ACUTE DERMAL TOXICITY OF BARRIERIN RABBITS(U)

LETTERMAN ARMY INST OF RESEARCH PRESIDIO OF SAN
FRANCISCO CA J R RYABIK ET AL. JAN 86 LAIR-211
ACUTE DERMAL TOXICITY OF BALLPOWDER IN RABBITS

JOHN R.G. RYABIK, BS, SP4
CAROLYN LEWIS, MS
PAUL W. MELLICK, DVM, PhD, COL VC
and
DON W. KORTE JR, PhD, MAJ MSC

TOXICOLOGY BRANCH
DIVISION OF COMPARATIVE MEDICINE
AND TOXICOLOGY

JANUARY 1986

LETTERMAN ARMY INSTITUTE OF RESEARCH
PRESIDIO OF SAN FRANCISCO, CALIFORNIA 94129

Toxicology Series 120
Acute Dermal Toxicity of Ballpowder in Rabbits

- **Authors:** John R.G. Ryabik, BS, SP4, Carolyn M. Lewis, MS, Paul W. Mellick, DVM, PhD, COL VC, and Don W. Korte, Jr, PhD, MAJ MSC.
- **Performing Organization:** US Army Medical Research and Development Command, Toxicology Branch, Div of Comp Med and Tox.
- **Monitored by:** Letterman Army Institute of Research, WU 180, Fort Detrick, MD 21701-5012.

Abstract:
The acute dermal toxicity of ballpowder was evaluated in rabbits by topical application to skin sites with semi-occlusive covering for 24 hours. There were no compound related deaths or clinical signs observed at a limit dose of 2 g/kg during the study. There were no dermal effects observed in any of the rabbits which could be attributed to ballpowder.
ABSTRACT

The acute dermal toxicity of ballpowder was evaluated in New Zealand White rabbits following a 24-hour exposure period. There were no compound related deaths or clinical signs observed at a limit dose of 2 g/kg during this study. There were no dermal effects observed in any of the rabbits which could be attributed to ballpowder.

KEY WORDS: Ballpowder, Acute Dermal Toxicity, Rabbit, Mammalian Toxicology
PREFACE

TYPE REPORT: Acute Dermal Toxicity GLP Report

TESTING FACILITY: U.S. Army Medical Research and Development Command
Letterman Army Institute of Research
Presidio of San Francisco, CA 94129-6800

SPONSOR: US Army Medical Research and Development Command
US Army Medical Bioengineering Research
and Development Laboratory
Fort Detrick, MD 21701-5010
Project Officer: Gunda Reddy, PhD

PROJECT: Nitrocellulose-Nitroguanidine Project
3E162720A835
WU 180, APC TL09

GLP STUDY NO.: 84036

STUDY DIRECTOR: Don W. Korte, Jr, PhD, MAJ MSC

PRINCIPAL INVESTIGATOR: Carolyn M. Lewis, MS

CO-PRINCIPAL INVESTIGATOR: John R.G. Ryabik, BS, SP4

PATHOLOGIST: Paul W. Mellick, DVM, PhD, COL VC

REPORT AND DATA MANAGEMENT: A copy of the final report, study
protocols, raw data, retired SOPs, and an
aliquot of the test compound will be
retained in the LAIR Archives.

TEST SUBSTANCE: Ballpowder

INCLUSIVE STUDY DATES: 24 Jan - 26 Feb 85

OBJECTIVE: The objective of the study was to evaluate the acute
dermal toxicity of ballpowder in male and female New
Zealand White rabbits.
ACKNOWLEDGMENT

SP4 James Fischer, PFC Scott Schwebe, and Ms. Charlotte Speckman were responsible for animal husbandry. CPT Earl Morgan served as Project Coordinator for the Nitrocellulose-Nitroguanidine Project.
SIGNATURES OF PRINCIPAL SCIENTISTS AND MANAGERS INVOLVED IN THE STUDY

We, the undersigned, declare that GLP study number 84036 was performed under our supervision, according to the procedures described herein, and that this report is an accurate record of the results obtained.

