THE CLASSIFICATION OF MULTI-EDGE SHAPES USING AN AUTOREGRESSIVE MODEL AND (U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH R D KENNEDY DEC 85
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.5</td>
<td>1.8</td>
<td>1.6</td>
<td>1.4</td>
<td>1.25</td>
</tr>
<tr>
<td>1.1</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1961-4
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 AFIT/CI/NR 86-132T

2. **GOVT ACCESSION NO.**

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**
 The Classification Of Multi-Edge Shapes Using An Autoregressive Model And The Karhunen-Loeve Expansion

5. **TYPE OF REPORT & PERIOD COVERED**
 THESIS/DISSertation

6. **PERFORMING ORG. REPORT NUMBER**

7. **AUTHOR(s)**
 Ruth DeBeurs Kennett

8. **CONTRACT OR GRANT NUMBER(s)**

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 AFIT STUDENT AT: University of New Hampshire

10. **PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS**

11. **CONTROLLING OFFICE NAME AND ADDRESS**
 AFIT/NR
 WPAFB OH 45433-6583

12. **REPORT DATE**
 1985

13. **NUMBER OF PAGES**
 136

14. **MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)**

15. **SECURITY CLASS. (of this report)**
 UNCLASSIFIED

15a. **DECLASSIFICATION/Downgrading Schedule**

16. **DISTRIBUTION STATEMENT (of this Report)**
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**

18. **SUPPLEMENTARY NOTES**
 APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**
 ATTACHED.
THE CLASSIFICATION OF MULTI-EDGE SHAPES
USING AN
AUTOREGRESSIVE MODEL
AND THE
KARHUNEN-LOEVE EXPANSION

BY

RUTH DEBEURS KENNETT
B.S.E.E., University of New Hampshire, 1983

A THESIS

Submitted to the University of New Hampshire
in Partial Fulfillment of
the Requirements for the Degree of

Master of Science
in
Electrical Engineering

December, 1985
This thesis has been examined and approved.

Felson H. Glanz
Thesis director, Associate Professor of Electrical and Computer Engineering

Paul J. Nahin
Associate Professor of Electrical and Computer Engineering

Gordon L. Kraft
Assistant Professor of Electrical and Computer Engineering

8-8-85
Date
ACKNOWLEDGEMENTS

I thank Dr. Filson H. Glanz for his excellent guidance and thoughtful encouragement during the progress of this thesis. I also thank my family, Crosby, Rachel, and Raymond for their unselfish support of this and all my previous academic endeavors.

I also wish to thank the following special individuals: Carl Piel for his expert knowledge of the VAX system, Aaron Pailes for his helpful suggestions and Nan Collins for her beautiful typing.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ix</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 FEATURE SELECTION THEORY</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Feature Selection Background</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Syntactical Approach to Feature Selection</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Mathematical Approach to Feature Selection</td>
<td>6</td>
</tr>
<tr>
<td>2.2 The Autoregressive Model</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Boundary Representation Schemes</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.1 Equi-Angle Sampling</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.2 Equal Arc Length Sampling</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 The General Autoregressive Model</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 The Specific Autoregressive Model</td>
<td>12</td>
</tr>
<tr>
<td>2.2.3.1 Estimating α and β of the Specific AR Model</td>
<td>13</td>
</tr>
<tr>
<td>2.2.3.2 Estimating the Coefficients of the Specific AR Model</td>
<td>14</td>
</tr>
<tr>
<td>2.2.4 The Autoregressive Model Parameters as Shape Descriptors</td>
<td>18</td>
</tr>
<tr>
<td>CHAPTER 3 CLASSIFICATION OF THE TRANSFORMED FEATURE VECTOR</td>
<td>20</td>
</tr>
<tr>
<td>3.1 Background of Classification Theory</td>
<td>20</td>
</tr>
<tr>
<td>3.1.1 Deterministic Classification Techniques</td>
<td>21</td>
</tr>
<tr>
<td>3.1.2 Statistical Classification Techniques</td>
<td>23</td>
</tr>
<tr>
<td>3.1.3 Trainable Pattern Classifiers</td>
<td>24</td>
</tr>
<tr>
<td>3.2 The Karhunen-Loeve Expansion</td>
<td>25</td>
</tr>
<tr>
<td>3.2.1 Basic Theory of the Karhunen-Loeve Coordinate Axes</td>
<td>25</td>
</tr>
</tbody>
</table>
3.2.2. Application of the Karhunen-Loeve Coordinate System to the Recognition Problem

3.3 The Optimal Karhunen-Loeve Coordinate System

3.4 The Classifier

CHAPTER 4 CREATING THE PATTERN RECOGNITION SYSTEM

4.1 Object Sensing

4.1.1 Description of the System Hardware

4.1.2 The Digital Image

4.2 Preprocessing of the Digital Image

4.2.1 Image Thresholding

4.3 Feature Selection

4.3.1 Search for Boundary Starting Pixel

4.3.2 The Turtle Boundary Detector

4.3.2.1 The Centroid of the Boundary

4.3.3 Formation of the Time Series from the Radius Vector Lengths

4.3.3.1 Equi-Angle Method

4.3.2.2 Equi-Arc Length Method

4.4 Extraction of Additional Information from the Inner Boundaries of an Object

4.4.1 Determination of Hole Ownership

4.5 Description of the System Software

4.5.1 Program TRAIN

4.5.2 Program CLASSIFY

CHAPTER 5 NUMERICAL EXAMPLE AND SYSTEM TESTS AND RESULTS

5.1 Numerical Example

5.1.1 Example of the System Using the Equal Angle Boundary Sampling Method

5.1.2 Example of the System Using the Equal Arc Length Boundary Sampling Method

5.2 System Tests and Results

5.2.1 Industrial Shapes Test

5.2.2 Military Shapes Test
LIST OF TABLES

5.1.1 Training Set Data: Equal Angle Boundary Sampling Method --- 60
5.1.2 Transformed Training Set Data -------------------------- 62
5.1.3 Classification Data Using Basic K-L Transformation ----- 65
5.1.4 Classification Data Using Optimal K-L Transformation --- 66
5.1.5 Training Set Data: Equal Arc Length Sampling Method --- 69
5.1.6 Classification Data Using Optimal K-L Transformation and Equal Arc Length Sampling Method ------------------- 70
5.2.1 Results of the Industrial Shapes Test ------------------ 74
5.2.2 Results of the Military Shapes Test --------------------- 77
5.2.3 Results of the Geometric Shapes Test ------------------- 79
5.2.4 Results of the Combined Shapes Test --------------------- 84
5.2.5 Processor Times for Calculating the Radius Vector Lengths and the AR Parameters ------------------------ 87
LIST OF FIGURES

1.1.1 Block Diagram of a Pattern Recognition System 1

2.2.1 Example of Equal Angle Boundary Sampling Method 8

2.2.2 Example of Boundary Sampling Where a Portion of the Boundary is Skipped 9

2.2.3 Example of Equal Arc Length Boundary Sampling Method 10

3.1.1 Example of a Discriminant Function for a 2 Class Problem 22

4.1.1 Block Diagram of the Pattern Recognition System Hardware 37

4.1.2 Active Video Window Coordinate System 38

4.3.1 Example of a Scene With Marked Edges 44

4.3.2 Example of Equi-Angle Radius Vector Boundary Intersection Detection 46

4.4.1 Example of Method for Determining Hole Ownership 50

4.5.1 General Flowchart of Program TRAIN 53

4.5.2 General Flowchart of Program CLASSIFY 55

5.1.1 Shapes for Numerical Example: Equal Angle Boundary Sampling Method 59

5.1.2 Plots Showing the Effect of the Different Transformation Techniques 63

5.1.3 Shapes for Numerical Example: Equal Arc Length Boundary Sampling Method 68

5.2.1 Industrial Shapes 73

5.2.2 Military Shapes 76

5.2.3 Geometric Shapes 78

5.2.4 Multi-Edge Shapes 81

5.2.5 Confusion Matrix of Multi-Edge Shapes Test 82
In this thesis a pattern recognition system capable of classifying two dimensional shapes with multiple edges was developed. The problem of multiple edge classification was treated as an extension of the single edge problem. For each edge, a feature vector was formed from the parameters of an autoregressive model of a time series representing the shape of the edge. The dimension of these feature vectors was further reduced by the use of a transformation based on the Karhunen-Loeve expansion. A minimum distance classification rule was used to classify an input transformed feature vector according to the nearest class mean in the transformed feature space.

Two boundary sampling methods as well as two versions of the Karhunen-Loeve transformation were investigated. An illustrative numerical example and the description of the system tests are provided. Using an equal angle boundary sampling technique and the pre-whitened Karhunen-Loeve transformation, an industrial shapes test showed 100% correct classification results with an average classification time of 1.27 seconds. The complete Fortran listings of the routines written for this system are included in the Appendix at the back of this work.
CHAPTER 1

INTRODUCTION

The purpose of this thesis is to classify objects with multiple edges using the method of classification based on a Karhunen-Loeve transformation of the autoregressive model parameters which represent the shapes of the boundaries detected in thresholded, digital images of the objects.

The human ability to recognize a particular object can be broken down into a series of logical steps. For instance in order to recognize a cat, a person looks at the cat and unconsciously collects the unique discriminating features of the animal. Then a comparing process occurs where the just collected information is compared to the vast storehouse of labelled features. A match occurs when the newly collected features agree with the features remembered as those belonging to a cat.

An automatic pattern recognition system uses the same principles. The block diagram of a simple pattern recognition system is shown below in Figure 1.1.

Figure 1.1.1 Block Diagram of a Pattern Recognition System
A sensing device such as a TV camera passes the raw data to a storage device. In the storage area the two-dimensional image can be digitized, thresholded, segmented and preprocessed in any way to enhance the discriminating features of the object. Once the image has been satisfactorily preprocessed, the physical features or the structural relationships (or both) can be selected and put into array (also called pattern vector or feature vector) form for computer manipulation. At this point the pattern vector can undergo further processing, or it can go directly to a classifier or categorizor. Generally the classifier has been previously trained with examples of expected pattern vectors called training samples and their corresponding labels. Pattern classification occurs when the input data is assigned to one of a finite number of categories or pattern classes.

In this thesis a pattern recognition system which is capable of classifying a broad set of objects is developed. The feature vectors of the objects are formed from the parameters of a particular linear difference equation called the autoregressive (AR) equation. The AR equation has been shown to be an effective model for the shape of an object's boundary [Dubois, 1984]. To further reduce storage space and classification time, the AR parameters are then projected onto the Karhunen-Loeve (K-L) coordinate axes. By making use of the special properties of the K-L expansion, the dimension of the feature vector can be further reduced. The result of this work has been the development of an efficient object recognition system that requires very little training data storage space and no extra dedicated hardware.

The list of applications for an automatic pattern recognition system is almost endless. At present, recognition systems are being used in
industry to inspect and identify parts. As a part moves down an assembly line the vision system can inspect for quality and can also make sure that the right part is moving down the line at the proper time. Electronic suppliers use vision systems to ensure proper placement of circuit board components [Beavers and Hubach, 1984]. Industrial robots are currently in use for parts inspection, sorting, and material handling. Two specialized bin-picking robots are already finding their way into factories; one is the GE Bin Vision robot and the other is the ORS (Object Recognition System) system called i-bot [Edson, 1984]. Much research is being done for the autonomous robot where the ability to recognize obstacles is necessary to prevent the robot from walking into things or falling off precipices.

Other areas for the application of a pattern recognition system are in the military and the medical fields. A recognition system such as the one developed in this work could be adapted for use in the classification of objects in remotely sensed images. Other military applications for a pattern recognition system include automatic undersea searching and target classification. In the medical field this work could be implemented to classify cells or chromosomes.

The vision systems in use today generally require a great amount of training data in order to classify an object. A reduction in the amount of data needed to characterize an object would allow more storage space for the training data of additional objects. This would allow the vision system to be able to recognize more objects and less time would be needed for retraining. The recognition of three dimensional shapes may require the storage of many views of the same object. This is only possible if the amount of data to describe one view is minimal. The development of
a recognition system that could classify an object using a few parameters would be beneficial to any system that needed to classify a large number of objects.

The subsequent chapters will introduce and then describe in detail the theory and implementation of the pattern recognition system developed in this work. Chapter 2 introduces some feature selection techniques found in the literature. The rest of the chapter then focuses on the particular autoregressive model and the parameter estimation algorithm used to produce a feature vector. Chapter 3 describes the classification process and how that process is made simpler and quicker by transforming the feature vector onto a set of Karhunen-Loeve coordinate axes. Chapter 4 discusses the actual software implementation of the pattern recognition theory in order to produce a working system. Chapter 5 provides a numerical example of the system theories and also covers the tests of the system and their results. Chapter 6 concludes this work with some comments on the test results and suggestions for further improvements.
CHAPTER 2

FEATURE SELECTION THEORY

According to George S. Sebestyen "Pattern recognition is a process of decision making in which a new input is recognized as a member of a given class by comparison of its attributes with the already known pattern of common attributes of members of that class" [Sebestyen, 1962]. It is the job of the feature selector to form the set of attributes which are most representative of the common features of a class.

As a way of introducing the problems encountered in the feature selection process, some algorithms found in the literature will be described and compared in the first section. The second section will present the feature selector used in this work. Included in that section will be the description of some boundary representation schemes, and also the theory and parameter estimation of the model used to produce the feature vector.

2.1 Feature Selection Background

Feature selection algorithms are divided into three basic groups. The first group is comprised of heuristic algorithms which are based on ad hoc rules dependent on the particular objects to be classified. Since we are not dealing with any one particular type of object, we are more interested in general algorithms which can be applied to any type of object. These algorithms form the following two categories: the syntactical and the mathematical. The main difference between the two
types of algorithms is that the syntactical algorithms deal with the structural information of the image. This differs from the mathematical approach which fits an analytic model to the physical features of an image. These two types of algorithms are described in further detail in the following paragraphs.

2.1.1 Syntactical Approach to Feature Selection

Just as the meaning of a word is often context dependent so is the shape of an object's feature. Thus it can be assumed that the handle of a cup will be curved and will probably join the cup at two contact points. The syntactic or linguistic approach decomposes complex patterns recursively into simpler subpatterns in the same way that a sentence can be decomposed into letters. Patterns are described by their basic elements or subpatterns along with a set of syntactic rules or pattern grammar. In the classification of patterns described by a syntactic algorithm, the classifier performs a syntax analysis while parsing the pattern and answers the question of whether or not the pattern belongs to the language generated by the grammar. As can be deduced, this method is very complex to implement due to the very broad range of objects it tries to classify. Much research is being done in this area.

2.1.2 Mathematical Approach to Feature Selection

One of the earliest mathematical feature selection techniques is the method of moments. In this method a pattern is represented by its two dimensional moments calculated from a density distribution function with respect to a pair of axes fixed in the visual field [Hu, 1962]. These moments and other moments found in a similar manner can be formed into
linear combinations called "moment invariants." These are so-called since they are invariant under a number of similarity transformations. The major disadvantage of this method is that although the first few moments convey significant information for simple objects, they fail to do so for more complicated ones. Furthermore the computational requirements are substantial [Pavlidis, 1978].

Another mathematical feature selection technique is based on the values of the Fourier Transform of some characteristic of the pattern. This technique is the basis of algorithms which involve the calculation of the Discrete Fourier Transform (DFT) of an object's characterizing function which is commonly the boundary. The boundary samples can be expressed in terms of tangent angle vs arc length. They can also be expressed as terms of the complex function formed from the boundary sample position where the x axis of the reference plane corresponds to the real part of the sample and the y axis denotes the imaginary part. The main disadvantage of the resultant Fourier coefficient shape descriptors is that not all of the coefficients are invariant to translation and rotation [Granlund, 1972].

In the next section we will describe the theory of a different mathematical technique for feature selection based on the autoregressive equation. In that section we will describe how the AR model parameters can be estimated and how they are formed into a feature vector.

2.2 The Autoregressive Model

The autoregressive model is a probability model or stochastic model of an observed time series. It has been applied in the areas of spectral
analysis, speech recognition and transmission, and economic forecasting. In this section we will show how the autoregressive (AR) model can be used in shape recognition.

2.2.1 Boundary Representation Schemes

It is our goal to compress as many of the discriminating features of an object boundary(s) into as few AR parameters as possible. This goal emphasizes the need to accurately sample the boundary to catch the discriminating features. However we also need the resultant real valued time series to maintain the same form despite changes in the object's orientation, size, and initial sample point. If the object's centroid is known, there arise many possible methods of sampling the boundary to form the desired time series. These methods will be described below.

2.2.1.1 Equi-Angle Sampling. Consider that the object centroid is the origin of the cartesian system. Then N radius vectors can be projected from the origin to the boundary of the object as shown below.

![Figure 2.2.1 Example of Equal Angle Boundary Sampling Method](image)
Let us make the requirement that the angle between consecutive radius vectors is constant and equal to $2\pi/N$. As Figure 2.2.1 shows, there are two possible time series produced from this type of representation. The first is the time series $r_1, r_2, r_3, \ldots, r_N$ formed from the lengths of the radius vectors. The second time series is $d_1, d_2, d_3, \ldots, d_N$ formed from the distances along the boundary between consecutive radius vector to boundary intersection points. Using this equal-angle sampling method, the portions of the boundary closer to the centroid are sampled relatively more frequently than the portions farther away from the centroid. Also in the case of highly curved shapes, a large segment of the boundary may not be sampled at all. For example in Figure 2.2.2 the tips of the letter S aren't sampled.

Figure 2.2.2 Example of Boundary Sampling Method Showing How Sections of Boundary Can Be Skipped
This makes the letter look cut off at the ends and the time series representation of this will differ from the one when the letter is rotated so that the tip is sampled.

A way to eliminate these problems is to sample the boundary so that one sample is always the same distance away from another sample. This method is described in the next section.

2.2.1.2 Equal-Arc Length Sampling. As before, consider the origin of the Cartesian coordinate system to be the centroid of the object boundary. Again we project N radius vectors from the centroid to the boundary. However, this time we make the requirement that the arc-length between boundary intersections remain the same and proportional to the total length of the boundary. This boundary representation is shown below in Figure 2.2.2.

![Figure 2.2.2](image)

Figure 2.2.2 Example of Equal Arc Length Boundary Sampling Method

As can be seen, the boundary is now uniformly sampled. As before, we can form two time series from this method of boundary sampling. The
first is the time series \(r_1, r_2, r_3, \ldots, r_N \) formed from the radius vector lengths. The second is the series \(\theta_1, \theta_2, \ldots, \theta_N \) formed from the angles between \(r_1, r_2, \ldots, r_N \).

Out of the four methods, two were actually implemented. Both implementations formed a time series from the radius vector lengths. One time series was formed using the equal angle sampling method and the other time series was formed using the equal arc length sampling method. Let us make a requirement that the boundary be closed and that it may not cross over itself. We then have a discrete time series that is stationary and periodic.

2.2.2 The General Autoregressive Model

In the general AR model the current value of the process is expressed as a finite, linear aggregate of previous values of the process and a zero mean white noise term \(e_t \) [Box and Jenkins, 1976]. If we let the values of the process at equally spaced time intervals \(t, t-1, t-2, \ldots \) be \(y_t, y_{t-1}, y_{t-2}, \ldots \) then

\[
y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + e_t \tag{2.2.1}
\]

This is called an autoregressive process of order \(p \). In Equation 2.2.1 the present value of variable \(y \) is regressed on the previous values of itself. Thus the model is autoregressive. The above equation can be written more compactly as

\[
y_t = \sum_{i=1}^{p} \phi_i y_{t-i} + e_t \tag{2.2.2}
\]

The model contains \(p+1 \) unknown parameters \(\phi_1, \phi_2, \phi_p \), and \(\sigma^2 \) which have to be estimated from the data. The additional parameter \(\sigma^2 \) is the variance of the white noise process \(e_t \).
In the frequency domain the AR model can be formed into a transfer function which has no zeros. Therefore the AR model is also called the all-pole model. The AR model is also linked with the maximum entropy method (MEM) in the area of spectral analysis.

2.2.3 The Specific Autoregressive Model

As shown by Dubois [Dubois, 1984] an effective AR model for use in shape recognition is:

\[r_t = \alpha + \sum_{j=1}^{m} \beta_j r_{t-j} + \sqrt{\omega_t} \]

(2.2.3)

whose form was originally suggested by Kashyap and Chellappa [Kashyap and Chellapa, 1981]. In this form we have:

- \(r_t \) = current radius vector length
- \(r_{t-j} \) = the radius vector length detected \(j \) time intervals before the current \(r_t \). Collectively these are called the lag terms.
- \(m \) = model order
- \(\sqrt{\omega_t} \) = current error
- \(\{\omega_t\} \) = a sequence of random, independent, zero mean samples (white noise sequence) which has unit variance, i.e. \(E(\omega_i\omega_j) = 1 \) if \(i=j \) and = 0 otherwise
- \(\beta_1, \ldots, \beta_m \) = the AR parameters or lag coefficients to be estimated from the time series
- \(\{a, \beta\} \) = unknown constants to be estimated.

Looking back at the general autoregressive model of Equation 2.2.1 we see that the specific model used for shape recognition contains two additional terms \(\alpha \) and \(\sqrt{\beta} \). Comparing the two equations, \(\sqrt{\beta} \omega_t \) corresponds to the \(e_t \) term of the general model.
2.2.3.1 Estimating α and β of the Specific AR Model. Let us assume that we already know the θ_i, $i = 1, \ldots, m$. Then we still need to find estimates of α and β in Equation 2.2.3. Now we will define the average radius vector length as \bar{r} so that

$$\bar{r} = \frac{1}{N} \sum_{t=1}^{N} r_t$$

(2.2.4)

where N is the number of radius vectors in the object boundary representation. We can rewrite the general form of Equation 2.2.2 to model the set of differences $r_t - \bar{r}$ as:

$$r_t - \bar{r} = \sum_{j=1}^{m} \theta_j (r_{t-j} - \bar{r}) + \sqrt{\beta} \omega_t$$

(2.2.5)

or

$$r_t = \sum_{j=1}^{m} \theta_j r_{t-j} + \sqrt{\beta} \omega_t + \bar{r} - \sum_{j=1}^{m} \theta_j \bar{r}$$

Substituting in Equation 2.2.2 for r_t and cancelling the common terms we find the constant α can be estimated by the equation:

$$\alpha = \bar{r} (1 - \sum_{j=1}^{m} \theta_j)$$

(2.2.6)

Note that α is directly proportional to the mean radius vector length and thus is an indicator of a shape's size.

Now that we have an estimate for α we still need to find an estimate of β. Rewriting Equation 2.2.3 to separate the term we have

$$\sqrt{\beta} \omega_t = r_t - \alpha - \sum_{j=1}^{m} \theta_j r_{t-j}$$

(2.2.7)

Squaring both sides and taking the expectation of the results we get

$$\beta E[\omega_t^2] = E[(r_t - \alpha - \sum_{j=1}^{m} \theta_j r_{t-j})^2]$$

Since the sequence of ω_t has unit variance we call β the residual variance and it can be estimated as:

$$\beta = \frac{1}{N} \sum_{t=1}^{N} (r_t - \alpha - \sum_{j=1}^{m} \theta_j r_{t-j})^2$$

(2.2.8)
Looking at Equation 2.2.8 we see that β is roughly proportional to the average of the squared radius vector lengths. We may conclude then that a possible size invariant shape descriptor would be in the form $\alpha/\sqrt{\beta}$.

2.2.3.2 Estimating the Coefficients of the Specific AR Model It has been shown in the thesis of Dubois [Dubois, 1984] that the AR parameters $\theta_1, \ldots, \theta_m, \alpha$ can be found by using the method of least squares. In that work the model parameters were chosen so as to minimize the expected value of the squared error term β in Equation 2.2.8. In the experimental work of Dubois the equations were solved using matrix methods which required $(m+1)^3/3$ plus on the order of $(m+1)^2$ operations and $(m+1)^2$ storage locations [Makhoul, 1975].

Due to the special properties of the AR equations in terms of the auto-correlation function the parameters of the model can be estimated recursively.

We use the general form of the AR equation which models the set of differences $r_t - \bar{F}$ in Equation 2.2.5. With the α term as defined in Equation 2.2.6 we find that the general AR model of Equation 2.2.2 based on these differences, is equivalent to the specific AR model of Equation 2.2.3 suggested by Kashyap and Chellappa.

