EXPLOITING AUXILIARY INFORMATION ABOUT EXAMINEES IN THE ESTIMATION OF ITEM PARAMETERS(U) EDUCATIONAL TESTING SERVICE PRINCETON NJ R J MISLEVY MAY 86
EXPLOITING AUXILIARY INFORMATION ABOUT EXAMINEES IN THE ESTIMATION OF ITEM PARAMETERS

Robert J. Mislevy

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-85-K-0683

Contract Authority Identification Number NR No. 150-539

Robert J. Mislevy, Principal Investigator

Educational Testing Service
Princeton, New Jersey

May 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
Exploiting Collateral Information in the Estimation of Item Parameters (Unclassified)

The precision of item parameter estimates can be increased by taking advantage of dependencies between the latent proficiency variable and auxiliary examinee variables such as age, courses taken, and years of schooling. Gains roughly equivalent to two to six additional item responses can be expected in typical educational and psychological applications. Empirical Bayes computational procedures are presented, and illustrated with data from the Profile of American Youth survey.
Exploiting Auxiliary Information

EXPLOITING AUXILIARY INFORMATION ABOUT EXAMINEES IN THE
ESTIMATION OF ITEM PARAMETERS

Robert J. Mislevy

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-85-K-0683

Contract Authority Identification Number NR No. 150-539

Robert J. Mislevy, Principal Investigator

Educational Testing Service
Princeton, New Jersey

May 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
Exploiting Auxiliary Information

Abstract

The precision of item parameter estimates can be increased by taking advantage of dependencies between the latent proficiency variable and auxiliary examinee variables such as age, courses taken, and years of schooling. Gains roughly equivalent to two to six additional item responses can be expected in typical educational and psychological applications. Empirical Bayes computational procedures are presented, and illustrated with data from the Profile of American Youth survey.

Key words: EM-algorithm, empirical Bayes, marginal maximum likelihood
Exploiting Auxiliary Information about Examinees in the Estimation of Item Parameters

A pervasive problem in item response theory (IRT) is the difficulty of simultaneously estimating large numbers of parameters from limited data. Even large samples of examinees may not eliminate the problem when each examinee responds to only a few items, as in educational assessment and adaptive testing. Certain improvements are obtained by using hierarchical models along the lines of Lindley and Smith (1972); treating examinee parameters as a sample from a common population enhances the stability and precision of item parameter as well as examinee parameter estimates. This approach has been applied to IRT by a number of researchers recently, including Bock and Aitkin (1981), Leonard and Novick (1985), Rigdon and Tsutakawa (1982), and Swaminathan and Gifford (1982).

For the most part, the aforementioned writers consider all examinees to be members of a single, undifferentiated, population. This framework instantiated such beliefs as, "if the parameters of most examinees seem to lie between -3 and +3, then the parameter of an examinee who answered both of two hard math items correctly is probably somewhere between +1.5 to +3.5—even though his/her maximum likelihood estimate is +∞." Additional stability and precision may yet be achieved if auxiliary information is
Exploiting Auxiliary Information

available about examinees, such as educational background or status on demographic variables. A statement like "the parameter of an examinee who answered both of two hard math items correctly and studied calculus in college is probably between +2.7 and +3.7," might result.

This paper addresses the utilization of auxiliary information about examinees in estimating item parameters. The following section reviews item parameter estimation when examinee parameters are known, then when examinee parameters are unknown and nothing is assumed about them. Attention then turns to the additional assumptions of first, an undifferentiated population, and second, a population differentiated with respect to auxiliary variables. Following this are sections that discuss anticipated gains in precision, outline computational procedures, and illustrate the approach with responses to four items from the Arithmetic Knowledge subtest of the Armed Services Vocational Aptitude Battery.

The Role of Auxiliary Information

The relevance of auxiliary examinee variables to item parameter estimation is not immediately obvious, since they play no role in the basic model for item responses. Letting \(x_i = (x_{i1}, \ldots, x_{in}) \) represent the responses of examinee \(i \) to \(n \) test items and \(y_i \) represent values of auxiliary variables such as educational and demographic status, the standard IRT assumption of local
Exploiting Auxiliary Information

independence states that

\[p(x_i | \theta_1, y_i, \beta) = \prod_j p(x_{ij} | \theta_1, \beta_j) \] \quad (1) \]

where \(\theta_1 \) is the examinee parameter, \(\beta = (\beta_1, \ldots, \beta_n) \) are possibly vector-valued item parameters, and the form of \(p(x_{ij} | \theta_1, \beta_j) \) is specified a priori through the item response model. It follows that \(y_i \) would indeed be irrelevant to item parameter estimation if \(\theta_1 \) were known. The likelihood to be maximized with respect to \(\beta \), given the data matrix \(X = (x_1, \ldots, x_N) \) of responses from \(N \) examinees with proficiencies \(\theta = (\theta_1, \ldots, \theta_N) \) and auxiliary variables \(Y = (y_1, \ldots, y_N) \), would be simply

\[L = \prod_i p(x_i | \theta_1, \beta) \] \quad (2) \]

The maximum likelihood estimate (MLE) \(\hat{\beta} \) would satisfy the likelihood equations

\[\hat{\theta} = \sum_i \frac{\partial \ell_i(\theta)}{\partial \beta} \] \quad (3) \]

where \(\ell_i(\theta) = \log p(x_i | \theta, \beta) \), and the covariance matrix of
estimation error variances for \(\hat{\theta} \) could be approximated by the inverse of the observed information matrix \(I \):

\[
I_{\theta} = \sum_{i=1}^{\infty} \left(\frac{\partial \ell_i(\theta)}{\partial \theta} \right) \left(\frac{\partial \ell_i(\theta)}{\partial \theta} \right)^T \bigg|_{\theta = \hat{\theta}} .
\]