DON W. KORTE, JR. /PhD / DATE
MAJ, MS
Study Director

CAROLYN LEWIS, MS / DATE
DAC
Principal Investigator

JOHN R.G. RYABIK, BS / DATE
SF4, USA
Co-Principal Investigator

PAUL W. MELLICK, DVM, PhD / DATE
COL, VC
Pathologist
MEMORANDUM FOR RECORD

SUBJECT: Report of GLP Compliance

1. I hereby certify that in relation to LAIR GLP Study 84036 the following inspections were made:

 12 February 1985
 13 February 1985

2. The report and raw data for this study were audited on 15 October 1985.

3. Routine inspections with no adverse findings are reported quarterly, thus these inspections are also included in the 29 April 1985 report to Management and the Study Director.

GARY L. DUTCHER
SSG, USA
Quality Assurance Unit
TABLE OF CONTENTS

Abstract...1
Preface...iii
Acknowledgments..iv
Signatures of Principal Scientists..................................v
Report of Quality Assurance Unit..................................vi
Table of Contents..vii

BODY OF REPORT

INTRODUCTION

Description of Test...1
Objective of Study..1

MATERIALS AND CONDITIONS

Test Substance..1
Vehicle...2
Animal Data..2
Husbandry..2

METHODS

Group Assignment/Acclimation..................................2
Dosage Levels..3
Test Procedures..3
Observations..3
Necropsy..3
Duration of Study...4
Changes/Deviations..4
Raw Data and Final Report Storage.........................4

RESULTS

Clinical Observations...4
Gross Pathological Observations............................4

DISCUSSION...5

CONCLUSION..5

REFERENCES..6
Table of Contents (cont.)

APPENDICES

Appendix A. Chemical Data...9
Appendix B. Historical Listing of Study Events..................11
Appendix C. Summary of Dermal Signs and Body Weights......13
Appendix D. Pathology Report..19

DISTRIBUTION LIST..23
Acute Dermal Toxicity of Ballpowder in Rabbits—Ryabik et al

Nitroguanidine, a primary component of US Army triple-base propellants, is now produced in a Government-owned contractor-operated ammunition plant. The US Army Bioengineering Research and Development Laboratory (USAMBRDL), as part of its mission to evaluate the environmental and health hazards of military-unique pollutants generated by US Army munitions manufacturing facilities, conducted a review of the nitroguanidine data base and identified significant gaps in the toxicity data (1). The Toxicology Branch, LAIR, was tasked by USAMBRDL to develop a genetic and mammalian toxicity profile for nitroguanidine, related intermediates/by-products of its manufacture, and its environmental degradation products. A genetic and acute mammalian toxicity profile of ballpowder, a fielded nitrocellulose-based propellant (Cartridge 5.56 mm, Ball, M193) was also requested as a baseline against which future formulations will be compared.

Objective of Study

The objective of this study was to determine the acute dermal toxicity potential of ballpowder in male and female New Zealand White rabbits.

MATERIALS AND CONDITIONS

Test Substance

Product name: WC 844 Double-base Spheroidal Propellant

Code number: LAIR Code No. TA045

Physical state: Solid

Source: Badger Army Ammunition Plant
Baraboo, WI 53913

Other test substance information is presented in Appendix A.
Vehicle

The vehicle was sterile saline (0.9% sodium chloride for injection, USP, Travenol Laboratories, Inc, Deerfield, IL 60015, Lot No 7C950X0, Expiration Date - October 1985).

Animal Data

Five male and five female young adult New Zealand White rabbits (Oryctolagus cuniculus) were obtained from Elkhorn Rabbitry, Watsonville, CA 95076, for this study. They were identified individually by ear tattoos with numbers ranging from 85F032 to 85F036 (inclusive) for the females and from 85F040 to 85F044 (inclusive) for the males. The animal weights ranged from 2745 to 3125 g on receipt and from 2815 to 3272 g at dosing.

