Final Report
to
U.S. Army Research Office
Materials Science Division
P.O. Box 12211
Research Triangle Park, N.C. 27709-2211
attention: Dr. George Mayer

on
THE SECOND INTERNATIONAL CONFERENCE/WORKSHOP
ON SMALL FATIGUE CRACKS
5-10 January 1986

Contract No. DAAG29-85-G-0110

prepared by
R. O. Ritchie
University of California, Berkeley

and

J. Lankford
Southwest Research Institute
(Conference Chairmen)
on behalf of

United Engineering Trustees, Inc.
345 East 47th Street, New York, N.Y. 10017

31 March 1986
This document provides a description and technical summary of the Second International Engineering Foundation Conference/Workshop on Small Fatigue Cracks, held in Santa Barbara, California, 5-10 January 1986. It provides a current assessment of the pertinent issues with respect to definition, differences in behavior compared to long cracks, environmental effects, "driving forces" for small crack extension, intrinsic thresholds, and the application of small crack methodology to life prediction and alloy design. A listing of the conference participants and the technical program are appended to the report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORWARD</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. CONFERENCE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>The Small Crack Problem</td>
<td>3</td>
</tr>
<tr>
<td>Definition of a Small Crack</td>
<td>4</td>
</tr>
<tr>
<td>Differences between Long and Small Cracks Behavior</td>
<td>7</td>
</tr>
<tr>
<td>Environmental Effects</td>
<td>7</td>
</tr>
<tr>
<td>"Driving Force" for Small Crack Propagation</td>
<td>8</td>
</tr>
<tr>
<td>Intrinsic Thresholds</td>
<td>9</td>
</tr>
<tr>
<td>Small Crack Methodology in Life Prediction</td>
<td>10</td>
</tr>
<tr>
<td>Small Crack Considerations in Alloy Design</td>
<td>10</td>
</tr>
</tbody>
</table>

APPENDIX:
1) List of Conference Participants
2) Technical Program
THE SECOND INTERNATIONAL CONFERENCE/WORKSHOP
ON SMALL FATIGUE CRACKS

R. O. Ritchie and J. Lankford

FORWARD

This document constitutes the Final Report on the Second
International Conference/Workshop on Small Cracks, held under the
auspices of the Engineering Foundation at the Hotel Miramar, Santa
Barbara, California, on January 5-10, 1986, with Drs. R. O. Ritchie
and J. Lankford as Conference Chairmen. In addition to the
Engineering Foundation, the meeting was co-sponsored by grants from
the U.S. Air Force of Scientific Research, the U.S. Army Research
Office, the National Science Foundation, and the U.S. Office of Naval
Research.
This document provides a description and technical summary of the Second International Engineering Foundation Conference/Workshop on Small Fatigue Cracks, held in Santa Barbara, California, 5-10 January, 1986. It provides a current assessment of the pertinent issues with respect to definition, differences in behavior compared to long cracks, environmental effects, "driving forces" for small crack extension, intrinsic thresholds, and the application of small crack methodology to life prediction and alloy design. A listing of the conference participants and the technical program are appended to the report.
1. INTRODUCTION

The Second International Conference/Workshop on Small Fatigue Cracks was held at the Hotel Miramar, Santa Barbara, California, on 5-10 January 1986 under the auspices of the Engineering Foundation. The conference was organized by Dr. Robert O. Ritchie, Professor of Metallurgy, University of California, Berkeley, and Dr. James Lankford, Institute Scientist, Southwest Research Institute, San Antonio, Texas, who acted as the Conference Chairmen. The meeting was the second in a series of Engineering Conferences on Small Fatigue Cracks; the first was held at Asilomar, California, in January 1980 with Drs. M. E. Fine and R. O. Ritchie as chairman.

Sponsorship, principally in the form of travel support for foreign participants, and fellowships for graduate student attendees, was provided by the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation, and the Office of Naval Research, in addition to the Engineering Foundation.

The conference was attended by most of the world's leading experts on the small crack problem. In all, 77 researchers participated, coming from Austria (2), England (11), France (1), Japan (4), Sweden (1), West Germany (3) and the U.S. An attendance list is given in the appendix to this report. Also appended to the report is a copy of the technical program, which consisted of 26 invited and 15 contributed talks. The program was divided into 8 half-day sessions, each with 3 or 4 invited presentations, with
remaining time devoted to discussion, and 2 half-day sessions for contributed papers. The topics of the sessions concerned crack initiation and Stage I crack growth, role of microstructure, fracture mechanics characterization, role of environment, near-threshold behavior, experimental techniques, micromechanics and modelling, and engineering applications.

The technical content of the meeting was extremely good, with presentations generally of unusually high standard. In addition, there was ample time for discussion (by design), which resulted in a lively and informative meeting. Significant advances were made, both at the fundamental level, where many of the critical issues were brought sharply into focus, and with respect to practical engineering application, where the potential importance of small crack methodology was demonstrated to the industrial user.

A summary of the technical progress reviewed at the meeting is given below, based on the closing comments of the conference chairmen. This summary, together with written versions of the majority of the presentations, is due to be published by The Metallurgical Society of AIME later this year, under the title of "Small Fatigue Cracks", edited by R. O. Ritchie and J. Lankford.

