ASSESSING POSSIBLE DAMAGE DUE TO
RADIO FREQUENCY RADIATION

BRUCE J. POITRAST, COLONEL, USAF, MC

February 1986

Final Report

Distribution is unlimited: approved for public release

USAFOEHL REPORT
86-020CO111BRA

USAFOEHL REPORT
86-020CO111BRA
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the said drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

Do not return this copy. Retain or destroy.

Air Force installations may direct requests for copies of this report to: USAF Occupational and Environmental Health Laboratory (USAFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22314.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161.

The Public Affairs Office has reviewed this report, and it is releasable to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

John J. Coughlin, Colonel, USAF, Commander

Prepared By:
Bruce J. Poitras, Colonel, USAF, MC
Consultant, Occupational Medicine

Reviewed By:
James C. Rock, Colonel, USAF, BSC
Vice Commander
This report is written in response to requests from the field for guidance in the clinical examination of radio frequency radiation exposures. The report contains basic information on radio frequency radiation and its biological interactions. It also contains a suggested history and physical examination, a list of expected clinical findings, and suggestions for referral if necessary.
ACKNOWLEDGEMENT

The author wishes to acknowledge the assistance of Capt John Brewer and Lt
Kurt Olson, USAFOEHL/RZN, and Mr John Mitchell, USAFSAM/RZ in the preparation
of this report.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD Form 1473</td>
<td>1</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. DISCUSSION</td>
<td>1</td>
</tr>
<tr>
<td>III. CONCLUSIONS</td>
<td>2</td>
</tr>
<tr>
<td>IV. RECOMMENDATIONS FOR EXAMINATION</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>Distribution List</td>
<td>6</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A. Purpose:

The purpose of this report is to assist base level physicians and other health care providers in assessing possible health effects due to radio frequency radiation (RFR) exposures.

B. Problem:

There is much confusion in the medical literature regarding RFR and its biological effects. Few health care providers have sufficient knowledge of the physical sciences to be able to determine the validity of many medical RFR studies. Because of these factors many medical reports on individuals thought to be exposed to RFR are either lacking in the scope necessary for complete examination, or more often, are unnecessarily broad. Worse yet, there is a tendency to attribute physical findings to RFR in the absence of any reasonable correlation of RFR and the finding. This report is written in the hope of alleviating some of these problems.

C. Scope:

This report will present basic information regarding RFR, its biological effects and some of the thinking behind the current Air Force RFR safety guideline, AFOSH Standard 161-9. Also included is a suggested Operating Instruction (OI) for a medical workup. It is intended as a clinical guide for clinicians and not as the final word on the science of RFR. Its contents must be viewed in this context.

II. DISCUSSION

Reading of AFOSH Standard 161-9, "Exposure to Radio Frequency Radiation," 12 October 1984 is recommended. This has a good section on biological effects and basic information pertaining to RFR. Also recommended are the ACGIH Threshold Limit Values Handbook; Documentation of the Threshold Limit Values; and USAFSAM-TR-83-1, Bioeffects of Radiofrequency Radiation.

