AN EXACT TEST FOR THE NESTING EFFECT'S VARIANCE COMPONENT IN AN UNBALANCED MODEL (U) FLORIDA UNIV GAINESVILLE DEPT OF STATISTICS A I KHURI ET AL. JAN 86 TR-248

UNCLASSIFIED N00014-86-K-0059

F/G 12/1 NL
AN EXACT TEST FOR THE NESTING EFFECT'S VARIANCE COMPONENT IN AN UNBALANCED RANDOM TWO-FOLD NESTED MODEL.

By

Andre' I. Khuri

Department of Statistics, University of Florida
Gainesville, FL. 32611

Technical Report Number 248
January, 1986

PREPARED UNDER GRANT NO. N00014-86-K-0059 FROM THE OFFICE OF NAVAL RESEARCH. ANDRE' I. KHURI AND RAMON C. LITTELL, PRINCIPAL INVESTIGATORS.
AN EXACT TEST FOR THE NESTING EFFECT'S VARIANCE COMPONENT IN AN UNBALANCED RANDOM TWO-FOLD NESTED MODEL.
An Exact Test for the Nesting Effect's
Variance Component in an Unbalanced
Random Two-Fold Nested Model

A. I. Khuri*
Department of Statistics, University of Florida
Gainesville, FL 32611, U.S.A.

Abstract. This paper presents an exact test concerning the nesting effect's
variance component in an unbalanced random two-fold nested classification
model. The test requires that the total number of observations exceeds \(2b-1\),
where \(b\) is the total number of levels of the nested factor.

Keywords. Variance components, random effects, unbalanced nested models,
hypothesis testing, power of a test.

* Andre I. Khuri, Department of Statistics, 511 Nuclear Sciences Center,
University of Florida, Gainesville, FL 32611, U.S.A.
This research was supported by the Office of Naval Research under
Grant No. N00014-86-K-0059.
1. Introduction

There is no exact test for testing the significance of $\sigma _{a}^{2}$, the nesting effect's variance component in an unbalanced random two-fold nested classification model. There are, however, approximate tests which utilize ratios of mean squares (see Cummings and Caylor 1974, Tietjen 1974, and Tietjen and Moore 1968). In general, the exact distributions associated with these tests are complicated which makes it difficult to adequately determine the tests' true levels of significance and power values. A comparison of four approximate tests concerning $\sigma _{a}^{2}$ was recently made by Tan and Cheng (1984).

In this paper we present an exact F-test for testing the null hypothesis

$$H_{0}: \sigma _{a}^{2} = 0 \text{ versus } H_{a}: \sigma _{a}^{2} \neq 0.$$ \hfill (1.1)

Aside from the usual assumptions concerning the random effects in the model, the only other condition for the validity of the test is that $N > 2b - 1$, where N is the total number of observations and b is the total number of levels of the nested factor. The proposed test is compared against the approximate tests described in Tan and Cheng (1984) with respect to power. The results of this comparison indicate that the former test is quite efficient.

2. The development of the exact test

Consider the unbalanced two-fold nested model

$$y_{ijk} = \mu + \alpha _{i} + \beta _{ij} + \epsilon _{ijk},$$ \hfill (2.1)

$i = 1, 2, \ldots , n; j = 1, 2, \ldots , b_{i}; k = 1, 2, \ldots , n_{ij}$, where μ is an unknown constant parameter, $\alpha _{i}$ and $\beta _{ij}$ are random effects associated with the nesting factor and the nested factor, respectively, and $\epsilon _{ijk}$ is a random error. We assume that $\alpha _{i}$, $\beta _{ij}$, and $\epsilon _{ijk}$ are independently distributed as $N(0, \sigma _{a}^{2})$, $N(0, \sigma _{b}^{2})$, and $N(0, \sigma _{c}^{2})$, respectively. We also assume that
\[N > 2b - 1, \]

where \(N = \sum_{i,j} n_{ij} \), \(b = \sum_{i=1}^{a} b_i \). The need for inequality (2.2) will be seen later. We note that the latter assumption is quite reasonable and can, for example, be satisfied if \(n_{ij} \geq 2 \) for all \(i,j \).