Husbandry

The rabbits were housed individually in stainless steel, wire mesh bottom, battery-type cages with automatically flushing dump tanks. Water was provided ad libitum by automatic lick dispensers connected to a central line. The rabbits were fed approximately 150 g of Purina Certified Rabbit Chow No 5322 (Ralston Purina Company, St Louis, MO 63164, Lot Nos: OCTO5842A, NOV15842A and NOV15842B) daily. The animal room temperature was maintained between 17 and 20°C and the relative humidity between 40% and 70% except during room cleaning (spikes up to 79%, lasting 15 to 30 minutes). The photoperiod was 12 hours of light per day.

METHODS

This study was conducted in accordance with Environmental Protection Agency Guidelines (2) and Toxicology Branch Standard Operating Procedures (3).

Acclimation and Group Assignment

The rabbits were quarantined by the Animal Resources Group, LAIR, for two weeks before being certified healthy by a staff veterinarian. During quarantine they were given sulfaquinoline (3.2 ml/326 ml water bottle ad libitum for seven days) for coccidial prophylaxis and one application of Canex®/mineral oil (Pitman-Moore, Inc., Washington Crossing, NJ 08560) for ear mite prevention. After being certified healthy, the rabbits were moved into a Toxicology Group animal room for the remainder of the study. The hair on the exposure site was clipped 4 days before dosing. The exposure site was clipped a second time 24 hours before dosing.

No randomization for group assignment was necessary as there was only one dose level for each sex.
Dose Levels

A limit test was conducted in which male and female rabbits were assigned to a test group receiving 2 g/kg of ballpowder.

Test Procedures

The applications sites on the dorsal and lateral sections of the animals (surface area approximately 300 cm²) were close-clipped with electric clippers (Oster® Model A5, Size 40 blade, Sunbeam Corp, Milwaukee, WI 53217) 24 hours before applying the test compound. The compound was evenly distributed over the surface of an 8 x 8-inch (20.3 x 20.3-cm) piece of gauze moistened with isotonic saline, then taped to the application site on the animal with hypoallergenic tape (Durapore® Surgical Tape, 3M Corp, St Paul, MN 55144). The trunk of the animal was then wrapped with Vetrap® bandaging tape (Animal Care products, 3M Corp, St Paul, MN 55144) to hold the compound in place and prevent the animal from ingesting the compound. The Vetrap® was anchored in place cranially and caudally by strips of Conform® tape (Kendall Co., Boston, MA 02101). The wrappings were left in place for 24 hours. No restraint of the animals was used except during the wrapping procedure. When the wrappings were removed the exposed area was wiped with a piece of gauze moistened with saline to remove any remaining test compound.

Observations

Clinical observations were recorded 1, 2, and 4 hours after dosing and daily for the remainder of the study. A second "walk through" observation was performed daily with only significant observations recorded. If dermal reactions were observed, they were recorded according to type, severity, and percent area exposed. Severity was defined as slight, mild, moderate, and severe. Area was defined as less than 5%, 5 to 10%, 10 to 25%, 25 to 50% and greater than 50% of exposed area. Percent area exposed was determined by visual approximation. Body weights were recorded once a week during the course of the study.

Necropsy

Animals that died during the study were submitted for necropsy. Those which survived the 14-day study period were submitted for necropsy immediately after being given an overdose of sodium pentobarbital and sacrificed by exsanguination from the severed axillary vessels. Skin was taken from the exposed area and examined microscopically.
Duration of Study

The study period was 14 days with a 19-day quarantine/acclimation period. Appendix B contains a listing of major study events.

Changes/Deviations

The protocol stated that ballpowder would be moistened with isotonic saline to make a paste. Since ballpowder is in the form of small spheroidal pellets, it did not lend itself to the formation of a paste. Rather, ballpowder was sprinkled evenly over the surface of the prescribed pieces of gauze moistened with isotonic saline and applied. The protocol also stated that the rabbits would be fed 150 g of Purina Certified Rabbit Chow No 5322 daily. This value is an approximation since the chow is measured volumetrically. One cup of the chow (the volume given a rabbit each day) weighs approximately 150 g. These changes/deviations did not affect the outcome of the study.

Raw Data and Final Report Storage

A copy of the final report, study protocols, raw data, SOPs, and an aliquot of the test compound will be retained in the LAIR archives.