If we multiply both sides of Equation 2.2.5 by the term $(r_{t-k} - \bar{F})$ we get [Box and Jenkins, 1976]:

$$(r_{t-k} - \bar{F})(r_t - \bar{F}) = \sum_{j=1}^{m} \theta_j (r_{t-k} - \bar{F})(r_t - j - \bar{F}) + (r_{t-k} - \bar{F})\sqrt{\omega_t}$$

Finding the expectation of both sides leads to:

$$E[(r_{t-k} - \bar{F})(r_t - \bar{F})] = E[\sum_{j=1}^{m} \theta_j (r_{t-k} - \bar{F})(r_t - j - \bar{F})] + E[(r_{t-k} - \bar{F})\sqrt{\omega_t}]$$

$$k = 0, \ldots, m \quad (2.2.9)$$
The term $E[(r_{t-k} - \bar{r})^2 \omega_t]$ vanishes for $k > 0$ since the sequence ω_t is uncorrelated with the $(r_{t-k} - \bar{r})$ term. For $k = 0$ this term is $E[\sum_{j=1}^{m} \theta_j r_{t-j} \omega_t^2]$ which is equal to $\beta E[\omega_t^2]$ and is defined as σ_m^2. Let us define

$$R_{k-j} = E[(r_{t-k} - \bar{r})(r_{t-j} - \bar{r})] = \frac{1}{N} \sum_{t=1}^{N} (r_{t-k} - \bar{r})(r_{t-j} - \bar{r})$$

which is the covariance function. Note that $R_{-1} = R_{1}$. Rewriting Equation 2.2.9 and changing the order of summations on the right side we get:

$$R_k = \theta_1 R_{k-1} + \theta_2 R_{k-2} + \ldots + \theta_m R_{k-m} \text{ for } k > 0 \quad (2.2.10)$$

We now have the autoregressive difference equation in terms of the autocorrelation function of the sampled data.

Equation 2.2.10 applies for any model order of the AR process. Since there is a different set of parameters for each model order we will denote the kth coefficient in an AR process of order m as θ_{mk}. The last coefficient at $k = m$ is thus θ_{mm}. This term is known as the partial autocorrelation coefficient and also is referred to as the mth reflection coefficient. We can now form a set of equations, one for each model order.

$$R_k = \theta_1 R_{k-1} + \theta_2 R_{k-2} + \ldots + \theta_{m-1} R_{k-m+1} + \theta_{mm} R_{k-m} \quad \text{for } k = 1, \ldots, m \quad (2.2.11)$$

These are called the Yule-Walker equations. In matrix form these equations may be written

$$\begin{bmatrix}
R_0 & R_1 & R_2 & \cdots & R_{m-1} \\
R_1 & R_0 & R_1 & \cdots & R_{m-2} \\
R_2 & R_1 & R_0 & \cdots & R_{m-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
R_{m-1} & R_{m-2} & R_{m-3} & \cdots & R_0
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
\theta_3 \\
\vdots \\
\theta_{mm}
\end{bmatrix}
= \begin{bmatrix}
R_1 \\
R_2 \\
R_3 \\
\vdots \\
R_m
\end{bmatrix} \quad (2.2.12)$$

The above equations form an $mm \times m$ autocorrelation matrix which is Toeplitz.
since all the elements along the diagonal are identical. Also the matrix is positive definite which follows from the positive definite property of the autocorrelation function.

If all the terms in the \(mxm \) matrix of Equation 2.2.12 are normalized to \(R_0 \), the correlation lag at \(t = 0 \), the Yule-Walker equations can be written in terms of the resultant normalized autocorrelation coefficients [Makhoul, 1975]. Thus we get

\[
\begin{bmatrix}
C_1 & C_2 & \cdots & C_{m-1} \\
C_1 & 1 & \cdots & C_{m-2} \\
C_2 & C_1 & \cdots & C_{m-3} \\
\vdots & \vdots & \ddots & \vdots \\
C_{m-1} & C_{m-2} & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_{m-1} \\
\theta_m
\end{bmatrix}
=
\begin{bmatrix}
C_1 \\
C_2 \\
C_3 \\
\vdots \\
C_m
\end{bmatrix}

(2.2.13)
\]

where \(C_i = \frac{R_i}{R_0} \) for \(i = 0, \ldots, m \)

By recognizing that the right hand column vector contains mostly the same elements as in the autocorrelation matrix, the equations can be solved using simple algebraic reduction techniques as shown in Box and Jenkins [Box and Jenkins, 1976].

The solution of the equations reduces to the following recurrence equations:

\[
\theta_{mm} = \frac{C_m - \sum_{j=1}^{m-1} \theta_{m-1,j} C_{m-j}}{1 - \sum_{j=1}^{m-1} \theta_{m-1,j} C_j} \quad j = 1, \ldots, m-1
\]

(2.2.14a)

\[
\theta_{mj} = \theta_{m-1,j} - \theta_{mm} \theta_{m-1,m-j}
\]

(2.2.14b)
These equations are attributed to Durbin [Durbin, 1960]. They show how the parameters at the desired model order are calculated using the parameters of all the previous model orders. To find the mth order process parameter set, the parameter sets \(\{ \theta_{11} \}, \{ \theta_{21}, \theta_{22} \}, \ldots, \{ \theta_{m1}, \theta_{m2}, \ldots, \theta_{mm} \} \) are all calculated. This recursive method requires only 2m storage locations and \(m^2 \) plus on the order of \(m \) operations [Makhoul, 1975]. We can now augment Equation 2.2.12 which represent the \(k = 1, \ldots, m \) equations of 2.2.9 with the \(k = 0 \) equation: \(R_0 = \sum_{j=1}^{m} \theta_j R_j + \sigma_m^2 \). The result becomes:

\[
\begin{pmatrix}
R_0 & R_1 & R_2 & \cdots & R_m \\
R_1 & R_0 & R_1 & \cdots & R_{m-1} \\
R_2 & R_1 & R_0 & \cdots & R_{m-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
R_m & R_{m-1} & R_{m-2} & \cdots & R_0
\end{pmatrix}
\begin{pmatrix}
A_1 \\
A_2 \\
\vdots \\
A_m
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
\vdots \\
0
\end{pmatrix}
\]

To solve the above equations we use a set of recurrence relations which produce the same \(\theta_i \)'s as the Durbin algorithm, except for a sign change on the parameters due to assuming the general AR model is \(\sum_{j=0}^{m} \theta_j y_{t-j} = e_t \). The algorithm is initialized by:

\[
\theta_{11} = -R_1/R_0 \quad (2.2.15a)
\]

\[
\sigma_1^2 = (1-\theta_{11}^2)R_0 \quad (2.2.15b)
\]

the recursion for \(k = 2,3,\ldots,m \) is given by

\[
\theta_{kk} = -[R_k + \sum_{j=1}^{k-1} \theta_{k-1,j} R_{k-j}] / \sigma_{k-1}^2 \quad (2.2.15c)
\]

\[
\theta_{ki} = \theta_{k-1,i} + \theta_{kk} \theta_{k-1,k-1} \quad (2.2.15d)
\]
\[\sigma_k^2 = (1 - \theta_{kk}^2) \sigma_{k-1}^2 \]

(2.2.15e)

This form of the recurrence equations has two advantages over the original equations 2.2.14. First, the correlation coefficients need not be normalized before being passed to the algorithm. Also the \(\sigma_k^2 \) term can be used in the model order selection process. The correct model order is chosen when the AR model has arrived at the best fit to the observed time series.

If the model order is chosen too high or too low, the AR model will not provide an accurate representation of the sampled process. In the \(\sigma_k^2 \) equation (Equation 2.2.15c) we see that \(\sigma_k^2 \) is dependent solely on the present and past values of the partial correlation coefficient. The term is thus an indicator of the error and has the property that it decreases (or remains the same) as the order of the model increases [Makhoul, 1975]. A suitable model order for the process can be chosen when the change in the error term i.e., \(\sigma_k^2 - \sigma_{k-1}^2 \) is below a specified tolerance level.

2.2.4 The Autoregressive Model Parameters as Shape Descriptors

The shape descriptors form a feature vector which is a string or set of numbers which represent the features or characteristics of the shape. Since the physical features of a shape are invariant to rotation, translation, and scale, so should the numerical shape descriptors be invariant to rotation, translation and scale. Also the numerical shape descriptors should be invariant to where the sampling process begins.

From the previous section we have estimated the following AR parameters: \(\theta_i, i = 1, \ldots, m \) estimated using the recursive algorithm of Equation 2.2.15, \(a \) as in Equation 2.2.6 and \(b \) from Equation 2.2.8. These parameters
in vector form \([\theta_1, \theta_2, ..., \theta_m, \sqrt{n}]^t\) produce a feature vector which has the desired invariant properties [Dubois, 1984]. However, it should be noted that, in using the equi-angle boundary sampling method, the rotation and starting point invariance property only applies when the change in rotation or starting point is a multiple of \(2\pi/N\). If \(N\) is sufficiently large, this no longer is a problem.
CHAPTER 3

CLASSIFICATION OF THE TRANSFORMED FEATURE VECTOR

Using the theory from Chapter 2, it is possible to form a feature vector from the set of AR parameters which describe the shape of an object's boundary. If we had a bin full of the exact same object and if we found the feature vector of the outer boundary of each object using the same method, we would find that most feature vectors would be slightly different from the rest. This is due not only to minor variations in rotation, i.e. not exact multiples of $2\pi/N$, but also to pixel quantization error and round-off errors in the system. Considered as a class however, all these feature vectors will be roughly the same. It is then possible to use a classification scheme based on the feature vector of the samples of each class. Some of these classification schemes as found in the literature will be described in the next section. It will become apparent that there is usually a need for further processing of the feature vector in order to correctly classify the shape of the object's boundary. This is especially true for objects with very similar shape. Thus the Karhunen-Loeve (K-L) expansion will be introduced and two implementations of the K-L expansion will be described. The last section of this chapter will be devoted to the particular classification rule used in the experimental work of this thesis.

3.1 Background of Classification Theory

The pattern classification problem is essentially the problem of partitioning the feature space so as to assign each possible feature
vector or point in that space to the proper pattern class. The classification techniques in the literature form three groups depending on how much a priori information about the feature vector to be classified is known. The first group comprises the deterministic techniques wherein no assumptions are made on the statistical properties of a pattern class. When the statistical properties of the feature vector are known, then it is possible to use the group of statistical classification techniques. A third group which allows incomplete knowledge of the statistical properties of the feature vectors is the group of trainable classifiers. These three methods of classification will be described in further detail in the next pages.

3.1.1 Deterministic Classification Techniques

This group of classification techniques depends on the formulation of mathematical, deterministic, discriminant functions which are used to partition the feature space. These functions assume that the feature vector components are deterministic quantities. The hyperplane classification method, the third technique used in the thesis of Dubois [Dubois, 1984], is an implementation of a deterministic discriminant function.

The general form of a discriminant function is as follows [Fu, 1968]. Let \(\omega_1, \omega_2, \ldots, \omega_c \) be designated as the \(c \) possible pattern classes to be recognized and let

\[
Y = \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_d
\end{bmatrix}
\]
be the feature vector where \(y_i \) represents the \(i \)th feature. The discriminant function \(D_j(Y) \) associated with pattern class \(\omega_j \), \(j=1,\ldots,c \) is such that if the feature vector \(Y \) is in class \(\omega_i \) then the value of \(D_i(Y) \) must be the largest (or possibly the smallest) of all the \(D_j(Y) \) for \(j \neq i \). The discriminant functions form decision boundaries between regions associated with class \(\omega_i \) and \(\omega_j \) which can be expressed as:

\[
D_i(Y) - D_j(Y) = 0
\]

An example of the discriminant function for a two class problem is shown in Figure 3.1.1.

An important class of linear deterministic classifiers uses as the classification criterion the distance between the unlabelled feature point and the labelled points of the feature space. A discriminant function for such a so called minimum distance classifier is:

\[
D_j(Y) = \sum_{n=1}^{N} \left| \sum_{i=1}^{d} (Y_{i} - R_{j,n,i})^2 \right|^{1/2} \quad j = 1,\ldots,c
\]

(3.1.1)
where \(N \) is the number of samples of the \(j \)th class and \(R_{j,n,i} \) is the \(i \)th component of the \(n \)th sample of the \(j \)th class. Equation 3.1.1 can be implemented more simply without loss of information as:

\[
D_j(Y) = \sum_{n=1}^{N} \sum_{i=1}^{d} (Y_i - R_{j,n,i})^2
\]

Classification of the unlabelled feature vector \(Y \) is based on the smallest class distance \(D_j(Y) \). The performance of the minimum distance classifier is dependent on whether or not the training sample points form tight clusters that are well separated from each other. In classification terminology we wish for the training samples to form clusters such that their intraset, or within-class, distances are small and their interset, or between-class, distances are large.

3.1.2 **Statistical Classification Techniques**

In the deterministic classification techniques, it is assumed that the feature vector components are deterministic quantities. However, in many cases the noise effect due to large variations in the feature vector components cannot be neglected. If we assume that for each class the probability density function of the feature vector is known and the probability of the \(i \)th class occurring is known, then the classification problem becomes a statistical problem. The task of the classifier is then to minimize the probability of misclassification [Fu, 1968].

The statistical approach to the pattern recognition problem is generally based on the Bayes rule which presents an optimum measure of classification performance [Tou and Gonzalez, 1974]. The classifier that uses the Bayes rule is called a Bayes classifier. One basic Bayes classifier is the implementation of the following discriminant function:
\[D_j(Y) = P(Y/\omega_j)p(\omega_j) \quad j = 1, \ldots, c \]

A pattern vector \(Y \) is assigned to class \(\omega_j \) if for that class \(D_j(Y) > D_i(Y) \) for all \(i \neq j \). The main problem with the statistical classification techniques is that of estimating the probability density function characterizing each of the different pattern classes. This implies that the computational requirements of these techniques will probably be greater than for the deterministic classification techniques.

3.1.3 Trainable Pattern Classifiers

The trainable pattern classifiers produce discriminant functions by means of iterative learning algorithms. These classifiers can use either the deterministic or statistical techniques or a combination of both to produce the desired discriminant functions. The main use of a trainable classifier is when the required information for optimal pattern classification is only partially known. During its operation the classifier learns the needed information. If the learned information gradually approaches the true information, then the decisions based on the learned information will eventually approach the optimal decision as if all the information required is known [Fu, 1968]. The trainable classifiers are divided into two groups: the supervised classifiers and the unsupervised classifiers. The difference between the two groups is that the supervised classifiers have available the correct classification of the observed patterns while the unsupervised classifiers don't. Again, the computational demands of the trainable classifier algorithms are generally greater in comparison to the deterministic techniques.
3.2 The Karhunen-Loeve Expansion

It is our goal to classify objects as quickly and accurately as possible. Thus it is desired that the actual classifier should be a simple deterministic minimum distance classifier. As was stated previously, for the minimum-distance classifier to give accurate results, it is necessary for the feature space to form tight clusters well separated from each other. Also if the feature vector dimension can be reduced, the classification time will decrease. In this section we will introduce the Karhunen-Loeve expansion and its properties which allow us to achieve quick, accurate classification of feature vectors of reduced dimension. Two implementations of the K-L expansion will be described and finally the actual minimum-distance classifier used in this work will be introduced.

3.2.1 Basic Theory of Karhunen-Loeve Coordinate Axes

Let us, first of all, introduce the Karhunen-Loeve expansion. We know that a periodic function can be expanded into a Fourier series:

\[x(t) = \sum_{n=-\infty}^{\infty} x_n \exp(jn\omega_0 t) \]

(3.2.1)

where \(\omega_0 \) is the angular frequency and the \(x_n \) are the Fourier coefficients. A similar expansion can be formed for a non-periodic function \(x(t) \) where

\[x(t) = \sum_{n=1}^{\infty} y_n u_n(t) \]

(0 \leq t \leq T)

(3.2.2)

Suppose we use only \(D \) discrete sampling points to approximate the time function during the time interval 0 \(\leq t \leq T \), then \(x(t) \) becomes the column vector \(x \). Also the generalized Karhunen-Loeve expansion of Equation 3.2.2 becomes
\[x = \sum_{n=1}^{D} y_n u_n \]

(3.2.3)

where the vectors \(u_n \) form a deterministic orthonormal basis set. The basis vector \(u_n \) is \(D \)-dimensional and represented as

\[
\begin{pmatrix}
 u_{n1} \\
 u_{n2} \\
 \vdots \\
 u_{nD}
\end{pmatrix}
\]

(3.2.4)

The derivation of the Karhunen-Loeve coordinate axes from the K-L expansion is described next, following the method of Devijver and Kittler [Devijver and Kittler, 1982]. We start by making an approximation to \(x \) of Equation 3.2.3. Let's call this approximation \(\hat{x} \), and let it have dimension \(d \) where \(d < D \) i.e.

\[\hat{x} = \sum_{n=1}^{d} y_n u_n \]

(3.2.5)

The problem is now of finding the vectors \(u_n \) such that the mean square error (MSE) between \(x \) and its approximation \(\hat{x} \) is minimized. Let this error be called \(\varepsilon \) where

\[\varepsilon = E((x-\hat{x})^t(x-\hat{x})) \]

(3.2.6)

and the expected value \(E\{\} \) is over all samples in a class. Substituting in the expansions for \(x \) and \(\hat{x} \) we get

\[\varepsilon = E(\sum_{n=d+1}^{D} y_n u_n)^t(\sum_{n=d+1}^{D} y_n u_n) \]

(3.2.7)

Due to the orthonormality property of the basis vectors we know that

\[u_n^t u_m = \delta_{nm} \]

(3.2.8)

where \(\delta_{nm} \) is the Kronecker delta and equals 1 if \(n = m \) and 0 otherwise. The error of Equation 3.2.7 reduces to
\[\epsilon = \mathbb{E}\{ \sum_{n=d+1}^{D} y_n^2 \} \] \hspace{1cm} (3.2.9)

Since we still want to minimize the error in terms of the vectors \(u_n \), let us find \(y_n \) in terms of \(u_n \). Since \(n \) is a dummy variable we can rename it and rewrite Equation 3.2.3 as
\[x = \sum_{m=1}^{D} y_{m-m} u_m \] \hspace{1cm} (3.2.10)

We can now multiply both sides of Equation 3.2.10 by \(u_n^t \) to get
\[u_n^t x = u_n^t \sum_{m=1}^{D} y_{m-m} u_m \] \hspace{1cm} (3.2.11)

Using the orthonormality property of Equation 3.2.8 we find that the right side of Equation 3.2.11 will be zero except when \(m=n \). Thus we get:
\[y_n = u_n^t x \quad n = 1,...,D \] \hspace{1cm} (3.2.12)

which can be substituted back into Equation 3.2.9 i.e.:
\[\epsilon = \mathbb{E}\{ \sum_{n=d+1}^{D} u_n^t x u_n \} \] \hspace{1cm} (3.2.13)

Since the \(u_n \) basis vectors are deterministic the order of summation and expectation can be interchanged to get:
\[\epsilon = \sum_{n=d+1}^{D} u_n^t \mathbb{E}\{ x x^t \} u_n \] \hspace{1cm} (3.2.14)

We can denote the expectation term as \(\psi \) where
\[\psi = \mathbb{E}\{ x x^t \} \] \hspace{1cm} (3.2.15)

then the MSE of the approximation becomes
\[\epsilon = \sum_{n=d+1}^{D} u_n^t \psi u_n \] \hspace{1cm} (3.2.16)

Since we wish to minimize the error \(\epsilon \) at the same time as maintaining the constraint in Equation 3.2.8, we need to find a form of the error equation where the desired constraint is explicit. To find this we use the method of Lagrange multipliers. First we can rewrite the constraint as:
\[u_n^T u_n - 1 = 0 \] \hspace{1cm} (3.2.17)

Multiplying both sides of Equation 3.2.17 by a constant \(\lambda_n \) doesn't change the equality. Thus Equation 3.2.16 can be written as a function of \(u_n \) as:
\[g(u_n) = \sum_{n=d+1}^{D} u_n^T u_n - \sum_{n=d+1}^{D} \lambda_n (u_n^T u_n - 1) \] \hspace{1cm} (3.2.18)

If the above equation is differentiated with respect to \(u_n \) and the result is set equal to zero we get the following condition:
\[(\psi - \lambda_n I)u_n = 0 \] \hspace{1cm} (3.2.19)

Thus the optimal vectors \(u_n \) are the eigenvectors of the matrix \(\psi \) and the constants \(\lambda_n \) are the corresponding eigenvalues. Since \(\psi \) is a DxD symmetric matrix, it will have at most D linearly independent, orthogonal eigenvectors and D real eigenvalues [Lanczos, 1956].

We still need to find the d eigenvectors out of the set of D in order to form the approximation \(\hat{x} \) in Equation 3.2.5. From Equation 3.2.19 we know that \(\psi u_n = \lambda_n u_n \). Substituting this into Equation 3.2.16 and using the orthonormality condition again, we get the error in terms of the eigenvalues of \(\psi \), i.e.
\[\epsilon = \sum_{n=d+1}^{D} u_n^T \lambda_n u_n = \sum_{n=d+1}^{D} \lambda_n \] \hspace{1cm} (3.2.20)

Here we can see that to minimize \(\epsilon \), the sum on the right should include the smallest eigenvalues of the matrix \(\psi \). This implies that \(\hat{x} \) should be formed from the eigenvectors corresponding to the d largest eigenvalues of \(\psi \), i.e.:
\[\hat{x} = \sum_{n=1}^{d} \psi_n u_n \] \hspace{1cm} (3.2.20)

Where the eigenvalues \(\lambda_n \) corresponding to \(u_n \) satisfy
\[1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_d \geq \cdots \geq \lambda_D \] \hspace{1cm} (3.2.21)

The vectors \(u_n \) form what are called the Karhunen-Loeve coordinate axes.
It has just been shown that in using the eigenvectors corresponding to the largest eigenvalues of the matrix ψ, the mean square error between the original vector and its approximation is minimized. Also it can be shown [Devijver and Kittler, 1982] that the coefficients y_n of the expansion are uncorrelated. This suggests how the K-L coordinate axes can be used to reduce the dimension of the input vector by decorrelating the components and removing the axes which do not convey much information [Kittler, 1975].

3.2.2 Application of the Karhunen-Loeve Coordinate System to the Recognition Problem

Using the results of Chapter Two we can form an $m+1$ dimensional feature vector from the parameters of the AR model. Let's say we would like to transform this feature vector into a d dimensional vector where $d < m+1$. Then the K-L coordinate axes can be applied to produce the desired reduced dimension transformed vector y, i.e.

$$y = V^t x$$ \hspace{1cm} (3.2.22)

The vector x represents the original $m+1$ dimensional feature vector and V is a $D \times d$ matrix whose columns are formed from the eigenvectors of what is referred to as a K-L coordinate generating matrix [Devijver and Kittler, 1982].

In a previous section we found that the Karhunen-Loeve coordinate axes were found by solving for the eigenvalues and corresponding eigenvectors of matrix ψ defined as:

$$\psi = E\{x x^t\}$$ \hspace{1cm} (3.2.23)

We could use this definition in our pattern recognition problem, but we wouldn't be taking advantage of the fact that the input data will be a
mixture set containing elements of many classes ω_i, $i = 1, \ldots, c$ where c is the number of pattern classes. If we assume that the samples of each class are normally distributed about the class mean vector, then each class of samples can be completely described by its mean vector, m_i and its covariance matrix C_i [Tou and Gonzalez, 1974] where C_i is defined as:

$$C_i = E[(x-m_i)(x-m_i)^t]$$

$$i = 1, \ldots, c$$

(3.2.24)

where n_i is the number of samples of the ith class and

$$m_i = E[x_i]$$

$$i = 1, \ldots, c$$

(3.2.25)

Using this additional information we can form a within class scatter matrix

S_w [Devijver and Kittler, 1982] which is the average of all the class covariance matrices i.e.:

$$S_w = \sum_{i=1}^{c} P_i C_i$$

(3.2.26)

where P_i is the apriori probability of a sample of the mixture set being from the ith class. If a sample is equally likely to come from one class as any other then:

$$P_i = \frac{1}{c}$$

(3.2.27)

and the matrix S_w becomes:

$$S_w = \frac{1}{c} \sum_{i=1}^{c} \frac{1}{n_i} \sum_{k=1}^{n_i} (x_{ik} - m_i)(x_{ik} - m_i)^t$$

(3.2.28)

Hence the columns of the matrix U in Equation (3.2.22) can be formed from the eigenvectors of S_w ordered by the decreasing value of their corresponding eigenvalues.
It can be shown that the population entropy can be minimized by forming the matrix V from the eigenvectors of matrix S_w corresponding to the smallest eigenvalues [Devijver and Kittler, 1982]. A good measure of intraset dispersion is the entropy function given by:

$$H = -E[\log p(y)]$$

where $p(y)$ represents the class probability density function [Tou and Gonzalez, 1974].