But Equation 1 gives response probabilities conditioned on \(\theta \), and \(\theta \) is not known in practice. The problem that must actually be solved is to maximize the marginal likelihood

\[
L_M = \prod_{i=1}^{n} \int p(x_i|\theta, \phi) \, dF_i(\theta) ,
\]

where \(F_i(\theta) \) is the distribution of the unknown proficiency of examinee \(i \). This is an "incomplete data" problem, in the terminology of Dempster, Laird, and Rubin (1977), corresponding to the "complete data" problem of maximizing Equation 2 when \(\theta \) is known. Assuming the required integrals exist, the likelihood equations become

\[
0 = \sum_{i=1}^{n} p_{x_i}^{-1}(x_i) \int [\partial \ell_i(\theta)/\partial \theta] \, dF_i(\theta) ,
\]

where
Exploiting Auxiliary Information

\[p_i(x_i) = \int \xi_i(\theta) dF_i(\theta) \]

Louis (1982) shows that if Zack's (1971, Chapter 5) regularity conditions are met and if \(F_i \) is known for all \(i \), the diagonal elements of the incomplete-data observed information matrix, namely

\[I^{-1}(\theta) \sum_i p_i^{-1}(x_i) \int \left\{ \left(\frac{\partial \xi_i(\theta)}{\partial \theta} \right) \left(\frac{\partial \xi_i(\theta)}{\partial \theta} \right)' \right\} dF_i(\theta) \]

cannot exceed the diagonal elements \(I_\theta \). In other words, the precision with elements of \(\hat{\theta} \) would be estimated if \(\theta \) were known provides an upper limit to the precision to be expected when \(\theta \) is not known but must be inferred.

A similar phenomenon arises in the context of sample survey analysis when a clustered sampling design is employed to estimate a mean. If \(n \) units are sampled from each of \(N \) randomly-selected clusters, then the squared standard error of the mean, ignoring finite population corrections, is given as
Exploiting Auxiliary Information

\[\text{SEM}^2 = \frac{\sigma^2}{nN} \left[1 + (n - 1)p\right], \]

where \(\sigma^2 \) is the population variance and \(p \) is the intraclass correlation coefficient indicating within-cluster homogeneity. If the number of clusters (N) is held constant, increasing the sample size (n) within clusters cannot decrease \(\text{SEM}^2 \) below \(\rho \sigma^2 / N \), the value of \(\text{SEM}^2 \) obtained when the means of the sampled clusters are known without error.

The estimation of \(\theta \) in the context of IRT must also deal with uncertainty from two sources. First is the usual limitation of having data from only a finite sample of examinees. All other conditions remaining unchanged, increasing N leads to greater precision for \(\hat{\theta} \). Second is the limitation that \(\theta \) remains unknown even for sampled examinees. For a fixed sample of examinees, reducing uncertainty about \(\theta \) leads to greater precision for \(\hat{\theta} \). This can be achieved through (i) item responses, (ii) assumptions about the \(F_i \)'s and (iii) auxiliary variables related to \(\theta \).

de Leeuw and Verhelst (1984) point out that finding maxima in terms of \(\theta \) and of each individual \(\theta_i \) in the manner suggested by Birnbaum (1968) is equivalent to maximizing Equation 5 when each \(F_i \) concentrates its mass at the single (unknown) point \(\theta_i \). This joint maximum likelihood (JML) solution utilizes only information in responses \(x_i \) from examinee i to reduce uncertainty about \(\theta_i \).
Alternatively, one may consider the θ_i's to be identically distributed, so that $F_i = F$ for all i. An auxiliary variable y is thereby implied for all examinees, an indicator signifying that each is a member of the population whose distribution is specified by F. Appearing in the literature are treatments that assume a completely specified form for F (e.g., Bock & Lieberman, 1970), others that assume parametric forms with unknown parameters α to be estimated along with β (e.g., Zwarts & Veldhuesen, 1985), and still others that provide nonparametric approximations (e.g., Tjur, 1982). Under the first of these three approaches, the assumed population distribution combines with x_i to produce $p(\theta_i|x_i)$, which in this case equals $p(\theta_i|x_i)$. Under the latter two approaches, responses from examinees other than examinee i also play a role in estimating F so that $p(\theta_i|x_i) \neq p(\theta_i|x)$. A third alternative, falling between unique, unconstrained F_i's and identical F_i's, is to posit distributions that depend on auxiliary variables: that is, $F_i(\theta) = F_{y_i}(\theta)$. Examinees with identical y values are considered a random sample from a population indexed by that particular value of y, and these conditional distributions are allowed to vary with y. A following section gives details for two special cases, namely a linear model and a (quasi-) nonparametric mixture approximation.
Exploiting Auxiliary Information

How Much Can Be Gained?

Several factors contribute to the magnitude of the precision gains that can be achieved through population assumptions and auxiliary variables. One factor is the sensitivity of different model parameters to missing information. Mislevy's (1984) analysis of Bock and Lieberman's (1970) LSAT data showed that estimates of the population variance were more substantially improved by increases in test length than were estimates of the population mean. This might lead one to expect increased information about \(\theta \) to have more effect on item slopes than on item thresholds in the context of item parameter estimation.

A second factor is the nature of the joint distribution of auxiliary variables with \(\theta \). An auxiliary variable adept at identifying low proficiency examinees, for example, adds information for those examinees most useful for estimating lower asymptote item parameters.

A third factor is the dependence of the estimated information upon estimated parameter values. Although a slope parameter may be consistently estimated under both the undifferentiated and undifferentiated population models, a higher estimate under the latter may appear less precise. This is because estimated standard errors for slopes are directly proportional to the values of the slope estimates, even though true standard errors depend on true
Exploiting Auxiliary Information

slope values and not their estimates. A slope estimated with the aid of auxiliary variables and obtaining a higher estimate can thus have a lower true standard error but a higher estimated standard error.

