This paper presents an abstract-mathematical formulation of a Large Space Structure Control problem. The physical apparatus consists of a softly supported antenna attached to the space shuttle by a flexible beam-like truss. The control objective is to slew the antenna on command within the given accuracy and maintaining stability. The control forces and torques are applied at the shuttle end as well as the antenna end and in addition provision is made for a small number of 2-axis proof-mass actuators along the beam. The beam motion is modelled by partial differential equations. Of the
variety of Control problems possible we touch only on the time-optimal proble.
A MATHEMATICAL FORMULATION OF A LARGE SPACE STRUCTURE CONTROL PROBLEM

A. V. Balakrishnan

24th IEEE Conference on Decision and Control
Fort Lauderdale, Florida
December 11-13, 1985

To be published in the Proceedings
A MATHEMATICAL FORMULATION OF A LARGE SPACE STRUCTURE CONTROL PROBLEM

A. V. Balakrishnan

Department of Electrical Engineering
6731 Hollifield Hall
UCLA
Los Angeles, CA 90024

1. Introduction

The paper presents an abstract-mathematical formulation of a large space structure control problem experiment being conducted by the Space Controls Branch (L.W. Taylor) at the NASA Langley Research Center.

Briefly, the physical apparatus consists of a soft supported antenna attached to the space shuttle by a flexible beam-like truss. The control objective is to slew the antenna on command within the given accuracy and maintaining stability, based on noisy sensor data and limited control authority; allowance must also be made for random disturbance. The control forces and torques are applied at the shuttle end as well as the antenna end and in addition provision is made for a small number of 2-axis proof-mass actuators along the beam.

The beam motion is modeled by partial differential equations, and we begin in Section 2 with the equations of motion derived by L.W. Taylor. The abstract formulation as a nonlinear wave-equation in a Hilbert space is given in Section 3. Existence and uniqueness theory is in Section 4. The basic controllability results are in Section 5 and the stabilizability results in Section 6. Of the variety of Control problems possible we touch only on the time-optimal problem, briefly in Section 7.

2. Equations of Motion

We shall need to be brief here -- for necessary elaboration see [1]. The equations of motion, using the continuum model (as opposed to a finite-element model) consist of standard beam bending and torsion partial differential equations with driving end conditions and forces applied at the locations of the proof-mass actuators.

Roll Beam Bending

\[
\frac{\partial^2 u}{\partial t^2} + EI_0 \frac{\partial^4 u}{\partial s^4} = \sum_{n=1}^{N} \left(f_{s,n} \phi(s-s_n) + \phi_n \frac{\partial^2}{\partial s^2} (s-s_n) \right)
\]

Pitch Beam Bending

\[
\frac{\partial^2 u}{\partial t^2} + EI_0 \frac{\partial^4 u}{\partial s^4} = \sum_{n=1}^{N} \left(f_{s,n} \phi(s-s_n) + \phi_n \frac{\partial^2}{\partial s^2} (s-s_n) \right)
\]

These are the angular velocity vectors of the shuttle and the antenna respectively. Let

\[
\begin{align*}
\omega_1(t) &= \dot{\theta}_1(t) \\
\omega_4(t) &= \dot{\theta}_4(t)
\end{align*}
\]

and let the force applied at reflector center of mass be

\[
F_r = (f_x, f_y, 0)^T
\]

Then

\[
\begin{align*}
\mathbf{8}_1(t) &= -(\mathbf{\omega}_1 \mathbf{1}_1 - \mathbf{M}_1(t) - \mathbf{M}_0(t)) \\
\mathbf{8}_4(t) &= -(\mathbf{\omega}_4 \mathbf{1}_4 - \mathbf{M}_4(t) - \mathbf{r}_0 \mathbf{F}_r(t)) - \mathbf{m}_4 \mathbf{r}_e^2
\end{align*}
\]

where

\[
\begin{align*}
\mathbf{1}_4 &= 1_4 + \mathbf{m}_4 \begin{pmatrix} r_x & -r_y & 0 \\ r_y & r_x & 0 \\ 0 & 0 & 0 \end{pmatrix} \\
\mathbf{8}_4 &= \begin{pmatrix} u_0(L) \\ v_0(L) \\ z(L) \end{pmatrix}
\end{align*}
\]