It is noted that the within class scatter matrix S_w is symmetric and positive semi-definite, thus the eigenvalues will be real and greater than or equal to zero. The eigenvectors point in the direction of the principle axes of a hyperellipsoid whose shape is defined by the covariance matrix and the corresponding eigenvalues determine the length of these axes. In other words, the eigenvalues represent the variance of the data in the direction of the corresponding eigenvectors in the feature space.

3.3 The Optimal Karhunen-Loeve Coordinate System

There are many variations to the Karhunen-Loeve coordinate system in the literature. These variations are specially tailored to their particular type of pattern recognition problem and essentially differ in the choice of the K-L system generating matrix. These techniques are inferior to the next method to be described in the sense that they do not utilize the class mean information in an optimal manner [Kittler, 1975]. In this section the theory of the optimal Karhonen-Loeve coordinate axes will be described.
Generally the most important discriminating information is contained in the class mean vectors m_i. Let us then introduce a new matrix based on the class mean variances referred to as the between class scatter matrix S_b [Devijver and Kittler, 1982] where:

$$S_b = \sum_{i=1}^{c} P_i (m_i - \bar{m})(m_i - \bar{m})^t$$

(3.3.1)

Here m_i is the class mean vector as defined in Equation 3.2.25 and \bar{m} is the average of the class mean vectors i.e.:

$$\bar{m} = \frac{1}{c} \sum_{i=1}^{c} m_i$$

(3.3.2)

When there are c classes, the space spanned by the class mean vectors will be at most $c-1$ dimensional [Devijver and Kittler, 1982]. Here we see that by using matrix S_b as the K-L coordinate system generating matrix we may achieve a more efficient way of reducing the dimension of the pattern vector.

The algorithm as suggested by Kittler in [Devijver and Kittler, 1982] is described next. We first set out to decorrelate the noise on the pattern vectors. From the previous section we found that this is done by the transformation matrix V in Equation 3.2.22 formed from the eigenvectors of S_w. We then would like to normalize the variances of the noise components of the pattern vectors to unity. To do this we form a matrix Λ whose diagonal elements are the eigenvalues corresponding to the eigenvectors of V. Combining the two matrices we achieve the desired results by using the transformation matrix B where

$$B = V \Lambda^{-1/2}$$

(3.3.3)

on the matrix S_w i.e.

$$B^t S_w B = I$$

(3.3.4)
Similarly we can decorrelate and prewhiten the between class scatter
matrix S_b of Equation 3.3.1 to form S_b' i.e.

$$S_b' = B^t S_b B$$ \hspace{1cm} (3.3.5)

We find the optimal coordinate system by finding the eigenvalues and eigenvectors of the matrix S_b'. The optimal feature extracting transformation
matrix is now W where

$$W = U A^{-1/2} V$$ \hspace{1cm} (3.3.6)

where V is the matrix whose columns are formed from the eigenvectors of
S_b' in order of the descending values of the corresponding eigenvalues.
Finally the transformed, reduced dimension feature vector of Equation
3.2.22 becomes

$$y' = W^t x$$ \hspace{1cm} (3.3.7)

where x is the original $m+1$ dimensional feature vector.

3.4 The Classifier

By using either Equation 3.2.22 or Equation 3.3.7 we can reduce the
dimension of the feature vector and also decorrelate their components.
Thus the resultant transformed sample space should have fairly well de-
defined boundaries between the classes. For classification, all we need is
a simple minimum distance classifier as described in Section 3.1.1. The
classifier implemented in this work is:

$$D_i^2 = \sum_{k=1}^{d} (b_k - \bar{y}_{ik})^2$$

where

D_i = total distance for the ith pattern class

b_k = the kth dimension of the transformed unlabelled (input)

feature vector

\bar{y}_{ik} = average kth component for the ith class of transformed

training vectors.
The classification decision is chosen in favor of the smallest class distance D_i^2. This means that the input vector is categorized as belonging to the pattern class whose average sample it is nearest. Once the classifier has been trained the only information it needs to classify an input object is the transformation matrix and the mean sample transformed feature vector of each expected object boundary.

In this chapter we have shown how the dimension of the feature vector can be reduced by projecting the vector onto a reduced system of K-L coordinate axes. It was also shown how the class mean information can be optimally used to maximize the interset distances. The next chapter will present the necessary hardware and software algorithms to implement the theory of this and the previous chapter.
CHAPTER 4

CREATING THE PATTERN RECOGNITION SYSTEM

This chapter deals with the realization of the operational pattern recognition system and the details of the algorithms used in this system. The first section of the chapter will describe the system hardware and how the original scene is digitized for computer use. The second section discusses the thresholding technique used on the digital representation of the scene. In the third section the algorithms used to extract the raw data from which the features can be selected, are described. The fourth section describes how to extract and use the additional information provided by the multiple edges of an object. The last section describes and provides the flow charts of the software written for this pattern recognition system.

4.1 Object Sensing

We have been assuming that the machine that will do the necessary data manipulation for feature selection and classification is the digital computer. However the computer doesn't have eyes to see the object! We now describe how, by the use of the proper hardware and special software, the computer can receive data just as if it could see.

4.1.1 Description of the System Hardware

The main hardware elements of the object recognition system developed in this work are: 1) the Matsushita Panasonic WV-241 TV camera using the
RS-170 standard, 2) the Image Technology Inc. (ITI) IP-512 series image acquisition board containing the AP-512 Analog Processor and the FB-512 Frame Buffer, 3) the VAX 11-730 digital computer and 4) the Panasonic TR-920M monitor (black and white). See Figure 4.1.1 for the system design.

The TV camera scans the scene and produces an analog, video signal which reproduces the variations in the scene intensity. This analog signal is sent to the ITI image acquisition board where it is flash converted by the circuits of the AP-512 Analog Processor into a data stream of 8 bit bytes. Each byte is a pointer to one of 256 elements of a programmable look-up-table (LUT). If the byte represents the number 8 then the contents of the 8th element of the LUT is put into an appropriate location of a 256-K byte RAM called the FB-512 Frame Buffer. The portion of the frame buffer memory actually used in the system is called the active video window. This window is a 480 row by 512 column two dimensional array of 8 bit numbers (called grey levels) which stores the digitized representation of the complete scene as viewed by the TV camera. Each element of this digitized representation is called a picture element or pixel. Since the TV camera starts its scanning cycle at the top leftmost corner of the scene, the origin of the active video window is also at the top leftmost corner (as seen on the monitor). Figure 4.1.2 shows the origin of the video screen coordinate system of the active video window. The x values increase to the right and the y values increase downward. The contents of the frame buffer are flash converted from digital to analog for real-time viewing on the monitor. By the use of the ITI software applications package, the Fortran programs running on the VAX
Figure 4.1.1 Block Diagram of the Pattern Recognition System Hardware
computer can access the contents of the frame buffer and the hardware functions of the analog processor.

4.1.2 The Digital Image

In order to provide the computer with data in the form that it can accept, the scene containing the objects is sampled. What we have stored in the frame buffer then is a digital representation of the original continuous scene. Each pixel of this representation is a rectangular element which has an 8 bit value which quantizes the image intensities to any one of 256 gray levels.

As a direct result of this quantized representation formed from these rectangular pixels there arise two problems which must be considered in the implementation of the system. First, the shape of the pixel causes the distance measurements (radius vector lengths), based on pixel location, to vary with changes in object rotation or translation. In the digital representation 4 increments in the x direction have the same physical distance as 5 increments in the y direction. This is referred to as the pixel aspect ratio.
To eliminate the problem due to the rectangular pixel shape, we introduce a pixel aspect correcting factor of 5/4 to the x distance values in our calculations.

A second problem that arises is the effect of the quantization process on the original scene. Instead of the smooth edges which exist in the original scene the representative edges are uneven and sometimes jagged. Also, the number of pixels on the object boundary will vary with slight changes in boundary position. Thus we see variations in the representation of similar objects if they differ slightly in two dimensional translation or rotation. These variations are collectively referred to as quantization noise. The significance of this noise can be reduced by decreasing the size of the pixels or by increasing the relative size of the objects in the representation.

4.2 Preprocessing of the Digital Image

Once we have acquired the digital representation of a scene, we generally like to preprocess the representation so as to make the feature selection algorithms simpler and quicker. The bag of tricks which allows us to perform this preprocessing comes under the heading of Digital Image Processing. However, due to the time constraint on a pattern classifier, the preprocessing of the image is kept to an essential minimum. In this section we will describe the thresholding done to the digital image in order to simplify the boundary detection algorithms.
4.2.1 Image Thresholding

In order to implement a quick and simple boundary detection scheme, the boundaries of the objects must be distinct from the background and they must be uniform in intensity. A simple way to produce these desired properties is to transform the image into a binary picture which contains objects of uniform intensity against a background of a different intensity. The process of producing such a binary image is called thresholding.

To perform this thresholding process we use a single programmable look-up-table on the ITI image acquisition board. On the board there are actually 2 groups of 4 input LUTs, and 3 groups of 4 output LUTs. The 2 input groups allow two possible camera inputs and the 3 output groups allow for the three color groups (RGB of a color system). Each of the four LUTs in any group can be preprogrammed or pre-loaded before actual use. Then during execution, the program can switch LUTs and instantly transform the scene. For our purposes, however, we don't need to transform the scene from moment to moment, but we do need to threshold the image before it is stored in the frame buffer. To do this the 256 locations of the chosen input LUT are loaded with one of two grey-levels. The locations below a certain location (called the threshold) are loaded with one grey level, for example 0, and the locations on and above the threshold are loaded with a different grey level, for instance 255. Imagine that we have a light object on a dark background and a grey scale of 0 (black) to 255 (white). If the LUT has been preloaded as described, then as the scene is initially viewed, the data bytes are immediately converted to either one of the two designated grey levels.
The light areas of the scene where the intensity is above the threshold are stored as grey level 255 in the frame buffer and the dark areas below the threshold are stored as grey level 0.

4.3 Feature Selection

We now assume that we have a binary, thresholded representation of the original scene stored in the frame buffer. We still need, however, to form the time series from the radius vector lengths of a sampled boundary in order to calculate the components of a feature vector.

To do this, an object must first be detected. Once an object is detected, the boundaries need to be traced and the boundary centroids estimated. When we have a centroid pixel position, the radius vector lengths can be calculated and the corresponding time series can be produced. It is only when the complete time series is formed that the AR parameters can be calculated using the algorithm described in chapter two.

In the next pages we will describe the various techniques used to provide the raw measurements from which the features can be selected.

4.3.1 Search for a Boundary Starting Pixel

This pattern recognition system allows the existence of more than one object in the scene viewed by the camera. Also the objects may have more than one closed edge. In order to recognize these multiple edges, it is necessary to scan the entire scene stored in the frame buffer.

To speed up this scanning process not all of the pixels are read. The search for object edges begins at the origin of the active video
window in the frame buffer. The search continues along the constant y row where only the x values which are multiples of a previously prompted for increment are read. Once the end of the row has been reached, the search continues at the beginning of the next y row which is a multiple of the increment. For example, if the incremental step is 8, the following pixels on the first row are read: (0,0), (8,0), (16,0), The pixels which are read on the next row are: (0,8), (8,8), (16,8), and so on. The search continues in the same manner until a transition occurs indicating an object has been detected or the bottom right corner of the scene has been reached.

A transition is detected when the difference between the present pixel grey level and the previous grey level is equal to the difference in intensity between the object and the background (in our case 255). Due to the manner of hopping across the rows of the frame buffer in search of objects, there is no guarantee that the pixel where the transition is first encountered is an edge pixel. Thus the search backtracks pixel by pixel on the same row until the transition indicating the actual edge is detected. This pixel where the boundary is first detected is referred to as the start pixel.

4.3.2 The Turtle Boundary Detector

When an object in its two-dimensional representation is of uniform intensity and its edge doesn't contain spurious gaps, then it is possible to use a "turtle" boundary detection algorithm. In this work a modified version of the turtle algorithm used in the work of Dubois [Dubois, 1984] is implemented. In this algorithm the boundary between the object and its background is followed in a clockwise manner by a symbolic device referred
to as the "turtle". Once the boundary start pixel has been found as described in the previous pages the turtle proceeds to trace the edge according to the following two rules [Duda and Hart, 1973]:

1) If the turtle is in the object it will turn left and take a step.
2) If the turtle is in the background it will turn right and then take a step.

The turtle stops when it has returned back to the start pixel.

Since a great portion of the classification time is spent turtling around the boundaries of the objects in the scene it is advantageous to speed up the algorithm. To do this, the turtle algorithm of Dubois [Dubois, 1984] was modified in the following ways:

1) The direction of the turtle movements is governed by decisions based on logical flags indicating past and present turtle position.
2) All subroutine calls have been eliminated in preference for a quicker straight through code.
3) As each boundary pixel is detected, the x and y locations are temporarily stored and counted for later use by the radius vector calculation algorithms.
4) Also, as each boundary pixel is detected, its grey level intensity is changed. This marking of the boundary is to prevent repeat turtling of the edge as the entire frame buffer is scanned. Also the boundary marking provides identification for later determination of which edges are inside other edges. An example of the scene with marked edges is shown in Figure 4.3.1.
Figure 4.3.1 Example of a scene showing marked edges

Note that the edges are marked with the intensity level which corresponds to their order of detection. For instance the boundary closest to the top left corner is detected first and is thus marked with the grey level intensity 1.

4.3.2.1 The Centroid of the Boundary. The center of the two-dimensional representation of the object can be approximated by calculating the average of the boundary pixel locations. Thus the x_c and y_c coordinates of the boundary center are:

$$
\begin{align*}
 x_c &= \frac{\sum_{n=1}^{N_b} x_n}{N_b}, \\
 y_c &= \frac{\sum_{n=1}^{N_b} y_n}{N_b}
\end{align*}
$$

(4.3.1)

where N_b is the number of boundary pixels and x_n and y_n are the x and y coordinates of the nth boundary pixel. The advantage of finding the boundary centroid is that despite changes in the object's rotation and translation the relative position of the centroid remains the same. The
centroid position can then be used as the origin of a set of reference axes needed for the determination of the boundary intersection radius vector lengths.

4.3.3 Formation of the Time Series from the Radius Vector Lengths

With the position of the boundary centroid known, the two types of time series formed from the radius vector lengths, as described in chapter two, can be produced. The type of time series formed depends on the relationship between each radius vector of the boundary representation. Two methods based on two types of relationships are explored in this work and described below:

4.3.3.1 Equi-angle Method. In this method the intersections of the radius vectors with the boundary are such that the angles between the radius vectors are all constant and equal to $2\pi/N_r$ radians, where N_r is the number of radius vectors. The algorithm actually implemented is a modified version of the algorithm written by Dubois [Dubois, 1984]. The main modification of the original algorithm is the use of the boundary locations stored in an array during initial boundary detection. This eliminates the additional time of turtling around the boundary for a second time. However the trade off is the additional temporary storage requirement for the boundary locations. Another modification is the use of straight through code which also increases the speed of forming the time series.

The basic steps needed to form the desired time series using this method are described next. Initially the origin of a cartesian coordinate system is shifted to the centroid of the object boundary, see Figure 4.3.2.
The radius vectors are then imagined to project, equally spaced by $2\pi/N_r$ radians, from the origin to the object boundary. Each section formed by a pair of radius vectors is referred to as a sector. Note that in determining the intersection of the radius vector with a boundary pixel, we are only concerned with the relative position of the pixel with respect to the radius vectors of the sector. Thus only the magnitudes of the slopes of the first quadrant of the reference plane need to be calculated. These slopes are calculated once and stored in an array before the actual search for boundary intersections begins. The slope of the jth radius vector is calculated using

$$ \text{slope}(j) = \frac{5}{4} \tan\left(\frac{2\pi}{N_r} j\right) \quad j = 0, \ldots, (N_r/4) - 1 \quad (4.3.2) $$

The $5/4$ factor is introduced in Equation 4.3.2 to deal with the rectangular pixel shape and to prevent the factor from having to be included in each pixel slope calculation during the search.
The search for radius vector boundary intersections begins with the start pixel. The slope of the imaginary radial line drawn from the start pixel \((x_s, y_s)\) to the centroid pixel \((x_c, y_c)\) is given as:

\[
\text{slope} = \frac{|x_s - x_c|}{|y_s - y_c|} \quad (4.3.3)
\]

This slope value is compared with the slope values stored in the array and the appropriate sector is found. The two slope vectors of both edges of the sector form reference lines for calculating the relative position of the pixel in the sector. After the start pixel has found its sector and the relative position in the sector has been noted, the second pixel next to the start pixel is checked. Its relative position is noted with respect to the reference vectors also. If the distance measurements, showing the relative pixel position, change signs from one pixel to the next, then it can be assumed that the most recently checked pixel is either on or it has crossed a radial line. The radius vector length between this pixel \((x, y)\) and the centroid can be calculated, i.e.

\[
r_t(i) = \sqrt{((x-x_c) \times 5/4)^2 + (y-y_c)^2} \quad (4.3.4)
\]

This radius vector length becomes part of the time series in the order in which it is detected. This process repeats till all the boundary pixels have been checked and the start pixel has been encountered once again. The details of the implementation of this method are described in the work of Dubois [Dubois, 1984].

4.3.3.2 Equi-Arc Length Method. In this method the intersections of the radius vectors with the boundary are such that the arc length between intersections is constant and equal to a certain number of pixels. In the implementation of this method the constant arc length \((A)\),
measured in pixels, is determined by dividing the total number of boundary pixels (N_b) by the desired number of radius vectors (N_r) i.e.

$$A = \text{arclength} = \frac{N_b}{N_r}$$

(4.3.5)

Thus the time series is formed from the radius vector lengths corresponding to every Ath stored boundary pixel where the length from pixel to centroid is calculated using Equation 4.3.4. This method is simpler and quicker than the equi-angle method since it doesn't need to check each boundary pixel for radius vector intersections.

In both radius vector length calculating methods, the (x_{max}, y_{max}) position of the boundary intersection pixel of the maximum radius vector is stored. Also the length of the maximum radius vector is stored. From this length we have an indication of the size of shape. Using the position we can calculate the orientation of the maximum radius vector and thereby have an indication of the orientation of entire shape. The orientation of maximum radius vector in the Cartesian coordinate plane is calculated as

$$\text{orientation (degrees)} = \text{Arctan}\left(\frac{y_{max} - y_c}{x_{max} - x_c}\right)$$

The negative sign is due to the origin of the video coordinate system being at the top left corner of the scene.

We are now capable of forming two types of time series for any inner or outer object boundary encountered in the scene. Thus it is possible to calculate the AR parameters \{$\alpha_1, \alpha_2, \ldots, \alpha_m, \alpha/\sqrt{\beta}$\} of each boundary at any model order. These parameters can be stored in vector form during the acquisition of training data and transformed later, or they can be transformed immediately for classification purposes. The next section
deals with the extraction of additional information from the inner boundaries of an object and how that information can be used in the classification process.

4.4 **Extraction of Additional Information from the Inner Boundaries of an Object**

The additional information provided by the inner boundaries of an object can be used to hasten the classification process in many ways. If the number of inner boundaries or holes is unique i.e. no other object has that number of holes, then the classification of that object can be based solely on that number. Also the relative position of the edge used in conjunction with the vector of transformed AR parameters can provide additional information. If the object has more than one hole then it is possible to calculate the AR parameters of the polygonal shape formed by connecting the boundary centroids with straight lines. In this work the AR parameters of the polygon were not calculated but the number of holes and the relative position of the holes inside the object were found. In order to count the number of holes belonging to an object it is first necessary to determine which holes are owned by which object. The technique of determining hole ownership is described next.

4.4.1. **Determination of Hole Ownership**

Once the boundaries have been detected and marked as in Figure 4.3.1, hole ownership can be determined using the following technique. For each boundary the algorithm is as follows:

1) Begin at the start pixel and proceed to read every pixel on the row to the right of the start pixel.
2) Keep track of any occurrence of a pixel intensity which is neither the object intensity or the background intensity. Once a pixel intensity denoting an edge is detected, ignore any occurrences of the same intensity if they happen to occur immediately after the first encounter.

3) Return to the start pixel and repeat the process on the same row but now going towards the left.

4) Keep a separate record of the occurrences of the edge pixels as in Step 2).

Once both right and left sections of the row containing the start pixel have been read, it is then possible to determine which boundary the edge in question is inside. If the same boundary intensity is detected an odd number of times in both the right and left scans, then it can be assumed that the edge in question is inside the boundary corresponding to the intensity. Figure 4.4.1 shows an example of how this method can be used to determine that edge 2 is inside boundary 1.

![Figure 4.4.1 Example of the Method for Determining Hole Ownership](image-url)
Once the inner holes of an object have been identified it is a simple matter to count them. It is also possible to order them according to the distance between their centroids and the centroid of the outer boundary. In this work the inner edges were ordered such that the edges whose centroids were furthest away from the outer boundary centroid, were put on the top of the list. When the inner edges have been detected, counted, and ordered, it is then possible to classify an object simply by the hole count or by the classification of each one of its edges.

4.5 Description of System Software

The algorithms described in the preceding pages were coded into Fortran-77 for the VAX 11-730 computer. The two main programs for the pattern recognition system are called TRAIN and CLASSIFY. Program TRAIN is used to provide the classifier with the training data for each expected object edge. Program CLASSIFY is used to classify objects with one or more edges by the classification of each edge or by the total number of inner edges. An additional program called MAKLIB was written to create a library file (LIB.DAT) of AR parameters of the edges. This library file increased the speed of system tests since it eliminated the need for recalculating the AR parameters of the edges for each test. A complete listing of TRAIN and CLASSIFY and the subroutines they call can be found in the Appendix at the end of this work.

4.5.1 Program TRAIN

Program TRAIN is an interactive program which trains the classifier with the data of the edges of the expected objects. This program produces a TRAIN.DAT file which contains the M+1 columns of the trans-
formation matrix and also the average of the transformed samples of each class. Multiple edges are allowed in the scenes, however all edges of the objects in view must be identical. [See Figure 4.5.1 for the general flowchart of program TRAIN.] The program begins by initializing the ITI hardware and then prompts the user for the scan step, the AR model order, and the number of radius vectors. It also prompts for the desired transformation technique which can be either the basic Karhunen-Loeve (KLSEL), the minimum entropy K-L (MESEL), or the optimal prewhitened K-L (PREKL) coordinate axes generating technique. Once the scene has been viewed, thresholded, and frozen, it is scanned in order to find the start pixel of each boundary. As soon as a boundary start pixel is detected, the entire boundary is traced and the centroid is calculated. After the entire scene has been scanned, the radius vector lengths of each boundary are determined so that the AR parameters can be calculated. Once the feature vectors are formed from the AR parameters, the process repeats and another scene can be viewed. When enough samples of each class have been accumulated, all the AR parameter feature vectors are passed to the desired subroutine which then forms the average covariance matrix and finds the particular K-L coordinate axes. After the K-L axes are calculated and the transformation matrix is formed, the original feature vectors are transformed and the average transformed vectors are found. These vectors are stored along with the transformation matrix in the training data file.