Since the same factors determine information gain from both increased test length and auxiliary variables, however, it is reasonable to consider the contribution of auxiliary variables in units of additional item responses. In the special case of dichotomous items, the amount of information conveyed by item responses alone is

\[
i(\theta) = \sum_j \frac{P_j'(\theta)^2}{P_j(\theta)[1 - P_j(\theta)]},
\]

where \(P_j(\theta) = p(x_j = 1|\theta)\) and \(P_j'(\theta) = dP_j(\theta)/d\theta\). For examinees with finite maximum likelihood estimates, Bayes theorem applied with a diffuse prior leads to the approximation \(p(\theta|x_i) \approx N(\hat{\theta}, \sigma_x^2)\) with \(\sigma_x^2 = \theta^{-1}\). This follows by first rescaling the likelihood so that it integrates to one, then using its mode and curvature at the mode in a normal approximation.

Consider as an example the two-parameter logistic model, under which \(P_j(\theta) = p(x = 1|\theta, a_j, b_j) = 1/(1 + \exp[-1.7a_j(\theta - b_j)])[\).
Exploiting Auxiliary Information

The contribution of item \(j \) to information about \(\theta \) is

\[2.89 a_j^2 P_j(\theta)[1 - P_j(\theta)], \]

and the total information from \(n \) identical items for which \(b_j = 0 \) and \(a_j = a \) is simply \(0.7225 n a^2 \). Table 1 gives values of \(i \) and \(\sigma^2_x \) in this simple case for selected test lengths and values of \(a \). Note that where \(1.7a = 1.0 \) (i.e., \(a = 0.588 \), corresponding to an item trait correlation of .7071 in a standard normal population), four additional items provide a unit gain in precision. The results provide an indication of the amount of information about \(\theta \) that is employed in JML estimation of item parameters. It is apparent that as test length increases, information (i.e., precision) increases at a constant rate and the posterior variance decreases at a decreasing rate.

Insert Table 1 about here

The magnitude of gain in information about \(\theta \) obtained by assuming an undifferentiated population (i.e., \(F_1 = F \)) can be gauged by extending the approximation employed for Table 1. If the normalized likelihood function induced by \(x_1 \) is again approximated as \(N(\theta, \sigma_x^2) \) and if it is further assumed that examinee 1 has been selected at random from a population in which \(\theta \sim N(\mu, \sigma^2) \), then

\[p(\theta | x_1) \sim N(\tilde{\theta}, \tilde{\sigma}^2), \]
where

\[
\hat{\theta} = \frac{\theta \sigma_x^{-2} + \mu \sigma^{-2}}{\sigma_x^{-2} + \sigma^{-2}}
\]
and

\[
\hat{\Sigma} = (\sigma^{-2} + \sigma_x^{-2})^{-1}
\]

Table 2 shows values of the reciprocal of \(\Sigma \) (i.e., "precision") from various test lengths with identical items with \(1.7a = 1 \) and a standard normal prior for \(\theta \). Note that for each test length, a unit gain in precision is achieved over the \(1.7a = 1 \) column of Table 1. These tabled values fall within the ranges encountered in applied work, and suggest that the assumed distribution contributes about as much information about \(\theta \) as four additional items. The corresponding value for \(1.7a = .5 \) is sixteen items, and that for \(1.7a = 1.5 \) is about one item. Since the absolute contribution is constant with respect to increasing test length, the relative contribution declines.

To gauge the additional impact of differentiating the population through auxiliary variables, we may consider numerical
values resulting from a regression model with homoscedastic residuals. Suppose \(y \) values account for \((100 \times z)\)-percent of the variance in a population with total variance 1.0, so that
\[F_y(\theta) \sim N(\mu_y, \sigma_y^2) \text{ with } \sigma_y^2 = 1 - r. \]
If the normalized likelihood induced by item responses is approximately \(N(\hat{\theta}, \sigma^2_x) \), then

\[
p(\theta | x_i, y_i) \propto \frac{\hat{\theta}^2 \sigma^2_x + \mu_y^2 \sigma^2_e}{\sigma^2_x + \sigma^2_e} \left(\sigma^{-2} + \sigma^{-2}_x \right)^{-1}.\]

Using the same simplified item response model and 'a' value as Table 2, Table 3 compares values of the inverse of the posterior variance for \(\theta \) as determined by (i) item responses alone, (ii) with knowledge of membership in an undifferentiated population with unit variance, and (iii) with the additional knowledge of auxiliary variables that account for successively greater proportions of total variance. Values between 10- and 40-percent, a range typical of educational and psychological work, increase information (posterior precision) about \(\theta \) by amounts roughly equivalent to one to three additional item responses. For items with \(1.7a = .5 \), gains in item units would be doubled; for items with \(1.7a = 1.5 \), gains in item units would be halved.
The Ignorability of \(p(y) \)

This section demonstrates that under reasonable assumptions, the population distribution of \(y \) can be ignored for the purposes of estimating item parameters \(\beta \) and population parameter \(\alpha \).

Suppose that the distribution of \(y \) in a population of examinees is governed by the density function \(p(y|\gamma) \), which depends on possibly unknown parameters \(\gamma \) but not upon item parameters \(\beta \) nor on the parameters \(\alpha \) of the conditional distributions \(f(\theta|y,\alpha) \). The probability of observing the data matrix \((X,Y)\) from a random sample of \(N \) examinees is given by

\[
P(X,Y|\beta,\alpha,\gamma)
\]

\[
= \prod_{i} \int p(x_i|\theta,y_i,\beta,\alpha,\gamma) \ p(\theta|y_i,\beta,\alpha,\gamma) \ p(y_i|\beta,\alpha,\gamma) \ d\theta
\]

\[
= \prod_{i} \int p(x_i|\theta,\beta) \ p(\theta|y_i,\alpha) \ p(y_i|\gamma) \ d\theta
\]

\[
= \left\{ \prod_{i} \int p(x_i|\theta,\beta) \ p(\theta|y_i,\alpha) \ d\theta \right\} \times \left\{ \prod_{i} p(y_i|\gamma) \right\}
\]

\[
= P(X|Y,\beta,\alpha) \ P(Y|\gamma) \ . \quad (6)
\]
Likelihood inferences about α and β are therefore independent of inferences about γ, and the conditional MLE's of α and β given Y are identical to MLE's obtained jointly with γ.

Models and Methods

This section presents two IRT models that differentiate examinees by means of auxiliary variables, and suggests computing approximations based on Bock and Aitkin's (1981) marginal maximum likelihood (empirical Bayes) procedures.