Let \(\bar{y}_{ij} = \frac{\sum_{k=1}^{n_{ij}} y_{ijk}}{n_{ij}} \) (\(i = 1,2,...,a; j = 1,2,...,b_1 \)). From (2.1) we have

\[\bar{y}_{ij} = \mu + a_i + b_{ij} + \bar{e}_{ij}, \]

\(i = 1,2,...,a; j = 1,2,...,b_1 \), where \(\bar{e}_{ij} = \frac{\sum_{k=1}^{n_{ij}} e_{ijk}}{n_{ij}} \). Model (2.3) can be rewritten in the matrix form

\[\bar{\chi} = \mu 1_b + A_1 a + I_b \beta + \bar{\bar{\varepsilon}}, \]

where \(\bar{\chi} \) and \(\bar{\bar{\varepsilon}} \) are vectors consisting of the \(\bar{y}_{ij} \)'s and the \(\bar{e}_{ij} \)'s, respectively, \(a = (a_1,a_2,...,a_a)' \), \(\beta = (\beta_{11},\beta_{12},...,\beta_{ab_a})' \), \(1_b \) is a vector of ones of dimension \(b \), \(I_b \) is the identity matrix of order \(b \times b \), and \(A_1 = \) Diag\((1_b,1_b,...,1_b_a) \) is a block-diagonal matrix of vectors of ones. From (2.4) the variance-covariance matrix of \(\bar{\chi} \) is

\[\text{Var} \: \bar{\chi} = \hat{A}_1 \sigma_a^2 + I_b \sigma_\beta^2 + \bar{\bar{\varepsilon}} \sigma_\varepsilon^2, \]

where

\[\hat{A}_1 = A_1 A_1' = \bigoplus_{i=1}^{a} J_{b_i}, \]

\[\bar{\bar{\varepsilon}} = \text{Diag}(n_{11}^{-1}, n_{12}^{-1},...,n_{ab_a}^{-1}), \]

where \(J_{b_i} \) is a matrix of ones of order \(b_i \times b_i \) (\(i = 1,2,...,a \)), and \(\bigoplus \) denotes the direct sum. The residual sum of squares for the model in (2.1) is

\[T = \sum_{i,j,k} (y_{ijk} - \bar{y}_{ij})^2. \]

It is known that \(T/\sigma_\varepsilon^2 \) has the chi-squared distribution with \(N - b \) degrees of freedom independently of \(\bar{\chi} \). We can write \(T \) as

\[T = \chi' \bar{\bar{\varepsilon}} \chi, \]

where \(\chi \) is a vector of the \(y_{ijk} \)'s.
where \(y \) is the vector of \(N \) observations and \(\mathbf{R} \) is the matrix

\[
\mathbf{R} = \mathbf{I}_N - \sum_{j=1}^{N} \left(\begin{array}{c} n_{ij} \\ \end{array} \right) \left(\begin{array}{c} n_{ij} \\ \end{array} \right) / n_{ij}.
\]

(2.9)

We note that \(\mathbf{R} \) is symmetric and idempotent of rank \(N - b \), and by assumption, \(N > 2b - 1 \), that is, \(N - b > b - 1 \). We can thus express \(\mathbf{R} \) as

\[
\mathbf{R} = \mathbf{C} \mathbf{A} \mathbf{C}',
\]

(2.10)

where \(\mathbf{C} \) is an orthogonal matrix and \(\mathbf{A} \) is a diagonal matrix whose first \(N - b \) diagonal elements are equal to unity and the remaining \(b \) elements are equal to zero. Furthermore, we can partition \(\mathbf{C} \) and \(\mathbf{A} \) as

\[
\mathbf{A} = \text{Diag}(\mathbf{I}_{v_1}, \mathbf{I}_{v_2}, \mathbf{O}),
\]

(2.11)

\[
\mathbf{C} = [\mathbf{C}_1 : \mathbf{C}_2 : \mathbf{C}_3],
\]

(2.12)

where

\[
v_1 = b - 1,
\]