4.5.2 Program CLASSIFY

Program CLASSIFY is an interactive program which can recognize objects with one or more edges. The program allows many different objects to be present in the scene. It also calculates the rotation of the objects. The
Begin

Initialize Hardware & Set Threshold

Input: scan step, M, N,

View the Scene

Input Class =

Freeze the Image

Detect all Edges and Calculate the Centroids

Calculate Radius Vector Lengths of all Edges

Calculate AR Parameters of all Edges

Collect More Data? Yes

Stop

Figure 4.5.1 General Flowchart of Program TRAIN
program starts by initializing the hardware and prompts for the desired
constants as in Program TRAIN. It also prompts for the desired dimension
of the average transformed feature vectors. Once the constants have been
accepted, the program scans the frame buffer and turtles around all
edges, calculating the centroid after detecting each edge. When all the
edges have been detected and also marked, the program then determines which
holes are owned by which objects. The inner holes of the objects are
counted and if the count is unique, then the object can be classified.
The edges of the yet unclassified objects now need to be classified so
the radius vector lengths are determined and the AR parameters are
calculated. Then using the transformation matrix provided by the training
program, the AR parameters of each edge are transformed. Now the
transformed feature vectors can be classified using the minimum-distance
algorithm as discussed in Chapter 3. Once all the edges of the object
are classified, the object can be classified. This is done by matching
the edge classifications and the number of holes data with the object
data contained in a file called OBJECT.DAT. This data file is created
by the user in the same way that an ordinary text file is created. The
object data is typed in one line per object. For example, suppose we
have an object with label 3 which has 2 holes labelled 5 and 7. If the
centroid of hole 7 is further away from the outer boundary centroid than
hole 5, then we would type in the sequence: 3 2 7 5. Once all the
objects have been classified, the program is ready to accept another
scene full of objects or the session can be terminated. See Figure
4.5.2 for the general flowchart of Program CLASSIFY.
Begin

Initialize Hardware & Threshold the Scene (SETUP, THRESH)

Read Edge and Object Data from Files

Input: M, Transform Dim.

Input: Object Number

Freeze the Image

Scan the Scene, Detect All Edges and Calculate Centroids (SCAN, GETCEN)

Determine Hole Ownership (INSIDE)

Classify Objects by Their Number of Holes (CLSHOLE)

Form Ordered List of Edges for Each Object (ORDER)

A

All Objects classified?

No

Yes

Continue Classification?

No

Stop

Yes

Figure 4.5.2 General Flowchart of Program CLASSIFY
Figure 4.5.2 Continued

A

Calculate Radius Vector Lengths of Single Edge (GETRAD)

Calculate AR Parameters of Edge (PARAM)

Transform the AR Parameters and Classify the Edge (CLSEDGE)

All edges of object classified?

No

Yes

Classify the Object (CLSOBJ)

B
CHAPTER 5

NUMERICAL EXAMPLE AND SYSTEM TESTS AND RESULTS

In the previous chapters, we described the theory and implementation of our pattern recognition algorithms. It is well known that any theoretical study is incomplete without examples and experimental tests. Thus this chapter is divided into two parts, the first part provides a numerical example of the feature selection, transformation, and classification theory. The second part describes the series of tests and their results, of the entire recognition system. In all examples and system tests the image threshold was set at 120, the scan step was 8 pixels, and the desired number of radius vectors was 64.

5.1 Numerical Example

We used programs TRAIN and CLASSIFY to provide for the following examples of the theories and algorithms used in this pattern recognition system. Two examples have been provided, the first is of the system using the equal angle boundary sampling method. The second example shows the system using the equal arc length boundary sampling method. The shapes chosen for these examples are the familiar S (class 1) and N (class 2) used in the work of Dubois [Dubois, 1984]. These shapes were chosen for two reasons. The first is that the AR parameters of both classes are very similar and thus they show the need for a type of transformation technique. Also they were chosen to allow quick comparison of the two different pattern recognition systems. The actual size of these shapes
are considerably larger than normal text. The letter S is approximately 6 inches tall and the N is about 4-1/2 inches tall.

5.1.1 Example of the System Using the Equal Angle Boundary Sampling Method

The equal angle boundary sampling technique described in Chapter Two is used in this example. Figure 5.1.1 shows the sampled shapes of class 1 and class 2. Note that portions of the letters are not sampled as would be expected. This is due to the radius vector boundary intersection algorithm rejecting radius vector measurements if they occur on the same slope as the previous radius vector length measurement. This rejection was done to prevent the occurrence of a disproportionately large number of similar radius vectors measurements if the slope of the boundary happened to coincide with the slope of a radius vector. Below the shape of each letter is the corresponding time series formed from the radius vector lengths. Notice the fast vertical changes. These unnatural transitions are the direct result of the sampling process skipping or by-passing certain sections of the boundary. These quick transitions increase the high frequency content of the time series wave shape and thus it can be expected that the resultant AR model order will be higher for this type of wave shape than for a waveform that doesn't have these sharp transitions.

Table 5.1.1 shows the original training set data comprising 10 samples of each class. As can be seen, the samples varied in size and rotation. The size variation can be observed in the changes of the length (in pixels) of the maximum radius vector from one sample to the next. Notice also that the changes in rotation are not strict multiples of $2\pi/N_r$. This was done to mimic a realistic setting where the position and rotation of an object is generally completely arbitrary.
Figure 5.1.1 Shapes for Numerical Example: Equal Angle Boundary Sampling Method
Table 5.1.1 Training Set Data

Equal Angle Sampling Method

(AR Model Order: 1)

<table>
<thead>
<tr>
<th>Sample</th>
<th>(N_r)</th>
<th>(\theta_1)</th>
<th>(a/\sqrt{\beta})</th>
<th>Length of Max Rad Vec.</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>95</td>
<td>-0.97653</td>
<td>1.73521</td>
<td>183</td>
<td>251.4</td>
</tr>
<tr>
<td>2</td>
<td>88</td>
<td>-0.97261</td>
<td>1.8513</td>
<td>187</td>
<td>207.1</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>-0.96371</td>
<td>1.82773</td>
<td>188</td>
<td>166.0</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>-0.97306</td>
<td>1.80995</td>
<td>187</td>
<td>339.0</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>-0.96508</td>
<td>1.79821</td>
<td>193</td>
<td>313.8</td>
</tr>
<tr>
<td>6</td>
<td>90</td>
<td>-0.96442</td>
<td>1.86203</td>
<td>196</td>
<td>56.5</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>-0.95070</td>
<td>2.10665</td>
<td>203</td>
<td>13.7</td>
</tr>
<tr>
<td>8</td>
<td>84</td>
<td>-0.96093</td>
<td>1.81376</td>
<td>204</td>
<td>339.0</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>-0.97108</td>
<td>1.67467</td>
<td>214</td>
<td>326.0</td>
</tr>
<tr>
<td>10</td>
<td>86</td>
<td>-0.91653</td>
<td>1.92008</td>
<td>209</td>
<td>278.0</td>
</tr>
<tr>
<td>Class 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>-0.97338</td>
<td>1.91497</td>
<td>160</td>
<td>236.0</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>-0.97753</td>
<td>1.96800</td>
<td>165</td>
<td>193.8</td>
</tr>
<tr>
<td>3</td>
<td>113</td>
<td>-0.97996</td>
<td>1.88319</td>
<td>168</td>
<td>159.2</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>-0.97825</td>
<td>1.91980</td>
<td>166</td>
<td>326.0</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td>-0.98253</td>
<td>1.96457</td>
<td>174</td>
<td>303.1</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>-0.97322</td>
<td>1.93067</td>
<td>177</td>
<td>39.7</td>
</tr>
<tr>
<td>7</td>
<td>113</td>
<td>-0.97945</td>
<td>1.94201</td>
<td>182</td>
<td>345.9</td>
</tr>
<tr>
<td>8</td>
<td>113</td>
<td>-0.97759</td>
<td>1.92446</td>
<td>190</td>
<td>20.6</td>
</tr>
<tr>
<td>9</td>
<td>110</td>
<td>-0.97306</td>
<td>1.93831</td>
<td>186</td>
<td>128.5</td>
</tr>
<tr>
<td>10</td>
<td>111</td>
<td>-0.97896</td>
<td>1.95099</td>
<td>188</td>
<td>213.5</td>
</tr>
</tbody>
</table>
The AR parameters θ_1 and $\alpha/\sqrt{\beta}$ cluster around their average class value as can be seen in Figure 5.1.2a. However looking at Table 5.1.1, some θ_1 values and also some $\alpha/\sqrt{\beta}$ values overlap between the classes. Thus it can be seen that it is desirable to reduce or possibly eliminate these overlaps by using a transformation technique. Table 5.1.2 shows the results of transforming the original AR parameters using the basic K-L, the minimum entropy K-L and the optimal K-L transformation matrices as described in Chapter 3. The plots of these transformed points are shown in parts b,c,d of Figure 5.1.2.

To understand how the K-L coordinate axes can reduce the dimension of the feature vector, observe how the transformation rotates the original coordinate axes so they now point in the direction of maximum and minimum variance. In the basic K-L transformed system, the first axis or x axis, points in the direction of maximum within-class variance. Looking at plot (b) in Figure 5.1.2, it is noticed that the major axis of the ellipsoid formed from the cluster of class 1 points of plot (a) is now parallel with the x axis. We can also see that along the y axis corresponding to the direction of minimum variance, there is no overlapping between the classes. It is possible to draw a straight line parallel to the x axis between the class clusters such that the classes do not overlap. An unlabelled input feature vector can be classified by its position along the y axis alone. Thus the dimension of the feature space has been reduced.

Plot (c) in Figure 5.1.2 shows the effect of the minimum entropy transformation. Comparing this plot with plot (b) we see that plot (c) is the same as (b) but with the axes reversed. In the minimum entropy transformed system, the x axis points in the direction of the minimum
<table>
<thead>
<tr>
<th>Sample</th>
<th>Basic K-L T1</th>
<th>T2</th>
<th>Min Entropy K-L T1</th>
<th>T2</th>
<th>Optimal K-L T1</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.685</td>
<td>1.061</td>
<td>1.061</td>
<td>1.685</td>
<td>263.35</td>
<td>54.11</td>
</tr>
<tr>
<td>2</td>
<td>1.801</td>
<td>1.063</td>
<td>1.063</td>
<td>1.801</td>
<td>269.21</td>
<td>52.84</td>
</tr>
<tr>
<td>3</td>
<td>1.778</td>
<td>1.053</td>
<td>1.053</td>
<td>1.778</td>
<td>266.64</td>
<td>52.41</td>
</tr>
<tr>
<td>4</td>
<td>1.760</td>
<td>1.062</td>
<td>1.062</td>
<td>1.760</td>
<td>268.67</td>
<td>53.23</td>
</tr>
<tr>
<td>5</td>
<td>1.748</td>
<td>1.053</td>
<td>1.053</td>
<td>1.748</td>
<td>266.51</td>
<td>52.76</td>
</tr>
<tr>
<td>6</td>
<td>1.812</td>
<td>1.056</td>
<td>1.056</td>
<td>1.812</td>
<td>267.35</td>
<td>52.17</td>
</tr>
<tr>
<td>7</td>
<td>2.057</td>
<td>1.054</td>
<td>1.054</td>
<td>2.057</td>
<td>267.81</td>
<td>49.09</td>
</tr>
<tr>
<td>8</td>
<td>1.764</td>
<td>1.050</td>
<td>1.050</td>
<td>1.764</td>
<td>265.73</td>
<td>52.33</td>
</tr>
<tr>
<td>9</td>
<td>1.625</td>
<td>1.053</td>
<td>1.053</td>
<td>1.625</td>
<td>266.06</td>
<td>54.25</td>
</tr>
<tr>
<td>10</td>
<td>1.870</td>
<td>1.056</td>
<td>1.056</td>
<td>1.870</td>
<td>267.55</td>
<td>51.46</td>
</tr>
<tr>
<td>Class 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.864</td>
<td>1.067</td>
<td>1.067</td>
<td>1.864</td>
<td>270.40</td>
<td>52.35</td>
</tr>
<tr>
<td>2</td>
<td>1.917</td>
<td>1.074</td>
<td>1.074</td>
<td>1.917</td>
<td>272.25</td>
<td>52.18</td>
</tr>
<tr>
<td>3</td>
<td>1.832</td>
<td>1.072</td>
<td>1.072</td>
<td>1.832</td>
<td>271.52</td>
<td>53.08</td>
</tr>
<tr>
<td>4</td>
<td>1.869</td>
<td>1.072</td>
<td>1.072</td>
<td>1.869</td>
<td>271.68</td>
<td>52.65</td>
</tr>
<tr>
<td>5</td>
<td>1.913</td>
<td>1.079</td>
<td>1.079</td>
<td>1.913</td>
<td>273.43</td>
<td>52.56</td>
</tr>
<tr>
<td>6</td>
<td>1.880</td>
<td>1.067</td>
<td>1.067</td>
<td>1.880</td>
<td>270.60</td>
<td>52.20</td>
</tr>
<tr>
<td>7</td>
<td>1.891</td>
<td>1.075</td>
<td>1.075</td>
<td>1.891</td>
<td>272.32</td>
<td>52.54</td>
</tr>
<tr>
<td>8</td>
<td>1.874</td>
<td>1.072</td>
<td>1.072</td>
<td>1.874</td>
<td>271.58</td>
<td>52.56</td>
</tr>
<tr>
<td>9</td>
<td>1.888</td>
<td>1.068</td>
<td>1.068</td>
<td>1.888</td>
<td>270.68</td>
<td>52.12</td>
</tr>
<tr>
<td>10</td>
<td>1.900</td>
<td>1.075</td>
<td>1.075</td>
<td>1.900</td>
<td>272.34</td>
<td>52.43</td>
</tr>
</tbody>
</table>
Figure 5.1.2 Plots Showing the Effects of the Different Transformation Techniques: (a) Original AR Parameters, (b) Basic K-L Transformed Parameters, (c) Minimum Entropy K-L Transformed Parameters, (d) Optimal K-L Transformed Parameters
within class variance. This is to be expected since the transformation matrix is formed from the exact same eigenvectors as the K-L transformation matrix, but reversed in order. Since this reversal of eigenvectors does not enhance the basic K-L system, the minimum entropy transformation was not investigated further. However, if it is known a priori that all the class covariance matrices of a training set are equal, then it is shown [Tou and Gonzalez, 1974] that the minimum entropy method produces better results than the basic K-L transformation.

Plot (d) in Figure 5.1.2. shows the effect of the optimal K-L transformation. The x-axis points in the direction of maximum between class variance. Now the class means fall on a line parallel to the x-axis. It is also noted that the intraset distances along the x-axis have been reduced in comparison to the original clusters. Thus any un-labelled input vector can be categorized according to its position along the x-axis.

In this 2 class problem, we do not observe a distinct advantage of the optimal K-L transformation. However, as the feature space increases and includes more classes the ability of the basic K-L transformation to divide the feature space decreases. This is because the K-L transformation is based on the within class variances which do not contain a great amount of discriminatory information. On the other hand the optimal K-L transformation uses the prewhitened between class variances and thus maximizes the use of the discriminatory information contained in the class means.

Tables 5.1.3 and 5.1.4 show the data of the classification process. The classifier initially retrieves from storage the transformation matrix, which was used to transform the training samples, and the
Table 5.1.3 Classification Data Using Basic K-L Transformation

(AR Model Order: 1, Transformed Dimension: 2)

INPUT TRAINING DATA

<table>
<thead>
<tr>
<th>Transformation Matrix:</th>
<th>Mean Transformed Training Samples:</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
0.04958 & -0.99877 \\
0.99877 & 0.04958
\end{bmatrix}
\] | Class 1: 1.78981 1.05600 |
| | Class 2: 1.88286 1.07206 |

CLASSIFICATION DATA

<table>
<thead>
<tr>
<th>(\theta_1)</th>
<th>(\alpha/\sqrt{\beta})</th>
<th>T1</th>
<th>T2</th>
<th>Length of</th>
<th>Max Rad Vec</th>
<th>Rotation Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.95892</td>
<td>1.85477</td>
<td>1.805</td>
<td>1.050</td>
<td>190</td>
<td>66.8</td>
<td>1</td>
</tr>
<tr>
<td>-0.96278</td>
<td>1.76381</td>
<td>1.714</td>
<td>1.050</td>
<td>195</td>
<td>27.0</td>
<td>1</td>
</tr>
<tr>
<td>-0.96952</td>
<td>1.69998</td>
<td>1.650</td>
<td>1.053</td>
<td>195</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>-0.97158</td>
<td>1.88558</td>
<td>1.835</td>
<td>1.064</td>
<td>192</td>
<td>326.2</td>
<td>1</td>
</tr>
<tr>
<td>-0.97213</td>
<td>1.75851</td>
<td>1.708</td>
<td>1.058</td>
<td>209</td>
<td>319.2</td>
<td>1</td>
</tr>
<tr>
<td>-0.97280</td>
<td>1.84680</td>
<td>1.796</td>
<td>1.063</td>
<td>204</td>
<td>122.9</td>
<td>1</td>
</tr>
<tr>
<td>-0.97630</td>
<td>1.67335</td>
<td>1.623</td>
<td>1.058</td>
<td>198</td>
<td>246.8</td>
<td>1</td>
</tr>
<tr>
<td>-0.97096</td>
<td>1.80878</td>
<td>1.758</td>
<td>1.059</td>
<td>201</td>
<td>213.3</td>
<td>1</td>
</tr>
<tr>
<td>-0.97648</td>
<td>1.68312</td>
<td>1.632</td>
<td>1.059</td>
<td>221</td>
<td>213.7</td>
<td>1</td>
</tr>
<tr>
<td>-0.96265</td>
<td>1.98290</td>
<td>1.933</td>
<td>1.074</td>
<td>219</td>
<td>146.1</td>
<td>2</td>
</tr>
</tbody>
</table>

Class 2						
-0.97963	1.92738	1.876	1.074	180	219.8	2
-0.98326	1.89282	1.842	1.076	186	172.7	2
-0.97366	1.91872	1.868	1.068	185	7.0	2
-0.97945	1.92982	1.878	1.074	183	314.0	2
-0.98020	1.94440	1.894	1.075	198	313.8	2
-0.97276	1.94115	1.891	1.067	197	39.8	2
-0.98261	1.95360	1.902	1.078	200	338.9	2
-0.97505	1.93480	1.884	1.070	206	13.9	2
-0.97879	1.91234	1.861	1.072	208	339.0	2
-0.97175	1.91964	1.869	1.066	205	123.2	2

CONFUSION MATRIX

\[
\begin{array}{cc}
1 & 2 \\
\hline
1 & 9 & 1 \\
2 & 0 & 10 \\
\end{array}
\]

95.0% correct
Table 5.1.4 Classification Data Using Optimal K-L Transformation
(AR Model Order: 1, Transformed Dimension: 2)

INPUT TRAINING DATA

Transformation Matrix:
\[
\begin{pmatrix}
-246.90 & -70.75 \\
-15.70 & -8.63 \\
\end{pmatrix}
\]

Mean Transformed Training Samples:

\[
\begin{array}{c}
T_1 \\
T_2 \\
\end{array}
\begin{array}{c}
267.388 \\
52.467 \\
\end{array}
\]
Class 1:

\[
\begin{array}{c}
267.388 \\
52.467 \\
\end{array}
\]
Class 2:

\[
\begin{array}{c}
271.682 \\
52.467 \\
\end{array}
\]

CLASSIFICATION DATA

<table>
<thead>
<tr>
<th>(\vec{z}_1)</th>
<th>(2/\sqrt{\vec{z}})</th>
<th>T1</th>
<th>T2</th>
<th>Length of Max Rad Vec</th>
<th>Rotation Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.97576</td>
<td>1.79706</td>
<td>269.13</td>
<td>53.53</td>
<td>183</td>
<td>260.8</td>
</tr>
<tr>
<td>-0.97308</td>
<td>1.81335</td>
<td>268.73</td>
<td>53.20</td>
<td>184</td>
<td>231.3</td>
</tr>
<tr>
<td>-0.95263</td>
<td>2.00491</td>
<td>266.69</td>
<td>50.10</td>
<td>186</td>
<td>186.9</td>
</tr>
<tr>
<td>-0.95786</td>
<td>1.82341</td>
<td>265.13</td>
<td>52.04</td>
<td>186</td>
<td>139.8</td>
</tr>
<tr>
<td>-0.97406</td>
<td>1.79275</td>
<td>268.65</td>
<td>53.45</td>
<td>181</td>
<td>94.4</td>
</tr>
<tr>
<td>-0.96344</td>
<td>1.84091</td>
<td>266.78</td>
<td>52.28</td>
<td>196</td>
<td>71.7</td>
</tr>
<tr>
<td>-0.96077</td>
<td>1.87224</td>
<td>266.61</td>
<td>51.82</td>
<td>200</td>
<td>39.8</td>
</tr>
<tr>
<td>-0.95672</td>
<td>1.90406</td>
<td>266.11</td>
<td>51.26</td>
<td>201</td>
<td>345.8</td>
</tr>
<tr>
<td>-0.97174</td>
<td>1.71986</td>
<td>266.93</td>
<td>53.91</td>
<td>204</td>
<td>326.0</td>
</tr>
<tr>
<td>-0.95385</td>
<td>2.16893</td>
<td>269.56</td>
<td>48.77</td>
<td>200</td>
<td>288.2</td>
</tr>
<tr>
<td>Class 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.97945</td>
<td>1.93141</td>
<td>272.15</td>
<td>52.63</td>
<td>170</td>
<td>134.2</td>
</tr>
<tr>
<td>-0.97635</td>
<td>1.97708</td>
<td>272.10</td>
<td>52.02</td>
<td>172</td>
<td>200.7</td>
</tr>
<tr>
<td>-0.97666</td>
<td>1.88894</td>
<td>270.80</td>
<td>52.80</td>
<td>173</td>
<td>186.6</td>
</tr>
<tr>
<td>-0.97523</td>
<td>1.87643</td>
<td>270.25</td>
<td>52.81</td>
<td>172</td>
<td>152.5</td>
</tr>
<tr>
<td>-0.98230</td>
<td>1.93227</td>
<td>272.87</td>
<td>52.83</td>
<td>174</td>
<td>0.0</td>
</tr>
<tr>
<td>-0.98010</td>
<td>1.93268</td>
<td>272.33</td>
<td>52.67</td>
<td>170</td>
<td>297.8</td>
</tr>
<tr>
<td>-0.97795</td>
<td>1.98704</td>
<td>272.66</td>
<td>52.05</td>
<td>187</td>
<td>33.7</td>
</tr>
<tr>
<td>-0.97538</td>
<td>1.93191</td>
<td>271.16</td>
<td>52.34</td>
<td>189</td>
<td>346.0</td>
</tr>
<tr>
<td>-0.98182</td>
<td>1.93898</td>
<td>272.86</td>
<td>52.73</td>
<td>200</td>
<td>288.2</td>
</tr>
<tr>
<td>-0.97969</td>
<td>1.94883</td>
<td>272.49</td>
<td>52.50</td>
<td>198</td>
<td>123.2</td>
</tr>
</tbody>
</table>

CONFUSION MATRIX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

95.0% correct
formed training sample of each class. The table shows the original AR parameters and the transformed parameters of the test set. The maximum radius vector length and the rotation of the object are also listed. Like the training samples, the test samples are random. The resultant classifier decisions are shown in the right column. For both sets of classification data, the basic K-L transformed and the optimal K-L transformed, the classifier recognized the input shape correctly for all test samples except one. This misclassification occurred in both sets for a sample in which the original AR parameters vary more than the rest. It is suspected that this difference is due to a large segment of the boundary not being sampled. It is expected that the classification performance at this low model order (i.e. M=1) will be improved by the equal arc length boundary sampling method. This will be investigated next.