Mixtures of Finite Distributions

Mislevy (1984) describes a nonparametric approximation of a continuous density function of a latent variable in terms of a distribution with mass at a finite number of prespecified points. The proficiency of each examinee, or θ_1, then, is assumed to take one of only Q known values. The "latent trait" problem is thereby replaced by an analogous "latent class" problem that is easier to solve. A single population was addressed in that presentation, and item parameters were assumed known. We now consider extensions to the simultaneous estimation of item parameters, and to multiple subpopulations indexed by an auxiliary variable y. This approach provides considerably flexibility in the distributions $F_{1}(\theta) = F_{y_1}(\theta)$. It lends itself well to discrete auxiliary variables with relatively few values.
It proves convenient to write such an auxiliary variable as a vector of 0/1 indicators. Define $y_i = (y_{i1}, \ldots, y_{iK})$ by letting $y_{ik} = 1$ if examinees i is associated with the k'th of K exhaustive and mutually exclusive subpopulations, and zero otherwise. The probability of observing response pattern x_i from an examinee selected at random from a specified subpopulation is given by

$$p(x_i | y_i, \theta) = \prod_k \left(\int p(x_i | \theta, \theta) \, dF_k(\theta) \right)^{y_{ik}}$$

(7)

where F_k is the distribution in subpopulation k. This probability can be approximated by a finite distribution as

$$p(x_i | y_i, \theta) = \prod_k \left(\sum_q p(x_i | \theta, \theta)W_{qk} \right)^{y_{ik}}$$

(8)

where $\theta_1, \ldots, \theta_Q$ is a grid of points and W_{qk} is the weight or density at point q in subpopulation k. The weights W play the role of q in earlier notation. For the remainder of this subsection, we limit our attention to distributions of the form of the right-hand side of Equation 8. As demonstrated above, we may carry out the estimation of θ and W conditional on y.
Exploiting Auxiliary Information

Let \((X,Y)\) be the data matrix observed from a sample of \(N\) examinees selected either randomly from the population as a whole or as random subsamples stratified on \(y\). The probability of \(X\) given \(Y\) is proportional to

\[L_M = \prod \prod \{ \sum \frac{p(x_i | \Omega, \beta)}{\sum_{q_k} W_{qk}} \}^{y_{ik}} \]

and its logarithm is

\[f_M = \log L_M \]

\[= \sum \sum y_{ik} \log \sum_{q_k} \frac{p(x_i | \Omega, \beta)}{W_{qk}} \]

Relative maxima with respect to \(\beta\) and \(W\) can be obtained by means of the EM algorithm, under the special case of missing indicators for a multinomial distribution (Dempster et al., 1977, Section 4.3). The expectation step of cycle \(t + 1\) computes expected values of the following quantities:
Exploiting Auxiliary Information

1. The expected number of examinees with proficiency θ_q from a sample of size N_k from subpopulation k, conditional on X, Y, $\hat{\theta}^t$, and \hat{w}^t:

$$\hat{N}_{qk}^{t+1} = \sum y_{1k} \hat{p}_k^{t}(\theta_q | x_i)$$

where

$$\hat{p}_k^{t}(\theta_q | x_i) = \frac{p(x_i | \theta_q, \beta = \hat{\beta}^t, w^t)}{\sum_r p(x_i | \theta_r, \beta = \hat{\beta}^t, w^t)}$$

an application of Bayes theorem, gives the posterior probability that the proficiency of examinee i is θ_q, given provisional parameter estimates $\hat{\beta}^t$ and \hat{w}^t.

2. The expected number of correct responses to item j from examinees in subpopulation k with proficiency θ_q, given a random sample of size N_k (again given $\hat{\beta}^t$ and \hat{w}^t):

$$\hat{R}_{jkq}^{t+1} = \sum y_{1k} x_{1j} \hat{p}_k^{t}(\theta_q | x_i)$$
Exploiting Auxiliary Information

The maximization step computes what would be MLE's of β and W if \hat{N} and \hat{R} were observed quantities rather than conditional expectations. For W, we have simply

$$\hat{w}_{t+1}^{qk} = \frac{\hat{w}_{t+1}^{qk}}{N_k}.$$

For 8, we solve conditional expectations of likelihood equations:

$$0 = \sum_{qk} \frac{\hat{R}_{t+1}^{qk} \hat{N}_{t+1}^{qk} p_j(\theta_k)}{p_j(\theta_k)[1 - p_j(\theta_k)]} \frac{\partial p_j(\theta_k)}{\partial \beta},$$

where \hat{R}_{t+1}^{qk} and \hat{N}_{t+1}^{qk} is similarly defined. Under the 2-parameter logistic model, for example, Equation 9 simplifies as follows:

$$a_j: 0 = \sum_{q} [\hat{R}_{jq}^{t+1} - \hat{N}_{jq}^{t+1} p_j(\theta)](\theta - b_j)$$

$$b_j: 0 = \sum_{q} [\hat{R}_{jq}^{t+1} - \hat{N}_{jq}^{t+1} p_j(\theta)]a_j.$$

In principle, the linear indeterminacy in the 1-, 2-, and 3-parameter logistic and normal IRT models presents no impediment to
the EM algorithm, which readily converges to one of the infinitely many solutions on a ridge. Numerical stability and the quality of the finite characterization of F are enhanced, however, by controlling the scaling of the solution at this point. One convenient way of doing so is to standardize the weighted average distribution. We have referred to the points 0_q as specified a priori; given the linear indeterminacy, we may conceive of only their relative spacing as prespecified. After each EM cycle, then, we may rescale the points as follows:

$$0_q = (0_q - \bar{0})/s$$

where

$$\bar{0} = N^{-1} \sum_k N_k \sum_q 0_q \hat{W}^t_q k q q k$$

and

$$s = N^{-1} \sum_k N_k \sum_q (0_q - \bar{0})^2 \hat{W}^t_q k q q k.$$

Item parameters are adjusted accordingly. Under the 2- and 3-
Exploiting Auxiliary Information

parameter models, \(\hat{b}_j \) is replaced by \((\hat{b}_j - \bar{b})/s \) and \(a_j \) is replaced by \(sa_j \). Under 1-parameter models, rescaling takes place only with respect to \(\bar{b} \).