2. CONFERENCE SUMMARY

In providing a technical summary of this meeting, it is important to ask how far the understanding of the behavior of small
cracks, and related topics, has progressed since the first of the Engineering Foundation conferences on Small Fatigue Cracks at Asilomar in January 1980. Clearly, the definition of the many mechanisms of crack closure and their role in the development of a threshold for long cracks is now well established. Furthermore, there are now far more results available on the related crack growth behavior of small cracks, although compared to long crack data the total number of papers reporting new information on small flaws is still not large. Similarly, although several models have been developed to describe small crack behavior, the total number of models is still relatively small. However, very significant progress has been made in the past six years in the sharper definition of critical issues, and in the fact that small crack methodology has begun to be appreciated in technological design and lifetime prediction, as evidenced by use of small crack data in the U.K. for turbine blade applications. Described below are our impressions of the highlights of this progress.

The Small Crack Problem

The small crack problem is in essence one created by fracture mechanics through a breakdown in the similitude concept at small crack sizes. For example, it was shown that crack tip strain fields for large and microstructurally-small fatigue cracks, driven by nominally equivalent cyclic stress intensities, are qualitatively and quantitatively dissimilar. It is thus a problem of defining a flaw
size-independent "crack driving force" to account for observations that small cracks can propagate at rates different from those of corresponding long cracks at the same nominal driving force. In the large majority of cases, small crack growth rates exceed those of long cracks, although there is evidence in steels of a mild reverse effect. Following initiation, small cracks are observed to grow at stress intensities below the long crack threshold; some extend with decaying growth rates until arrest, while others propagate quite rapidly to merge with long crack behavior. The problem therefore has practical significance, because damage-tolerant fatigue lifetime computations are invariably based on long crack data. As overall life is most influenced by low growth rate behavior, the accelerated and sub-threshold extension of small flaws can lead to potentially dangerous over-predictions of life.

Definition of a Small Crack

Numerous adjectives describing various types of small crack were proposed, although a consensus began to emerge. For example, the distinction between (three-dimensional) small flaws and (two-dimensional) short flaws, the latter being small in all but one dimension, clearly is of importance. Short flaws are generally through-thickness cracks, no smaller than 50 μm, which are created artificially by removing the wake material from long through cracks. Their behavior appears to be dominated, like that of large cracks, by the cyclic stress intensity factor ΔK (for small-scale yielding),
corrected by considerations of crack closure. Naturally-occurring small flaws, conversely, often approach microstructural dimensions, and although their behavior is still largely affected by closure, several other factors, including crack shape, enhanced crack tip plastic strains, and local arrest at grain boundaries, are of comparable significance.

Useful qualifiers remain microstructurally-, mechanically- and physically-small (or short), which pertain respectively to cracks small compared to microstructural dimensions, to the scale of local plasticity, and simply to cracks of a size less than 0.5 to 1 mm. In addition, fatigue cracks were also described, with reference to environmental effects, as chemically-small, as described below. Each of these classes of small flaw is associated with particular phenomena which primarily distinguish it from long crack behavior (Table I). For example, for mechanically-small flaws, characterization in terms of elastic-plastic fracture mechanics (e.g., through the use of ΔC_{TOD} or ΔJ) may help resolve differences in growth rates behavior between long and small cracks. On the other hand, for physically-small flaws, allowance for differences in the magnitude of crack closure (e.g., through the use of ΔK_{eff}) appears to be the predominant correlating factor. In the case of microstructurally-small flaws, all these factors may be important, plus others associated with local inhomogenities in the microstructure, non-uniform growth, retardation at grain boundaries, and so forth.
<table>
<thead>
<tr>
<th>Type of Small Crack</th>
<th>Dimension</th>
<th>Responsible Mechanism</th>
<th>Potential Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanically-small</td>
<td>$a \leq r_y^a$</td>
<td>excessive (active) plasticity</td>
<td>use of ΔJ ΔCTOD</td>
</tr>
<tr>
<td>Microstructurally-small</td>
<td>$a \leq d_g^b$</td>
<td>crack tip shielding enhanced Δe_p crack shape</td>
<td>probabilistic approach</td>
</tr>
<tr>
<td></td>
<td>$2c \leq 5-10$ d_g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physically-small</td>
<td>$a \leq 1$ mm</td>
<td>crack tip shielding (crack closure)</td>
<td>use of ΔK_{eff}</td>
</tr>
<tr>
<td>Chemically-small</td>
<td>up to ~ 10 mmc</td>
<td>local crack tip environment</td>
<td></td>
</tr>
</tbody>
</table>

$^a r_y$ is plastic zone size or plastic field of notch.

bd_g is critical microstructural dimension, e.g., grain size, a is the crack depth and $2c$ the surface length.

cCritical size is a function of frequency and reaction kinetics.

In particular, the microstructurally-small, rapidly growing crack corresponds to a three-dimensional crack whose plastic zone is less than the key microstructural dimension, which in most cases is the grain size. Thus, the crack tip tends to operate as it would in a single crystal preferentially oriented for operation of the relevant crack extension mechanism. In addition, the crack front encompasses relatively few grains, so that growth is not averaged over many disadvantageously oriented grains. The latter is probably a major factor in distinguishing small cracks from short through-thickness
cracks, whose fronts must necessarily sample many grains. It further provides an explanation why crack tip shielding alone is generally sufficient to rationalize behavior of the short through crack.