5.1.2 Example of the System Using the Equal Arc Length Sampling Method

The equal arc length boundary sampling method as described in Chapter Two is used in this example. Figure 5.1.3 shows the sampled shapes of class 1 and class 2. Below each sampled shape is the resultant time series. As can be observed in these time series plots, the sharp vertical transitions, which occurred in the time series of the previously discussed sampling method, do not occur. The waveforms show the gradual changes in the contour of the boundary as it is sampled. Tables 5.1.5 and 5.1.6 show the training and classification data. For this example, only the optimal K-L transformation was used. As expected, the AR parameters and thus the transformed parameters cluster closely about their respective class means. As a result we see a perfect
Figure 5.1.3 Shapes for Numerical Example: Equal Arc Length Boundary Sampling Method
Table 5.1.5 Training Set DATA Using the Equal Arc Length Sampling Method and the Optimal K-L Transformation

(AR Model: 1)

<table>
<thead>
<tr>
<th>Sample</th>
<th>ϕ_1</th>
<th>$\alpha/\sqrt{\beta}$</th>
<th>Length of Max Rad Vec</th>
<th>Rotation</th>
<th>Transformed Samples (Optimal K-L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T1</td>
</tr>
<tr>
<td>1</td>
<td>-0.97331</td>
<td>2.26854</td>
<td>202</td>
<td>229.5</td>
<td>-270.4</td>
</tr>
<tr>
<td>2</td>
<td>-0.97314</td>
<td>2.31667</td>
<td>203</td>
<td>193.8</td>
<td>-271.4</td>
</tr>
<tr>
<td>3</td>
<td>-0.97040</td>
<td>2.34302</td>
<td>200</td>
<td>144.7</td>
<td>-271.4</td>
</tr>
<tr>
<td>4</td>
<td>-0.97041</td>
<td>2.46447</td>
<td>204</td>
<td>329.6</td>
<td>-274.3</td>
</tr>
<tr>
<td>5</td>
<td>-0.97226</td>
<td>2.38723</td>
<td>219</td>
<td>78.9</td>
<td>-272.9</td>
</tr>
<tr>
<td>6</td>
<td>-0.97322</td>
<td>2.29049</td>
<td>217</td>
<td>30.7</td>
<td>-270.8</td>
</tr>
<tr>
<td>7</td>
<td>-0.97209</td>
<td>2.35664</td>
<td>216</td>
<td>348.4</td>
<td>-272.1</td>
</tr>
<tr>
<td>8</td>
<td>-0.96968</td>
<td>2.44291</td>
<td>220</td>
<td>299.1</td>
<td>-273.6</td>
</tr>
<tr>
<td>9</td>
<td>-0.97061</td>
<td>2.43155</td>
<td>225</td>
<td>280.3</td>
<td>-273.5</td>
</tr>
<tr>
<td>10</td>
<td>-0.97228</td>
<td>2.30699</td>
<td>183</td>
<td>26.0</td>
<td>-271.0</td>
</tr>
</tbody>
</table>

Class 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>ϕ_1</th>
<th>$\alpha/\sqrt{\beta}$</th>
<th>Length of Max Rad Vec</th>
<th>Rotation</th>
<th>Transformed Samples (Optimal K-L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.96430</td>
<td>2.89333</td>
<td>184</td>
<td>111.5</td>
<td>-282.9</td>
</tr>
<tr>
<td>2</td>
<td>-0.96269</td>
<td>2.94088</td>
<td>188</td>
<td>180.0</td>
<td>-283.6</td>
</tr>
<tr>
<td>3</td>
<td>-0.96187</td>
<td>2.91875</td>
<td>188</td>
<td>137.5</td>
<td>-282.9</td>
</tr>
<tr>
<td>4</td>
<td>-0.96357</td>
<td>2.88612</td>
<td>187</td>
<td>335.1</td>
<td>-282.6</td>
</tr>
<tr>
<td>5</td>
<td>-0.96345</td>
<td>2.91985</td>
<td>186</td>
<td>78.7</td>
<td>-283.3</td>
</tr>
<tr>
<td>6</td>
<td>-0.96316</td>
<td>2.90567</td>
<td>199</td>
<td>270.6</td>
<td>-282.9</td>
</tr>
<tr>
<td>7</td>
<td>-0.96178</td>
<td>2.95423</td>
<td>203</td>
<td>336.4</td>
<td>-283.7</td>
</tr>
<tr>
<td>8</td>
<td>-0.96132</td>
<td>2.99844</td>
<td>199</td>
<td>296.0</td>
<td>-284.7</td>
</tr>
<tr>
<td>9</td>
<td>-0.96314</td>
<td>2.89153</td>
<td>204</td>
<td>276.2</td>
<td>-282.6</td>
</tr>
<tr>
<td>10</td>
<td>-0.96405</td>
<td>2.92276</td>
<td>202</td>
<td>113.8</td>
<td>-283.5</td>
</tr>
</tbody>
</table>
Table 5.1.6 Classification Data Using the Equal Arc Length Sampling Method and the Optimal K-L Transformation

(AR Model Order 1: Transformed Dimension: 1)

INPUT TRAINING DATA

<table>
<thead>
<tr>
<th>Transformation Matrix:</th>
<th>Mean Transformed Training Samples:</th>
</tr>
</thead>
<tbody>
<tr>
<td>223.52</td>
<td>-1466.18</td>
</tr>
<tr>
<td>-23.27</td>
<td>22.96</td>
</tr>
</tbody>
</table>

CLASSIFICATION DATA

<table>
<thead>
<tr>
<th>(\alpha_1)</th>
<th>(\alpha/\sqrt{\beta})</th>
<th>T1</th>
<th>Length of Max Rad Vec</th>
<th>Rotation Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.97266</td>
<td>2.35135</td>
<td>-272.14</td>
<td>186</td>
<td>260.9</td>
</tr>
<tr>
<td>-0.97328</td>
<td>2.28844</td>
<td>-270.81</td>
<td>188</td>
<td>231.0</td>
</tr>
<tr>
<td>-0.97302</td>
<td>2.29317</td>
<td>-270.86</td>
<td>190</td>
<td>192.4</td>
</tr>
<tr>
<td>-0.97031</td>
<td>2.40888</td>
<td>-272.95</td>
<td>186</td>
<td>146.9</td>
</tr>
<tr>
<td>-0.97180</td>
<td>2.33380</td>
<td>-271.54</td>
<td>197</td>
<td>147.7</td>
</tr>
<tr>
<td>-0.97035</td>
<td>2.44807</td>
<td>-273.87</td>
<td>196</td>
<td>317.8</td>
</tr>
<tr>
<td>-0.97194</td>
<td>2.36741</td>
<td>-272.35</td>
<td>198</td>
<td>77.9</td>
</tr>
<tr>
<td>-0.97324</td>
<td>2.29135</td>
<td>-270.87</td>
<td>200</td>
<td>26.4</td>
</tr>
<tr>
<td>-0.97202</td>
<td>2.28805</td>
<td>-270.52</td>
<td>208</td>
<td>27.5</td>
</tr>
<tr>
<td>-0.97262</td>
<td>2.30752</td>
<td>-271.11</td>
<td>206</td>
<td>346.5</td>
</tr>
</tbody>
</table>

Class 2

-0.96444	2.88873	-282.81	170	289.9	2
-0.96061	2.93651	-283.06	177	8.9	2
-0.96100	2.93754	-283.17	176	321.7	2
-0.96298	2.89563	-282.64	170	276.5	2
-0.96398	2.91838	-283.39	169	242.3	2
-0.96461	2.88745	-282.82	179	114.0	2
-0.96244	2.91625	-283.00	183	199.2	2
-0.96240	2.94407	-283.64	184	142.2	2
-0.96264	2.91241	-282.96	191	12.8	2
-0.96283	2.92158	-283.21	190	295.6	2

CONFUSION MATRIX

```
1 2
1 10 0 100% correct
2 0 10
```
classification performance using only one dimension of the transformed space. This example shows how the equal arc length sampling method produces excellent results at a low AR model order.

5.2 System Tests and Results

We used programs TRAIN, CLASSIFY and MAKLIB to test the performance of the pattern recognition system. We tested the system with different shape categories and with varying numbers of shapes in each category. In all the tests the training data for all the desired model orders was acquired from a library data file containing the AR parameters for model orders 1-10 for the samples of the particular shape category. Thus for each shape category the training data for model orders 1 through 10 was formed from the same set of samples.

For each test we have provided a table of results showing the overall percent correct classifications of the shapes category at a certain transformed dimension and particular model order. The percent calculation value was calculated as the average of the class percent correct classifications. This method of calculating percentages downgrades the classifier more if the misclassifications occur for one particular class than if the misclassifications occurred randomly among all the classes.

All the shapes used in the tests were cut out of white paper and viewed against a black background. This was done to eliminate the effects of shadows, reflections, and texture on the performance of this pattern recognition system. In all the tests the objects were translated and rotated randomly in the scene. Also the camera was lowered and elevated randomly between samples to change size of the viewed object. In all the tests, except the multi-edge object and timed tests, the
classification data was provided by the same library file as was used in the training process. This was done to speed up the tests since the AR parameters could simply be pulled out of storage instead of calculated. We felt that the system would still give accurate results since the only data the classifier uses in its decision making process is the mean class transformed training samples where the means are calculated over 25 samples.

5.2.1 Industrial Shapes Test

This was the first test done and it was used to compare the basic K-L vs the optimal K-L transformation techniques. We chose this set to again allow comparison of our system with the system of Dubois. The 8 industrial shapes (see Figure 5.2.1) in this test are scaled down versions of the industrial shapes tested by Dubois. These shapes were originally collected from the literature concerning industrial shape pattern recognition.

Table 5.2.1 shows the classification results of the system using both the basic K-L transformation and the optimal K-L transformation. As can be observed the basic K-L transformed system produces classification rates of 91.5 to 98.5 percent at the maximum transformed dimension for model orders 1 through 10. A significant improvement is seen in the classification results of the optimal K-L transformed system. At model orders 3 through 10 we see perfect classification rates and for model orders 5, 7, and 9 these perfect rates occur when using only two dimensions of the transformed feature vector space. Generally the misclassifications occurred when the classifier confused objects 1 and 8 and objects 4 and 5.
Figure 5.2.1 Industrial Shapes

(reduced to 74%)
Table 5.2.1 Results of the Industrial Shapes Test Using the Basic K-L and the Optimal K-L Transformation Matrices

(25 Test Samples = 25 Training Samples)

% Correct Classification

<table>
<thead>
<tr>
<th>Transformed Dimension</th>
<th>Model Order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASIC K-L</td>
<td>1</td>
<td>96.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>91.5</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>90.5</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>94.5</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
<td>91.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>89.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>49.0</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>62.5</td>
<td>89.5</td>
<td>89.5</td>
<td>89.5</td>
<td>89.5</td>
<td>89.5</td>
<td>89.5</td>
<td>89.5</td>
<td>89.5</td>
<td>89.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>58.5</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
<td>78.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>83.0</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
<td>84.5</td>
</tr>
<tr>
<td>OPTIMAL K-L</td>
<td>1</td>
<td>85.0</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>87.5</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>86.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>80.0</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>77.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>94.5</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>96.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>88.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>91.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>90.5</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
<td>98.0</td>
</tr>
</tbody>
</table>
5.2.2 Military Shapes Test

This test checked the system performance on a category of 4 military shapes as shown in Figure 5.2.2. One aspect of this test was to demonstrate how this system could be used for military target classification. Also, since all the silhouettes are long and pointed, another aspect was to see how the system would perform in the classification of fairly similar shapes. The optimal K-L transformation matrix was used and both boundary sampling methods were implemented in this test.

The test results in Table 5.2.2 show that the classifier performed perfectly using the equal angle sampling method and 1 dimension of the transformed feature space. The classifier performed slightly less well for the equal arc length sampling method. The misclassifications occurred when the classifier confused shapes 1 and 3. Note that shape 1 is the smallest of the shapes in this category.

5.2.3 Geometric Shapes Test

Many two dimensional representations of objects are fairly geometrical in shape, i.e. the shapes are symmetric and composed of lines and curves. Thus a test was performed on a set of 8 geometric shapes (see Figure 5.2.3). This test also provided the individual edge classification results which could then be compared with the results of the next test where the edges are combined to form multiple edge shapes. As in the military shapes test, the optimal K-L transformation matrix and both boundary sampling methods were implemented.

Table 5.2.3 shows the classification results. Note that the classification rate ranges from 93.5% to 99.5% for the maximum transformed
Figure 5.2.2 Military Shapes

(original size)
Table 5.2.2 Results of the Military Shapes Test Using the Optimal K-L Transformation and Both Boundary Sampling Methods

(25 Test Samples = 25 Training Samples)

% Correct Classification

<table>
<thead>
<tr>
<th>Model Order</th>
<th>Transformed Dimension 1</th>
<th>Transformed Dimension 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUAL ANGLE SAMPLING METHOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>EQUAL ARC LENGTH SAMPLING METHOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>89.0</td>
<td>97.0</td>
</tr>
<tr>
<td>2</td>
<td>97.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Figure 5.2.3 Geometric Shapes
(reduced to 74%)
Table 5.2.3 Results of the Geometric Shapes Test Using the Optimal K-L Transformation and Both Boundary Sampling Methods

(25 Test Samples = 25 Training Samples)

% Correct Classification

<table>
<thead>
<tr>
<th>Transformed Dimension</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Order</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>95.5</td>
<td>98.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>53.5</td>
<td>94.5</td>
<td>98.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>79.5</td>
<td>96.0</td>
<td>97.0</td>
<td>93.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>51.5</td>
<td>92.0</td>
<td>98.5</td>
<td>98.5</td>
<td>95.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68.0</td>
<td>99.0</td>
<td>99.5</td>
<td>98.0</td>
<td>98.5</td>
<td>98.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>58.5</td>
<td>93.5</td>
<td>98.5</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>77.5</td>
<td>95.0</td>
<td>98.0</td>
<td>99.0</td>
<td>98.5</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>80.5</td>
<td>95.0</td>
<td>97.0</td>
<td>98.5</td>
<td>98.5</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td></td>
</tr>
</tbody>
</table>

EQUAL ARC LENGTH SAMPLING METHOD

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Order</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>89.0</td>
<td>98.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>72.5</td>
<td>91.5</td>
<td>93.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>58.5</td>
<td>82.5</td>
<td>83.5</td>
<td>84.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>71.0</td>
<td>86.5</td>
<td>87.5</td>
<td>88.5</td>
<td>89.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>83.0</td>
<td>89.5</td>
<td>85.5</td>
<td>86.5</td>
<td>87.0</td>
<td>87.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
dimensions of the system using the equal angle sampling method. Note also that the best recognition rate for the equal arc length sampling method occurs at the lowest model order. It is evident upon looking at the top half of Table 5.2.3 that 2 samples (from class 5) of the library data file had AR parameters that deviated too far from the class mean and thus were consistently misclassified. If the test had used all random, new samples, we would probably see an occasional perfect classification score. However, the table does show how the AR parameters can deviate so far from the class mean that even the best transformation technique cannot completely eliminate the effect of this variance.

5.2.4 Multi-Edge Shape Test

This multi-edge shape test is simply an extension of the geometric shapes test. It demonstrates how the pattern recognition system can be used to recognize shapes with multiple edges. For this test we produced 12 shapes with multiple edges by cutting geometrical shapes out of the geometric shapes of the previous section. See Figure 5.2.4 for the representative shapes. The training data for this test was formed from the same samples that were used in the previous test. During classification however, the test data was formed from random, new samples. Thus this is the first test where the test and training data samples are mutually exclusive.

The confusion matrix of one run of this test at model order 5 and transformed dimension 2 is shown in Figure 5.2.5. The confusion matrix shows the number of each of the classifier decisions for a shape, where each shape was submitted to the classifier 20 times. It is observed that some samples were not classified at all, especially samples of shape 1.
Figure 5.2.4 Multi-Edge Shapes
(reduced to 36%)
Figure 5.2.5 Confusion Matrix of the Multi-Edge Shape Test

(AR Model Order: 5, Transformed Dimension: 2)

(20 Test Samples; 25 Training Samples)

<table>
<thead>
<tr>
<th>Shape</th>
<th>Classifier Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This problem was caused by the individual edge classifications not matching the actual object vector edge classifications. This apparently high rate of misclassification is due mostly to the greatly reduced size of the interior edges. When the size of an edge becomes very small the pixel quantization problem becomes increasingly significant. The resultant increased noise decreases the overall signal to noise ratio which ultimately degrades system performance. The most common effect of the lowered signal to noise ratio was the classifier confusion of edge 6 with 5 in object 1.

5.2.5 Large Number of Shapes Test

In this test we investigated the performance of the system when the classifier was given a large training set. For this test the sample data files of the industrial, military and geometric shapes were combined to form a single 20 shape data file. The classifier was trained and tested with the samples of this data file using the optimal K-L transformation technique. All the AR parameters in the data file were formed from the time series produced by the equal angle boundary sampling method.

The results of this test are shown in Table 5.2.4. The individual runs of this test started at model order 5 since it was desired that a recognition rate of at least 99% occur for the individual categories before the combination was tested. As can be seen, the classification performance degrades somewhat in comparison to the individual tests. This was expected since the feature vector space becomes more crowded as more shapes are included in the training set.
<table>
<thead>
<tr>
<th>Model Order</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>53.2</td>
<td>88.0</td>
<td>93.8</td>
<td>95.2</td>
<td>95.4</td>
<td>95.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>57.8</td>
<td>89.2</td>
<td>91.4</td>
<td>95.0</td>
<td>95.4</td>
<td>96.2</td>
<td>97.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>56.2</td>
<td>90.6</td>
<td>94.0</td>
<td>95.4</td>
<td>95.8</td>
<td>97.0</td>
<td>96.6</td>
<td>97.6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>44.2</td>
<td>83.8</td>
<td>96.2</td>
<td>90.8</td>
<td>92.6</td>
<td>94.2</td>
<td>94.2</td>
<td>95.0</td>
<td>96.0</td>
</tr>
</tbody>
</table>
5.2.6 Classification Speed

In the previous sections we have investigated the accuracy of the pattern recognition system. Another equally important aspect of a pattern recognition system is classification speed. Usually the classifier is trained off-line, since it is an interactive process, so training speed is desirable but not critical. What is critical and what also determines the possible applications of a pattern recognition system is the speed of classification combined with the accuracy.

In the process of classifying a single edge, the edge is first detected and traced. Then the radius vectors are calculated and the AR parameters are recursively estimated. The AR parameters are then transformed and categorized according to the nearest class mean in the feature space. For multiple edge objects this process is repeated for each edge. Then all the individual edge classifications are ordered and matched to the correct object vector as described in Chapter Four. If the multi-edge object has a unique number of inner boundaries, then it is not necessary to calculate the AR parameters thus reducing the classification time.

The most time consuming tasks of the classification process, using the equal angle boundary sampling method, are ordered below with the most time consuming task first:

1) scanning the entire frame and tracing the boundaries
2) radius vector length calculation
3) AR parameter estimation
The rest of the processes: determining hole ownership, ordering the boundaries, and actual classification do not contribute a significant amount of time to the total classification process. Each of the above tasks are accomplished within a range of times depending on the factors as listed next to each task number below:

1) scan step size, number of edges, total length of each edge
2) number of desired radius vectors, length of the edge (equal angle sampling method)
3) number of resultant radius vectors, and AR model order.

The observed times for scanning the scene and turtling the boundaries range from 0.25 seconds, for no objects in the scene (scan step = 8), to greater than 2.2 seconds for a scene with many objects with multiple edges. Table 2.25 shows the radius vector and AR parameter calculation times for the class 1 (S) shape of the numerical example in the first section of this chapter. The length of the boundary for this shape was 1308 pixels and the scan and turtle time was approximately 0.83 seconds.

Average total times for the classifications of the large shapes of the numerical example are 1.32 seconds using the equal angle sampling method and 1.01 seconds for the equal arc length sampling method. For smaller shapes the total classification time for a single edge is less than one second.

In this chapter we used the programs described in Chapter Four to demonstrate the system theories and the system accuracy. In the first section we present two examples of the feature selection and feature
THE CLASSIFICATION OF MULTI-EDGE SHAPES USING AN AUTOREGRESSIVE MODEL AND (U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH R D KENNEDY DEC 85

UNCLASSIFIED AFIT/CI/NR-86-132T
Table 5.2.5 Processor Times for Calculating the Radius Vectors and the AR Parameters
(Fractions of a Second)

<table>
<thead>
<tr>
<th>Model Order</th>
<th>Equal Angle Sampling Method</th>
<th>Equal Arc Length Sampling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.3398</td>
<td>.0391</td>
</tr>
<tr>
<td>2</td>
<td>.3398</td>
<td>.0508</td>
</tr>
<tr>
<td>3</td>
<td>.3515</td>
<td>.0560</td>
</tr>
<tr>
<td>4</td>
<td>.3789</td>
<td>.0703</td>
</tr>
<tr>
<td>5</td>
<td>.3789</td>
<td>.0781</td>
</tr>
<tr>
<td>6</td>
<td>.3984</td>
<td>.0781</td>
</tr>
<tr>
<td>7</td>
<td>.4023</td>
<td>.0898</td>
</tr>
<tr>
<td>8</td>
<td>.4102</td>
<td>.1094</td>
</tr>
<tr>
<td>9</td>
<td>.4180</td>
<td>.1211</td>
</tr>
<tr>
<td>10</td>
<td>.4336</td>
<td>.1211</td>
</tr>
</tbody>
</table>
vector transformation methods. The second section describes a series of system tests and the resultant classifier performance. In the last part of the tests and results section we summarize the time requirements of this pattern recognition system.
CHAPTER 6

CONCLUSIONS AND SUGGESTED IMPROVEMENTS

In this thesis we have developed a pattern recognition system capable of classifying two dimensional shapes with many edges. Also the system is capable of classifying many shapes in a single scene. Since the problem presented by the existence of many edges in a shape can be considered as a simple extension of the single edge problem, we proceeded to concentrate on improving the single edge classification process. In so doing, we used the work of Dubois [Dubois, 1984] as a starting point and continued by improving some of the existing algorithms and developing a more efficient classification scheme. By applying the theory of the Karhunen-Loeve transformation onto the feature vectors formed from the AR model parameters of an objects boundary, we were able to reduce the dimension of the feature vector space and thus further reduce training data storage space and also classification time.

We have split the contents of this chapter into two sections. The first section provides comments on the work just completed. The second section suggests future work that can be done to enhance the performance of our system.

6.1 Concluding Remarks

On the feature selection techniques:

- The recursive estimation of the AR parameters speeded up classification time without degrading the system performance.
It is noted that most of the time spent in the production of the AR parameters of a given time series is not in the recursion itself, but in calculating the correlation coefficients used by the recursive equations.

- The recursive algorithm did not alter the invariance properties of the AR parameters.

- The performance of the AR model, and thus of the classifier, is dependent on the size of the shape. When the size of the shape as viewed on the monitor decreases, the pixel quantization error increases. Thus the noise on the samples of the time series increases and the AR parameters will deviate further from the class means.

- The equal angle radius vector length calculation method of Dubois was speeded up. The average time was previously 1.68 seconds, this can be compared with the average time of .33 seconds on our system. However, this decreased time is partly at the expense of an increased temporary storage requirement for the boundary pixels.

- The equal arc length boundary sampling technique can be successfully implemented at very low AR model orders. This technique results in an average .31 second reduction in classification time compared with the time of the equal angle sampling method.
- The equal angle boundary sampling method consistently provided better results than the equal arc length sampling method at AR model orders greater than 1.

On the transformation techniques:
- The basic and the optimal Karhunen-Loeve transformation techniques are effective in decorrelating the components of the feature vector. By removing the correlated components corresponding to the smallest eigenvalues of the K-L covariance matrices, the original feature vectors are approximated by vectors of lower dimension.

- The optimal K-L transformation technique proves to be better than the basic K-L transformation when there are more than 2 classes in the feature space. This is because the optimal transformation is based on a between class scatter matrix whereas the basic K-L transformation is based on a within class scatter matrix. In the optimal K-L system the scatter matrix is prewhitened to remove the individual sample variances. This is done to provide maximum use of the discriminatory information contained in the class mean vectors.

- In the industrial shapes test the optimal K-L transformation technique proved to be more effective in separating the feature space than the rotated coordinate system of Dubois. For this test the shapes, which were scaled down versions of the shapes used by Dubois, were correctly classified at AR model orders 3 through 10. Also model orders 5, 7, 9 required only 2 dimensions
of the transformed space to achieve correct classification. This can be compared with the results of a similar test by Dubois where correct classification was achieved only at model order 5 and maximum dimension of the feature space.

As in the rotated coordinate system in the work of Dubois, the K-L transformation matrices are based on the eigenvectors of the covariance matrices of the feature vectors. These covariance matrices become singular whenever the number of training samples is less than M+2, where M is the model order. Since we consistently used 25 training samples for all our system tests we did not encounter any singular matrices. However we would like to note that this singular matrix problem can very well occur, especially at high model orders.

We did not concern ourselves with finding the optimal model order for the tests since the shapes used in the tests were so varied. Generally the best results were obtained with model orders 3 through 10 and with model order 1 for the equal arc length boundary sampling method.

