OFFICE OF NAVAL RESEARCH
Contract N00014-85-K-0222
Project NR 092-555

Technical Report No. 4

THE INFLUENCE OF CHEMICAL STRUCTURE ON THE
STRENGTH OF RUBBER

by

A. N. Gent

Institute of Polymer Science
The University of Akron
Akron, Ohio 44325

April, 1986

Reproduction in whole or in part is permitted for
any purpose of the United States Government

Approved for Public Release; Distribution Unrestricted
The detailed chemical structure of the polymer molecule has surprisingly little effect upon many of the important physical properties of crosslinked elastomers. For example, the elastic modulus, extensibility, tensile strength and tear strength are all much the same for many common elastomers. However, the strength of elastomers under some conditions is strikingly different. Two particular modes of fracture are considered here: tearing, and abrasive wear. Certain elastomers crystallize rapidly...
on stretching and become self-reinforcing, so that their tear strength is greatly enhanced. Factors that govern the speed of strain-induced crystallization are reviewed. In abrasive wear, the macroradicals generated by molecular rupture are highly reactive and their reactions affect both the nature and the extent of wear. The wear processes that occur in various reinforced elastomers are described and compared.
1. Introduction

Many of the physical properties of crosslinked elastomers do not depend directly upon the local chemical structure of the molecule at all. Instead, they depend upon other quantities, for example, the number \(V \) of molecular strands per unit volume, upon their contour length \(L \), and mass \(M_c \), and upon the local rate \(\phi \) of Brownian motion of molecular sub-units, consisting of small portions, about 5 main-chain atoms in length, of a molecular strand. (The actual number of main-chain atoms per molecular sub-unit is denoted \(q \) below; it is a measure of chain stiffness and hence it is somewhat smaller for more flexible molecules and larger for stiffer ones.) Some of these quantities are only indirectly related to the local molecular structure. As a result, many physical properties are found to be quite similar for elastomers that have markedly different chemical structure. For example, the tensile modulus of elasticity \(E \) for a network made up of flexible molecular strands is predicted by the statistical theory of rubber elasticity to be given by (1):

\[
E = 3\gamma kT
\]

where \(k \) is Boltzmann's constant, and \(T \) is the absolute temperature. Although the analysis leading to equation 1 takes into account the limited flexibility of elastomer molecules, this feature of their chemical structure does not appear in the final result. Thus, whether the individual molecules are relatively stiff or relatively flexible is unimportant in so far as the elastic modulus of the network is concerned.

Even the maximum extensibility of the network is only slightly dependent upon the molecular flexibility, over the range that might be expected for simple elastomeric polymers. It is principally determined by the molecular length \(L \), and hence molecular weight \(M_c \) between points of molecular interlinking (crosslinking) (1). It can be characterized by the ratio \(\lambda_m \) of the fully-stretched-out molecular length \(L \) to the average distance \(L_o \) between the ends of molecular strands in the unstretched state. The former quantity is given by

\[
L = n \ell
\]

where \(n \) is the number of molecular sub-units in a molecular strand and \(\ell \) is the length of a sub-unit. The latter quantity is given by

\[
L_o = n \ell
\]

if it is assumed that the sub-units are connected together by freely-rotating joints. Thus,

\[
\lambda_m = n \ell
\]

where \(n \) is related to the number \(n_e \) of main-chain atoms per molecular strand by

\[
n = n_e/q,
\]
to the molecular weight M of a network strand by

$$n = \frac{M}{qM_0},$$

where M_0 is the molecular weight per main-chain atom, and to the number ν of network strands per unit volume by

$$n = \frac{A}{\nu qM_0},$$

where A denotes Avogadro's number. Equations 4-7 show that λ depends upon λ^2.