Origins of Differences between Long and Small Crack Behavior

Several major factors were identified which are primarily responsible for differences in long and small crack behavior (Table I). Of particular significance was the varying contribution of crack tip shielding, with size of the crack wake, in locally reducing the effective driving force experienced at the tip. Such shielding arises in fatigue from crack closure, and to a lesser extent from crack deflection, and was shown to be diminished at small crack sizes. However, for microstructurally-small cracks, it is now apparent that closure does not provide the entire solution (although uncertainties in experimental measurement make this question difficult to resolve). There is now considerable evidence that, additionally, such flaws are impeded locally by grain boundaries, influenced by non-uniform growth, and may experience higher cyclic plastic strains at their tips. Finally, it was shown that differences in local crack tip environment with crack size provide the source of the chemically-short crack effect, as described below.

Environmental Effects

One of the most complex issues involved in the small crack problem is associated with (liquid) environmental effects. As
outlined by Prof. R. P. Wei the chemically-short crack may still propagate 1.5 to several hundred times faster than long cracks subjected to the same mechanical driving force. Moreover, it may be somewhat larger than the microstructurally- or mechanically-short flaw, as short crack behavior has been reported for crack sizes upwards of 10 mm. (Precise definition of the size range for chemically-short cracks depends upon several factors but is principally controlled by frequency and reaction kinetics). The discrepancy in behavior is attributed to differences in local crack tip chemical environment and conditions. The critical issues thus pertain to the determination of crack tip conditions, as a function of crack length, in terms of the coupled processes of fluid transport and chemical/electrochemical reactions within the crack, and the determination of the origin of the environmentally-enhanced cracking rates in relation to the hydrogen embrittlement and film rupture/dissolution mechanisms.

"Driving Force" for Small Crack Propagation

Several authors sought improved field characterizing parameters to describe the driving force for small crack advance (Table I). Although parameters such as $\Delta \sigma$ and $\Delta \varepsilon_P$ have been suggested, only those parameters that can be measured globally, yet define (at least nominally) local conditions, were reviewed critically. For mechanically-small cracks, where the extent of local plasticity is comparable with crack size, elastic-plastic fracture mechanics
solutions were proposed through the use of ΔJ and ΔS (the strain energy density). While certainly appropriate for taking account of excessive plasticity ahead of the tip, it should be noted that J is a nonlinear elastic parameter, and thus cannot similarly account for the vital influence of wake plasticity (prior plastic) zones behind the tip. To allow for such wake effects, which principally cause crack closure, the adoption of a closure-corrected ΔK_{eff} ($= K_{\text{max}} - K_{c1}$, where K_{c1} is the closure stress intensity) appears to be a suitable approach for physically-small cracks and cracks emanating from notches. For microstructurally-small flaws, however, such deterministic treatments may simply not apply, as initial cracking may center on local preferential growth sites ("soft spots") in the microstructure. Here a probabilistic approach may be the optimum treatment to describe the behavior of such tiny flaws.

Intrinsic Thresholds

There is now good evidence that intrinsic threshold cyclic stress intensities may exist for long fatigue cracks. By subtracting out the contribution from crack closure through the use of the ΔK_{eff} parameter, threshold values at low load ratios approach those at high load ratios where closure effects are minimal. Similarly, intrinsic thresholds may exist for physically- and mechanically-short cracks, of magnitude comparable with the effective long crack value. For microstructurally-small cracks, however, the question of an intrinsic threshold may not be meaningful. Here the
"fatal" flaws are the ones that initiate first at local "soft spots" in the microstructure. As their dimensions are well below any continuum approximation, characterization in terms of a material parameter clearly would be inappropriate. Further, in light of presented evidence suggesting the invalidity of ΔK within this flaw size regime, it may be more appropriate to consider a threshold stress, rather than a stress intensity, for microstructurally-small flaws.

Small Crack Methodology in Life Prediction and Design

For physically- or mechanically-small cracks, the adoption of small crack methodology in life prediction analyses would appear to be feasible by mere extension of the current damage-tolerant procedures to smaller crack sizes through the use of ΔK_{eff}, or an equivalent elastic-plastic characterizing parameter. Such an approach would greatly enhance projected lifetimes, as computations are dominated by the regimes where the crack is small and advancing slowly. Conversely, for the reasons outlined above, descriptions of the extension of microstructurally-small flaws will not be generally amenable to deterministic analyses which rely on (continuum) material parameters, and should be treated with probabilistic approaches.