The permanent storage requirements for the trained classifier in this system consists of an (m+1) x (m+1) dimensioned transformation matrix and c (m+1) transformed class mean feature vectors. As we saw in the examples of Sections 5.1.1 and 5.1.2 where c=2 and m=1, the storage requirement consisted of 8 values. This aspect of this pattern recognition system makes it ideal for the classification of a large set of shapes since the storage requirements for each shape is minimal.
On the original work in this thesis:
- A boundary marking and bookkeeping system was devised to allow multiple shapes with multiple edges in the scene.
- A simple method of determining hole ownership was devised.
- The theory of the Karhunen-Loeve expansion was applied to the vectors formed from the parameters of the AR model of the edges of a shape.
- A special purpose program (MAKLlB) was written to collect the AR parameters at model orders 1 through 10 for any desired edge. This collection of AR parameters was used for classifier training and testing.
- Finally, a complete set of software (TRAIN and CLASSIFY) was developed into a pattern recognition system which not only classifies shapes but also produces size and rotation indicators based on the length and position of the maximum radius vector.

As initially stated, we set out to classify objects with multiple edges. We conclude that we were successful.

6.2 Suggested Improvements

The two most important aspects of a pattern recognition system are speed and accuracy. Hence it is the goal of this section to present suggestions which will increase the classification speed and accuracy.

To increase the classification speed:
- Implement the turtle algorithm in assembly language.
- For multiple edge objects - find the AR parameters of the shape formed by connecting the centroids with straight line segments. This will avoid the time needed to classify each individual edge.

- Segment the scene before scanning to quickly determine the approximate location of an object.

To increase classification accuracy:
- Improve the equal angle boundary sampling technique so that it does not skip over sections of the boundary.

- Determine the optimum AR model order by using Equation 2.2.15e as described in Chapter Two and then use the value as additional information in the classification process.

Also to increase the versatility of the system:
- Modify program TRAIN so that it can train on entire objects without having to isolate the edges.

- Investigate different thresholding techniques to deal with the reflection, shadow, and texture problems of real three dimensional objects.
REFERENCES

APPENDIX
FILE TRAIN.FOR
LAST REVISION JULY 1, 1985
AUTHOR: RUTH D. KENNEDY

THIS FILE CONTAINS:

PROGRAM TRAIN

TO LINK TYPE:

LINK TRAIN, COLLECT, WORK, RAD, PARAM, REGIS, KLSEL, MESEL, PREKL, EIGV,
USPKD, SYS$LIBRARY: VIDEOLIB

THIS PROGRAM TRAINS THE CLASSIFIER BY INTERACTIVELY TAKING SAMPLES
OF THE CLASSES REPRESENTING THE EDGES OF THE EXPECTED OBJECTS.
ONCE THE USER HAS THE DESIRED NUMBER OF SAMPLES OF EACH CLASS, THE
SAMPLES ARE THEN SENT TO ONE OF THE DESIRED TRANSFORMATION ROUT-
INES: KLSEL, MESEL, PREKL.

INTEGER DEV, IN, OUT, STEP, INRAD, M
INTEGER DIM, NSAMP, NCLASS, BMNCT, SAMP
INTEGER PCCLASS, TMCLS
INTEGER INCODE, TRCODE
INTEGER NEWLUN, OLDLUN
INTEGER XPIX(2500, 10), YPIX(2500, 10)
INTEGER BOUND(10, 10)
REAL RAD(-2:250, 10), ORIENT(10)
REAL X(11, 25, 20), THETA(11, 10)
REAL TRANS(11, 11), T(25, 11, 20)
REAL TA(11, 10)
REAL LIB(20, 25, 10, 11), ALL(10, 11, 10)
CHARACTER*1 INST

COMMON DEV, IN, OUT, STEP, INRAD, M
DATA IN, OUT /5, 5/
DATA TRANS/121A0.0/

NEWLUN = 1
OLDLUN = 2
OPEN(UNIT=NEWLUN, FILE='TRAIN.DAT', STATUS='NEW')
OPEN(UNIT=OLDLUN, FILE='LIB.DAT', STATUS='OLD')

SETUP THE IMAGING HARDWARE AND PROMPT FOR DESIRED PARAMETERS

CALL SETUP
CALL THRESH

WRITE(OUT, A) 'TYPE 1 - TO TRAIN WITH NEW SAMPLES'
WRITE(OUT, A) 'TYPE 2 - TO TRAIN WITH SAMPLES FROM LIB.DAT'
READ(IN, 2) INCODE
FORMAT(12)
WRITE(OUT, A) 'TYPE 1 - FOR MESEL (MINIMUM ENTROPY)'
WRITE(OUT,*) 'TYPE 2 - FOR KLSEL (KARHUNEN-LOEVE)'
WRITE(OUT,*) 'TYPE 3 - FOR PREKL (OPTIMAL KARHUNEN-LOEVE)'
READ(IN,3) TRCODE

DIM = M + 1
NCLASS = 0
PRECLS = 0
IF(INCODEN. NE. 2) GOTO 9

READ(OLDLUN,A) TOTCLS
G REAL'(OLDLUN,A) CLASS, SAMP
IE(CLAGS.EA. 0) GOTO GS

DO 7 I = 1,10
READ(OLDLUN,A) (LIB(CLASS,SAMP,1,J),J=1,I+1)
CONTINUE
GOTO 6

NSAMP = 0
GOTO 30

IF(INCODE.EQ.2) GOTO 65
WRITE(OUT,15) NCLASS,NSAMP
IS FORMAT(lX,'CLASS: ',12,' NUMBER OF SAMPLES: ',12)
WRITE(OUT,20)
20 FORMAT(lX,'FINISHED WITH SAMPLING? (TYPE Y FOR YES) ')$
READ(IN,25) INST
25 FORMAT(A1)
IF(INST.EQ0.'Y') GOTO 100

CALL VIEW
30 WRITE(OUT,35)
35 FORMAT(lX,'ENTER CLASS NUMBER: ',A)
READ(IN,A) CLASS
IF(CLASS.EQ0.PRECLS) GOTO 40
NCLASS = NCLASS + 1
PRECLS = CLASS
NSAMP = 0

CALL SNAP
CALL SCAN(BNDCT,BOUND,XPIX,YPIX)
IF(BNDCT.EQ.0) GOTO 99
DO 45 N = 1,BNDCT
 T1 = SECONDS(0.0)
 CALL GETRAD(XPIX(1,N),YPIX(1,N),BOUND,RAD)
 CALL PARAM(N,RAD,THETA,ALL)
 DELTA = SECONDS(T1)
 WRITE(DEY,A) 'TIME FOR GETRAD AND PARAM IS: ',DELTA
 CONTINUE

DO 60 J = 1,BNDCT
 NSAMP = NSAMP + 1
 DO 50 I = 1,DIM
 X(I,NSAMP,CLASS) = THETA(I,J)
 CONTINUE
CONTINUE

CALCULATE THE ORIENTATION OF THE EDGES

CALL ROTATE(BNDCT,BOUND,ORIENT)
CALL OUTPUT(BNDCT,BOUND,RAD,ORIENT)
GOTO 99

WRITE(OUT,67)
67 FORMAT(1X,'FINISHED WITH TRAINING? (TYPE Y FOR YES): ')$
READ(IN,68) INST
68 FORMAT(A1)
IF(INST .EQ. 'Y') GOTO 100
WRITE(OUT,70)
70 FORMAT(1X,'INPUT CLASS NUMBER: ')$
READ(IN,80) CLASS
WRITE(OUT,75)
75 FORMAT(1X,'INPUT DESIRED NUMBER OF SAMPLES: ')$
READ(IN,80) NSAMP

DO 90 SAMP = 1,NSAMP
 DO 85 I = 1,DIM
 X(I,SAMP,CLASS) = LIB(CLASS,SAMP,M,I)
 CONTINUE
90 CONTINUE
IF(CLASS .EQ. PRECLS) GOTO 99
NCLASS = NCLASS + 1
PRECLS = CLASS

LOOP BACK TO GET MORE SAMPLES
GOTO 10

TRANSFORM THE FEATURE VECTORS
GOTO(110,120,130) TRCODE
110 CALL MESEL(X,NSAMP,NCLASS,TRANS,T)
GOTO 150
120 CALL KLSEL(X,NSAMP,NCLASS,TRANS,T)
GOTO 150
130 CALL PREKL(X,NSAMP,NCLASS,TRANS,T)

FIND THE AVERAGE OF THE TRANSFORMED SAMPLES

DO 180 K = 1,NCLASS
 DO 170 J = 1,DIM
 SUM = 0.0
 DO 160 I = 1,NSAMP
 SUM = SUM + T(I,J,K)
 CONTINUE
 CONTINUE
 TA(J,K) = SUM / FLOAT(NSAMP)
180 CONTINUE

WRITE THE TRANSFORMED SAMPLE FEATURES TO A TRAIN.DAT FILE
C

200 WRITE(NEWLUN,*) DIM

DO 210 I = 1,DIM
 WRITE(NEWLUN,205) (TRANS(I,J),J=1,DIM)
205 FORMAT(1X,DIM,F11.5)
210 CONTINUE

WRITE(NEWLUN,230) NSAMP,NCLASS

230 FORMAT(1X,2I3)

DO 260 K = 1,NCLASS
 WRITE(NEWLUN,255) (TA(J,K),J=1,DIM)
255 FORMAT(1X,DIM,F11.5)
260 CONTINUE

IF(DIM-2.GT.0) GOTO 290
WRITE(DEV,305) (I,I=1,DIM)

285 FORMAT('O', 'THE AR PARAMETERS OF THE TRAINING DATA'//,
A ' CLASS SAMPLE ',7X,<DIM>('M',I2,7X)/
GOTO 305

290 WRITE(DEV,300) (I,I=1,DIM)

300 FORMAT('O', 'THE AR PARAMETERS OF THE TRAINING DATA'//,
A ' CLASS SAMPLE ',7X,<DIM-1>('M',I2,7X), 'M',12,3X,/
305 DO 350 K = 1,NCLASS
 DO 340 J = 1,NSAMP
 WRITE(DEV,330) K,J,(X(I,J,K),I=1,DIM)
330 FORMAT(1X,2(I3,5X),<DIM>F10.5)
340 CONTINUE
350 CONTINUE

WRITE(DEV,400) (I,I=1,DIM)

400 FORMAT('O', 'THE TRANSFORMED PARAMETERS OF THE TRAINING DATA'//,
A ' CLASS SAMPLE ',7X,<DIM>('T',I2,7X)/
DO 450 K = 1,NCLASS
 DO 440 I = 1,NSAMP
 WRITE(DEV,430) K,I,(T(I,J,K),J=1,DIM)
430 FORMAT(1X,2(I3,3X,<DIM>F10.4)
440 CONTINUE
450 CONTINUE

CLOSE(UNIT=NEWLUN)
CLOSE(UNIT=OLDLUN)

STOP
END
FILE WOR1.FOR LAST REVISION JULY 1, 1985

ROUNIES CONTAINED IN THIS FILE ARE:

SETUP IMRESH SCAN
GETCEN INPILT OBFLST
EINPLT RADPLT

SUBROUTINE SETUP

THIS SUBROUTINE INITIALIZES THE IMAGING SYSTEM HARDWARE AND
PROMPTS THE USER FOR DESIRED VALUES

INTEGER DEV, IN, OUT, STEP, INRAD, M
COMMON DEV, IN, OUT, STEP, INRAD, M

CALL SELGRP(1)
CALL APINIT
CALL FBINIT
CALL LUINIT
CALL SYNC(0)
CALL VIEW

WRITE(OUT, 40)
FORMAT(1X, 'INPUT DESIRED OUTPUT DEVICE: ', $)
READ(IN, A) DEV

WRITE(OUT, 50)
FORMAT(1X, 'INPUT DESIRED SCAN STEP: ', $)
READ(IN, A) STEP

WRITE(OUT, 100)
FORMAT(1X, 'INPUT NUMBER OF RADIUS VECTORS: ', $)
READ(IN, A) INRAD

WRITE(OUT, 110)
FORMAT(1X, 'INPUT THE DESIRED AR MODEL ORDER NUMBER: ', $)
READ(IN, A) M

RETURN
END

THRESH

SUBROUTINE THRESH
THIS SUBROUTINE SETS THE IMAGE THRESHOLD AND FILLS THE FRAME BUFFER

INTEGER DEV, IN, OUT, ANS, YES, THRS, CTHRS, I
COMMUN DEV, IN, OUT

THRS = 120
INTLO = 0
INTHI = 255

CTHRS = 0
WRITE(OUT, 110) THRS
110 FORMAT(IX, 'THRESHOLD = ', 14,;">","$)
READ(IN, 120) CTHRS
120 FORMAT(13)
IF(CHTHRS .EQ. 0) GOTO 200
THRS = THRS + CTHRS
GOTO 100

CALL SELLUT(0, 0)
DO 300 I = 0, 255
 IF(I .LT. THRS) CALL SETLUT(I, INTLO)
 IF(I .GE. THRS) CALL SETLUT(I, INTHI)
300 CONTINUE
RETURN
END

C---
C SCAN
C---

SUBROUTINE SCAN(BNDCTBOUNO, XY)

THIS SUBROUTINE SCANS THE FRAME BUFFER FOR ALL OF THE THRESHOLDED
EDGES OF THE OBJECTS IN THE IMAGE. ONCE AN EDGE IS FOUND IT CALLS
GETCEN TO CALCULATE THE CENTROID, AND GETRAD TO CALCULATE THE RADIUS
VECTOR LENGTHS.

INTEGER RAPIX, RPIXEL, XL, ZP, XM, YN, ZN
INTEGER BNDCT, BOUND(10, 10)
INTEGER X(2500, 10), Y(2500, 10), Z, NUMPIX
INTEGER DEV, IN, OUT, STEP, INRAD
INTEGER FIRSTX, LASTX, INCX, STPX
INTEGER FIRSTY, LASTY
INTEGER EDGE, BCKGND, OBJ, XTEST
INTEGER BUF(0:511)
CHARACTER INST
LOGICAL YESPLT, GOTONE
COMMUN DEV, IN, OUT, STEP, INRAD

FOR WHITE OBJECT ON BLACK BACKGROUND: BCKGND = 0 AND OBJ = 255
FOR BLACK OBJECT ON WHITE BACKGROUND: BCKGND = 255 AND OBJ = 0

BCKGND = 0
OBJ = 255
EDGE = 255
FIRSTX = 0
LASTX = 511
INCX = STEP
STOPX = (LASTX-FIRSTX+1) / STEP
FIRSTY = 0
LASTY = 479
BNDC = 0

WRITE (5, 50)
C 50 FORMAT (IX, ' TYPE 'Y' IF THE OBJECT PLOT IS DESIRED: ', 4)
READ (5, 55) INST
C 55 FORMAT (A1)
YESPL = .False.
IF(INST .NE. 'Y') GO TO 100
YESPL = .True.
CALL INTPLT

100 T1 = SECNDS (0.0)
DELTA = 0.0
DO 500 YN = FIRSTY, LASTY, STEP

READ EVERY INCX FROM YN LINE IN THE FRAME BUFFER INTO BUF
CALL RSCAN (YN, FIRSTX, LASTX, INCX, BUF)
ZP = BUF (0)
DO 400 XL = 1, STOPX
ZN = BUF (XL)

CHECK FOR AN EDGE AND TRACE BACK FROM HOP TO REAL EDGE

FOR WHITE ON BLACK USE (ZN-ZP) IN NEXT STATEMENT
FOR BLACK ON WHITE USE (ZP-ZN) IN NEXT STATEMENT

IF((ZN-ZP) .NE. EDGE) GO TO 300
XN = (STEP * XL) + FIRSTX
XTEST = XN - 1
Z = RPIXEL(XTEST, YN)
IF(Z .GT. BCKGD .AND. Z .LE. BNDC) GO TO 300
IF(Z .EQ. BCKGD) GO TO 200
XN = XTEST
GO TO 150

TURTLE AROUND THE EDGE AND CALCULATE THE CENTROID

N = BNDC + 1
CALL GETCEN(XN, YN, X(I, N), Y(I, N), BNDC, BOUND, GOTONE)
IF (.NOT. GOTONE) GO TO 300

PLOT OUT EDGES

IF (.NOT. YESPL) GO TO 300
DELTA = DELTA + SECNDS (T1)
NUMPIX = BOUND (6, BNDC)
CALL OBPLOT(X, Y, NUMPIX)
T1 = SECNDS (0.0)
ZP = ZN
400 CONTINUE
500 CONTINUE
DELTA = DELTA + SECNDS(T1)
C
IF(YESPLT) CALL FINPLT
WRITE(OUT,600) DELTA

600 FORMAT('THE SCAN AND TURTLE TIME IS: ',F10.6,' SEC'/)

1000 RETURN
END

C--
C
C--
SUBROUTINE GETCEN(XS,YS,X,Y,BNDCT,BOUND,GOTONE)
C
THIS SUBROUTINE CALCULATES THE CENTROID OF THE BOUNDARY. THE EDGE
IS TRACED USING A TURTLE ALGORITHM.
C
INTEGER XS,YS,BNDCT,BOUND(10,10)
INTEGER XTEST
INTEGER RPIXEL,APIX,XT,YT,Z,BNDINT
INTEGER XREG,YREG,NUMPIX,XC,YC
INTEGER X(2500),Y(2500)
INTEGER N,TOL,BCKGND
LOGICAL OBJECT,RIGHT,UP,GOTONE
TOL = 25
BCKGND = 0
N = BNDCT + 1
BNDINT = N
CALL WPIXEL(XS,YS,BNDINT)
XREG = XS
YREG = YS
NUMPIX = 1
X(NUMPIX) = XS
Y(NUMPIX) = YS
XT = XS - 1
YT = YS - 1
UP = .TRUE.

190 Z = RPIXEL(XT,YT)
IF(Z .EQ. BCKGND) GOTO 250
IF((XT .EQ. XS) .AND. (YT .EQ. YS) .AND. (NUMPIX .GT. 10)) GOTO 500
IF(Z .LT. BNDINT) GOTO 500
OBJECT = .TRUE.
IF((XT .EQ. X(NUMPIX)) .AND. (YT .EQ. Y(NUMPIX))) GOTO 260
XREG = XREG + XT
YREG = YREG + YT
NUMPIX = NUMPIX + 1
X(NUMPIX) = XT
Y(NUMPIX) = YT
CALL WPIXEL(XT,YT,BNDINT)
GOTO 260
OBJECT = .FALSE.

C--
C
C--
MOVE UP OR DOWN
260 IF((UP.AND.OBJECT).OR.((.NOT.UP).AND.((.NOT.OBJECT)))) GOTO 275
XT = XT + 1
RIGHT = .TRUE.
GOTO 290
275 XT = XT - 1
RIGHT = .FALSE.
C
C CHECK FOR OBJECT PIXEL
C
290 Z = RPIXEL(XT,YT)
IF(Z .EQ. BCKGND) GOTO 350
IF((XT.EQ.XS).AND. (YT.EQ.YS).AND. (NUMPIX.GT.10)) GOTO 500
IF(Z .LT. BNDINT) GOTO 500
OBJECT = .TRUE.
IF((XT.EQ.X(NUMPIX)).AND. (YT.EQ.Y(NUMPIX))) GOTO 360
XREG = XREG + XT
YREG = YREG + YT
NUMPIX = NUMPIX + 1
X(NUMPIX) = XT
Y(NUMPIX) = YT
CALL WPIXEL(XT,YT,BNDINT)
GOTO 360
350 OBJECT = .FALSE.
C
C MOVE UP OR DOWN
C
360 IF((RIGHT.AND.OBJECT).OR.((.NOT.RIGHT).AND.((.NOT.OBJECT))))
GOTO 375
YT = YT + 1
UP = .FALSE.
GOTO 390
375 YT = YT - 1
UP = .TRUE.
GOTO 190
C
C CALCULATE THE XC,YC OF THE CENTROID PIXEL
C
500 IF(NUMPIX .GT. TOL) GOTO 600
GOTONE = .FALSE.
GOTO 1000
600 BNDCT = BNDCT + 1
GOTONE = .TRUE.
XC = XREG / NUMPIX
YC = YREG / NUMPIX
X(NUMPIX+1) = XS
Y(NUMPIX+1) = YS
BOUND(1,N) = BNDINT
BOUND(2,N) = XS
BOUND(3,N) = YS
BOUND(4,N) = XC
BOUND(5,N) = YC
BOUND(6,N) = NUMPIX
1000 RETURN
END
C
C INTPLT
SUBROUTINE INTPLT

THIS SUBROUTINE Initializes the PLOTTER.

INTEGER LUN
COMMON /DEV_DAT/LUN

LUN = 5
CALL IPTCLR
CALL PINT
CALL PICLR

PLOT THE FRAME

CALL PICTCUR(0,0)
CALL PLTVEC(511,0)
CALL PLTVEC(511,479)
CALL PLTVEC(0,479)
CALL PLTVEC(0,0)
RETURN
END

SUBROUTINE OBPLOT(X,Y,NUMPIX)

THIS SUBROUTINE Plots out the Points Comprising the Edge Coordinates Held in Array X and Array Y.

INTEGER X(3000),Y(3000),NUMPIX

DO 100 I = 1,NUMPIX
 IX = X(I)
 IY = Y(I)
 CALL PIMNT(IX,IY)
100 CONTINUE
RETURN
END

SUBROUTINE FINPLT

THIS SUBROUTINE Prints out a Hard Copy of the Plot If the User so Desires It.

CHARACTER INST
WRITE(5,50)
50 FORMAT(1X,'TYPE 'Y' IF HARD COPY IS DESIRED: ',A)
READ(5,55) INST
55 FORMAT(A1)
IF(INST .NE. 'Y') GO TO 100
CALL HARDCOPY
100 CALL PLTCLR
CALL TXTCLR
CALL PLTOFF
RETURN
END

C--
C RADPLT
C--

SUBROUTINE RADPLT(RAD,EDGE)
INTEGER EDGE, NUMRAD
REAL RAD(-2:250,10)
N = EDGE
MAXY = 479
NUMRAD = RAD(-2,N)
NUMRAD = INT(RAD(-2,N))
INC = 512 / NUMRAD
IXB = 0
IYB = MAXY
DO 100 I = 1, NUMRAD
 IXB = INT(FLOAT(I) * INC)
 IYT = MAXY - (INT((RAD(I,N)) * 2))
 CALL PLTCUR(IXB,IYT)
 CALL PLTVEC(IXB,IYB)
100 CONTINUE
RETURN
END
SUBROUTINE GETRAD(X, Y, EDSE, BOUND, RAD)

THIS SUBROUTINE FINDS AND CALCULATES THE RADIUS VECTORS OF AN OBJECT EDGE. IT USES AN EQUI-ANGLE ALGORITHM SIMILAR TO DUBOIS (1984). THIS SUBROUTINE READS THE EDGE PIXEL LOCATIONS WHICH ARE TEMPORARILY STORED IN THE X AND Y ARRAYS.