2. **Tear Strength of Non-Crystallizing Elastomers**

When elastomeric networks are torn apart under conditions of minimum strength, i.e., when no additional energy is expended in various dissipative processes (for example, viscous motion of molecular strands or detachment from filler particles), then the work $G_{c,o}$ of fracture per unit area torn through is given by (2)

$$G_{c,o} = \nu' n_0 U$$

where ν' is the number of strands crossing a randomly chosen plane of unit area (the fracture plane, for example) and U is the dissociation energy of a main-chain bond. The value of ν' is directly related to the number ν of strands per unit volume and the average distance L between their ends (2):

$$\nu' = \left(\frac{3}{8}\right)^{1/2} \nu L$$

Thus, from equations 3, 7, 8 and 9:

$$G_{c,o} = (3/8)^{1/2} \nu L qM_0^{1/2} / M_0$$

In terms of Young's modulus E, from equations 1, 6 and 7:

$$G_{c,o} = (9/8)^{1/2} (OA)^{1/2} (qkT)^{1/2} \nu L M_0^{-1/2} E^{3/2}$$

Equation 1 indicates, and experiments confirm, that the modulus of elasticity E depends primarily upon the number of network strands and not upon their detailed structure. On the other hand, equations 10 and 11 show that the tear strength depends significantly upon the mass M_0 per main-chain atom, as well as upon the number of strands and hence E. Experimental measurements of tear strength under threshold conditions, i.e., at high temperatures and low rates of tearing, are in good agreement with these theoretical predictions, as shown in Figures 1 and 2 (3). Values of the work of fracture G_c are found to increase in proportion to $M_c^{1/2}$, and to decrease in proportion to $E^{-1/2}$, for networks prepared by crosslinking to different degrees. And, for the same values of M_c or of E, substantial differences are found between different polymers, those with larger values of mass M_0 per main-chain atom having lower tear strengths, as low as $1/5$ of the tear strength of the simple hydrocarbon elastomers.
Fig. 1. Threshold tear strength $G_{c,0}$ vs. molecular weight M_c of network strands (3). 1, polybutadiene, $M_c=13.5$ a.m.u., (Δ); 2, cis-polyisoprene, $M_c=17$ a.m.u., (0); 3, trans-polyisoprene, $M_c=17$ a.m.u., (●); 4, polydimethyl siloxane, $M_c=37$ a.m.u., (□); 5, phosphonitrilic fluoroelastomer, $M_c=185$ a.m.u., (■).

Fig. 2. Threshold tear strength $G_{c,0}$ vs. Young's modulus E (3). Symbols as in Figure 1.
Under normal conditions the tear strength is many times larger than the small threshold value $G_{c,0}$, about 50-100 J/m2, because of energy expended in various dissipative processes. For simple viscoelastic materials the tear strength is governed by the local viscosity, i.e., by the rate $\dot{\phi}$ of Brownian motion of molecular sub-units. In turn, $\dot{\phi}$ is directly related to the temperature difference $T-T_g$, where T is the test temperature and T_g is the glass transition temperature of the elastomer (4):

$$\log_{10}(\dot{\phi}_T/\dot{\phi}_g) = 17.6(T-T_g)/(52+T-T_g)$$

(12)

where $\dot{\phi}_T$ denotes the rate of sub-unit motion at T, about 0.1 jumps/sec. Using a scaling factor $\alpha_T = \dot{\phi}_T/\dot{\phi}_g$ for the rate of tearing, measurements of tear strength for several elastomers at many temperatures can be superimposed to give a master curve for tear strength as a function of the effective rate of tearing at T_g, Figure 3. This demonstrates that the tear strength depends only upon $T-T_g$, and not upon the local chemical structure of the elastomer except insofar as that determines the value of T_g (5).

Fig. 3. Tear strength G_c plotted against the effective rate of tearing at T_g (5). Results are shown for six butadiene-styrene (SBR) and butadiene-acrylonitrile (NBR) elastomers, with T_g ranging from -30°C to -80°C.
Far above T_a, under threshold conditions, the tear strength depends significantly upon the molecular structure as discussed earlier, and there is some evidence that the same relative differences are maintained under non-equilibrium conditions. But the primary variable for determining the tear strength is $T - T_a$.