Research supported in part under AFOSR Grant 83-0318.
Let
\[
\begin{align*}
&f_1(t) = f_{1,1}(t) \\
&f_3(t) = f_{3,1}(t) \\
&f_4(t) = f_{4,1}(t)
\end{align*}
\]
\[
\begin{align*}
&f_2(t) = f_{2,1}(t) \\
&f_5(t) = f_{5,1}(t) \\
&f_6(t) = f_{6,1}(t)
\end{align*}
\]
\[
\begin{align*}
&f_7(t) = f_{7,1}(t) \\
&f_8(t) = f_{8,1}(t) \\
&f_9(t) = f_{9,1}(t)
\end{align*}
\]
\[
\begin{align*}
&f_{10}(t) = f_{10,1}(t) \\
&f_{11}(t) = f_{11,1}(t) \\
&f_{12}(t) = f_{12,1}(t)
\end{align*}
\]
\[
\begin{align*}
&f_{13}(t) = f_{13,1}(t) \\
&f_{14}(t) = f_{14,1}(t) \\
&f_{15}(t) = f_{15,1}(t)
\end{align*}
\]
\[
\begin{align*}
&f_{16}(t) = f_{16,1}(t) \\
&f_{17}(t) = f_{17,1}(t)
\end{align*}
\]

Then
\[
\begin{align*}
&\rho\alpha_1(t,0) \\
&\rho\alpha_2(t,0+). \\
&\rho\alpha_3(t,s_2) + \rho\alpha_4(t,s_2) \\
&\rho\alpha_5(t,s_2) + \rho\alpha_6(t,s_2) \\
&\rho\alpha_7(t,s_3) + \rho\alpha_8(t,s_3) \\
&\rho\alpha_9(t,s_3) + \rho\alpha_{10}(t,s_3) \\
&\rho\alpha_{11}(t,L) + \rho\alpha_{12}(t,L) \\
&\rho\alpha_{13}(t,L) + \rho\alpha_{14}(t,L) \\
&\rho\alpha_{15}(t,L) + \rho\alpha_{16}(t,L) \\
&\rho\alpha_{17}(t,L) + \rho\alpha_{18}(t,L)
\end{align*}
\]
\[
\begin{align*}
&f_{19}(t) = -\rho\alpha_{19}(t) \\
&f_{20}(t) = -\rho\alpha_{20}(t)
\end{align*}
\]

3. Abstract Formulation

The Hilbert space \(H \) is \(L_2(0,L)^3 \times R^4 \) for \(0 < L < \infty \). The points \(s_2, s_3 \) are fixed. We define the operator \(A \) on the domain \(D \subset H \), consisting of \(3 \times 1 \) functions \(u'_0(\cdot), u_0(\cdot), u'_0(\cdot) \) such that \(u_0(\cdot), u'_0(\cdot), u_0(\cdot), u'_0(\cdot) \in L_1[0,L] \) and \(u'_0(\cdot) \) has \(L_1 \)-derivatives in \([0,s_2], [s_2,s_3] \) and \([s_3,L] \); \(u_0(\cdot) \) and \(u'_0(\cdot) \) are specified by \((0,0,0,L) \). The remaining "scalar" part in \(R^4 \) is specified by
\[
\begin{align*}
&x_4 = u_0(0^+) \\
&x_5 = u_0(0+). \\
&x_6 = u_0(L^-) \\
&x_7 = u'_0(L^-) \\
&x_8 = u'_0(0+) \\
&x_9 = u'_0(L+) \\
&x_{10} = u_0(0+) \\
&x_{11} = u_0(L^-)
\end{align*}
\]