Iteration from several starting values helps to verify whether a given solution is indeed a global maximum. The observed information matrix for the item parameter estimates can then be approximated via Equation 6. Employing Louis's (1982) simplifications for "missing multinomial indicators" problems, we obtain

\[
I_{X,Y}(\beta) = \sum_{i,k} y_{ik} \sum_{q} \left(\frac{\partial \xi_1(\Theta_q)}{\partial \beta} \right) \left(\frac{\partial \xi_1(\Theta_q)}{\partial \beta} \right) p_k(\Theta_q | x_i),
\]

where \(p_k(\Theta_q | x_i) \) is evaluated at \(\hat{\beta} \) and \(\hat{\Theta} \).

A Linear Model

The unrestricted mixture solution described above becomes unwieldy as the number of potential values of the auxiliary variable increases. The more structured alternative of a linear model for \(p(\theta | y) \) is suitable when \(y \) is vector-valued or is continuous rather than discrete. Assuming homoscedastic and normal residuals, we would have
Exploiting Auxiliary Information

\[\theta \sim N(y'\alpha, \sigma^2) \]

where auxiliary variables are coded so that the K columns of \(Y = (y_1 : \ldots : y_K)' \), which are basis vectors for the K elements of \(\alpha \), are linearly independent. They may include values on measured variables such as previous test scores and dummy regression variables that encode selected contrasts among categorical auxiliary variables.

Maximum likelihood solutions for \(\alpha \) and \(\sigma^2 \) in the special case of structured means for the cells of a multi-way design have been given by Mislevy (1985) under the assumption that item parameters are known, and by Zwarts and Veldhuesen (1985) under the assumption that \(p(x|\theta) \) is the Rasch model with unknown item parameters to be estimated jointly. These solutions are readily extended to the case of a general IRT model with unknown item parameters. This section describes an approximation over a grid of prespecified points so that computation is similar to the nonparametric solution described above. Attention is focused for convenience upon the 1-, 2-, and 3-parameter logistic and normal IRT models.

The linear indeterminacies of these models are again conveniently resolved by restrictions on the population parameters. First, we may without loss of generality fix \(\sigma^2 \) at unity to set the
unit-size of the scale. For 1-parameter models, a slope parameter common over items is then estimated. Second, we may set the origin by centering the elements of each column of Y at zero. All effects are thus cast as deviations around a grand mean of zero. This restriction, in conjunction with the independence of the basis vectors, completes the resolution of the scale.

The marginal likelihood for a sample of size N is written as

$$L = \prod_i \int p(x_i | \theta, \beta) \phi(\theta - y_i^\alpha) \, d\theta,$$

where ϕ represents the standard normal density function. Approximation over a finite grid of points is accomplished by

$$L^* = \prod_i \sum_{q} p(x_i | \theta_q, \beta) W_q(\alpha),$$

where

$$W_q(\alpha) = \exp[-(\theta_q - y_i^\alpha)^2/2] / \sum_r \exp[-(\theta_r - y_i^\alpha)^2/2].$$

The weights W play the same role as those in the preceding approximation. The difference is that they are no longer estimated.
without restriction, but modeled as functions of the effect parameters α.

MML estimation can again proceed in EM cycles that solve the likelihood equations. Let $\hat{\beta}^t$ and $\hat{\alpha}^t$ be provisional estimates from cycle t. The E-step computes expected counts of examinees and correct responses at each point:

$$N_{q}^{t+1} = \sum_{i} P(O_{q} | x_{i}, \hat{\beta}^t, \hat{\alpha}^t)$$

and

$$R_{j}^{t+1} = \sum_{i} x_{ij} P(O_{q} | x_{i}, \hat{\beta}^t, \hat{\alpha}^t)$$

where

$$P(O_{q} | x_{i}, \hat{\beta}^t, \hat{\alpha}^t) = P(x_{i} | O_{q}, \hat{\beta}^t, \hat{\alpha}^t) \cdot P(O_{q} | \Theta_{q}, \Theta_{\beta}^t, \Theta_{\alpha}^t) / \sum_{r} P(x_{i} | O_{q}, \hat{\beta}^t, \hat{\alpha}^t) \cdot P(O_{q} | \Theta_{q}, \Theta_{\beta}^t, \Theta_{\alpha}^t)$$

It also computes the conditional expected value of each examinee's proficiency:

$$\hat{\theta}_{1}^{t+1} = \sum_{q} O_{q} P(O_{q} | x_{i}, \hat{\beta}^t, \hat{\alpha}^t) .$$
The M-step pseudo-likelihood equations for item parameters can be written as in Equation 9. The equations for \(\alpha \) simplify to

\[
\hat{\alpha}^{t+1} = (Y'Y)^{-1}Y'\hat{\beta}^{t+1},
\]

where \(\hat{\beta}^{t+1} = (\hat{\beta}_1^{t+1}, \ldots, \hat{\beta}_N^{t+1}) \). The posterior information matrix for \(\hat{\beta} \) can again be approximated via Equation 10.

A Numerical Example

This section illustrates the procedures described above. The data are responses to four items from the Arithmetic Reasoning test of the Armed Services Vocational Aptitude Battery (ASVAB), Form 8A, as observed in a sample of 776 participants in the Profile of American Youth survey (U.S. Department of Defense, 1982). Table 4 gives counts of the sixteen possible response patterns occurring in each cell of a 2-by-2 design based on two background variables collected along with item responses. Because these variables are based on demographic information rather than the educationally-relevant information we would prefer, we will refer to the factors as simply Factor A and Factor B, nesting levels 1 and 2 within each.