(2.13)

\[
v_2 = N - 2b + 1,
\]

and \(\mathbf{C}_1, \mathbf{C}_2, \mathbf{C}_3 \) are of orders \(N \times v_1, N \times v_2, \) and \(N \times b \), respectively. Note that

\[
\mathbf{C}_i' \mathbf{C}_i = \mathbf{I}, \quad i = 1, 2, 3,
\]

(2.14)

\[
\mathbf{C}_i' \mathbf{C}_j = \mathbf{O}, \quad i \neq j
\]

Formula (2.10) can then be rewritten as

\[
\mathbf{R} = \mathbf{C}_1 \mathbf{C}_1' + \mathbf{C}_2 \mathbf{C}_2',
\]

(2.15)

which results in a partitioning of the residual sum of squares \(T \) into \(T_1 \) and \(T_2 \), where

\[
T_1 = y' \mathbf{C}_1 \mathbf{C}_1' y,
\]

(2.16)

\[
T_2 = y' \mathbf{C}_2 \mathbf{C}_2' y.
\]

(2.17)

Consider now the matrix \(\mathbf{A}_1 \) in (2.6). There exists an orthogonal matrix \(\mathbf{P} \) of order \(b \times b \) such that \(\mathbf{P} \mathbf{A}_1 \mathbf{P}' = \mathbf{A}_1 \), where

\[
\mathbf{A}_1 = \text{Diag}(b_1, b_2, \ldots, b_n, \mathbf{0}),
\]

(2.18)
where \(Q \) is a zero matrix of order \((b-a) \times (b-a)\). This is because \(A_1 \) has the eigenvalues \(b_1, b_2, \ldots, b_a \), and \(0 \) of multiplicity \(b-a \). The first \(a \) rows of \(\hat{P} \) are orthonormal eigenvectors of \(\hat{A}_1 \) that correspond to \(b_1, b_2, \ldots, b_a \). Let \(P_1 \) be the \(a \times b \) matrix consisting of these rows, that is,

\[
P_1 = \text{Diag}(\sqrt{b_1}, \sqrt{b_2}, \ldots, \sqrt{b_a}).
\]

(2.19)

Let \(P_2 \) be the \((b-a) \times b\) matrix consisting of the remaining \(b-a \) rows of \(\hat{P} \). Then \(P = [P_1 \, P_2] \). If \(\hat{z} = P \hat{y} \), then from (2.5) we have

\[
\text{Var} \, \hat{z} = \Lambda_1 \sigma^2 + \Lambda_2 b_1 \sigma^2 + \hat{K} \hat{P} \hat{Q} \sigma^2.
\]

(2.20)

Theorem 2.1. There exists an orthogonal matrix \(Q \) of order \(b \times b \) such that the first row of \(Q P \) is \(\frac{1}{\sqrt{b}} \).

Proof. Define the unit vector \(e_1^* = [e_1^*: 0] \) where \(e_1^* = (\sqrt{b_1}, \sqrt{b_2}, \ldots, \sqrt{b_a})/\sqrt{b} \) and \(0^* \) is a zero vector of dimension \(b-a \). Then \((I_b - e_1^* e_1^*) e_1 = 0 \). The matrix \(I_b - e_1^* e_1^* \) is idempotent of rank \(b-1 \). Let \(Q_1 \) denote a matrix of order \(b \times (b-1) \) and rank \(b-1 \) whose columns are obtained via a Gram-Schmidt orthonormalization of the columns of \(I_b - e_1^* e_1^* \). Let \(Q = [e_1^* : Q_1]\), then \(Q \) is an orthogonal matrix and the first row of \(Q P \), namely \(e_1^* P \), is \(\frac{1}{\sqrt{b}} \).