Small Crack Considerations in Alloy Design

From an alloy design perspective, the study of small cracks and associated long crack thresholds has resulted in a far clearer
understanding of the various contributions to fatigue resistance. Moreover, it has led to the realization that microstructural features which benefit resistance to the growth of (long) cracks may have an entirely different influence on crack initiation and small crack growth. To impede long crack growth, the primary mechanisms are extrinsic, whereby mechanical, microstructural, and even environmental mechanisms are utilized to reduce locally the crack driving force. Here, promotion of crack tip shielding, principally through crack closure and deflection, provides the most potent effect under cyclic loading. Conversely, to impede crack initiation and the early growth of microstructurally-small cracks, where shielding effects are minimized, the primary mechanisms are intrinsic. For example, fine grain sizes were reported offer best resistance to crack initiation and small crack growth in many alloys, yet in these same materials it is the coarse grain structures which promote the roughest crack paths and hence provide greatest resistance to long crack growth (through crack deflection and roughness-induced closure).

In essence, the ideal alloy design approach is to clean-up the material for optimum resistance to crack initiation, incorporate small, randomly oriented grains to inhibit small crack growth, and then to add microstructural "crack stoppers" to impede long crack growth. It may also be possible to minimize the small crack problem by incorporating texture, so that as few grains as possible are
oriented for easy crack extension relative to a known uniaxial loading axis.
APPENDIX

1. List of Conference Participants
2. Technical Program
SECOND INTERNATIONAL WORKSHOP ON SMALL FATIGUE CRACKS
The Miramar Hotel
Santa Barbara, California
January 5-10, 1986

PARTICIPANTS LIST

Allison, John E., Research Scientist, Ford Motor Company
Dearborn, MI

Ballinger, Ronald G., Assistant Professor, M.I.T.
Cambridge, MA

Beatty, John Henry, University of Virginia
Charlottesville, VA

Beevers, Christopher J., Professor, University of Birmingham
Birmingham B15 2TT ENGLAND

Blom, Anders F., The Aeronautical Research
S-12111 Bromma SWEDEN

Bloom, Joseph M., Technical Advisor Fractur, Babcock & Wilcox R&D Center
Alliance, OH

Bolingbroke, Richard K., Research Student, Nottingham University
NG7 2RD Nottingham ENGLAND

Brown, Colin W., Metallurgist, BP Research Center
Sunbury on Thames, Middlesex TW16 7LN ENGLAND

Bucci, Robert J., Technical Specialist, Aluminum Company of America
Alcoa Center, PA

Buck, Otto, Professor, Iowa State University
Ames, IA

Chan, Kwai S., Senior Research Engineer, Southwest Research Inst.
San Antonio, TX

Cottis, Robert A., Lecturer, Corrosion & Protection Ctr
Manchester M60 1QD ENGLAND

Cox, Brian N., Member of Technical Staff, Rockwell Int'l Science Ctr
Thousand Oaks, CA

Dauskardt, Reinhold Horst, University of California
Berkeley, CA

Davidson, David L., Southwest Research Inst.
San Antonio, TX

THIS LIST IS THE PROPERTY OF THE ENGINEERING FOUNDATION AND MAY NOT BE COPIED,
DUPLICATED, OR USED FOR DISTRIBUTION OF ANY MATERIAL TO THE PERSONS WHOSE NAME ARE CONTAINED HEREIN WITHOUT WRITTEN PERMISSION OF THE FOUNDATION.
SECOND INTERNATIONAL WORKSHOP ON SMALL FATIGUE CRACKS
Participants List
Page 2

Dowling, Norman E., Associate Professor, Virginia Polytechnic Inst
 Blacksburg, VA

Duquette, D. J., Professor, Rensselaer Polytechnic Inst
 Troy, NY

Fine, Morris E., Professor, Northwestern University
 Evanston, IL

Ford, F. P., General Electric Company
 Schenectady, NY

Fuchs, Henry O., Professor, Stanford University
 Stanford, CA

Gangloff, Richard P., Senior Staff Metallurgist, Exxon Research & Engrg.
 Annandale, NJ

Garr, Kenneth R., Member of Tech. Staff, Rocketdyne Div.
 Canoga Park, CA

Gregory, Jean K., Research Scientist, McDonnell Douglas Res. Labs
 St. Louis, MO

Gysler, Albert M., Technical University
 2100 Hamburg 90 WEST GERMANY

Hall, Dann, Engineering Foundation
 New York, NY

Huda, Stephen J., Senior Research Scientist, Southwest Research Inst.
 San Antonio, TX

James, Michael R., Member of Technical Staff, Rockwell Int. Science Ctr
 Thousand Oaks, CA

Jeal, Robert Hector, Chief Materials Engineer, Rolls-Royce Ltd.
 Derby DE 2 8BJ ENGLAND

King, Julia E., University Lecturer, University of Nottingham
 University Park, Nottingham NG7 2RD ENGLAND

Kirk, Mark T., Mechanical Engineer, DTNSRDC
 Annapolis, MD

Kwon, In Bae, Graduate Student, Northwestern University
 Evanston, IL

Laird, Campbell, Professor, University of Pennsylvania
 Philadelphia, PA

Lankford, James, Institute Scientist, Southwest Research Inst.
 San Antonio, TX

THIS LIST IS THE PROPERTY OF THE ENGINEERING FOUNDATION AND MAY NOT BE COPIED,
 DUPLICATED, OR USED FOR DISTRIBUTION OF ANY MATERIAL TO THE PERSONS WHOSE NAMES ARE CONTAINED HEREIN WITHOUT WRITTEN PERMISSION OF THE FOUNDATION.
Larsen, James M., Materials Research Engr, AFWAL/MLLN
Wright Patterson AFB, OH