The question now arises; which fracture processes, if any, are strongly affected by the local chemical structure? Two examples are considered below: tearing and crack growth, and abrasive wear. Under certain conditions these failure processes are found to depend upon particular features of the elastomer molecule and they are therefore distinctly different, even for closely-related chemical structures. Natural rubber can usefully be compared with cis 1, 4-polybutadiene in this respect, because, although their chemical structures are superficially similar, large differences are observed in their resistance to tearing and in the mechanism of wear.

3: Tearing and Crack Growth in Strain-Crystallizing Elastomers

Certain elastomers, notably natural rubber, crystallize on being stretched by several hundred per cent. They become much stiffer, and rather inelastic due to delays in crystallization and in melting on release. At a crack tip, rubber is highly stressed even when the overall strain is relatively small. The loss of energy associated with crystallization and, later, melting in this region leads to enhanced tear strength at low rates and high temperatures (6), and a much improved resistance to crack growth under repeated stressing (7), as shown in Figures 4, 5 and 6, in comparison with a non-crystallizing elastomer. Strain-induced crystallization is thus a specific, and highly desirable, feature of elastomers. The physical and chemical factors responsible for it are discussed below.

![Graph](image)

Fig. 4. Tear strength G_c of natural rubber as a function of test temperature T and rate R of tearing (6).
Fig. 5. Fatigue life N of natural rubber (NR) and a butadiene-styrene rubber (SBR) plotted against the test temperature T (7).

Fig. 6. Fatigue life N of natural rubber (NR) and a butadiene-styrene rubber (SBR) plotted against the depth l_0 of an initial edge crack (7).
4. Strain-Induced Crystallization

The phenomenon of rapid crystallization in the strained state and rapid melting on release can be attributed to three main causes:

(i) In the unstrained state the crystal melting temperature T_m lies below ambient temperature and the material is therefore non-crystalline.

(ii) On stretching, the melting temperature is raised markedly, to values well above ambient, so that crystallization is thermodynamically favored and the free energy change on fusion is large.

(iii) The glass transition temperature T_g is quite low, well below ambient. Molecular sub-units are consequently highly mobile at ambient temperature and are able to enter the crystalline state rapidly when the free energy change is favorable.

Many polymers have low values of T_g and therefore satisfy condition (iii). However, many of them have either relatively large latent heats of fusion h or, more commonly (8), relatively small latent entropies of fusion s, so that their melting temperatures T_m, given by

$$T_m = h/s,$$

lie above ambient temperature. They are therefore normally crystalline in the unstrained state. Some common examples are: polyethylene, polyethylene oxide, trans 1, 4-polybutadiene and trans 1, 4-polyisoprene (see Table 1). These materials do not satisfy condition (i).

<table>
<thead>
<tr>
<th>Polymers</th>
<th>T_m (°C)</th>
<th>h (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene</td>
<td>141</td>
<td>280</td>
</tr>
<tr>
<td>Polyethylene oxide</td>
<td>66</td>
<td>200</td>
</tr>
<tr>
<td>Trans 1, 4-polyisoprene</td>
<td>74</td>
<td>190</td>
</tr>
<tr>
<td>Trans 1, 4-polybutadiene</td>
<td>148</td>
<td>187</td>
</tr>
<tr>
<td>Cis 1, 4-polybutadiene</td>
<td>6</td>
<td>163</td>
</tr>
<tr>
<td>Trans 1, 4-polychloroprene</td>
<td>80</td>
<td>95</td>
</tr>
<tr>
<td>Cis 1, 4-polyisoprene</td>
<td>30</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 1: Melting temperatures T_m and latent heats of fusion h for some representative crystallizing polymers.