The operator \(A \) is defined by \(Ax = y \):
\[
\begin{align*}
&y_1 = E_1u''_0(\cdot) \\
&y_2 = E_1u''_0(\cdot) \\
&y_3 = -G_0u''_0(\cdot) \\
&y_4 = E_1u''_0(\cdot) \\
&y_5 = E_1u''_0(\cdot) \\
&y_6 = -E_1u''_0(\cdot) \\
&y_7 = -E_1u''_0(\cdot) \\
&y_{14} = E_1u''_0(s_3^+) - u''_0(s_3^-) \\
&y_{15} = E_1u''_0(s_3^+) - u''_0(s_3^-)
\end{align*}
\]

It may then be verified that \(D \) is dense and \(A \) is self-adjoint and nonnegative definite. The control system dynamics are then formulated as a nonlinear wave equation over \(H \):
\[
N(t) + Ax(t) + Bu(t) + Fr(t) + K(t) = 0
\]

where \(M \) is the \(17 \times 3 \) matrix specified by
\[
M = \begin{bmatrix}
&5,1 \cdot 5,2 \cdot 5,3
&6,1 \cdot 6,2 \cdot 6,3
&7,1 \cdot 7,2 \cdot 7,3
&8,1 \cdot 8,2 \cdot 8,3
\end{bmatrix}
\]

where all \(M_{ij} \) are zero except
\[
\begin{align*}
&m_{1,1} = \alpha _{1,1} \\
&m_{1,2} = \alpha _{1,2} \\
&m_{1,3} = \alpha _{1,3} \\
&m_{4,1} = \alpha _{4,1} \\
&m_{11,1} = \alpha _{11,1} \\
&m_{11,2} = \alpha _{11,2} \\
&m_{11,3} = \alpha _{11,3} \\
&m_{12,1} = \alpha _{12,1} \\
&m_{12,2} = \alpha _{12,2} \\
&m_{12,3} = \alpha _{12,3} \\
&m_{13,1} = \alpha _{13,1} \\
&m_{13,2} = \alpha _{13,2} \\
&m_{13,3} = \alpha _{13,3}
\end{align*}
\]

We note that \(M \) defines a self-adjoint positive definite (nonsingular) linear operator on \(H \) onto \(H \). The "control" \(u(t) \) is \(10 \times 1 \):
\[
\begin{bmatrix}
\alpha _{1,1} \\
\alpha _{1,2} \\
\alpha _{1,3} \\
\alpha _{4,1} \\
\alpha _{11,1} \\
\alpha _{11,2} \\
\alpha _{11,3} \\
\alpha _{12,1} \\
\alpha _{12,2} \\
\alpha _{12,3} \\
\alpha _{13,1} \\
\alpha _{13,2} \\
\alpha _{13,3}
\end{bmatrix} = \begin{bmatrix}
\beta _{1,1} \\
\beta _{1,2} \\
\beta _{1,3} \\
\beta _{2,1} \\
\beta _{2,2} \\
\beta _{2,3} \\
\beta _{3,1} \\
\beta _{3,2} \\
\beta _{3,3}
\end{bmatrix}
\]

and \(B \) is correspondingly a \(17 \times 10 \) constant matrix given by
\[
B = \begin{bmatrix}
\alpha _{7,10} \\
\alpha _{8,10} \\
\alpha _{9,10} \\
\alpha _{10,10} \\
\alpha _{11,10} \\
\alpha _{12,10} \\
\alpha _{13,10}
\end{bmatrix}
\]

\((0_{7 \times 10} \) denotes \(7 \times 10 \) zero matrix) \((1_{10 \times 10} \) denotes \(10 \times 10 \) identity matrix\).

\(N(t) \) is the noise disturbance which is \(3 \times 1 \) so that \(F \) is \(17 \times 3 \):
Finally, $K(\dot{x}(t))$ is a nonlinear function of $\dot{x}(t)$ given by

$$K(\dot{x}(t)) = -\lambda_1 \dot{x}_1(t) - \lambda_2 \dot{x}_2(t)$$

We also have the M-inner product:

$$[Y, Z]_M = [Y_1, Z_1] + [Y_2, Z_2]$$

We will denote the corresponding completed spaces by H_E and H_M.