Insert Table 4 about here

Four analyses were carried out on these data. In each, the 2-parameter logistic ogive was employed as the IRT model for conditional probabilities of correct response. The analyses differed in terms of the auxiliary information about examinees they employed. The first run used MML estimation of item parameters and densities over a grid of ten points, assuming examinees were drawn at random from a single undifferentiated population. The second and third runs differentiated the population via Factor A and Factor B respectively, and the fourth run employed both factors jointly.

Resulting item parameter estimates and standard errors, along with subpopulation means and standard deviations, are shown in Tables 5 through 8. The scale has been set in all solutions to standardize the total population. For each item parameter type, columns in Table 6 through 8 display the ratio of the squared standard error of the item parameter estimate under the undifferentiated model to the corresponding value in the differentiated model. The result can be interpreted as efficiency relative to the undifferentiated model, and the excess of a value above unity reflects the proportional increase in estimation precision. Geometric averages are also shown for the relative efficiency columns. The excess of such a value over unity, times
four, gives the increases of precision in the units of numbers of additional items of the same kind.

Insert Tables 5-8 about here

It is apparent that including auxiliary information had little effect on the values of the item parameter estimates. The differences between the estimates from the undifferentiated and the fully differentiated solutions occur only in the second decimal place. More significant differences exist in the accompanying (estimated) standard errors, however. The precision of threshold estimates was improved only modestly; an increase roughly equivalent to one additional item response per examinee was observed in the fully differentiated run. The precision of slope estimates was improved dramatically; an increase roughly equivalent to eight items was observed. It would appear that Factor A accounted for more increase in precision for slopes, while Factor B accounted for more increase in precision for thresholds.

Discussion

This paper has outlined procedures for incorporating auxiliary information about examinees into the IRT framework. Enhancing the precision of item parameter estimates was the primary focus. This section evaluates the value of improvements so attained, and discusses two additional aspects of the model.
The increase in information about item parameters in typical educational and psychological settings can be expected to lie in the range of two to six items. The numerical example suggests that the increase will vary by item parameter type, probably less for well-estimated parameters and greater for poorly-estimated parameters.

The expected increase is modest, to be sure, but in many applications it is free in the sense that it is already available for use. Because its incremental value decreases for longer tests, auxiliary information would be most useful in settings where relatively few responses are solicited from each examinee. This would include two applications of great current interest, namely educational assessment and adaptive testing. In assessment, data that are sparse at the level of individuals—say, five items in a given scale—yield more efficient estimates of population parameters for a given total number of item responses. In adaptive testing, new items are calibrated using joint response patterns with previously-calibrated items while the number of old items is held to minimally acceptable levels—as few as, say, fifteen.

A side issue in the present paper but a fundamentally important result is that when examinees are indeed a random sample from a well-defined population, the estimated population
Exploiting Auxiliary Information

30
distributions and effect parameters are consistent within the limits of precision afforded by the numerical approximations (see Mislevy, 1984, 1985, on population estimation when item parameters are known). This stands in contrast to the asymptotically biased results obtained by using the distribution of $\hat{\theta}$ to approximate the distribution of θ. In fact, the discrepancy between the two distributions is largest in exactly those cases in which the present procedures offer most the benefit for item parameter estimation, namely short tests.

Finally, it is implicit in preceding discussions that auxiliary information about examinees can lead to improved estimates of individual proficiencies. Whether estimates that are improved in the sense of minimum mean squared error are unequivocally "better" for all applications is not clear, however. We have avoided advocating the use of auxiliary information when tests are used as contests—i.e., when important placement or selection decisions are made for individual examinees—because it would seem that in these situations the tester ought to gather enough data directly dependent upon proficiency (i.e., item responses) to make satisfactorily precise decisions on that strength alone. In adaptive testing, for example, we would recommend the use of auxiliary information to improve item parameter estimation, but not to estimate scores that will be used to compare individual examinees.
Exploiting Auxiliary Information

References

Exploiting Auxiliary Information

Acknowledgment

This work was supported by contract no. N00014-85-K-0683, project designation NR 150-539, from Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research. The author is grateful to Kathleen Sheehan and Martha Stocking for their comments and suggestions.
Exploiting Auxiliary Information

Table 1
Posterior Precision for θ from Item Responses Only

<table>
<thead>
<tr>
<th>n</th>
<th>1.7a = .500</th>
<th>1.7a = 1.000</th>
<th>1.7a = 1.500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
<td>σ_x^2</td>
<td>i</td>
</tr>
<tr>
<td>2</td>
<td>.125</td>
<td>8.000</td>
<td>.500</td>
</tr>
<tr>
<td>4</td>
<td>.250</td>
<td>4.000</td>
<td>1.000</td>
</tr>
<tr>
<td>8</td>
<td>.500</td>
<td>2.000</td>
<td>1.000</td>
</tr>
<tr>
<td>16</td>
<td>1.000</td>
<td>1.000</td>
<td>4.000</td>
</tr>
<tr>
<td>32</td>
<td>2.000</td>
<td>.500</td>
<td>8.000</td>
</tr>
<tr>
<td>64</td>
<td>4.000</td>
<td>.250</td>
<td>16.000</td>
</tr>
<tr>
<td>128</td>
<td>8.000</td>
<td>.125</td>
<td>32.000</td>
</tr>
</tbody>
</table>

where:
- n is the number of identical items with a as noted and $b = \theta$.
- i is information $= \text{posterior precision}$.
Exploiting Auxiliary Information

Table 2
Posterior Precision for θ from Item Responses and Population Membership

$1.7a = 1.000$

<table>
<thead>
<tr>
<th>n</th>
<th>$i(\equiv \Sigma^{-1})$</th>
<th>$\frac{\sigma^2}{\Sigma}$ Efficiency</th>
<th>Effective Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.500</td>
<td>3.000</td>
<td>200.0%</td>
</tr>
<tr>
<td>4</td>
<td>2.000</td>
<td>2.000</td>
<td>100.0%</td>
</tr>
<tr>
<td>8</td>
<td>3.000</td>
<td>1.500</td>
<td>50.0%</td>
</tr>
<tr>
<td>16</td>
<td>5.000</td>
<td>1.250</td>
<td>25.0%</td>
</tr>
<tr>
<td>32</td>
<td>9.000</td>
<td>1.125</td>
<td>12.5%</td>
</tr>
<tr>
<td>64</td>
<td>17.000</td>
<td>1.063</td>
<td>6.3%</td>
</tr>
<tr>
<td>128</td>
<td>33.000</td>
<td>1.031</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

$n =$ number of identical items with a as noted and $b = 0$.