RESULTS

Clinical Observations

Observations consisted of two major categories, systemic and dermal. No systemic signs attributable to the compound were observed in any of the animals. The only clinical sign observed during the study was slight diarrhea in four of the female and one of the male rabbits.

Equivocal signs of erythema were observed initially after removal of wrappings (Table C-1 and Table C-2, Appendix C).

A summary of the body weights during the quarantine and study period appear in Table C-3 (Appendix C).

Gross Pathological Observations

There were no gross or microscopic findings in these rabbits that could be attributed to dermal exposure to ballpowder at the 2 g/kg dose level (Appendix D).
DISCUSSION

Ballpowder produced no mortality in rabbits exposed to a limit dose of 2 g/kg. The only clinical sign observed during the study was diarrhea in four of the female and one of the male rabbits. The diarrhea occurred shortly after dosing and could be attributed to the stress of handling and dosing. Mild erythema was observed initially after removal of the wrappings in four of the ten dosed rabbits. Three of the four rabbits had less than 5% of the exposed area affected and the other rabbit had between 5% and 10% of the exposed area affected. The pattern of the erythema suggested that it was due to the wrappings procedure. The pathology report revealed no lesions attributed to the test compound. This finding was not only consistent with the observation that significant quantities of test compound remained on the back after 24 hours but also that little of the test compound was absorbed during the exposure period. Absorption of ballpowder was probably impeded due to its physical characteristics as well as its insolubility in the saline vehicle utilized. Ballpowder is insoluble in water, slightly soluble in DMSO, and soluble in acetone, ethyl acetate, and other organic solvents (4).

CONCLUSION

A limit dose of 2 g/kg of ballpowder was not lethal following dermal exposure for 24 hours, and produced no compound related clinical signs or dermal effects during the 14-day observation period. Ballpowder possesses a minimal potential for acute dermal toxicity.
REFERENCES

Appendix A. Chemical Data .. 11
Appendix B. Historical Listing of Study Events 13
Appendix C. Summary of Dermal Signs and Body Weights 15
Appendix D. Pathology Report 21

Appendices
PROPELLANT DESCRIPTION SHEET

<table>
<thead>
<tr>
<th>COMPOSITION NUMBER</th>
<th>FROM</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC 644 for Cartridge 5.56 mm, BALL, M193</td>
<td>Badger Army Ammunition Plant</td>
<td>10 August 1984</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOT NUMBER</th>
<th>PACKED AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/50 blend of Tots BA-47670 and BA-47671</td>
<td>LB 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>SPECIFICATION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAA09-73-C-0004</td>
<td>MIL-P-3984E w/Amendment 4 and Drawing No. C105437-43 Rev. C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACCEPTED BLEND NUMBERS</th>
<th>NITROCELLULOSE</th>
<th>MANUFACTURE OF PROPELLANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrocellulose (NC) extracted from excess</td>
<td>Single Base Propellant</td>
<td>Pounds solvent per pound NC/dry weight ingredients consisting of</td>
</tr>
<tr>
<td>MAX %</td>
<td>MIN %</td>
<td>MIN %</td>
</tr>
<tr>
<td>STABILITY (134.5°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPLOSION HR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| PROCESS-SOLVENT RECOVERY AND DRYING |
TEMPERATURE	TIME	
FROM	TO	PROCESS-SOLVENT RECOVERY AND DRYING
DAYS	HOURS	