a Taken from reference 8 and "Physical Constants of Linear Homopolymers", by O. G. Lewis, Springer-Verlag, New York 1968.
Of the remaining elastomeric materials, some will meet condition (ii) more successfully than others. The reasons for this can be readily deduced from Flory's approximate theoretical treatment for the melting temperature \(T_{m,\lambda} \) of crystallites in a molecular network held at a stretch ratio \(\lambda \) (9). A molecular sub-unit entering a crystallite from a strand in a stretched molecular network undergoes a smaller loss of configurational entropy than from the unstretched state because its configurational entropy has already been lowered somewhat by stretching. The reduction \(\Delta s \) in the entropy of fusion can be evaluated from the statistics of deformed and undeformed molecular networks. The result leads, by means of equation 13, to a predicted increase in the melting temperature on stretching (9):

\[
\left(\frac{h Q_0}{R} \right) \left(T_{m}^{-1} - T_{m,\lambda}^{-1} \right) = \frac{6}{n} \frac{1}{\lambda} - \frac{1}{2n} \left(\lambda^2 + 2\lambda^{-1} \right)
\]

where \(h \) is the latent heat of fusion per gram, \(R \) is the gas constant, and \(\lambda \) is the tensile stretch ratio applied to the network. This relation is found to give reasonably satisfactory predictions of the melting temperatures \(T_{m,\lambda} \) at moderate extensions, in the range 100 to 400 per cent (\(\lambda = 2 \) to 5) and for different degrees of crosslinking, represented by different values of the molecular strand length \(n \). Some typical results are shown in Figures 7 and 8 (10,11).

Both calculated and observed increases in melting temperature on stretching are found to be larger for some elastomers than for others, and for natural rubber the effect is largest of all. The reason for this lies in the unusually small value of the latent heat of fusion \(h \) for cis-polyisoprene, Table 1. As equation 14 indicates, the increase in \(T_{m} \) on stretching is inversely related to \(h \). Thus, the smaller the value of \(h \) the greater will be the tendency to exhibit strain-induced crystallization. An abnormally low value of \(h \) for natural rubber appears to be associated in part with the relatively small change in density that accompanies crystallization and in part with the absence of strong interatomic binding in the unit cell. Whatever the exact cause, the low value of \(h \) is clearly responsible for the facility with which natural rubber crystallizes on stretching.

5. Abrasive Wear

Wear of rubber under sliding conditions resembles small-scale tearing (12). Indeed, it has been treated as cumulative tearing – a mechanical fatigue process – taking place under the repeated action of frictional forces. A quantitative relationship has been derived in this way for the rate of wear in terms of the rate of crack growth under repeated stressing (13,14). When the rubber is rather tough and wear resistant, however, there is evidence of chemical deterioration during sliding, in addition
Fig. 7. Melting temperatures for crosslinked trans 1, 4-polychloroprene, held at various stretch ratios λ and crystallized at various temperatures T_c (10). Theoretical relation from equation 14 for increase in T_m with λ.

Fig. 8. Melting temperatures for crosslinked trans 1, 4-polyisoprene, held at various stretch ratios λ (11). Theoretical relation from equation 14 for increase in T_m with λ.
to tearing (15,16). When this deterioration is extensive the rubber and abrasion surface become covered with an oily decomposition product and the tearing process is altered, if not stopped altogether.

An example of a particle of wear debris torn from a rather weak material, an unfilled butadiene-styrene (SBR) vulcanizate, is shown in Figure 9. It has characteristically rough, torn surfaces. In contrast, the particle shown in Figure 10, obtained from a carbon-black-filled SBR vulcanizate, has a smooth, shiny appearance and the surface is sticky, as if covered with an oily or tarry film. The debris from carbon-black-filled natural rubber vulcanizates is even more highly degraded, so that the individual particles can hardly be distinguished in this case. On the other hand, the debris from carbon-black-filled cis-1,4-polybutadiene materials is finely-divided and particulate showing no signs of decomposition and every indication of having been mechanically torn away from the rubber surface. Thus, the wear process for reinforced elastomeric materials of roughly equal hardness and friction coefficient, and of comparable tear strength and tensile strength, differs strikingly in character from one polymer to another. These differences must be ascribed to different chemical features of the elastomers.