We can show that A generates a dissipative semigroup over H_E and an unbounded semigroup over H_M. The resolvent is compact and in either inner product we have the representation for the semigroup (see [2]):

$$S(t)Y = \frac{1}{i} S(t) P_k Y + j$$

where P_k is a two-dimensional projection for each k and P_0 is the projection on the null space of A^2, and

$$P_k S(t) P_k = S(t) P_k$$

where P_0 is of course zero.

Proportional Damping

There is reason to believe that we may assume "proportional" damping. [Private communication, L.W. Taylor.] In this case we may modify A to be:

$$A = \begin{pmatrix} 0 & 1 \\ -M^{-1}A & -2\sqrt{M^{-1}A} \end{pmatrix}$$

where ζ is the fixed damping factor. In this case the semigroup is exponentially damped in the energy norm, although not of course in the M-norm, because of the nonemptiness of the zero-eigen-function space of A (and hence of A^2), which are not affected by proportional damping. (We may characterize $-A$ without invoking the modes, although we shall not go into this here.) See [3] for more on square roots.

If we omit the nonlinearity for the moment, the linear equation

$$\ddot{x} + A\dot{x} + 2\zeta M^{-1}A \dot{x} + Bu(t) = 0$$

has the energy-norm solution (modal expansion, zero initial conditions)

$$x(t) = \sum_{k=1}^{\infty} a_k(t) \hat{y}_k(t)$$

where $\hat{y}_k(t)$ are the eigen-functions

$$\dot{a}_k(t) = \zeta a_k(t) + \hat{y}_k(t)$$

(indices denote components)

$$a_k(t) = e^{-\zeta t} \sin \frac{\lambda_k t}{2}$$

$$\lambda_k = \sqrt{\zeta^2 + \zeta^2 \varphi}$$

For the M-norm case we must of course add

$$0 = e^{-\zeta t} \sin \frac{\lambda_k t}{2}$$

$$\lambda_k = \sqrt{1 - \zeta^2} \varphi$$

$$\varphi_k = \frac{\lambda_k}{\sqrt{1 - \zeta^2}}$$
to (3.8). We note that there exists nonzero x such that
\[[x, Bu] = 0, \]
and hence such an x cannot be reached from the origin by using any control $u(t)$ for both the linear and nonlinear equations.

5. Time-optimal Control

If the variety of control problems, we shall briefly mention time-optimal control. The "rapid slewing" requirement to any given direction within an error bound would translate at the first level to an open-loop deterministic time-optimal control problem to a target set subject to a control constraint.

If the target set be such that we can find a (possibly) sequence of controls $u_n(t)$ satisfying the constraint with corresponding times T_n and we may as well assume that
\[T_0 = \lim_{n \to \infty} T_n. \]

It is not difficult to prove the existence of an optimal control $u_n(t)$ corresponding to the time T_n. We may then invoke the maximum principle of Fattorini (for an appropriate class of target sets).

7. Stabilizability

The abstract formulation does make the problem of stabilization by feedback control quite accessible. This is because (setting noise-disturbance to zero) it is immediate from (2.2) that setting
\[E(t) = \|Y(t)\|_F^2 \]
we have
\[\frac{d}{dt} E(t) \leq -[Bu(t), \dot{u}(t)] \]
(see [5] for more on this), since
\[[K(\dot{x}(t), x(t))] = 0. \]

Hence we can also ensure that the energy decreases (does not increase):
\[\frac{d}{dt} E(t) \leq -[P \dot{u}(t), \dot{u}(t)] \]
by taking
\[\dot{1}(t) \]
and
\[\dot{u}(t) = P \dot{u}(t) \]
for any matrix P which is positive definite.

References