RFR is considered to be that portion of the electromagnetic spectrum from 10 kHz to 300 GHz. At its upper end it blends with long wave infrared. It shares all of its physical characteristics with other segments of the electromagnetic spectrum; that is, it consists of component electric and magnetic fields propagated in space as waves. The interaction of these waves with matter depends on the wavelength, power and polarization of the wave and the size, shape, orientation and nature of the matter. In general, with regard to human beings, it can be said that the longer the wavelength the greater the depth of penetration into the body and the shorter the wavelength the less the depth of penetration. Wavelengths of 3 cm or less (10 GHz or more) are absorbed in the skin. Depth of penetration is only one factor; however, energy deposition is the key issue. In general, the greatest absorption in adult humans takes place at 70 to 80 MHz if they are not grounded and 35 to 40 MHz if they are. Specific conditions at the time of exposure may cause this
to vary. The mechanism for transfer of energy to human body by RFR is by vibration/rotation of dipole molecules, mainly water. The result is an increase in heat due to friction. An increase in temperature may or may not result depending on the thermoregulatory properties of the body. Since to date no robust effect of RFR has been demonstrated that does not relate to thermogenesis, and since varying wavelengths deposit varying amounts of energy, the concept of specific absorption rate (SAR) was developed. This is a measure of the rate of energy transfer to the body normalized to body mass and is equivalent to the power transferred. Heat generated is directly proportional to power absorbed. At a SAR of 4 W/kg the energy absorption within the human body may result in a detectable increase in core body or specific organ temperature of one centigrade degree or less. The only demonstrated effect in organs maintained at this increase over normal is a decrease in spermatogenesis due to heat. This decrease in spermatogenesis reverses on cooling. In addition, the body heat regulatory mechanisms of most normal individuals can adequately handle such loads. For comparison the average running man generates 5 W/kg of metabolic heat and the human heart muscle can generate 33 W/kg. To ensure safety, the Permissible Exposure Limit (PEL) was set at a SAR of 0.4 W/kg for frequencies above 3 MHz. This is averaged over any six-minute period. The curve of power density in mW/cm² versus frequency which will give a SAR of 0.4 W/kg can be found in the ACGIH TLV handbook. The same curve presented as a table can be found in AFOSH Std 161-9, 12 October 1984, entitled "Permissible Exposure Limits for Personnel."

In considering biological effects from the clinical standpoint, we should keep in mind the pre-eminence of thermal effects as the agent of damage. Cataracts and vacuoles have been produced in animal eyes with power densities equal to or greater than 100 mW/cm² delivered locally and acutely for 15 minutes or more. This correlates with temperatures in the eye of 41°C (106°F) or more. It has been difficult to produce cataracts in animals with whole body RFR without killing the animal. In animals overexposed directly to the eye all cataracts and vacuoles were present by the end of the third day.

At frequencies below 3 MHz the Air Force has adopted a maximum power density of 100 mW/cm². Air may become ionized at frequencies over 10 KHz at approximately 1,000 kV/m and can result in potentially hazardous electric discharges. Because of this the PEL contains a 100 kV/m limit which incorporates a safety factor of 10.

III. CONCLUSIONS

Specifically, then, we would look for thermal burn, signs of electric shock and/or burn, and fairly prompt cataract formation. Prompt evolution of clinical problems should be expected. In a review of 296 suspected cases of overexposure in the USAF OEH accident file, only 58 were in fact exposed above the PEL. About half of the 58 (26) clearly felt a warming and terminated the exposure. Of those determined not to have been overexposed only 11% felt a warming sensation. By way of interpreting a warming sensation, 26 overexposed and 26 people not overexposed felt warming. This means that one is as likely as not to have been overexposed if warming is noticed. Conversely, if no warming is noticed there is only a 13% chance of having been overexposed.
Keep in mind also the safety factor of 10 in the PEL. Overexposure does not necessarily mean exposure to biologically meaningful levels.

IV. RECOMMENDATIONS FOR EXAMINATION

A. History:

1. Present Illness. Where possible include the following information:
 a. Type of equipment involved in the exposure with model number and radio frequencies emitted.
 b. Distance from the source to the person.
 c. Length of time exposed.
 d. If exposure was intermittent, then give longest individual time exposed as well as overall time period exposed.
 e. Were any unusual noises heard in the ears?
 f. Was a sensation of heat experienced and if so, where on the body?
 g. What body parts does the person believe were exposed?
 h. Does a previous history of RFR overexposure exist?
 i. Does a previous history of overexposure to any chemical or physical agent exist?

2. Past Medical History.
 a. List all types of work ever done, not only in the Air Force but previously, if applicable.
 b. The remainder of the past medical history is standard.

3. Complete review of systems.

B. Physical Examination:

Systems of primary interest are the eyes and skin. The signs to be sought are cataracts and burns.

a. Eyes. Initial examination should describe the condition of the skin around the eyes as well as the eye itself. Slit lamp examination should be accomplished as soon as practicable. If any question is raised by slit lamp examination, referral should be made to an ophthalmologist for dilated slit lamp examination.
b. Skin. Observe for signs of heat-induced change and electrical burn. Note findings, to include negative findings.

c. The remainder of the examination should be as pertinent.

C. Laboratory Studies:

These should be as indicated.