$i =$ information \equiv posterior precision.
Exploiting Auxiliary Information

Table 3

Precision Increases for θ Resulting from the Use of Auxiliary Information

<table>
<thead>
<tr>
<th>Source</th>
<th>Increment in Posterior Precision</th>
<th>Precision Gain in Item Units</th>
<th>Gain over Undifferentiated Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-item response</td>
<td>.250</td>
<td>1.000</td>
<td>--</td>
</tr>
<tr>
<td>Population membership</td>
<td>1.000</td>
<td>4.000</td>
<td>--</td>
</tr>
<tr>
<td>Auxiliary information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^2 = .10$</td>
<td>1.111</td>
<td>4.444</td>
<td>11.1%</td>
</tr>
<tr>
<td>$R^2 = .20$</td>
<td>1.250</td>
<td>5.000</td>
<td>25.0%</td>
</tr>
<tr>
<td>$R^2 = .30$</td>
<td>1.429</td>
<td>5.716</td>
<td>42.9%</td>
</tr>
<tr>
<td>$R^2 = .40$</td>
<td>1.667</td>
<td>6.668</td>
<td>66.7%</td>
</tr>
<tr>
<td>$R^2 = .50$</td>
<td>2.000</td>
<td>8.000</td>
<td>100.0%</td>
</tr>
<tr>
<td>$R^2 = .60$</td>
<td>2.500</td>
<td>10.000</td>
<td>150.0%</td>
</tr>
<tr>
<td>$R^2 = .70$</td>
<td>3.333</td>
<td>13.332</td>
<td>233.3%</td>
</tr>
<tr>
<td>$R^2 = .80$</td>
<td>5.000</td>
<td>20.000</td>
<td>400.0%</td>
</tr>
<tr>
<td>$R^2 = .90$</td>
<td>10.000</td>
<td>40.000</td>
<td>900.0%</td>
</tr>
</tbody>
</table>
Table 4

Counts of Observed Response Patterns

<table>
<thead>
<tr>
<th>Item Response</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>A1B1</th>
<th>A1B2</th>
<th>A2B1</th>
<th>A2B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>20</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>23</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>18</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>15</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>20</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
<td>42</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>263</td>
<td>228</td>
<td>140</td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5

Item Parameter Estimates: Undifferentiated Population

<table>
<thead>
<tr>
<th>Item</th>
<th>(\hat{b})</th>
<th>SE((\hat{b}))</th>
<th>(\hat{a})</th>
<th>SE((\hat{a}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.422</td>
<td>0.058</td>
<td>1.022</td>
<td>0.171</td>
</tr>
<tr>
<td>2</td>
<td>-0.226</td>
<td>0.072</td>
<td>0.666</td>
<td>0.094</td>
</tr>
<tr>
<td>3</td>
<td>0.152</td>
<td>0.076</td>
<td>0.705</td>
<td>0.096</td>
</tr>
<tr>
<td>4</td>
<td>0.397</td>
<td>0.080</td>
<td>0.839</td>
<td>0.114</td>
</tr>
</tbody>
</table>

Population Mean: 0.000
Population Standard Deviation: 1.000
Table 6

Item Parameter Estimates: Population Differentiated with Respect to Factor A Only

<table>
<thead>
<tr>
<th>Item</th>
<th>\hat{b}</th>
<th>SE(\hat{b})</th>
<th>Relative Efficiency</th>
<th>\hat{a}</th>
<th>SE(\hat{a})</th>
<th>Relative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.436</td>
<td>.062</td>
<td>.875</td>
<td>.869</td>
<td>.069</td>
<td>6.142</td>
</tr>
<tr>
<td>2</td>
<td>-.217</td>
<td>.077</td>
<td>.874</td>
<td>.622</td>
<td>.054</td>
<td>3.030</td>
</tr>
<tr>
<td>3</td>
<td>.189</td>
<td>.072</td>
<td>1.114</td>
<td>.676</td>
<td>.056</td>
<td>2.939</td>
</tr>
<tr>
<td>4</td>
<td>.465</td>
<td>.069</td>
<td>1.344</td>
<td>.775</td>
<td>.061</td>
<td>3.493</td>
</tr>
</tbody>
</table>

Geometric average relative efficiency: 1.035

Subpopulation means: .296, -.511

Subpopulation standard deviations: .960, .850
Table 7

Item Parameter Estimates: Population Differentiated

with Respect to Factor B Only

<table>
<thead>
<tr>
<th>Item</th>
<th>\hat{b}</th>
<th>SE(b)</th>
<th>Relative Efficiency</th>
<th>\hat{a}</th>
<th>SE(a)</th>
<th>Relative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.408</td>
<td>.057</td>
<td>1.035</td>
<td>.941</td>
<td>.073</td>
<td>5.487</td>
</tr>
<tr>
<td>2</td>
<td>-.211</td>
<td>.077</td>
<td>.874</td>
<td>.621</td>
<td>.056</td>
<td>2.818</td>
</tr>
<tr>
<td>3</td>
<td>.185</td>
<td>.071</td>
<td>1.146</td>
<td>.686</td>
<td>.058</td>
<td>2.740</td>
</tr>
<tr>
<td>4</td>
<td>.431</td>
<td>.064</td>
<td>1.563</td>
<td>.842</td>
<td>.067</td>
<td>2.895</td>
</tr>
</tbody>
</table>

Geometric average relative efficiency: 1.128

Subpopulation means: .136, -.147

Subpopulation standard deviations: 1.021, .955
Exploiting Auxiliary Information

Table 8

Item Parameter Estimates: Population Differentiated with Respect to Factors A and B