<p>| PROPELLANT COMPOSITION | TESTS OF FINISHED PROPELLANT STABILITY AND PHYSICAL TESTS |</p>
<table>
<thead>
<tr>
<th>CONSTITUENT</th>
<th>% FORMULA</th>
<th>% TOLERANCE</th>
<th>% MEASURED</th>
<th>ACTUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitroglycerin</td>
<td>10.235</td>
<td>No Explos.</td>
<td>Min 60 min</td>
<td>65 min. *</td>
</tr>
<tr>
<td>Dinitrosoamine</td>
<td>0.690</td>
<td>Dust & Foreign Mat.</td>
<td>Min 5</td>
<td>5s*</td>
</tr>
<tr>
<td>Dibutylphthalate</td>
<td>1.050</td>
<td>Form of Propellant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrocellulose</td>
<td>82.23</td>
<td>Graphite</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>Total Volatiles</td>
<td>1.085</td>
<td>Gray Densit.</td>
<td>1.008</td>
<td></td>
</tr>
<tr>
<td>Moisture and Volatiles</td>
<td>0.895</td>
<td>Nitrogen</td>
<td>13.075</td>
<td></td>
</tr>
<tr>
<td>Residual Solvent</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium Carbonate</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Sulfate</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSED ROOM</td>
<td>PROPELLANT DIMENSIONS (INCHES)</td>
<td>WEIGHT PER BOX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOT NUMBER</td>
<td>TEMP. %</td>
<td>REL. HUM. %</td>
<td>SPEC.</td>
<td>DIE</td>
</tr>
<tr>
<td>STANDARD</td>
<td>100.00%</td>
<td>100.00%</td>
<td>DIAMETER (D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE OF PACKING CONTAINER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REMARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Tested 29 February 1984.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature of Contractor's Representative: ______________________________

Signature of Government Quality Assurance Representative: ______________________________

Appendix A
<table>
<thead>
<tr>
<th>DATE</th>
<th>EVENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Jan 85</td>
<td>Ten rabbits arrived at LAIR. They were checked for illness and quarantined.</td>
</tr>
<tr>
<td>7 Feb 85</td>
<td>Ten rabbits removed from quarantine.</td>
</tr>
<tr>
<td>8 Feb 85</td>
<td>Rabbits examined, weighed, and clipped.</td>
</tr>
<tr>
<td>8-11 Feb 85</td>
<td>Rabbits checked daily for illness.</td>
</tr>
<tr>
<td>11 Feb 85</td>
<td>Rabbits weighed and clipped.</td>
</tr>
<tr>
<td>12 Feb 85</td>
<td>Ten rabbits dosed and observed 1, 2, and 4 hours after dosing.</td>
</tr>
<tr>
<td>13 Feb 85</td>
<td>Wrappings removed and rabbits observed for dermal irritation and clinical signs of toxicity.</td>
</tr>
<tr>
<td>17 Feb – 26 Feb 85</td>
<td>Rabbits observed in the morning for dermal and clinical signs. Walk-through check in afternoon.</td>
</tr>
<tr>
<td>19 Feb 85</td>
<td>Rabbits weighed.</td>
</tr>
<tr>
<td>26 Feb 85</td>
<td>Feed withheld. Ten rabbits weighed, observed, then euthanized. Gross necropsies performed. Skin from exposure site preserved for histological examination.</td>
</tr>
</tbody>
</table>
SUMMARY OF DERMAL SIGNS AND BODY WEIGHTS

Table C-1. Acute Dermal Signs in Male Rabbits.........................17
Table C-2. Acute Dermal Signs in Female Rabbits......................18
Table C-3. Summary of Body Weights....................................19

Appendix C
TABLE C-1
ACUTE DERMAL TOXICITY OF BALLPOWDER IN MALE RABBITS

SUMMARY OF DERMAL SIGNS

<table>
<thead>
<tr>
<th>Male Animal No</th>
<th>Dermal Signs</th>
<th>Duration of Dermal Signs (Days)</th>
<th>Severity</th>
<th>Area +</th>
</tr>
</thead>
<tbody>
<tr>
<td>85F040</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>85F041</td>
<td>Tape-site Rawness</td>
<td>1-2</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>85F042</td>
<td>Erythema*</td>
<td>1</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>85F043</td>
<td>Erythema*</td>
<td>1-2</td>
<td>A-B</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Tape-site Rawness</td>
<td>1-2</td>
<td>A-B</td>
<td>1-2</td>
</tr>
<tr>
<td>85F044</td>
<td>Tape-site Rawness</td>
<td>1-4</td>
<td>A-B</td>
<td>1</td>
</tr>
</tbody>
</table>

A = Slight 1 = < 5%
B = Mild 2 = 5 to 10%
C = Moderate 3 = 10 to 25%
D = Severe 4 = 25 to 50%
5 = > 50%

*Denotes equivocal signs of erythema suspected to be due to the tightness of the wrappings.