INTEGER X(2500), Y(2500), BOUND(10, 10), EDSE
INTEGER IN, OUT, I, N, M, XC, YC, NUMPIX
INTEGER INRAD, NSLOPE, LOWVEC, HIVEC, SEC
INTEGER XM, YM
REAL RAD(-2:250, 10), SLOPE(0:90), PI, PHI
REAL VEC, XDIF, YDIF, YTRY1, YTRY2, YDR1, YDR2
REAL YD1, YD2, MAXRAD
LOGICAL START, STOP
COMMON DEV, IN, OUT, STEP, INRAD
DATA PI/3.141592654/

N = EDGE
XC = BOUND(4, N)
YC = BOUND(5, N)
NUMPIX = BOUND(6, N)
NSLOPE = INRAD/4 - 1
PHI = (2.0 * PI) / FLOAT(INRAD)

DO 50 I = 0, NSLOPE
SLOPE(I) = TAN(PHI * FLOAT(I)) * (5.0 / 4.0)
50 CONTINUE
SLOPE(NSLOPE + 1) = 1250.0

STOP = .FALSE.
START = .TRUE.
I = 0
PREVEC = 0
SEC = 0
M = 0
MAXRAD = 0.0

CALCULATE THE SLOPE OF THE LINE FROM THE EDGE PIXEL TO THE CENTROID

100 IF(I .GE. NUMPIX) STOP = .TRUE.
 XDIF = FLOAT(X(I) - XC)
 YDIF = FLOAT(Y(I) - YC)
 IF(XDIF .GE. 0.0) GOTO 700
 VEC = ABS(YDIF/XDIF)
 IF(ABS(VEC - PREVEC) .LE. .0001) GOTO 100
LOWVEC = SEC
PREVEC = VEC

C FIND OUT WHICH SECTOR WE ARE IN

C 110 IF(VEC .GE. SLOPE(LOWVEC) .AND. VEC .LE. SLOPE(LOWVEC+1))
A GOTO 120
IF(VEC .LE. SLOPE(LOWVEC) .AND. VEC .GE. SLOPE(LOWVEC-1))
A GOTO 140
IF(LOWVEC .GE. NSLOPE) GOTO 115
LOWVEC = LOWVEC + 1
GOTO 110
.115 LOWVEC = 1
GOTO 110
120 HIVEC = LOWVEC + 1
GOTO 200
140 HIVEC = LOWVEC - 1

C CALCULATE THE REFERENCE POSITION BETWEEN LOVEC AND HIVEC

C 200 YTRY1 = ABS(XDIF) * SLOPE(LOWVEC)
YTRY2 = ABS(XDIF) * SLOPE(HIVEC)
YDR1 = ABS(YDIF) - YTRY1
YDR2 = ABS(YDIF) - YTRY2

C LOOK AT THE NEXT POSITION ALONG THE EDGE

C 300 I = I + 1
IF(I .GE. NUMPIX) STOP = .TRUE.
XDIF = FLOAT(X(I) - XC)
YDIF = FLOAT(Y(I) - YC)
IF(XDIF .EQ. 0.0) GOTO 700
GOTO 800
700 HIVEC = NSLOPE + 1
LOWVEC = NSLOPE
GOTO 1000

C CALCULATE THE NEW POSITION WITH RESPECT TO HIVEC AND LOWVEC

C 800 YTRY1 = ABS(XDIF) * SLOPE(LOWVEC)
YTRY2 = ABS(XDIF) * SLOPE(HIVEC)
YD1 = ABS(YDIF) - YTRY1
YD2 = ABS(YDIF) - YTRY2

C CHECK IF WE HAVE CROSSED LOVEC

C IF((YD1 .GE. 0.0 .AND. YDR1 .LE. 0.0) .OR. (YD1 .LE. 0.0
A .AND. YDR1 .GE. 0.0)) GOTO 900

C CHECK IF WE HAVE CROSSED HIVEC

C IF((YD2 .GE. 0.0 .AND. YDR2 .LE. 0.0) .OR. (YD2 .LE. 0.0
A .AND. YDR2 .GE. 0.0)) GOTO 1000

C HAVEN'T CROSSED LOVEC OR HIVEC YET, SO GET THE NEXT EDGE PIXEL
YDR1 = YD1
YDR2 = YD2
IF(STOP) GOTO 2000
GOTO 300

YEH, MADE IT ACROSS A SLOPE MARKER (LOVEC OR HIVEC)
NOW WE CAN CALCULATE THE RADIUS VECTOR LENGTH

WE CROSSED LOVEC
900 IF(LOWVEC .EQ. SEC) GOTO 100
M = M + 1
RAD(M,N) = SQRT((XDIF*1.25)**2 + YDIF*2)
SEC = LOWVEC
IF(STOP) GOTO 2000
GOTO 1200

WE CROSSED HIVEC
1000 IF(HIVEC .EQ. SEC) GOTO 100
M = M + 1
RAD(M,N) = SQRT((XDIF*1.25)**2 + YDIF*2)
SEC = HIVEC
IF(STOP) GOTO 2000
1200 IF(RAD(M,N) .LE. MAXRAD) GOTO 100
MAXRAD = RAD(M,N)
XMAX = X(I)
YMAX = Y(I)
GOTO 100
2000 RAD(-2,N) = FLOAT(M)
RAD(-1,N) = MAXRAD
BOUND(9,N) = XMAX
BOUND(10,N) = YMAX
C CALL FINPLT
C CALL INTPLT
C CALL RADPLT(RAD,EDGE)
C CALL FINPLT
RETURN
END
SUBROUTINE GETRAD(X,Y,BNDCT,BOUND,RAD)

THIS SUBROUTINE CALCULATES THE OBJECT EDGE RADIUS LENGTHS USING THE EQUAL ARC LENGTH ALGORITHM.

INTEGER DEV,IN,OUT,STEP,INRAD
INTEGER X(2500),Y(2500),BNDCT,BOUND(10,10)
INTEGER XC,YC,NUMPIX,INC
INTEGER XMAX,YMAX
REAL RALK(2,300,10),XDIF,YDIF,MAXRAD

COMMON DEV,IN,OUT,STEP,INRAD

N = BNDCT
XC = BOUND(4,N)
YC = BOUND(5,N)
NUMPIX = BOUND(6,N)

MAXRAD = 0.0

DO 200 I = 1,INRAD
 INC = I * NUMPIX / INRAD
 XDIF = FLOAT(X(INC) - XC)
 YDIF = FLOAT(Y(INC) - YC)
 RAD(I,N) = SQRT((XDIF**2 + YDIF**2)**2)
 CALL PLTCUR(XC,YC)
 CALL PLTVEC(X(INC),Y(INC))
 IF(RAD(I,N) .LT. MAXRAD) GOTO 200
 MAXRAD = RAD(I,N)
 XMAX = X(INC)
 YMAX = Y(INC)

200 CONTINUE

RAD(-2,N) = FLOAT(INRAD)
RAD(-1,N) = MAXRAD
BOUND(9,N) = XMAX
BOUND(10,N) = YMAX

CALL FINPLT
CALL INTPLT
CALL RADPLT(RAD,N)
CALL FINPLT
RETURN
END
FILE PARAM.FOR LAST REVISION JULY 1,1985

THIS FILE CONTAINS:

TEST ROUTINE FOR PARAM

THE TEST ROUTINE

INTEGER DEV
REAL RAD(-2:300,10),ALPH(11,10),RX(0:10,10)
COMMON DEV
DEV = 5
N = 1
RAD(1,N) = 1.
RAD(2,N) = 1.44
RAD(3,N) = 1.44*RAD(2,N) - 1.26
DO 10 J = 4,40
RAD(J,N) = 1.44*RAD(J-1,N) - 1.26*RAD(J-2,N) + .81*RAD(J-3,N)
 CONTINUE
RAD(-2,N) = 40.

CALL PARAM(N,RAD,ALPH,RX)
STOP
END

SUBROUTINE PARAM(EDGE,RAD,THETA,ALL)

THIS SUBROUTINE CALCULATES THE FEATURE VECTOR PARAMETERS OF THE
EDGES OF THE OBJECT. THE PARAMETERS ARE THE AR COEFFICIENTS AND
THE TERM ALPHA/SQRT(BETA).

INTEGER DEV,IN,OUT,STEP,INRAD,M
INTEGER EDGE,NURAD
REAL SUM,SUM1,SUM2
REAL ALPH,BETA,ALBET
REAL RAD(-2:250,10),THETA(11,10),RX(0:10,10)
REAL ALL(10,11,10)
REAL RXN(0:10,10)
REAL SIGMAS(10),A(10,10)
COMMON DEV,IN,OUT,STEP,INRAD,M

N = EDGE
DO 30 J = 1,10
 DO 20 I = 1,10
 ...
A(I,J) = 0.0
30 CONTINUE
20 CONTINUE
NUMRAD = INT(RAD(-2,N))

C CALCULATE THE MEAN
SUM = 0.0
DO 50 I = 1,NUMRAD
 SUM = SUM + RAD(I,N)
50 CONTINUE
MEAN = SUM / FLOAT(NUMRAD)

C CALCULATE THE AUTOCORRELATION COEFFICIENTS
DO 100 I = 1,M
 SUM = 0.0
 DO 75 J = 1,NUMRAD
 K = J + 1
 IF(K.GT. NUMRAD) K = K - NUMRAD
 SUM = SUM + ((RAD(J,N) - MEAN) * (RAD(K,N) - MEAN))
 75 CONTINUE
 RX(I,N) = SUM / FLOAT(NUMRAD)
RXN(I,N) = RX(I,N) / RX(0,N)
100 CONTINUE

C CALCULATE THE AUTOREGRESSIVE COEFFICIENTS USING THE DURBIN
RECURSIVE ALGORITHM
A(1,1) = -RX(1,N) / RX(0,N)
SIGMAS(1) = (1.0 - (A(1,1) + A(1,1))) * RX(0,N)
DO 300 K = 2,M
 SUM = 0.0
 DO 250 J = 1,K - 1
 SUM = SUM + (A(K-1,J) * RX(K-J,N))
 250 CONTINUE
 A(K,K) = -(RX(K,N) + SUM) / SIGMAS(K-1)
DO 275 I = 1,K - 1
 A(K,I) = A(K-1,I) + (A(K,K) * A(K-1,K-I))
 275 CONTINUE
SIGMAS(K) = (1.0-(A(K,K) + A(K,K))) * SIGMAS(K-1)
300 CONTINUE

C FORM THE FEATURE VECTOR FOR THE EDGE FROM THE LAST COLUMN
OF THE MATRIX A. THIS COLUMN CORRESPONDS TO THE DESIRED
AR MODEL ORDER NUMBER. ALSO FORM THE SUM OF THE PARAMETERS
NEEDED IN THE CALCULATION OF ALPHA.
SUM = 0.0
DO 400 K = 1,M
 THETA(K,N) = A(M,K)
 SUM = SUM + THETA(K,N)
400 CONTINUE
ALPHA = MEAN * (1.0 - SUM)
C CALCULATE BETA

BETA = 0.0
DO 420 I = 1, NUMRAD
 SUM = 0.0
 DO 410 J = 1, M
 K = I + J
 IF(K .GT. NUMRAD) K = K - NUMRAD
 SUM = SUM + THEIA(J, N) * RAD(K, N)
 410 CONTINUE
 SUM1 = RAD(I, N) - ALPHA - SUM
 BETA = BETA + SUM1**2
420 CONTINUE
BETA = BETA / FLOAT(NUMRAD)
BETA = SIGMAM
ALBET = ALPHA / SQRT(BETA)
THEIAM+1, N) = ALBET

C WRITE(DEV,425) (I,(A(K, I), K=1, M), I=1, M)
C 425 FORMAT(1X, I3, 3X, M: F8.3)
C WRITE(DEV,450) (J,SIGMAM, J=1, M)
C 450 FORMAT(1X, I3, E10.6)

C WRITE(DEV,700)
C 700 FORMAT(1X, / THE AUTOCORRELATION COEFFICIENTS (PARAM): '/)
C WRITE(DEV,705) (J,(RX(J, N), N=1, BNDCT), J=0, M)
C WRITE(DEV,702)
C 702 FORMAT(1X, / THE NORMALIZED AUTOCORRELATION COEFS (PARAM): '/)
C WRITE(DEV,705) (J,(RXN(J, N), N=1, BNDCT), J=0, M)
C 705 FORMAT(1X, I3, 3X,<BNDCT>, F10.5)

C WRITE(DEV,710)
C 710 FORMAT(1X, / THE AUTOREGRESSIVE COEFFICIENTS (PARAM): '/)
C WRITE(DEV,715) (J,(THEIA(J, N), N=1, BNDCT), J = 1, M+1)
C 715 FORMAT(1X, I3, 3X,<BNDCT>, F10.5)

RETURN
END
C**
C FILE KLSEL.FOR LAST REVISION JULY 4, 1985
C THIS FILE CONTAINS SUBROUTINE:
C KLSEL
C**

C SUBROUTINE KLSEL(X,NSAMP,NCLASS,TRANS,Y)
C THIS SUBROUTINE CALCULATES THE KARHUNEN-LOEVE EXPANSION
TRANSFORM MATRIX AND TRANSFORMS THE SAMPLES OF EACH
PATTERN CLASS OF THE TRAINING SET.
C
INTEGER DLV,IN,OUT,STEP,INRAD,M
INTEGER DIM,JOBN,IZ,IER
INTEGER NCLASS,NSAMP,MAXI
REAL A(100),WK(100),D(11),Z(100)
REAL X(11,25,10),XMN(11,25,10),R(11,11,10),C(11,11)
REAL MEAN(11,10),MMT(i,L1,10)
REAL SCALE,MAXE
REAL TRANS(11,11),Y(25,11,10)
COMMON DEV,IN,OUT,STEP,INRAD,M
DATA R/1210*0.0/
DATA C/121*0.0/
T1 = SECNDS(0.0)
DIM = M + 1

C CALCULATE THE MEAN SAMPLE FOR EACH CLASS
SCALE = 1.0 / FLOAT(NSAMP)
DO 50 N = 1,NCLASS
 DO 40 I = 1,DIM
 SUM = 0.0
 DO 30 J = 1,NSAMP
 XMN(I,K,N) = X(I,K,N) - MEAN(I,N)
 30 CONTINUE
 MEAN(I,N) = SUM / SCALE
50 CONTINUE

C SUBTRACT THE MEAN FROM EACH SAMPLE IN THE CLASS
DO 100 N = 1,NCLASS
 DO 75 K = 1,NSAMP
 DO 60 I = 1,DIM
 XMN(I,K,N) = X(I,K,N) - MEAN(I,N)
60 CONTINUE
75 CONTINUE
100 CONTINUE
FORM THE COVARIANCE MATRIX OF EACH CLASS

DO 200 N = 1,NCLASS
 DO 175 K = 1,NSAMP
 DO 150 I = 1,DIM
 DO 125 J = 1,DIM
 125 CONTINUE
 150 CONTINUE
 200 CONTINUE

CALCULATE THE AVERAGE COVARIANCE MATRIX

SCALE = 1.0 / FLOAT(NCLASS * NSAMP)

DO 300 I = 1,DIM
 DO 275 J = 1,DIM
 DO 250 N = 1,NCLASS
 C(I,J) = C(I,J) + (SCALE * R(I,J,N))
 250 CONTINUE
 275 CONTINUE
300 CONTINUE

PUT THE LOWER TRAPEZOID OF MATRIX C INTO ARRAY A (SYMMETRIC STORAGE MODE)

K = 1

DO 340 I = 1,DIM
 DO 335 J = 1,I
 A(K) = C(I,J)
 K = K + 1
 335 CONTINUE
340 CONTINUE

CALCULATE THE EIGENVALUES AND THE EIGENVECTORS

JOBN = 2
IZ = DIM

CALL EIGRS(A,DIM,JOBN,D,Z,IZ,WK,IER)

K = 1

DO 350 I = 1,DIM
 WRITE(DEV,'A') 'EIGENVALUE: ',D(I)
 DO 348 N = 1,DIM
 WRITE(DEV,'A') 'EIGENVECTOR: ',Z(K)
 K = K + 1
 348 CONTINUE
350 CONTINUE
FORM THE COLUMNS OF THE TRANSFORMATION MATRIX FROM THE EIGENVECTORS
CORRESPONDING TO THE LARGEST EIGENVALUES.

IMAX = DIM * (DIM - 1)
DO 525 J = 1,DIM
 DO 515 I = 1,DIM
 TRANS(I,J) = Z(IMAX+I)
 515 CONTINUE
IMAX = IMAX - DIM
 525 CONTINUE
C WRITE(DEV,A) 'THE TRANSFORMATION MATRIX'
C WRITE(DEV,527) ((TRANS(I,J),J=1,DIM),I=1,DIM)
C 527 FORMAT(1X,K..DIM:>15.G)
C
C TRANSFORM THE ORIGINAL SAMPLES OF EACH CLASS

DO 600 K = 1,NCLASS
 DO 575 J = 1,NSAMP
 DO 550 N = 1,DIM
 Y(J,N,K) = 0.0
 530 CONTINUE
 550 CONTINUE
 575 CONTINUE
600 CONTINUE
DELTA = SECONDS(T1)
C WRITE(DEV,700) (((Y(J,N,K),N=1,DIM),J = 1,NSAMP),K = 1,NCLASS)
C 700 FORMAT(1X,K..DIM,:F15.6)
RETURN
END
SUBROUTINE MESEL IS EXACTLY THE SAME AS SUBROUTINE KLSEL EXCEPT THAT THE ORDERING OF THE EIGENVECTORS IN THE RESULTING TRANSFORMATION MATRIX IS REVERSED. TO AVOID REPETITION, THE LISTING HAS BEEN OMITTED.
FILE PREKL.FOR LAST REVISION JULY 6, 1985

THIS FILE CONTAINS SUBROUTINE:

PREKL

SUBROUTINE PREKL(X, NSAMP, NCLASS, TRANS, Y)

INTEGER DEV, IN, OUT, STEP, INRAD, M
INTEGER DIM, JOHN, IZ, IER
INTEGER NCLASS, NSAMP
REAL SCALE, SUM
REAL X(11, 25, 20), TRANS(11, 1), Y(25, 11, 20)
REAL MEAN(11, 20), XMN(11, 25, 20), AVEMEAN(11)
REAL SW(11, 11), R(11, 11, 20)
REAL A(U100), Z(121), D(11), WK(150)
REAL B(11, 11)
REAL SBSUB(11, 11), SBPRIME(11, 11), SB(11, 11)
COMMON DEV, IN, OUT, STEP, INRAD, M
DATA R/2420A0.0/
DATA SW/121A0.0/
DATA SB/121A0.0/

T1 = SECND(0.00)
DIM = M + 1
SCALE = 1.0 / FLOAT(NSAMP)

CALCULATE THE MEAN

DO 100 N = 1, NCLASS
 DO 75 I = 1, DIM
 SUM = 0.0
 DO 50 J = 1, NSAMP
 SUM = SUM + X(I, J, N)
 50 CONTINUE
 MEAN(I, N) = SUM * SCALE
 75 CONTINUE
100 CONTINUE

CALCULATE THE MEAN VECTOR & MEAN VECTOR (TRANSPOSED) FOR EACH CLASS

DO 200 N = 1, NCLASS
 DO 175 K = 1, NSAMP
 DO 150 I = 1, DIM
 XMN(I, K, N) = X(I, K, N) - MEAN(I, N)
 150 CONTINUE
 175 CONTINUE
200 CONTINUE
CALCULATE PART OF THE COVARIANCE MATRIX FOR EACH CLASS

\[
\text{DO } 300 \text{ N = 1,NCLASS}
\]

\[
\text{DO } 275 \text{ K = 1,NSAMP}
\]

\[
\text{DO } 250 \text{ I = 1,DIM}
\]

\[
\text{DO } 225 \text{ J = 1,DIM}
\]

\[
R(I,J,N) = R(I,J,N) + \text{XMN}(I,K,N) \times \text{XMN}(J,K,N)
\]

\[
225 \text{ CONTINUE}
\]

\[
250 \text{ CONTINUE}
\]

\[
300 \text{ CONTINUE}
\]

FORM THE AVERAGE CLASS COVARIANCE MATRIX

\[
\text{SCALE} = 1.0 / \text{FLOAT(NSAMP A NCLASS)}
\]

\[
\text{DO } 400 \text{ I = 1,DIM}
\]

\[
\text{DO } 375 \text{ J = 1,DIM}
\]

\[
\text{DO } 350 \text{ N = 1,NCLASS}
\]

\[
SW(I,J) = SW(I,J) + (\text{SCALE} \times R(I,J,N))
\]

\[
350 \text{ CONTINUE}
\]

\[
375 \text{ CONTINUE}
\]

\[
400 \text{ CONTINUE}
\]

PUT THE LOWER TRIANGLE OF MATRIX SW INTO ARRAY A (FOR SYMMETRIC STORAGE MODE)

\[
K = 1
\]

\[
\text{DO } 450 \text{ I = 1,DIM}
\]

\[
\text{DO } 425 \text{ J = 1,I}
\]

\[
A(K) = SW(I,J)
\]

\[
K = K + 1
\]

\[
425 \text{ CONTINUE}
\]

\[
450 \text{ CONTINUE}
\]

CALCULATE THE EIGENVALUES AND EIGENVECTORS OF SW (IN ARRAY A)

\[
\text{JOBN} = 2
\]

\[
\text{IZ} = \text{DIM}
\]

\[
\text{CALL EIGRS}(A,\text{DIM},\text{JOBN},D,Z,\text{IZ},\text{WK},\text{IER})
\]

FORM MATRIX B FROM THE EIGENVECTORS / SQRT(EIGENVALUE)

\[
\text{IMAX} = \text{DIM} \times (\text{DIM} - 1)
\]

\[
\text{DO } 525 \text{ J = 1,DIM}
\]

\[
K = \text{DIM} - J + 1
\]

\[
\text{WRITE}(\text{DEV,}A)
\]

\[
\text{WRITE}(\text{DEV,}A) 'EIGENVALUE: ',D00
\]

\[
\text{WRITE}(\text{DEV,}A) 'EIGENVECTOR: ',Z(IMAX+I)
\]

\[
B(I,J) = Z(IMAX+I) / \text{SQRT}(D(K))
\]

\[
\text{WRITE}(\text{DEV,}A) 'B(I,J)',I,J,B(I,J)
\]

\[
510 \text{ CONTINUE}
\]

\[
\text{IMAX} = \text{IMAX} - \text{DIM}
\]
CONTINUE

CALCULATE THE AVERAGE CLASS MEAN VECTOR

SCALE = 1.0 / FLOAT(NCLASS)
DO 700 I = 1, DIM
 SUM = 0.0
 DO 675 N = 1, NCLASS
 SUM = SUM + MEAN(I, N)
 CONTINUE
 AVERAGE(I) = SUM * SCALE
700 CONTINUE

SUBTRACT THE AVERAGE CLASS MEAN FROM EACH CLASS MEAN VECTOR

DO 750 I = 1, DIM
 DO 725 N = 1, NCLASS
 MEAN(I, N) = MEAN(I, N) - AVERAGE(I)
750 CONTINUE

FORM THE MEAN SCATTER MATRIX SB

DO 800 K = 1, NCLASS
 DO 775 I = 1, DIM
 DO 760 J = 1, DIM
 SB(I, J) = SB(I, J) + SCALE * (MEAN(I, K) * MEAN(J, K))
760 CONTINUE
775 CONTINUE
800 CONTINUE

CALCULATE SBSUB = MATRIX SB * MATRIX B

DO 900 I = 1, DIM
 DO 875 J = 1, DIM
 SUM = 0.0
 DO 850 K = 1, DIM
 SUM = SUM + SB(I, K) * B(K, J)
 CONTINUE
500 SBSUB(I, J) = SUM
875 CONTINUE
900 CONTINUE

CALCULATE SBPRIME = MATRIX B (TRANPOSED) * MATRIX SBSUB

DO 1000 I = 1, DIM
 DO 975 J = 1, DIM
 SUM = 0.0
 DO 950 K = 1, DIM
 SUM = SUM + B(K, I) * SBSUB(K, J)
 CONTINUE
500 SBPRIME(I, J) = SUM
975 CONTINUE
1000 CONTINUE

PUT THE LOWER TRIANGLE OF MATRIX SBPRIME INTO ARRAY A (FOR
SYMmetric Storage Mode)

\[K = 1 \]
\[\text{DO } 1050 I = 1, \text{DIM} \]
\[\text{DO } 1025 J = 1, I \]
\[A(K) = \text{SBPRIME}(I, J) \]
\[K = K + 1 \]
\[1025 \text{ CONTINUE} \]
\[1050 \text{ CONTINUE} \]

Calculate the eigenvalues and eigenvectors of SBPRIME (in A)

\[\text{CALL EIGRS}(A, \text{DIM}, \text{JOBN}, D, Z, \text{IZ}, \text{WK}, \text{IER}) \]

\[\text{IMAX} = - \text{DIM} \ (\text{DIM} - 1) \]
\[\text{DO } 1100 J = 1, \text{DIM} \]
\[K = \text{DIM} - J + 1 \]
\[\text{WRITE}(\text{DEV}, \text{A}) \]
\[\text{WRITE}(\text{DEV}, \text{A}) \ '\text{EIGENVALUE: ',} D(K) \]
\[\text{WRITE}(\text{DEV}, \text{A}) \]
\[\text{DO } 1075 I = 1, \text{DIM} \]
\[\text{WRITE}(\text{DEV}, \text{A}) \ '\text{EIGENVECTOR: ',} Z(\text{IMAX} + I) \]
\[1075 \text{ CONTINUE} \]
\[1100 \text{ CONTINUE} \]

Form the transformation matrix by multiplying the B matrix times the first eigenvector

\[\text{WRITE}(\text{DEV}, \text{A}) \ '\text{THE TRANSFORMATION MATRIX:}' \]
\[\text{DO } 1150 I = 1, \text{DIM} \]
\[\text{DO } 1125 N = 1, \text{DIM} \]
\[\text{TRANS}(I, N) = \text{TRANS}(I, N) + B(I, J) \times (Z(\text{DIM} + I)) \]
\[1115 \text{ CONTINUE} \]
\[1125 \text{ CONTINUE} \]
\[1150 \text{ CONTINUE} \]