Lee, Joo-Jin, Graduate Student, The Johns Hopkins Univ.
Baltimore, MD

Lindley, Trevor Charles, CEBG-CERL
Leatherhead, Surrey ENGLAND

London, B., Stanford University
Stanford, CA

McArdle, Donna Marie, Engineering Foundation
New York, NY

McClung, R. Craig, Research Assistant, University of Illinois
Urbana, IL

Miller, Alan K., Professor, Stanford University
Stanford, CA

Miller, K. J., Professor, University of Sheffield
Sheffield S1 3JD ENGLAND

Morris, Fred L., Member of Technical Staff, Rockwell Int'l Science Ctr
Thousand Oaks, CA

Myers, Marc, Army Research Office
Research Triangle Park, NC

Nakai, Yoshikazu, Research Associate, Osaka University
Osaka Suita 565 JAPAN

Nelson, Drew Vernon, Associate Professor, Stanford University
Stanford, CA

Neumann, Peter D., Professor, Max-Planck-Institut fur
4000 Dusseldorf FR GERMANY

Newman, James C., NASA Langley Research Ctr
Hampton, VA

Newman, Roger C., Lecturer in Corrosion Sci, Corrosion & Protection Ctr
Manchester M60 1QD ENGLAND

Pelloux, Regis M., Professor, MIT
Cambridge, MA

Pineau, Andre, Centre des Materiaux
91003 Evry Cedex FRANCE

THIS LIST IS THE PROPERTY OF THE ENGINEERING FOUNDATION AND MAY NOT BE COPIED.
Duplicated, or used for distribution of any material to the persons whose names
are contained herein without written permission of the foundation.
Ritchie, Robert O., Professor, University of California
Berkeley, CA

Roberson, Linda J., Materials Engineer, DINSRDC
Annapolis, MD

Rosenstein, Alan H., Program Manager, AFOSR/NE
Bolling AFB, DC

Russell, Dale A., Fracture Mech. Specialist, Rocketdyne International
Canoga Park, CA

Scott, Peter M., Prin. Scientific Officer, U.K Atomic Energy Research
Harwell, Oxon ENGLAND

Shang, Jianku, Research Assistant, University of California
Berkeley, CA

Sharpe, Jr., William N., Professor, Johns Hopkins University
Baltimore, MD

Sieradzki, Karl, Brookhaven National Lab.
Upton, NY

Stickler, Roland, Professor, Inst. fur Werkstoff-Forsch
Wahinger Strasse 42, A-1090 Wien AUSTRIA

Stoloff, Norman S., Professor, Rensselaer PolyTechnical Inst
Troy, NY

Suresh, Subra, Assistant Professor, Brown University
Providence, RI

Swain, Mary H., Materials Engineer, PRC Kentron, Inc.
Hampton, VA

Takao, Ken-ichi, Kyushu University
Higashi-ku, Fukuoka-shi, 812 JAPAN

Tanaka, Keisuke, Associate Professor, Kyoto University
Kyoto 606 JAPAN

Tharker, Ash, Project Manager, Rolls-Royce Inc.
Atlanta, GA

Thomas, James P., Lehigh University
Bethlehem, PA

Thompson, Anthony W., Professor, Carnegie-Mellon University
Pittsburgh, PA

THIS LIST IS THE PROPERTY OF THE ENGINEERING FOUNDATION AND MAY NOT BE COPIED,
DUPLICATED, OR USED FOR DISTRIBUTION OF ANY MATERIAL TO THE PERSONS WHOSE NAMES
ARE CONTAINED HEREIN WITHOUT WRITTEN PERMISSION OF THE FOUNDATION.
SECOND INTERNATIONAL WORKSHOP ON SMALL FATIGUE CRACKS
Participants List
Page 5

Tomkins, Brian, Head of Structural Intg., Risley Nuclear Power Dev.
Risley, Warrington Cheshire WA3 6AT ENGLAND

Turnbull, Alan, Principal Scientific Off., National Physical Lab
Teddington, Middlesex TW 11 OLW ENGLAND

Usami, Saburo, Senior Researcher, Hitachi Ltd.
Tsuchiura Ibaraki 300 JAPAN

Wagner, Lothar, Technische Universitaet
2100 Hamburg 90 WEST GERMANY

Ward-Close, Malcolm, Senior Scientific Officer, University of California
Berkeley, CA

Weertman, Johannes, Professor, Northwestern University
Evanston, IL

Wei, Robert P., Professor, Lehigh University
Bethlehem, PA

Yu, Weikang, Research Engineer, University of California
El Cerrito, CA

Yuce, Hakan H., Stanford University
Stanford, CA

Zaiken, E., Shiley, Inc.
Irvine, CA

GUESTS

Mrs. Heather Ballinger
Mrs. Martha Buck
Mrs. Mildred Fine
Mrs. Newman
Mrs. Pelloux