It should be pointed out at this stage that the formation of an oily degraded surface layer is not necessarily a beneficial feature. If the layer is readily removed from the rubber, then further deterioration can proceed rapidly. Indeed, if in the early stages of decomposition, the rubber is rendered softer and weaker, it will be torn away more easily and the rate of wear will be correspondingly greater than in the absence of general molecular scission. On the other hand, if the liquidlike film is viscous, tarry, and adhesive, it appears to be retained on the rubber surface to act as a protective layer. The rate of wear is then much reduced.
Fig. 9. Photograph of wear debris from an unfilled SBR vulcanizate.
Fig. 10. Photograph of wear debris from a carbon-black-filled SBR vulcanizate.
In order to account for the formation of a degraded surface film in some instances, a number of possible chemical processes can be hypothesized:

(i) Thermal decomposition, as a result of frictional heating.

(ii) Oxidative scission of the molecular network, possibly accelerated by frictional heating.

(iii) Mechanical rupture of the molecular network, followed by internal and external reactions of the polymer radicals generated in this way.

The first process need not be considered further here, because all of these elastomers are more or less equally susceptible to thermal decomposition whereas they do not all degrade during sliding. The second process is also probably not the main mechanism of decomposition because some elastomers show frictional decomposition even in inert atmospheres (15). The third process, however, does appear to be the basic mechanism of molecular decomposition during sliding. A rather good correlation is found to hold between the degree of decomposition observed during frictional sliding, both in air and in an inert atmosphere, and corresponding changes in molecular weight when the original elastomer (before crosslinking) is subjected to continuous mechanical shearing (15,16). For example, polybutadiene forms rather reactive macroradicals by molecular scission, and then undergoes crosslinking reactions, so that both in the shearing of the uncrosslinked polymer and the frictional sliding of the reinforced and crosslinked polymer, the product of mechanochemical processes tends to become a crosslinked solid. In contrast, natural rubber forms a resonance-stabilized macroradical by molecular fracture, which, in the presence of oxygen, forms a peroxy radical and then a hydroperoxide by H abstraction so that the original chain fracture is rendered permanent. Indeed, subsequent oxidation steps may cause scission of other chains as well. Thus, the product of mechanical rupture of the molecular network in this case tends to become liquidlike rather than solid.

These considerations account for the formation of a viscous liquid film on certain materials, and not on others, during frictional sliding. Moreover, the properties of the film, its viscosity and adhesiveness, will clearly depend upon the detailed reactions initiated by mechanical rupture of the elastomer molecules. They will therefore differ from one elastomer to another and they will also depend upon the particular ingredients used in the rubber mix formulation, especially when these substances are themselves able to participate in free-radical reactions.

Many of the differences encountered in the wear behavior of practical rubber compounds can thus be accounted for in a qualitative way when the specific chemical process involved in wear is recognized.
Acknowledgements

This review was prepared in the course of a research program supported by the Office of Naval Research (Contract No. N00014-85-K-0222). An earlier version was presented at the conference Natural rubber: Towards The Year 2000, held in Saltillo, Mexico, July 7-11, 1980, under the auspices of the Centro de Investigacion en Quimica Applicada. The author is indebted to Dr. C.T.R. Pulford of the Goodyear Tire and Rubber Company Research Laboratories for his helpful comments.