+Pertains to percent of exposed area exhibiting signs of dermal irritation. This value is determined by visual approximation.
TABLE C-2

ACUTE DERMAL TOXICITY OF BALLPOWDER IN FEMALE RABBITS

SUMMARY OF DERMAL SIGNS

<table>
<thead>
<tr>
<th>Female Animal No</th>
<th>Dermal Signs</th>
<th>Duration of Dermal Signs (Days)</th>
<th>Severity</th>
<th>Area$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>85F032</td>
<td>Tape-site Rawness</td>
<td>1-4</td>
<td>A-B</td>
<td>1</td>
</tr>
<tr>
<td>85F033</td>
<td>Erythema*</td>
<td>1-2</td>
<td>A-B</td>
<td>1</td>
</tr>
<tr>
<td>85F034</td>
<td>Erythema*</td>
<td>1</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>85F035</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>85F036</td>
<td>None</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

A = Slight
B = Mild
C = Moderate
D = Severe

1 = < 5%
2 = 5 to 10%
3 = 10 to 25%
4 = 25 to 50%
5 = > 50%

*Denotes equivocal signs of erythema suspected to be due to the tightness of the wrappings.

$^+$Pertains to percent of exposed area exhibiting signs of dermal irritation. This value is determined by visual approximation.
TABLE C-3
ACUTE DERMAL TOXICITY OF BALLPOWDER RABBITS

SUMMARY OF BODY WEIGHTS (grams)

<table>
<thead>
<tr>
<th>DAY</th>
<th>Q1</th>
<th>Q8</th>
<th>Q15</th>
<th>Q18</th>
<th>7</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85F032</td>
<td>3045</td>
<td>3120</td>
<td>3131</td>
<td>3225</td>
<td>3267</td>
<td>3330</td>
</tr>
<tr>
<td>85F033</td>
<td>3125</td>
<td>2945</td>
<td>3010</td>
<td>3205</td>
<td>3245</td>
<td>3280</td>
</tr>
<tr>
<td>85F034</td>
<td>2805</td>
<td>2810</td>
<td>2852</td>
<td>2815</td>
<td>3084</td>
<td>3004</td>
</tr>
<tr>
<td>85F035</td>
<td>2985</td>
<td>2930</td>
<td>2977</td>
<td>3127</td>
<td>3156</td>
<td>3175</td>
</tr>
<tr>
<td>85F036</td>
<td>2855</td>
<td>2920</td>
<td>2981</td>
<td>3146</td>
<td>3219</td>
<td>3230</td>
</tr>
<tr>
<td>Mean</td>
<td>2963</td>
<td>2945</td>
<td>2990</td>
<td>3104</td>
<td>3194</td>
<td>3204</td>
</tr>
<tr>
<td>± S.E.M.</td>
<td>± 59</td>
<td>± 50</td>
<td>± 45</td>
<td>± 74</td>
<td>± 33</td>
<td>± 56</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85F040</td>
<td>2910</td>
<td>2960</td>
<td>2998</td>
<td>3163</td>
<td>3203</td>
<td>3239</td>
</tr>
<tr>
<td>85F041</td>
<td>2875</td>
<td>2920</td>
<td>3179</td>
<td>3272</td>
<td>3339</td>
<td>3305</td>
</tr>
<tr>
<td>85F042</td>
<td>2815</td>
<td>2885</td>
<td>3040</td>
<td>3122</td>
<td>3198</td>
<td>3165</td>
</tr>
<tr>
<td>85F043</td>
<td>2915</td>
<td>2985</td>
<td>3107</td>
<td>3156</td>
<td>3263</td>
<td>3262</td>
</tr>
<tr>
<td>85F044</td>
<td>2745</td>
<td>2820</td>
<td>2944</td>
<td>2943</td>
<td>3094</td>
<td>3143</td>
</tr>
<tr>
<td>Mean</td>
<td>2952</td>
<td>2914</td>
<td>3054</td>
<td>3131</td>
<td>3219</td>
<td>3223</td>
</tr>
<tr>
<td>± S.E.M.</td>
<td>± 12</td>
<td>± 29</td>
<td>± 41</td>
<td>± 53</td>
<td>± 40</td>
<td>± 30</td>
</tr>
</tbody>
</table>