No single test has any peculiar virtue. Routine tests, if done, should be limited to CBC and UA. Any others done should be for clinical reasons.

D. Referral:

If it is believed clinically necessary, referral for further workup of specific conditions should be accomplished within the usual medical referring system. Only very unusual circumstances would warrant referral outside the usual system. If there is a question regarding the need for referral or where it should be accomplished, consultation may be obtained from the USAFOEHL Occupational Medical Consultant at AV 240-2002, Commercial (512) 536-2002 or by electronic message.

E. Cautions:

1. These patients have a tendency to a great deal of anxiety based on their perceptions of an assault by an invisible agent. They're usually unfamiliar with the possible results of an overexposure and often have filled in the blanks of their knowledge with generalized fears of cancer and birth defects. Unless you can see an obvious connection between a finding and the exposure, other than a temporal one, the exposure and the finding are probably not connected. If you don't know, it is best to say that you don't but that you will find out.

2. Epidemiological studies to date have not demonstrated any long term consequences beyond those present at the time of the exposure.

3. Consultation may be obtained from the USAFOEHL Occupational Medical Consultant at Brooks AFB TX AV 240-2002.
References

DISTRIBUTION LIST

USAF Academy Hospital/SGP
Air Force Academy CO 80840-5470

USAF Hospital Altus/SGP
Altus AFB OK 73523-5300

Malcolm Grow USAF Med Cen/SGFA
Andrews AFB MD 20331-5300

HQ AFSC/SGPA
Andrews AFB DC 20334-5000

HQ ANGSC/SGP
Andrews AFB DC 20331-6008

USAF Hospital Barksdale/SGP
Barksdale AFB LA 71110-5300

USAF Hospital Beale/SGP
Beale AFB CA 95903-5300

USAF Hospital Bergstrom/SGP
Bergstrom AFB TX 78743-5300

USAF Hospital Blytheville/SGP
Blytheville AFB AR 72317-5300

HQ USAF/SGPA
Bolling AFB DC 20332-6188

USAF Clinic Brooks/SGP
Brooks AFB TX 78235-5300

USAFSAM/TSK
Brooks AFB TX 78235-5000

AFOMS/SGPR
Brooks AFB TX 78235-5000

USAF Hospital Cannon/SGP
Cannon AFB NM 88103-5300

USAF Rgn Hospital Carswell/SGP
Carswell AFB TX 76127-5300

USAF Hospital Castle/SGP
Castle AFB CA 95342-5300

USAF Hospital Chanute/SGP
Chanute AFB IL 61868-5300

USAF Clinic Charleston/SGP
Charleston AFB SC 29404-5300

USAF Hospital Columbus/SGP
Columbus AFB MS 37901-5300

USAF Hosp Davis-Monthan/SGP
Davis-Monthan AFB AZ 85747-5300

USAF Hospital Dover/SGP
Dover AFB DE 19902-5300

USAF Hospital Dyess/SGP
Dyess AFB TX 79607-5300

USAF Hospital Edwards/SGP
Edwards AFB CA 93523-5300

USAF Rgn Hospital Eglin/SGP
Eglin AFB FL 32542-5300

USAF Clinic Eielson/SGP
Eielson AFB AK 99702-5300

USAF Hospital Ellsworth/SGP
Ellsworth AFB SD 57706-5300

HQ AAC/SGPA
Elmendorf AFB AK 99506-5300

USAF Hospital Elmendorf/SGP
Elmendorf AFB AK 99506-5300

USAF Hospital England/SGP
England AFB LA 71311-5300

USAF Hospital Fairchild/SGP
Fairchild AFB WA 99011-5300

USAF Hospital F E Warren/SGP
F E Warren AFB WY 82001-5300

USAF Hospital George/SGP
George AFB CA 92340-5300

USAF Clinic Goodfellow/SGP
Goodfellow AFB TX 79706-5300

USAF Hospital Grand Forks/SGP
Grand Forks AFB ND 58201-5300

USAF Hospital Grissom/SGP
Grissom AFB NY 14528-5300

USAF Hospital Grissom/SGP
Grissom AFB IN 46910-5300
<table>
<thead>
<tr>
<th>Clinic/ Hospital</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAF Clinic Hanscom/SGP</td>