References
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Code</th>
<th>City, State Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. R.S. Miller</td>
<td>Office of Naval Research</td>
<td>432P</td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>Dr. J. Pastine</td>
<td>Naval Sea Systems Command</td>
<td>06R</td>
<td>Washington, DC 20362</td>
</tr>
<tr>
<td>Dr. Kenneth D. Hartman</td>
<td>Hercules Aerospace Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Merrill K. King</td>
<td>Atlantic Research Corp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R.L. Lou</td>
<td>Aerojet Strategic Propulsion Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R. Olsen</td>
<td>Aerojet Strategic Propulsion Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Randy Peters</td>
<td>Aerojet Strategic Propulsion Co.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. D. Mann</td>
<td>U.S. Army Research Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. L.V. Schmidt</td>
<td>Office of Naval Technology</td>
<td>07CT</td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>JHU Applied Physics Laboratory</td>
<td>ATTN: CPIA (Mr. T.W. Christian)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. R. McGuire</td>
<td>Lawrence Livermore Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. W. Moniz</td>
<td>Naval Research Lab.</td>
<td>6120</td>
<td>Washington, DC 20375</td>
</tr>
<tr>
<td>Prof. M. Nicol</td>
<td>Dept. of Chemistry & Biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. L. Roslund</td>
<td>Naval Surface Weapons Center</td>
<td>R10C</td>
<td>White Oak, Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Dr. David C. Sayles</td>
<td>Ballistic Missile Defense</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Technology Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Huntsville, AL 35807</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. R. Geisler</td>
<td>ATTN: DY/MS-24 F AFRPL Edwards AFB, CA 93523</td>
</tr>
<tr>
<td>Naval Air Systems Command</td>
<td>ATTN: Mr. Bertram P. Sobers NAVAIR-32OG Jefferson Plaza 1, RM 472 Washington, DC 20361</td>
</tr>
<tr>
<td>R.B. Steele</td>
<td>Aerojet Strategic Propulsion Co. P.O. Box 15699C Sacramento, CA 95813</td>
</tr>
<tr>
<td>Mr. M. Stosz</td>
<td>Naval Surface Weapons Center Code R10B White Oak Silver Spring, MD 20910</td>
</tr>
<tr>
<td>Mr. E.S. Sutton</td>
<td>Thiokol Corporation Elkton Division P.O. Box 241 Elkton, MD 21921</td>
</tr>
<tr>
<td>Dr. Grant Thompson</td>
<td>Morton Thiokol, Inc. Wasatch Division MS 240 P.O. Box 524 Brigham City, UT 84302</td>
</tr>
<tr>
<td>Dr. R.S. Valentini</td>
<td>United Technologies Chemical Systems P.O. Box 50015 San Jose, CA 95150-0015</td>
</tr>
<tr>
<td>Dr. R.F. Walker</td>
<td>Chief, Energetic Materials Division DRSMC-LCE (D), B-3022 USA ARDC Dover, NJ 07801</td>
</tr>
<tr>
<td>Dr. Janet Wall</td>
<td>Code 012 Director, Research Administration Naval Postgraduate School Monterey, CA 93943</td>
</tr>
<tr>
<td>Director</td>
<td>US Army Ballistic Research Lab. ATTN: DRXBR-IBD Aberdeen Proving Ground, MD 21005</td>
</tr>
<tr>
<td>Commander</td>
<td>US Army Missile Command ATTN: DRSMI-RKL Walter W. Wharton Redstone Arsenal, AL 35898</td>
</tr>
<tr>
<td>Dr. Ingo W. May</td>
<td>Army Ballistic Research Lab. ARRADCOM Code DRXBR - 1BD Aberdeen Proving Ground, MD 21005</td>
</tr>
<tr>
<td>Dr. E. Zimet</td>
<td>Office of Naval Technology Code 071 Arlington, VA 22217</td>
</tr>
<tr>
<td>Dr. Ronald L. Derr</td>
<td>Naval Weapons Center Code 389 China Lake, CA 93555</td>
</tr>
<tr>
<td>T. Boggs</td>
<td>Naval Weapons Center Code 389 China Lake, CA 93555</td>
</tr>
<tr>
<td>Lee C. Estabrook, P.E.</td>
<td>Morton Thiokol, Inc. P.O. Box 30058 Shreveport, Louisiana 71130</td>
</tr>
<tr>
<td>Dr. J.R. West</td>
<td>Morton Thiokol, Inc. P.O. Box 30058 Shreveport, Louisiana 71130</td>
</tr>
<tr>
<td>Dr. D.D. Dillehay</td>
<td>Morton Thiokol, Inc. Longhorn Division Marshall, TX 75670</td>
</tr>
<tr>
<td>G.T. Bowman</td>
<td>Atlantic Research Corp. 7511 Wellington Road Gainesville, VA 22065</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