THIS LIST IS THE PROPERTY OF THE ENGINEERING FOUNDATION AND MAY NOT BE COPIED,
DUPLICATED, OR USED FOR DISTRIBUTION OF ANY MATERIAL TO THE PERSONS WHOSE NAMES
ARE CONTAINED HEREIN WITHOUT WRITTEN PERMISSION OF THE FOUNDATION.
ENGINEERING FOUNDATION CONFERENCES

SECOND INTERNATIONAL WORKSHOP ON SMALL FATIGUE CRACKS
The Miramar Hotel
Santa Barbara, California
January 5-10, 1986

Cosponsored by

U.S. National Science Foundation
Office of Naval Research
Air Force Office of Scientific Research
U.S. Army Research Office
ENGINEERING FOUNDATION CONFERENCES
SECOND INTERNATIONAL WORKSHOP ON SMALL FATIGUE CRACKS
The Miramar Hotel
Santa Barbara, California
January 5-10, 1986

FINAL PROGRAM

Sunday, January 5, 1986
3:00 p.m.-9:00 p.m. REGISTRATION AND CHECK-IN
6:00 p.m. DINNER
9:00 p.m.-11:00 p.m. SOCIAL HOUR

Monday, January 6, 1986
7:30 a.m. BREAKFAST
9:00 a.m.-9:15 a.m. Introduction/Opening Remarks
Dann Hall, Engineering Foundation
Chairmen: R. O. Ritchie, U.C. Berkeley
J. Lankford, SWRI

9:15 a.m.-12:30 p.m. CRACK INITIATION AND STAGE I CRACK GROWTH
Chairman: M. E. Fine, Northwestern University
9:15 a.m.-9:45 a.m. "Distributions of Small Crack Sizes in Fatigued Copper
Single Crystals"
B. T. Ma & C. Laird, University of Pennsylvania
9:45 a.m.-10:00 a.m. Discussion
10:00 a.m.-10:30 a.m. "Fatigue Crack Formation in Copper"
P. Neumann, Max Planck Institute, Dusseldorf
10:30 a.m.-10:45 a.m. Discussion
10:45 a.m.-11:15 COFFEE BREAK
11:15 a.m.-11:45 a.m. "Fatigue Crack Initiation and Short Crack Propagation"
F. H. Heubaum, I. B. Kwon and M. E. Fine, Northwestern
University
11:45 a.m.-12:00 Noon Discussion
12:00 Noon-12:30 p.m. General Discussion
12:30 p.m. LUNCH
2:00 p.m.-5:00 p.m. AD HOC SESSION
5:00 p.m.-6:00 p.m. SOCIAL HOUR
6:00 p.m. DINNER
Monday, January 6, 1986

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00 p.m.</td>
<td>ROLE OF MICROSTRUCTURE</td>
</tr>
<tr>
<td></td>
<td>Chairman: J. Lankford, SWRI</td>
</tr>
<tr>
<td>7:00 p.m. - 7:30 p.m.</td>
<td>"Propagation Behavior of Short Cracks in Ti-Alloys"</td>
</tr>
<tr>
<td>7:30 p.m.</td>
<td>Discussion</td>
</tr>
<tr>
<td>7:45 p.m. - 8:15 p.m.</td>
<td>"The Relevance of Microstructural Influences in the Short Crack Regime to Overall Fatigue Resistance"</td>
</tr>
<tr>
<td></td>
<td>C. W. Brown, B. P. Research, and J. E. King, University of Nottingham, U.K.</td>
</tr>
<tr>
<td>8:15 p.m.</td>
<td>Discussion</td>
</tr>
<tr>
<td>8:30 p.m. - 9:00 p.m.</td>
<td>"Overview on the Role of Microstructure"</td>
</tr>
<tr>
<td></td>
<td>J. Lankford, SWRI</td>
</tr>
<tr>
<td>9:00 p.m.</td>
<td>Discussion</td>
</tr>
<tr>
<td>9:15 p.m. - 10:00 p.m.</td>
<td>General Discussion</td>
</tr>
<tr>
<td>10:00 p.m. - 11:00 p.m.</td>
<td>SOCIAL HOUR</td>
</tr>
</tbody>
</table>