<table>
<thead>
<tr>
<th>Item</th>
<th>(\hat{b})</th>
<th>SE((\hat{b}))</th>
<th>Relative Efficiency</th>
<th>(\hat{a})</th>
<th>SE((\hat{a}))</th>
<th>Relative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.421</td>
<td>0.052</td>
<td>1.244</td>
<td>1.006</td>
<td>0.080</td>
<td>4.569</td>
</tr>
<tr>
<td>2</td>
<td>-0.213</td>
<td>0.071</td>
<td>1.028</td>
<td>0.672</td>
<td>0.059</td>
<td>2.538</td>
</tr>
<tr>
<td>3</td>
<td>0.139</td>
<td>0.065</td>
<td>1.367</td>
<td>0.775</td>
<td>0.063</td>
<td>2.311</td>
</tr>
<tr>
<td>4</td>
<td>0.402</td>
<td>0.066</td>
<td>1.469</td>
<td>0.834</td>
<td>0.066</td>
<td>2.983</td>
</tr>
</tbody>
</table>

Geometric average relative efficiency: 1.266 2.994

Subpopulation means: .485, .073, -.513, -.502

Subpopulation standard deviations: 1.164, .855, .642, .640
Educational Testing Service/Mislevy

Personnel Analysis Division,
AF/MPXA
5C360, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

Dr. Earl A. Alluisi
HQ, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. Erling R. Andersen
Department of Statistics
Studiestræde 6
1455 Copenhagen
DENMARK

Dr. Phipps Arabie
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Eva L. Baker
UCLA Center for the Study
of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code: H711
Naval Training Equipment Center
Orlando, FL 32813

Dr. Bruce Bloxom
Administrative Sciences
Code 54B1
Navy Postgraduate School
Monterey, CA 93943

Dr. R. Darrell Bock
University of Chicago
Department of Education
Chicago, IL 60637

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
1120 Brussels, BELGIUM

Dr. Robert Breaux
Code N-095R
NAVTRAEQIPCDEN
Orlando, FL 32813

Dr. Robert Brennan
American College Testing
Programs
P. O. Box 168
Iowa City, IA 52243

Dr. Patricia A. Butler
NIE Mail Stop 1806
1200 19th St., NW
Washington, DC 20208

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52243

Dr. Robert Carroll
NAVOP 0187
Washington, DC 20370
Educational Testing Service/Mislevy

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Carl H. Frederiksen
McGill University
3700 McTavish Street
Montreal, Quebec H3A 1Y2
CANADA

Dr. Robert D. Gibbons
University of Illinois-Chicago
P.O. Box 6998
Chicago, IL 60680

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Robert Glaser
Learning Research
& Development Center
University of Pittsburgh
3929 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Universitat Dusseldorf
Erziehungswissenschaftliches
Universitaetsstr. 1
Dusseldorf 1
WEST GERMANY

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 90010

Mr. Dick Hoshaw
NAVOP-135
Arlington Annex
Room 2834
Washington, DC 20350

Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Huynh Huynh
College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Douglas H. Jones
Advanced Statistical
Technologies Corporation
10 Trafalgar Court
Lawrenceville, NJ 08648
Dr. G. Gage Kingsbury
Portland Public Schools
Research and Evaluation Department
501 North Dixon Street
P. O. Box 3107
Portland, OR 97209-3107

Dr. William Koch
University of Texas-Austin
Measurement and Evaluation Center
Austin, TX 78703

Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
The NETHERLANDS

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

Dr. William L. Maloy
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08451

Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Jovanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick
HQ, MEPCOM
MEPCT-P
2500 Green Bay Road
North Chicago, IL 60064

Mr. Robert McKinley
University of Toledo
Department of Educational Psychology
Toledo, OH 43606

Dr. Barbara Means
Human Resources Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Headquarters, Marine Corps
Code MPI-20
Washington, DC 20380

Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Norman, OK 73069
Dr. William E. Nordbrock
FMC-ADCO Box 2E
AFB, NY 09710

Dr. Melvin R. Novick
356 Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Director, Manpower and Personnel
Laboratory,
NPRDC (Code 06)
San Diego, CA 92152

Library, NPRDC
Code P201L
San Diego, CA 92152

Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Dr. Roger Pennell
Air Force Human Resources Laboratory
Lowry AFB, CO 80230

Dr. Mark D. Reckase
ACT
P.O. Box 168
Iowa City, IA 52243

Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235

Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152

Dr. Robert Sasmor
HQDA DAMA-ARL
Pentagon, Room 3E516
Washington, DC 20310-0631
USA

Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152

Dr. W. Steve Sellman
OASD(MRA&L)
2B269 The Pentagon
Washington, DC 20301
Dr. Kazuo Shigemasu
7-9-24 Kugenuma-Kaigan
Fujusawa 251
JAPAN

Dr. William Sims
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. H. Wallace Sinaiko
Manpower Research
and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Dr. Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

Maj. Bill Strickland
AF/MPXO/A
4E168 Pentagon
Washington, DC 20330

Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

Mr. Brad Symson
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research
Laboratory
Urbana, IL 61801

Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820

Dr. Robert Tsutakawa
The Fred Hutchinson
Cancer Research Center
Division of Public Health Sci.
1124 Columbia Street
Seattle, WA 98104

Dr. Ledyard Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820

Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E. Street, NW
Washington, DC 20415

Dr. David Vale
Assessment Systems Corp.
2233 University Avenue
Suite 310
St. Paul, MN 55114

Dr. Frank Vicino
Navy Personnel R&D Center
San Diego, CA 92152
Educational Testing Service/Mislevy

Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08541

Dr. Ming-Mei Wang
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Thomas A. Warm
Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

Dr. Brian Waters
Program Manager
Manpower Analysis Program
HumRRO
1100 S. Washington St.
Alexandria, VA 22314

Dr. David J. Weiss
N650 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Ronald A. Weitzman
NPS, Code 54Wz
Monterey, CA 92152

Major John Welsh
AFHRL/MOAN
Brooks AFR, TX 78223

Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90007

German Military Representative
ATTN: Wolfgang Wildegrube
Streitkraefteamt
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940