R.E. Shenton
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mike Barnes
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. Lionel Dickinson
Naval Explosive Ordinance Disposal Tech. Center
Code D
Indian Head, MD 20340

Prof. J.T. Dickinson
Washington State University
Dept. of Physics 4
Pullman, WA 99164-2814

M.H. Miles
Dept. of Physics
Washington State University
Pullman, WA 99164-2814

Dr. T.F. Davidson
Vice President, Technical
Morton Thiokol, Inc.
Aerospace Group
110 North Wacker Drive
Chicago, Illinois 60606

Mr. J. Consaga
Naval Surface Weapons Center
Code R-16
Indian Head, MD 20640

Naval Sea Systems Command
ATTN: Mr. Charles M. Christensen
NAVSEA-62R2
Crystal Plaza, Bldg. 6, Rm 806
Washington, DC 20362

Mr. R. Beauregard
Naval Sea Systems Command
SEA 64E
Washington, DC 20362

Brian Wheatley
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Mr. G. Edwards
Naval Sea Systems Command
Code 62R32
Washington, DC 20362

C. Dickinson
Naval Surface Weapons Center
White Oak, Code R-13
Silver Spring, MD 20910

Prof. John Deutch
MIT
Department of Chemistry
Cambridge, MA 02139

Dr. E.H. deButts
Hercules Aerospace Co.
P.O. Box 27408
Salt Lake City, UT 84127

David A. Flanigan
Director, Advanced Technology
Morton Thiokol, Inc.
Aerospace Group
110 North Wacker Drive
Chicago, Illinois 60606

Dr. L.H. Caveny
Air Force Office of Scientific Research
Directorate of Aerospace Sciences
Bolling Air Force Base
Washington, DC 20332

W.C. Roger
Code 5253
Naval Ordinance Station
Indian Head, MD 20640

Dr. Donald L. Ball
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332
DISTRIBUTION LIST

Dr. Anthony J. Matuszko
Air Force Office of Scientific Research
Directorate of Chemical & Atmospheric Sciences
Bolling Air Force Base
Washington, DC 20332

Dr. Michael Chaykovsky
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

J.J. Rocchio
USA Ballistic Research Lab.
Aberdeen Proving Ground, MD 21005-5066

G.A. Zimmerman
Aerojet Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

B. Swanson
INC-6 MS C-346
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dr. James T. Bryant
Naval Weapons Center
Code 3205B
China Lake, CA 93555

Dr. L. Rothstein
Assistant Director
Naval Explosives Dev. Engineering Dept.
Naval Weapons Station
Yorktown, VA 23691

Dr. M.J. Kamlet
Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD 20910

Dr. Henry Webster, III
Manager, Chemical Sciences Branch
ATTN: Code 5063
Crane, IN 47522

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, DC 20380

Dr. H.G. Adolph
Naval Surface Weapons Center
Code R11
White Oak
Silver Spring, MD 20910

U.S. Army Research Office
Chemical & Biological Sciences Division
P.O. Box 12211
Research Triangle Park, NC 27709

G. Butcher
Hercules, Inc.
MS X2H
P.O. Box 98
Magna, Utah 84044

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. John S. Wilkes, Jr.
FJSRL/NC
USAF Academy, CO 80840

Dr. H. Rosenwasser
AIR-32OR
Naval Air Systems Command
Washington, DC 20361

Dr. Joyce J. Kaufman
The Johns Hopkins University
Department of Chemistry
Baltimore, MD 21218

Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555
DISTRIBUTION LIST

K.D. Pae
High Pressure Materials Research Lab.
Rutgers University
P.O. Box 909
Piscataway, NJ 08854

Dr. John K. Dienes
T-3, B216
Los Alamos National Lab.
P.O. Box 1663
Los Alamos, NM 87544