<td>Hanscom AFB MA 91731</td>
<td>5300</td>
</tr>
<tr>
<td>HQ PACAF/SGPA</td>
<td>Hickam AFB HI 28653</td>
<td>5000</td>
</tr>
<tr>
<td>USAF Clinic Hickam/SGP</td>
<td>Hickam AFB HI 96853</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Hickam/SGP</td>
<td>Hickam AFB HI 96853</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Holloman/SGP</td>
<td>Holloman AFB NM 88330</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Homestead/SGP</td>
<td>Homestead AFB FL 33039</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Clinic Huron/SGP</td>
<td>Huron Field FL 32542</td>
<td>5300</td>
</tr>
<tr>
<td>KTIC/SGP</td>
<td>Keesler AFB MS 39534</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Clinic Kelly/SGP</td>
<td>Kelly AFB TX 78241</td>
<td>5000</td>
</tr>
<tr>
<td>USAF Hospital Kirtland/SGP</td>
<td>Kirtland AFB NM 87117</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital K I Sawyer/SGP</td>
<td>K I Sawyer AFB MI 49843</td>
<td>5300</td>
</tr>
<tr>
<td>Wilford Hall USAF Med Cen/SGKFE</td>
<td>Lackland AFB TX 78236</td>
<td>5300</td>
</tr>
<tr>
<td>HQ TAC/SGPA</td>
<td>Langley AFB VA 23665</td>
<td>5000</td>
</tr>
<tr>
<td>USAF Hospital Laughlin/SGP</td>
<td>Laughlin AFB TX 78843</td>
<td>5000</td>
</tr>
<tr>
<td>USAF Hospital Loring/SGP</td>
<td>Loring AFB ME 04751</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Clinic Los Angeles/SGP</td>
<td>P.O. Box 92950 Worldway Post Cen Los Angeles CA 90009</td>
<td>2960</td>
</tr>
<tr>
<td>USAF Clinic Lowry/SGP</td>
<td>Lowry AFB CO 80230</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Luke/SGP</td>
<td>Luke AFB AZ 85309</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Rgn Hospital MacDill/SGP</td>
<td>MacDill AFB FL 33608</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Malmstrom/SGP</td>
<td>Malmstrom AFB MT 59402</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Rgn Hospital March/SGP</td>
<td>March AFB CA 92518</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Mather/SGP</td>
<td>Mather AFB CA 95655</td>
<td>5000</td>
</tr>
<tr>
<td>HQ Air University/SGPA</td>
<td>Maxwell AFB NM 87117</td>
<td>7001</td>
</tr>
<tr>
<td>USAF Rgn Hospital Maxwell/SGP</td>
<td>Maxwell AFB AL 36112</td>
<td>5304</td>
</tr>
<tr>
<td>USAF Clinic McChord/SGP</td>
<td>McChord AFB WA 98438</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Clinic McClellan/SGP</td>
<td>McClellan AFB CA 95652</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital McConnell/SGP</td>
<td>McConnell AFB KS 67221</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Clinic McGuire/SGP</td>
<td>McGuire AFB NJ 08641</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Rgn Hospital Minot/SGP</td>
<td>Minot AFB ND 58705</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Moody/SGP</td>
<td>Moody AFB GA 31699</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Mt Home/SGP</td>
<td>Mountain Home AFB ID 83648</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Myrtle Beach/SGP</td>
<td>Myrtle Beach AFB SC 29579</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Hospital Nellis/SGP</td>
<td>Nellis AFB NV 89191</td>
<td>5300</td>
</tr>
<tr>
<td>USAF Clinic Norton/SGP</td>
<td>Norton AFB CA 92409</td>
<td>5300</td>
</tr>
<tr>
<td>HQ SAC/SGPA</td>
<td>Offutt AFB NE 68113</td>
<td>5001</td>
</tr>
<tr>
<td>Ehring Berquist</td>
<td>USAF Regional Hospital/SGP</td>
<td>Offutt AFB NE 68113</td>
</tr>
</tbody>
</table>
END FILMED

5-86

DTIC