohen
Decision Science Consortium, Inc.
Suite 721
7700 Leesburg Pike
Falls Church, VA 22043

Dr. Scott Robertson
Catholic University
Department of Psychology
Washington, D.C. 20064

Dr. William B. Rouse
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332

Ms. Denise Benel
Essex Corporation
333 N. Fairfax Street
Alexandria, VA 22314

Dr. Andrew P. Sage
Assoc. V. P. for Academic Affairs
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. James Ballas
Georgetown University
Department of Psychology
Washington, D.C. 20057
Other Organizations

Dr. Richard Pew
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02238

Dr. Hillel Einhorn
Graduate School of Business
University of Chicago
1101 E. 58th Street
Chicago, IL 60637

Dr. Douglas Towne
University of Southern California
Behavioral Technology Lab
1845 South Elena Avenue, Fourth Floor
Redondo Beach, CA 90277

Dr. James T. Todd
Brandeis University
Waltham, MA 02254

Dr. John Payne
Graduate School of Business Administration
Duke University
Durham, NC 27706

Dr. Dana Yoerger
Deep Submergence Laboratory
Woods Hole Oceanographic Institution
Woods Hole, MA 02543

Dr. Azad Madni
Perceptronics, Inc.
6271 Variel Avenue
Woodland Hills, CA 91364

Dr. Tomaso Poggio
Massachusetts Institute of Tech.
Center for Biological Information Processing
Cambridge, MA 02139

Dr. Whitman Richards
Massachusetts Ins. of Tech
Department of Psychology
Cambridge, MA 02139

Dr. Robert A. Hummel
New York University
Courant Inst. of Mathematical Sciences
251 Mercer Street
New York, New York 10012

Dr. H. McI. Parsons
Essex Corporation
333 N. Fairfax Street
Alexandria, VA 22314

Dr. Paul Slovic
Decision Research
1201 Oak Street
Eugene, OR 97401

Dr. Kent A. Stevens
University of Oregon
Dept. of Computer & Info Sci.
Eugene, OR 97403

Dr. Donald A. Glaser
U. of California, Berkeley
Department of Molecular Biology
Berkeley, CA 94720
Other Organizations

Dr. Leonard Adelman
PAR Technology Corp.
Building A
1220 Sunset Hills Road, Suite 310
McLean, VA 22090

Dr. Michael Athans
Massachusetts Inst. of Technology
Lab Information & Decision Systems
Cambridge, MA 02139

Dr. David Castanon
ALPHATECH, Inc.
111 Middlesex Turnpike
Burlington, MA 01803

Dr. A. Ephremides
University of Maryland
Electrical Engineering Dept.
College Park, MD 20742

Dr. Baruch Fischhoff
Perceptronics, Inc.
6271 Variel Ave.
Woodland Hills, CA 91367

Dr. Bruce Hamill
The Johns Hopkins Univ.
Applied Physics Lab
Laurel, MD 20707

Barry Hughes
Space and Naval Warfare Systems
Code 611
Washington, D.C. 20363-5100

Dr. E. Douglas Jensen
Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

Dr. David L. Kleinman
Electrical Engineering & Computer Science Dept.
University of Connecticut
Storrs, CT 06268

Dr. Alexander Levis
Massachusetts Institute of Technology
Lab Information & Decision Systems
Cambridge, MA 02139

Dr. D. McGregor
Perceptronics Inc.
1201 Oak Street
Eugene, OR 97401

Dr. David Noble
Engineering Research Assoc.
8616 Westwood Center Dr.
McLean, VA 22180

Dr. P. Papantoni-Kazakos
University of Connecticut
Department of Electrical Engineering and Computer Science (U-157)
Storrs, CT 06268

Professor Wayne F. Stark
University of Michigan
Department of Electrical Engineering and Computer Science
Ann Arbor, MI 48109

Mr. Robert L. Stewart
The Johns Hopkins University
Applied Physics Laboratory
Laurel, MD 20707

Dr. Kepi Wu
Space and Naval Warfare Systems
Code 611
Washington, D.C. 20363-5100