A.N. Gent
Institute Polymer Science
University of Akron
Akron, OH 44325

Dr. D.A. Shockey
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

Dr. R.B. Kruse
Morton Thiokol, Inc.
Huntsville Division
Huntsville, AL 35807-7501

G. Butcher
Hercules, Inc.
P.O. Box 98
Magna, UT 84044

W. Waesche
Atlantic Research Corp.
7511 Wellington Road
Gainesville, VA 22065

Dr. R. Bernecker
Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910

Prof. Edward Price
Georgia Institute of Tech.
School of Aerospace Engineering
Atlanta, GA 30332

J.A. Birkett
Naval Ordnance Station
Code 5253K
Indian Head, MD 20640

Prof. R.W. Armstrong
University of Maryland
Dept. of Mechanical Engineering
College Park, MD 20742

Herb Richter
Code 385
Naval Weapons Center
China Lake, CA 93555

J.T. Rosenberg
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

G.A. Zimmerman
Aeroject Tactical Systems
P.O. Box 13400
Sacramento, CA 95813

Prof. Kenneth Kuo
Pennsylvania State University
Dept. of Mechanical Engineering
University Park, PA 16802

T.L. Boggs
Naval Weapons Center
Code 3891
China Lake, CA 93555
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>Name</th>
<th>Address Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. C.S. Coffey</td>
<td>Naval Surface Weapons Center, White Oak, Silver Spring, MD</td>
</tr>
<tr>
<td>D. Curran</td>
<td>SRI International, 333 Ravenswood Avenue, Menlo Park, CA</td>
</tr>
<tr>
<td>E.L. Throckmorton</td>
<td>Strategic Systems Program Office, Crystal Mall #3, RM 1048</td>
</tr>
<tr>
<td>Dr. R. Martinson</td>
<td>Lockheed Missiles and Space Co., Research and Development</td>
</tr>
<tr>
<td>C. Gotzmer</td>
<td>Naval Surface Weapons Center, White Oak, Silver Spring, MD</td>
</tr>
<tr>
<td>G.A. Lo</td>
<td>3251 Hanover Street, B204 Lockheed Palo Alto Research Lab</td>
</tr>
<tr>
<td>R.A. Schapery</td>
<td>Civil Engineering Department, Texas A&M University, College Station, TX</td>
</tr>
<tr>
<td>J.M. Culver</td>
<td>Strategic Systems Projects Office, SSPO/SP-2731, Crystal Mall #3, RM 1048, Washington, DC</td>
</tr>
<tr>
<td>Prof. G.D. Duvall</td>
<td>Washington State University, Department of Physics, Pullman, WA</td>
</tr>
<tr>
<td>Dr. E. Martin</td>
<td>Naval Weapons Center, China Lake, CA 93555</td>
</tr>
<tr>
<td>Dr. M. Farber</td>
<td>Naval Surface Weapons Center, White Oak, Bldg. 343, Silver Spring, MD</td>
</tr>
<tr>
<td>W.L. Elban</td>
<td>Naval Surface Weapons Center, White Oak, Bldg. 343, Silver Spring, MD</td>
</tr>
<tr>
<td>G.E. Hanser</td>
<td>Morton Thiokol, Wasatch Division, P.O. Box 524, Brigham City, UT</td>
</tr>
<tr>
<td>R.G. Rosemeier</td>
<td>Brimrose Corporation, 7720 Belair Road, Baltimore, MD 20742</td>
</tr>
</tbody>
</table>
Administrative Contracting Director
Officer (see contract for Naval Research Laboratory
address) Attn: Code 2627
(1 copy)

Defense Technical Information Center
Bldg. 5, Cameron Station
Alexandria, VA 22314
(12 copies)

Dr. Robert Polvani
Director
National Bureau of Standards
Naval Research Laboratory
Metallurgy Division Attn: Code 2627
Washington, D.C. 20234

Dr. Y. Gupta
Washington State University
Department of Physics
Pullman, WA 99163
END
FILMED
5-86
DTIC