Appendix C (concluded)
Pathology Report
GLP Study 84036

Acute Dermal Toxicity (Limit Test)
of Ballpowder (Olin WC 844 Double-Based Spheroidal Propellant)
in Male and Female New Zealand White Rabbits

1. Purpose: This study was done to determine the acute dermal toxicity of ballpowder (Olin WC 844 double-based spheroidal propellant). A limit dose of 2 g/kg was applied to the clipped unabraded skin of each rabbit. Animals were killed by exsanguination while under pentobarbitol anesthesia after a 14-day observation period. Complete gross necropsies were performed and 4 specimens of skin from the exposed area of each rabbit were processed for histologic examination. Five male and five female rabbits were treated. All survived until the end of the test.

2. Gross Necropsy Findings:

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Rabbit No.</th>
<th>Sex</th>
<th>Gross Necropsy Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>36945</td>
<td>85F00032</td>
<td>F</td>
<td>No lesions</td>
</tr>
<tr>
<td>36946</td>
<td>85F00033</td>
<td>F</td>
<td>Otitis media, purulent, bilateral</td>
</tr>
<tr>
<td>36947</td>
<td>85F00034</td>
<td>F</td>
<td>Pin worms, cecum</td>
</tr>
<tr>
<td>36948</td>
<td>85F00035</td>
<td>F</td>
<td>Pin worms, cecum</td>
</tr>
<tr>
<td>36949</td>
<td>85F00036</td>
<td>F</td>
<td>No lesions</td>
</tr>
<tr>
<td>36950</td>
<td>85F00040</td>
<td>M</td>
<td>Pin worms, cecum</td>
</tr>
<tr>
<td>36951</td>
<td>85F00041</td>
<td>M</td>
<td>No lesions</td>
</tr>
<tr>
<td>36952</td>
<td>85F00042</td>
<td>M</td>
<td>Pin worms, cecum</td>
</tr>
<tr>
<td>36953</td>
<td>85F00043</td>
<td>M</td>
<td>Pin worms, cecum</td>
</tr>
<tr>
<td>36954</td>
<td>85F00044</td>
<td>M</td>
<td>Pin worms, cecum</td>
</tr>
</tbody>
</table>

3. Microscopic Findings:

Two slides each bearing 2 skin sections were prepared and examined from each animal. The only exception to this was rabbit number 85F00032 (Path No. 36945) for which 3 skin sections were submitted.

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Rabbit No.</th>
<th>Sex</th>
<th>Slide No.</th>
<th>Microscopic Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>36945</td>
<td>85F00032</td>
<td>F</td>
<td>1</td>
<td>No lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>No lesions</td>
</tr>
<tr>
<td>36946</td>
<td>85F00033</td>
<td>F</td>
<td>1</td>
<td>No lesions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Mononuclear cell infiltration (MCI), multifocal, minimal, dermis</td>
</tr>
</tbody>
</table>

Appendix D
GLP Study 84045

<table>
<thead>
<tr>
<th>Path No.</th>
<th>Rabbit No.</th>
<th>Sex</th>
<th>Slide No.</th>
<th>Microscopic Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>36947</td>
<td>85F00034</td>
<td>F</td>
<td>1</td>
<td>No lesions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td>36948</td>
<td>85F00035</td>
<td>F</td>
<td>1</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td>36949</td>
<td>85F00036</td>
<td>F</td>
<td>1</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>No lesion</td>
</tr>
<tr>
<td>36950</td>
<td>85F00040</td>
<td>M</td>
<td>1</td>
<td>No lesion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td>36951</td>
<td>85F00041</td>
<td>M</td>
<td>1</td>
<td>No lesion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td>36952</td>
<td>85F00042</td>
<td>M</td>
<td>1</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>MCI, minimal</td>
</tr>
<tr>
<td>36953</td>
<td>85F00043</td>
<td>M</td>
<td>1</td>
<td>No lesion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>No lesion</td>
</tr>
<tr>
<td>36954</td>
<td>85F00044</td>
<td>M</td>
<td>1</td>
<td>No lesion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>No lesion</td>
</tr>
</tbody>
</table>