Tuesday, January 7, 1986

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 a.m.</td>
<td>BREAKFAST</td>
</tr>
<tr>
<td>9:00 a.m. - 12:30 p.m.</td>
<td>FRACTURE MECHANICS CHARACTERIZATION</td>
</tr>
<tr>
<td></td>
<td>Chairman: J. C. Newman, Jr., NASA, Langley</td>
</tr>
<tr>
<td>9:00 a.m. - 9:30 a.m.</td>
<td>"Effect of Large Plastic Strains on Crack Closure in Fatigue"</td>
</tr>
<tr>
<td></td>
<td>N. E. Dowling and N. S. Iyyer, V.P.I. & S.U.</td>
</tr>
<tr>
<td>9:30 a.m. - 9:45 a.m.</td>
<td>Discussion</td>
</tr>
<tr>
<td>9:45 a.m. - 10:15 a.m.</td>
<td>"In Search of a Field Parameter to Characterize the Mechanical Driving Force for Small Cracks"</td>
</tr>
<tr>
<td></td>
<td>S. J. Hudak and K. S. Chan, SWRI</td>
</tr>
<tr>
<td>10:15 a.m. - 10:30 a.m.</td>
<td>Discussion</td>
</tr>
<tr>
<td>10:30 a.m. - 11:00 a.m.</td>
<td>COFFEE BREAK</td>
</tr>
<tr>
<td>11:00 a.m. - 11:30 a.m.</td>
<td>"An Analysis of Crack Closure for Small Cracks"</td>
</tr>
<tr>
<td></td>
<td>J. C. Newman, Jr., NASA, Langley</td>
</tr>
<tr>
<td>11:30 a.m. - 11:45 a.m.</td>
<td>Discussion</td>
</tr>
<tr>
<td>11:45 a.m. - 12:30 p.m.</td>
<td>General Discussion</td>
</tr>
<tr>
<td>12:30 p.m.</td>
<td>LUNCH</td>
</tr>
</tbody>
</table>
Tuesday, January 7, 1986 (continued)
2:00 p.m.-5:00 p.m. AD HOC SESSION
5:00 p.m.-6:00 p.m. SOCIAL HOUR
6:00 p.m.
7:00 p.m.-10:00 p.m. ROLE OF ENVIRONMENT
 Chairman: R. P. Gangloff, Exxon
7:00 p.m.-7:30 p.m. "The Role of Crack Depth in Determining Crack
 Electrochemistry and Crack Growth"
 A. Turnbull, National Physical Laboratory, U.K., and
 R. C. Newmann, UMIST, U.K.
7:30 p.m.-7:45 p.m. Discussion: R. G. Ballinger, MIT
7:45 p.m.-8:15 p.m. "Small Crack Interactions: The Hydrogen Embrittlement
 Perspective"
 R. P. Gangloff, Exxon, and R. P. Wei, Lehigh University
8:15 p.m.-8:30 p.m. Discussion: W. W. Gerberich, University of Minnesota
8:30 p.m.-9:00 p.m. "Potential Role of Film Rupture Mechanisms on
 Environmentally-Assisted Small Crack Growth"
 F. P. Ford, General Electric and S. J. Hudak, SWRI
9:00 p.m.-9:15 p.m. Discussion: D. J. Duquette, RPI
9:15 p.m.-10:00 p.m. General Discussion & Summary: R. M. Pelloux, MIT &
 P. M. Scott, Harwell, U.K.
10:00 p.m.-11:00 p.m. SOCIAL HOUR

Wednesday, January 8, 1986
7:30 a.m. BREAKFAST
9:00 a.m.-12:30 p.m. NEAR-TRESHOLD BEHAVIOR
 Chairman: R. O. Ritchie, U.C. Berkeley
9:00 a.m.-9:30 a.m. "A Comparison of Short and Long Fatigue Crack Behavior
 in the Near-Threshold Regime"
 W. Yu and R. O. Ritchie, University of California, Berkeley
9:30 a.m.-9:45 a.m. Discussion
9:45 a.m.-10:15 a.m. "Short Fatigue Crack Behavior in Relation to Three-Dimension
 Aspects and Crack Closure Effect"
 A. Pineau, Ecole des Mines de Paris, France
10:15 a.m.-10:30 a.m. Discussion
10:30 a.m.-11:00 a.m. COFFEE BREAK
Wednesday, January 8, 1986 (continued)
11:00 a.m.-11:30 a.m. "The Growth of Short Fatigue Cracks in High Strength Nickel Alloys"
C. J. Beevers, University of Birmingham, U.K.

11:30 a.m.-11:45 a.m. Discussion

11:45 a.m.-12:30 p.m. General Discussion

12:30 p.m. LUNCH

2:00 p.m.-5:00 p.m. AD HOC SESSION

5:00 p.m.-6:00 p.m. SOCIAL HOUR

6:00 p.m. DINNER

7:00 p.m.-10:00 p.m. EXPERIMENTAL TECHNIQUES
Chairman: D. L. Davidson, SWRI

7:00 p.m.-7:25 p.m. "High Resolution Techniques for the Study of Small Fatigue Cracks"
D. L. Davidson an J. Lankford, SWRI

7:25 p.m.-7:40 p.m. Discussion

7:40 p.m.-8:05 p.m. "Small Crack Growth Studies with a Surface Acoustic Wave Technique"
D. V. Nelson, B. D. London and H. H. Yuce, Stanford Universi

8:05 p.m.-8:20 p.m. Discussion

8:20 p.m.-8:45 p.m. "Study of the Growth of Small Tensile Cracks: A Procedure Involving Crack Initiation under Far-Field Compression"
S. Suresh, Brown University

8:45 p.m.-9:00 p.m. Discussion

9:00 p.m.-9:25 p.m. "Studies of Small Crack Growth Using Ultrasound Techniques"
R. Stickler, University of Vienna, Austria

9:25 p.m.-9:40 p.m. Discussion

9:40 p.m.-10:00 p.m. General Discussion

10:00 p.m.-11:00 p.m. SOCIAL HOUR

Thursday, January 9, 1986
7:30 a.m. BREAKFAST

9:00 a.m.-12:30 Noon MICROMECHANICS AND MODELLING
Chairman: S. Suresh, Brown University
Thursday, January 9, 1986 (continued)
9:00 a.m.-9:30 a.m. "Modelling of Propagation and Non-Propagation of Small Fatigue Cracks"
K. Tanaka, Kyoto University, Japan