Transform the original samples of each class

\[\text{DO } 1200 K = 1, \text{NCCLASS} \]
\[\text{DO } 1175 J = 1, \text{NSAMP} \]
\[\text{DO } 1155 I = 1, \text{DIM} \]
\[\text{Y}(J, N, K) = 0.0 \]
\[\text{DO } 1155 I = 1, \text{DIM} \]
\[\text{Y}(J, N, K) = \text{Y}(J, N, K) + \text{TRANS}(I, N) \times (X(I, J, K)) \]
\[1155 \text{ CONTINUE} \]
\[1160 \text{ CONTINUE} \]
\[1175 \text{ CONTINUE} \]
\[1200 \text{ CONTINUE} \]

\[\text{DELTA} = \text{SECONDS}(T1) \]
\[\text{WRITE}(\text{DEV}, \text{A}) \ '\text{PREKLL EXECUTION TIME IS: ',} \text{DELTA} \]
\[\text{WRITE}(\text{DEV}, \text{A}) \ '\text{THE TRANSFORMED SAMPLES:}' \]
\[\text{WRITE}(\text{DEV}, \text{A}) \ '(',\text{Y}(J, K, N), K=1, \text{DIM}, J=1, \text{NSAMP}, N=1, \text{NCCLASS}) \]
\[\text{FORMAT}(\text{IX}, '<\text{TRDIM}>', \text{F15.6}) \]

RETURN
END
FILE CLASSIFY.FOR
LAST REVISION JULY 24, 1985
AUTHOR RUTH D. KENNEDY

THIS FILE CONTAINS:

PROGRAM CLASSIFY
CLASSHOLE
CLSEdge
CLSOBJ
OUTCONFUS

TO LINK:
LINK CLASSIFY, COLLECT, WORK1, RAD1, PARAM, REG1, S, S, #LIBRARY: VIDEOLIB

THIS PROGRAM CLASSIFIES THE OBJECTS

INTEGER DEV, IN, OUT, STEP, INRAD, M
INTEGER DIM, TRDIM, NSAMP, NCLASS
INTEGER TRN, TST, ODAT
INTEGER OBJECT, OBJECT, OBJECTDAT(0:10, 20), NUMHOLE
INTEGER BOUND(10, 10), BNDINT
INTEGER XPIX(2500, 10), YPIX(2500, 10)
INTEGER CLASS(20), EDGECLASS(20)
INTEGER BNDCT, EDGE, OBJ, PLACE
 INTEGER DECIS, CONFUS(20, 20)
 INTEGER GOOD(20), BAD(20), COUNT
 INTEGER TOTAL, GRDTOTAL, TOTGOOD
 REAL ORIENT(10), LIST(2, 10, 10)
 REAL CLDIS(10)
 REAL TRAN(11, 11), Y(11, 20)
 REAL TA(11, 20), T(25, 11, 20)
 REAL RAD(-2:250, 10), THETA(11, 10), ALL(10, 10, 10)
 REAL DIS, CLDIS, MINDIS, MAXDIS
 REAL PERCENT
 CHARACTER INST, SHAPE

COMMON DEV, IN, OUT, STEP, INRAD, M

DATA MAXDIS/1.7E37/
DATA IN, OUT/5.5/
DATA CONFUS/400X40/
DATA GOOD, BAD/20X40, 20X40/

TRN = 1
TST = 2
ODAT = 3
BNDINT = 1
OUTEDG = 7
OPEN(UNIT=TRN, FILE='TRAIN.DAT', STATUS='OLD')
OPEN(UNIT=TST, FILE='TEST.DAT', STATUS='NEW')
OPEN(UNIT=ODAT, FILE='OBJECT.DAT', STATUS='OLD')
CALL SETUP
CALL THRESH
WRITE(OUT,10)
FORMAT(1X,'INPUT DIMENSION OF TRANSFORMED SAMPLES: ',I)
READ(IN,15) TRDIM
WRITE(OUT,20)
FORMAT(1X,'INPUT THE SHAPE CATEGORY: ',*)
READ(IN,25) SHAPE

READ(ODAT,*) OBJCT
DO 100 M = 1,OBJCT
 READ(ODAT,*)OBJ,M,HOLE,N,HOLE+1,OBJDAT(0,OBJ) = NUMHOLE
CONTINUE

READ(IN,*) M
M = DIM - 1

READ(IN,*) TRN,A
DO 110 I = 1,DIM
 READ(IN,*), (TRANS(I,J),J=1,DIM)
110 CONTINUE

READ(IN,*) M,NCLASS
DO 160 K = 1,NCLASS
 READ(IN,*), (TA(J,K),J=1,DIM)
160 CONTINUE

WRITE(TST,A) 'TEST SET DATA:
WRITE(TST,A)
WRITE(TST,162) (I,I=1,DIM-1)
FORMAT(1X,'OBJECT HOLES ROTATE(DEG) MAXRAD',3X)
A DIM-2, ('M',I,7X), ('M',I,3X), 'ALPHA/SQRT(EITA)'/
A ('M',I,3X), 'ALPHA/SQRT(BETA)'/
WRITE(DEV,A) 'CLASSIFICATION DATA:'
WRITE(DEV,A)
WRITE(DEV,170) M,TRDIM,SHAPE
FORMAT(1X,'AR MODEL ORDER: ',I,' DIMENSION OF TRANSFORMED ',
A 'SAMPLES: ',I,' SHAPE CATEGORY: ',A,'/'
WRITE(DEV,175) (J,J=1,TRDIM), (J,J=1,NCLASS)
FORMAT(1X,'OBJECT EDGE',3X,TRDIM, 'T',I,7X), 2X,
A (NCLASS, ('D',I,8X), 'EDGE OBJECT'/)
COUNT = 0
CALL VIEW
WRITE(OUT,210) COUNT
210 FORMAT(1X,I3,' CLASSIFICATIONS, DONE YET? (TYPE Y FOR YES): ','$')
READ(IN,220) INST
220 FORMAT(A1)
IF(INST .EQ. 'Y') GOTO 900
WRITE(OUT,230)
230 FORMAT(1X,'INPUT THE OBJECT NUMBER: ','$')
READ(IN,240) OBJECT
240 FORMAT(A1)

SCAN THE FRAME BUFFER FOR THE EDGES OF THE UNCLASSIFIED OBJECT

T1 = SECONDS(0.00)
DO 250 I = 1,10
CLASS(I) = 0.0
CONTINUE
T1 = SECONDS(0.00)

CALL SNAP
CALL SCAN(BNDCT,BOUND,XPIX,YPIX)
IF(BNDCT .EQ. 0) GOTO 999
CALL INSIDE(BNDCT,BOUND)

CLASSIFY USING HOLE INFORMATION (IF POSSIBLE)

CALL CLS HOLE(OBJECT,BNDCT,BOUND,CLASS,OBJDAT,OBJCT)

LIST THE INNER EDGES IN ORDER OF THE DISTANCE BETWEEN THE INNER EDGE CENTROID AND THE OUTER EDGE CENTROID (LARGEST DISTANCE IS FIRST IN LIST)

CALL ORDER(BNDCT,BOUND,LIST)

CLASSIFY THE REST OF THE OBJECT USING THE AUTOREGRESSIVE PARAMETERS OF THE OBJECT EDGES

DO 800 OBJ = 1,BNDCT
IF(CLASS(OBJ) .EQ. 0) GOTO 400
WRITE(TST,300) OBJECT,BOUND(OBJ),ORIENT(OBJ),A
INT(RAD(-1,OBJ))
300 FORMAT(1X,2(I3,3X),F8.2,JX, I5)
GOTO 700
PLACE = 1
500 IF(LIST(BNDINT,PLACE,OBJ) .NE. 0.0) GOTO 550
IF(PLACE .GT. 1) GOTO 600
GOTO 800
550 EDGE = INT(LIST(BNDINT,PLACE,OBJ))
CALCULATE THE RADIUS VECTOR LENGTHS
560 CALL GETRADXPIX(1,EDGE),YPIX(1,EDGE),BOUND,RAD
CALCULATE THE AUTOREGRESSIVE PARAMETERS
570 CALL PARAM(EDGE,RAD,THETA,ALL)
WRITE(TST,575) OBJECT,BOUND(EDGE),ORIENT(EDGE),A
INT(RAD(-1,EDGE)),(THETA I,EDGE),I=1,10
575 FORMAT(1X,2(I3,3X),F8.2,JX, I5, DIM-1,'F9.5,F11.5')
CLASSIFY THE EDGE USING THE TRANSFORMED PARAMETERS

CALL CLSEDGE(OBJECT, EDGE, THETA, TRANS, TA, TRDIM, NCLASS, DECIS)
EDGECLASS(PLACE) = DECIS
PLACE = PLACE + 1
GOTO 500

CLASSIFY THE OBJECT BASED ON ALL THE EDGE CLASSIFICATIONS

CALL CLSOBJ(OBJECT, OBJ, EDGECLASS, OBJDAT, OBJCT, CLASS, BOUND(8, OBJ), TRDIM, NCLASS)

DELTA = SECONDS(T1)
WRITE(DEV, 725) OBJECT, CLASS(OBJ), DELTA

CALCULATE THE ORIENTATION OF THE EDGES

CALL ROTATE(EDGE, BOUND, ORIENT)
CALL OUTPUT(EDGE, BOUND, RAD, ORIENT)

COUNT = COUNT + 1
CONFUS(OBJECT, CLASS(OBJ)) = CONFUS(OBJECT, CLASS(OBJ)) + 1
IF(CLASS(OBJ) .EQ. OBJECT) GOTO 750
BAD(OBJECT) = BAD(OBJECT) + 1
GOTO 800
GOOD(OBJECT) = GOOD(OBJECT) + 1
800 CONTINUE
GOTO 200

CALL OUTCONFUS(CONFUS, OBJCT)
WRITE(DEV, A)
WRITE(DEV, A) 'CLASS PERCENT CORRECT'
GRDTOTAL = 0.0
DO 950 K = 1, OBJCT
TOTAL = GOOD(K) + BAD(K)
IF(TOTAL .EQ. 0) GOTO 950
PERCENT = 100.0 * FLOAT(GOOD(K)) / FLOAT(TOTAL)
WRITE(DEV, 940) K, PERCENT
940 FORMAT(1X, 'K , % ', F10.5)
GRDTOTAL = GRDTOTAL + PERCENT
950 CONTINUE
PERCENT = GRDTOTAL / FLOAT(OBJCT)
WRITE(DEV, 960) PERCENT
960 FORMAT(1X, 'OVERALL PERCENT CORRECT: ', F10.5)
GOTO 1000

WRITE(OUT, A) 'NO OBJECTS FOUND'

CLOSE(UNIT=ODAT)
CLOSE(UNIT=TRN)
CLOSE(UNIT=TST)
STOP
END
\begin{verbatim}
SUBROUTINE CLSHOLE(OBJECT,BNDCT,BOUND,CLASS,OBJDAT,OBJCT)
 THIS SUBROUTINE CLASSIFIES THE OBJECT ON THE BASIS OF THE NUMBER
 OF HOLES IT HAS.

 INTEGER DEV,IN,OUT
 INTEGER BNDCT,BOUND(10,10),CLASS(10)
 INTEGER BND,OBJ
 INTEGER MAXHOLE,NHOLE,NUMHOLE,NHOLE(2,10)
 INTEGER OBJECT,OBJ3CT,OBJDAT(0:10,20)
 COMMON DEV,IN,OUT
 DATA NHOLE/20*0/
 BND = 1
 OBJ = 2
 MAXHOLE = 10
 DO 100 I = 1,10
 DO 50 J = 1,2
 NHOLE(J,I) = 0
 CONTINUE
 100 CONTINUE
 DO 400 N = 1,BNDCT
 DO 300 K = 1,OBJ
 IF(BOUND(K,N) .NE. OBJDAT(0,K)) GOTO 300
 NHOLE(K,N) = -1
 CONTINUE
 300 IF(NHOLE(BND,NUMHOLE) .EQ. 0) GOTO 250
 NHOLE(BND,NUMHOLE) = N
 NHOLE(OBJ,NUMHOLE) = K
 250 CONTINUE
 DO 500 NUMHOLE = 1,MAXHOLE
 IF(NHOLE(BND,NHOLE) .LE. 0) GOTO 500
 CLASS(NHOLE(BND,NHOLE)) = NHOLE(OBJ,NHOLE)
 450 FORMAT(4X,2(I9,3X),'CLASSIFICATION BASED ON: ',I1,' HOLES:',I3)
 CONTINUE
 WRITE(DEV,450)
 END
\end{verbatim}
THIS SUBROUTINE CLASSIFIES AN EDGE OF THE OBJECT. THE CLASSIFICATION IS BASED ON THE SMALLEST DISTANCE FROM THE TRANSFORMED PARAMETERS OF THE UNCLASSIFIED EDGE TO THE AVERAGE OF THE TRANSFORMED SAMPLES OF THE TRAINING SET OF EDGES.

INTEGER DEV, IN, OUT, STEP, INRAD, M
INTEGER EDGE, TRDIM, NCLASS, DECIS
INTEGER OBJECT, MINCLS
REAL MAXDIS, MINDIS
REAL THETA(11, 10), TA(11, 20)
REAL TRANS(11, 11), Y(11, 20)
REAL CLSDIS(10)

COMMON DEV, IN, OUT, STEP, INRAD, M
DATA MAXDIS/1.7E37/

M = EDGET
DIM = M + 1

TRANSFORM THE AR PARAMETERS OF THE UNCLASSIFIED EDGE

DO 200 J = 1, TRDIM
 Y(J, N) = 0.0
 DO 150 I = 1, DIM
 Y(J, N) = Y(J, N) + (TRANS(I, J) * THETA(I, N))
 150 CONTINUE

FIND THE SMALLEST DISTANCE TO A CLASS

MINDIS = MAXDIS
MINCLS = 0
DO 400 K = 1, NCLASS
 CLSDIS(K) = MAXDIS
 DO 300 J = 1, TRDIM
 CLSDIS(K) = CLSDIS(K) + (Y(J, N) - TA(J, K))**2
 300 CONTINUE
 IF(CLSDIS(K) .GT. MINDIS) GOTO 400
 MINDIS = CLSDIS(K)
 MINCLS = K
400 CONTINUE

DECIS = MINCLS

WRITE(DEV, 450) OBJECT, EDGE, (Y(J, N), J=1, TRDIM), (CLSDIS(K), K=1, NCLASS), DECIS

450 FORMAT(1X, 2(I3, 3X), (Y(J, N), J=1, TRDIM), (CLSDIS(K), K=1, NCLASS), 8X, I3)

RETURN
END

SUBROUTINE CLSOBJ(OBJECT, OBJ, EDGECLASS, OBJDAT, OBJCT, OBJCLASS, THOLE, TRDIM, NCLASS)
SUBROUTINE CLASSIFIES THE OBJECT USING THE EDGE CLASSIFICATIONS

INTEGER DEV, IN, OUT
INTEGER EDGECLASS(10), OBJDAT(0:10, 20)
INTEGER OBJECT, OBJ, OBJCT, OBJCLASS(10)
INTEGER CNT, OBJHOLE, THOLE
INTEGER TRDIM, NCLASS

COMMON DEV, IN, OUT

N = 1

100 IF(N .GT. OBJCT) GOTO 600
OBJHOLE = OBJDAT(0, N)
IF(THOLE .NE. OBJHOLE) GOTO 300

COUNT = 0
DO 200 J = 1, OBJHOLE + 1
 IF(EDGECLASS(J) .NE. OBJDAT(J, N)) GOTO 200
 COUNT = COUNT + 1
200 CONTINUE

IF(COUNT .LE. OBJHOLE + 1) GOTO 500

300 N = N + 1
GOTO 100

500 OBJCLASS(OBJ) = N
GOTO 1000

600 OBJCLASS(OBJ) = 0

1000 CONTINUE

C 1000 WRITEME(DEV, 1010) OBJCLASS(OBJ)
C 1010 FORMAT(1X, 12X, 'TRDIM', 8X, 'NCLASS', 10X, 14X, i3)
RETURN

END

SUBROUTINE OUTCONFUS(CONFUS, NCLASS)

THIS SUBRUTINE WRITES OUT THE CONFUSION MATRIX OF THE CLASSIFICATION DATA

INTEGER CONFUS(20, 20), NCLASS
INTEGER DEV

COMMON DEV

WRITE(DEV, 100)
100 FORMAT(1X, 'THE CONFUSION MATRIX OF THE CLASSIFICATION DATA'//)

WRITE(DEV, 150) (I, I = 1, NCLASS)
150 FORMAT(1X, 6X, 'CLASS', 7X, 'NCLASS', 5X, '/')

DO 400 I = 1, NCLASS
 WRITE(DEV, 200) I, (CONFUS(I, J), J = 1, NCLASS)
400 CONTINUE

RETURN
END
SUBROUTINES CONTAINED IN THIS FILE ARE:

INSIDE
ROTATE
OUTPUT
ORDER

SUBROUTINE INSIDE(BNDCT,BOUND)

THIS SUBROUTINE FINDS OUT WHICH BOUNDARIES ARE INSIDE OTHER BOUNDARIES

INTEGER BNDCT,BOUND(10,10),BNDINT
INTEGER XR,XL,XPREV,PIXEL,Z
INTEGER DEV,IN,OUT,STEP,INRAD
INTEGER OBJ,COUNT
INTEGER YLINE,FIRSTX,LASTX,STARTX,XINC,BUFF(0:511)
LOGICAL EDGE,RBND(20),LBND(20)

COMMON DEV,IN,OUT,STEP,INRAD

DO 40 I = 1,BNDCT
 BOUND(7,I) = 0
 BOUND(8,I) = 0

CONTINUE

FIRSTX = 0
LASTX = 511
XINC = 1
EDGE = .TRUE.

LOOP FOR EACH EDGE

DO 600 N = 1,BNDCT
 BNDINT = BOUND(I,N)
 STARIX = BOUND(2,N)
 YLINE = BOUND(3,N)

 DO 100 I = 1,BNDCT
 RBND(I) = .FALSE.
 LBND(I) = .FALSE.

 CONTINUE

SEARCH FOR EDGES ON THE RIGHT

XPREV = 0
CALL RSCAN(YLINE,FIRSTX,LASTX,XINC,BUFF)

DO 200 XR = STARIX,LASTX
 Z = BUFF(XR)
 IF((Z.EQ.0).OR.(Z.EQ.255).OR.(Z.EQ.BNDINT)) GOTO 200

200 CONTINUE
IF(XR .NE. (XPREV + 1)) GOTO 150
XPREV = XR
GOTO 200

150
RND(Z) = RND(Z) .NEQV. EDGE
XPREV = XR

200
CONTINUE

C SEARCH FOR EDGES ON THE LEFT
XPREV = 0
DO 300 XL = STARTX,FIRSTX,-1
 Z = BUF(XL)
 IF(Z.EQ.0).OR.(Z.EQ.255).OR.(Z.EQ.BNDINT)) GOTO 300
 IF(XL .NE. (XPREV - 1)) GOTO 250
 XPREV = XL

350
LBND(Z) = LBND(Z) .NEQV. EDGE
XPREV = XL

300
CONTINUE

C COMPARE THE RIGHT AND LEFT TALLIES
C
COUNT = 0
DO 400 I = 1,BNDCT
 IF(.NOT.(RBND(I) .AND. LBND(I))) GOTO 400
 COUNT = COUNT + 1
 OBJ = I
 BOUND(7,N) = I
 !FOUND AN OUTER EDGE
400
CONTINUE

IF(COUNT .EQ. 1) GOTO 450
BOUND(7,N) = 0
GOTO 600

450
BOUND(8,B) = BOUND(8,B) + 1
!COUNT HOLES INSIDE OUTER EDGE

600
CONTINUE

RETURN
END

C---
C---
SUBROUTINE ROTATE(BNDCT,BOUND,ORIENT)
C
C THIS SUBROUTINE CALCULATES THE ROTATION OF THE MAXIMUM RADIUS VECTOR
C (IN DEGREES) IN REFERENCE TO THE STANDARD CARTESIAN COORDINATE SYSTEM.
C
INTEGER BNDCT,BOUND(10,10)
INTEGER XC,YC,XMAX,YMAX
REAL ORIENT(10)
REAL XDIF,YDIF,THETA

XC = 4
YC = 5
XMAX = 9
YMAX = 10

DO 500 I = 1,BNDCT
 XDIF = FLOAT(BOUND(XMAX,I) - BOUND(XC,I))
 YDIF = -FLOAT(BOUND(YMAX,I) - BOUND(YC,I))

500
END
IF(XDIFF .NE. 0.0) GOTO 400
IF(YDIFF .GT. 0.0) GOTO 300
THETA = 90.0
GOTO 490
300
THETA = 270.0
GOTO 490
400
THETA = ATAND(YDIFF/XDIFF)
IF(XDIFF .LT. 0.0) THETA = THETA + 180.0
IF(THETA .LT. 0.0) THETA = THETA + 360.0
490
ORIENT(I) = THETA
500
CONTINUE
RETURN
END

SUBROUTINE OUTPUT(BNDCT, BOUND, RAD, ORIENT)
INTEGER BNDCT, BOUND(10, 10)
INTEGER DEV
REAL RAD(-2:300, 10), ORIENT(I0)
COMMON DEV
WRITE(DEV, 50)
50
FORMAT(1X, 'EDGE', 6X, 'START', 6X, 'CENTER', 6X, 'NUMPIX', 2X,
A 'INSIDE', 2X, 'HOLES', 4X, 'ROT (DEG)', 4X, 'RAD VEC', 4X,
 'MAX RAD VEC (PIX)')/
DO 800 N = 1, BNDCT
WRITE(DEV, 750) (BOUND(I, N), I=1, 8), ORIENT(N), RAD(-2, N),
A RAD(-1, N)
750
FORMAT(I1, 13, 5X, ('(', I3, ',', I3, ',', I3, '),'), 5X, ('(', I3, ',', I3, ',', I3, '),'), 4X, 14, 2(S5, I3, 6X, F5.1, 2(4X, F8.2))
800
CONTINUE
WRITE(DEV, 810C(N, N = 1, BNDCT)
810
FORMAT('NUMBER OF RADIUS VECTORS:')
WRITE(DEV, 825) (RAD(-2, N), N=1, BNDCT)
825
FORMAT(1X, 3X, 8F10.4)
WRITE(DEV, 830)
830
FORMAT('MAXIMUM RADIUS VECTOR:')
WRITE(DEV, 835) (RAD(-1, N), N=1, BNDCT)
835
FORMAT(1X, 3X, 8F10.4)
WRITE(DEV, 850)
850
FORMAT('RADIUS VECTOR LENGTHS:')
DO 950 I = 1, INRAD+1
WRITE(DEV, 920) I, (RAD(I, N), N=1, BNDCT)
920
FORMAT(I1, 3X, 8F10.4)
950
CONTINUE
IF(LIST(DIS,PLACE+1,OBJ).EQ. 0.0) GOTO 320
PLACE = PLACE + 1
GOTO 310

LIST(BNDINT,PLACE+1,OBJ) = LIST(BNDINT,PLACE,OBJ)
LIST(DIS,PLACE+1,OBJ) = LIST(DIS,PLACE,OBJ)
IF(PLACE .LE. MARK) GOTO 340
PLACE = PLACE - 1
GOTO 320

LIST(BNDINT,PLACE,OBJ) = FLOAT(N)
LIST(DIS,PLACE,OBJ) = DIST

CONTINUE

WRITE(DEV,550)

550 FORMAT(1X,//' OUTER EDGE INNER EDGE ORDER DISTANCE' /)

DO 800 OBJ = 1, BNDCT
PLACE = 1
IF(LIST(BNDINT,PLACE,OBJ).EQ. 0.0) GOTO 800
INEDGE = INT(LIST(BNDINT,PLACE,OBJ))
IF(INEDGE .EQ. OBJ) GOTO 730
ORD = PLACE
GOTO 735

730 INEDGE = 0
ORD = 0
CONTINUE

WRITE(DEV,740) OBJ, INEDGE, ORD, LIST(DIS,PLACE,OBJ)
C 740 FORMAT(1X, I6, 9X, I3, 11X, I2, 7X, F10.4)

PLACE = PLACE + 1
GOTO 720

CONTINUE

RETURN
END
END

10-86

DTIC