4. Comments:

There were no gross or microscopic lesions in the skin of these rabbits that could be attributed to exposure to the test material. The mononuclear inflammatory infiltrates observed in the superficial dermis in 9 of 19 skin sections examined were tiny focal lesions that occupied a small fraction of the exposed area of skin. No epithelial abnormalities were observed. These small inflammatory cell foci may have been due to clipper abrasion.

Nematode parasites (pin worms) were observed in 7 of 10 animals at necropsy. These are common parasites of rabbits belonging to either Genus Dermatoxysus or Passuluris, neither of which are considered pathogenic except in very heavy infestations. Their presence would not affect the results of this dermal toxicity study.

Appendix D (cont'd)
GLP Study 84045

One of the rabbits (84F00033) had bilateral purulent otitis media. This condition is very common in rabbits from commercial sources. It is most likely due to infection by bacteria (Pasteurella spp.). This lesion is considered an incidental finding unrelated to application of the test material. The lesion would not affect the results of this dermal toxicity study.

PAUL W. MELICK, DVM, PhD
Diplomate, American College of Veterinary Pathologists
COL, VC, USA
Division of Research Support
OFFICIAL DISTRIBUTION LIST

Commander
US Army Medical Research
and Development Command
ATTN: SGRD-RMS/Mrs. Madigan
Fort Detrick, MD 21701-5012

Defense Technical Information Center
ATTN: DTIC/DDAB (2 copies)
Cameron Station
Alexandria, VA 22304-6145

Office of Under Secretary of Defense
Research and Engineering
ATTN: R&AT (E&LS), Room 3D129
The Pentagon
Washington, DC 20301-3080

The Surgeon General
ATTN: DASG-TLO
Washington, DC 20310

HQ DA (DASG-ZXA)
WASH DC 20310-2300

Commandant
Academy of Health Sciences
US Army
ATTN: HSHA-CDM
Fort Sam Houston, TX 78234-6100

Uniformed Services University
of Health Sciences
Office of Grants Management
4301 Jones Bridge Road
Bethesda, MD 20814-4799

US Army Research Office
ATTN: Chemical and Biological
Sciences Division
PO Box 12211
Research Triangle Park, NC 27709-2211

Director
ATTN: SGRD-UWZ-L
Walter Reed Army Institute
of Research
Washington, DC 20307-5100

Commander
US Army Medical Research Institute
of Infectious Diseases
ATTN: SGRD-ULZ-A
Fort Detrick, MD 21701-5011

Commander
US Army Medical Bioengineering
Research & Development Laboratory
ATTN: SGRD-UBG-M
Fort Detrick, Bldg 568
Frederick, MD 21701-5010

Commander
US Army Medical Bioengineering
Research & Development Laboratory
ATTN: Library
Fort Detrick, Bldg 568
Frederick, MD 21701-5010

Commander
US Army Research Institute
of Environmental Medicine
ATTN: SGRD-UE-RSA
Kansas Street
Natick, MA 01760-5007

Commander
US Army Institute of Surgical Research
Fort Sam Houston, TX 78234-6200

Commander
US Army Research Institute
of Chemical Defense
ATTN: SGRD-UV-AJ
Aberdeen Proving Ground, MD 21010-5425

Commander
US Army Aeromedical Research Laboratory
Fort Rucker, AL 36362-5000

AIR FORCE Office of Scientific
Research (NL)
Building 410, Room A217
Bolling Air Force Base, DC 20332-6448

Commander
USAFSAM/TSZ
Brooks Air Force Base, TX 78235-5000

Head, Biological Sciences Division
OFFICE OF NAVAL RESEARCH
800 North Quincy Street
Arlington, VA 22217-5000