9:30 a.m.-9:45 a.m. Discussion

9:45 a.m.-10:15 a.m. "Small Fatigue Flaws: Effects of Crack Geometry and Crack-Tip Plasticity"
C. F. Shih and S. Suresh, Brown University

10:15 a.m.-10:30 a.m. Discussion

10:30 a.m.-11:00 a.m. COFFEE BREAK

11:00 a.m.-11:30 a.m. "Short Crack Theory"
J. Weertman, Northwestern University

11:30 a.m.-11:45 a.m. Discussion

11:45 a.m.-12:30 p.m. General Discussion

12:30 p.m. LUNCH

2:00 p.m.-3:45 p.m. CONTRIBUTED PAPERS I
Chairman: R. J. Bucci, Alcoa

2:00 p.m.-2:15 p.m. "A CTOD Model for Microcrack Initiation in Brass Under SCC Conditions"
O. Buck and R. Ranjan, Iowa State University

2:20 p.m.-2:35 p.m. "Crack Arrest by Self Stress at Notches"
H. O. Fuchs, Stanford University

2:40 p.m.-2:55 p.m. "Characteristics of Cracking Behavior of Metals and Notch Sensitivities in Fatigue"
H. Nisitani and K.-I. Takeo, Kyushu University, Japan

3:00 p.m.-3:15 p.m. "Closure and Growth Behavior of Short Fatigue Cracks at Notches in 3% Silicon Iron"
K. Ohji and Y. Nakai, Osaka University, Japan

3:20 p.m.-3:35 p.m. "Predicting the Special Growth Rates of Small Cracks Using a Unified Model"

3:40 p.m.-3:55 p.m. "Influence of Long Range Order on Crack Initiation and Growth"
N. S. Stoloff, RPI

5:00 p.m.-6:00 p.m. SOCIAL HOUR

6:00 p.m. DINNER
Thursday, January 9, 1986 (continued)

CONTRIBUTED PAPERS II
Chairman: R. O. Ritchie, U.C. Berkeley

7:00 p.m.-10:00 p.m.

7:00 p.m.-7:15 p.m. "Crack Tip Field Parameters for Large and Small Cracks"
K. S. Chan, SWRI

7:20 p.m.-7:35 p.m. "The Growth of Short Fatigue Cracks in Ti Alloys IMI550 and IMI318"
R. K. Bolingbroke, E. A. Pickering and J. E. King, Nottingham University, U.K.

7:40 p.m.-7:55 p.m. "K_{eff} Rationalization of Short Crack Behavior: Environmental and Microstructural Influence"
A. Zeghloul and J. Petit, ENSMA, France

8:00 p.m.-8:15 p.m. "The Breaking Load Method--A Quantitative Testing Approach for Assessing Early Macrocack Growth"
R. J. Bucci, R. L. Brazill and J. R. Brockenbrough, Alcoa

8:20 p.m.-8:35 p.m. "Surface Microplastic Deformation of Al 2219-T851"
W. L. Morris, B. N. Cox and M. R. James, Rockwell Science Center, Thousand Oaks

8:40 p.m.-8:55 p.m. "Relevance of Short Fatigue Crack Growth Data for Damage Tolerant Analysis of Aircraft"
A. F. Blom, Aeronautical Research Institute of Sweden

9:00 p.m.-9:15 p.m. "Small Fatigue Cracks Growing from a Notch"
W. N. Sharpe and J. J. Lee, Johns Hopkins University

9:20 p.m.-9:35 p.m. "An Effect of Microstructure on Short Cracks in Eutectoid Steel."
A. W. Thompson, Carnegie-Mellor University

9:40 p.m.-9:55 p.m. "Mixed Mode Small Crack Growth"
C. T. Hua and D. W. Worthem, University of Illinois

10:00 p.m.-11:00 p.m. SOCIAL HOUR

Friday, January 10, 1986

7:30 a.m. BREAKFAST

8:30 a.m.-12:15 Noon ENGINEERING APPLICATIONS
Chairman: B. Tomkins, UKAEA

8:30 a.m.-9:00 a.m. "Short Crack Methodology Related to Integrity Assessment of Components in the Power Generation Industry"

9:00 a.m.-9:15 a.m. Discussion

9:15 a.m.-9:45 a.m. "Small Cracks: Relevance to Component Integrity"
R. Jeal, Rolls Royce, U.K.
Friday, January 10, 1986 (continued)

9:45 a.m.-10:00 a.m. Discussion

10:00 a.m.-10:30 a.m. "Engineering Applications of Small Crack Fatigue Properties"
S. Usamai, Hitachi, Japan

10:30 a.m.-10:45 a.m. Discussion

10:45 a.m.-11:15 a.m. General Discussion

11:15 a.m.-12:15 p.m. SUMMARY/CLOSING SESSION
Chairmen: J. Lankford, SWRI
R. O. Ritchie, U.C. Berkeley

Closing Remarks: R. J. Bucci, Alcoa
R. O. Ritchie, U.C. Berkeley

12:15 Noon LUNCH

ADJOURNMENT
END

DTTC

1-86