From Theorem 2.1 we conclude that if \(u = Q^* z \), where \(z = P \hat{y} \) and \(Q_1 \) is the matrix described in the proof of the theorem, then

\[
E(u) = \mu Q_1^* P \hat{y} = 0,
\]

(2.21)

since \(Q P \) is orthogonal, and

\[
\text{Var} \, u = \frac{\sigma^2}{\hat{A}_1 Q_1^*} + \frac{\sigma^2}{\hat{A}_1 Q_1^*} + \frac{\sigma^2}{\hat{A}_1 Q_1^*} \hat{P} \hat{Q} \sigma^2.
\]

(2.22)

since \(Q_1^* Q_1 = I_{b-1} \). We note that \(Q_1^* Q_1 \) is of rank \(a-1 \). To show this we partition \(Q_1 \) as \([Q_{11}^* : Q_{12}^*] \), where \(Q_{11}^* \) is \((b-1) \times a\) and \(Q_{12}^* \) is \((b-1) \times (b-a)\). Then

\[
Q_{11}^* A_1 Q_1 = Q_{11}^* \text{Diag}(b_1, b_2, \ldots, b_a) Q_1\text{ (see 2.18).}
\]

Hence, rank \((Q_{11}^* A_1 Q_1)\)
\[\text{rank} (Q_{11}) = \text{rank} (Q_{11}Q_{11}^\top) = \text{rank} (I - \xi \xi^\top) = a-1, \] where \(\xi \) is the unit vector described in the proof of Theorem 2.1. The one before last equality follows because the columns of the matrix \([\xi : Q_{11}] \) are orthonormal. It follows that there exists an orthogonal matrix \(S \) of order \((b-1) \times (b-1)\) such that
\[Q_{11}^\top A Q_{11} = S \text{Diag}(D, 0) S^\top, \quad (2.23) \]
where \(D \) is an \((a-1) \times (a-1)\) diagonal matrix of nonzero eigenvalues of \(Q_{11}^\top A Q_{11} \) and \(Q \) is a zero matrix of order \((b-a) \times (b-a)\).

Consider the vector \(\omega = S^\top u \). From (2.21), (2.22), and (2.23) it can be seen that \(\omega \) has a zero mean and a variance-covariance matrix given by
\[\text{Var} \omega = \text{Diag}(D, 0) \sigma^2 + I_{b-1} \sigma^2 + L \sigma^2, \quad (2.24) \]
where \(L = S^\top Q_{11} P Q_{11}^\top S \). Define the vector \(\Omega \) as
\[\Omega = \omega + (\lambda_{\max} I_{b-1} - L)^{1/2} \xi \xi^\top, \quad (2.25) \]
where \(\lambda_{\max} \) is the largest eigenvalue of the symmetric matrix \(L \) and \(\xi \) is the \(N \times (b-1) \) matrix in (2.12). Note that the matrix \(\lambda_{\max} I_{b-1} - L \) is positive semidefinite, hence \((\lambda_{\max} I_{b-1} - L)^{1/2} \) is well defined with eigenvalues equal to the square roots of the eigenvalues of \(\lambda_{\max} I_{b-1} - L \). Let \(\Omega \) be partitioned as \(\Omega = [\Omega^\alpha : \Omega^\beta] \), where \(\Omega^\alpha \) and \(\Omega^\beta \) are of dimensions \(a-1 \) and \(b-a \), respectively.

Theorem 2.2.
(i) \(\hat{F}_\alpha^2 = \hat{F}_\beta^2 = 0 \).
(ii) \(\hat{F}_\alpha \) and \(\hat{F}_\beta \) are statistically independent and normally distributed with the following variance-covariance matrices:
\[\text{Var} \hat{\Omega}_\alpha = D \sigma^2 \quad \text{Var} \hat{\Omega}_\beta = (\sigma^2 + \lambda_{\max} \sigma^2) I_{b-a}. \]
Proof.

(i) This is true because $E(\omega) = S^{-1}E(\eta) = 0$ by (2.21), and $E(C_1^\prime \chi) = \Omega$.

(ii) Since $\omega = S^{-1}Q_1^\prime P \tilde{\chi}$, then Q is a linear function of the vector of observations, hence it is normally distributed. We now claim that ω and $C_1^\prime \chi$ in (2.25) are statistically independent. To show this we write $\tilde{\chi}$ in the form $\tilde{\chi} = G \chi$ where $G = \text{Diag}(1_{n_1}, 1_{n_2}, \ldots, 1_{n_k})$. Since $\tilde{\chi}$ is statistically independent of the residual sum of squares, T, in (2.8), then $\bar{G} \bar{E} \bar{R} = 0$, where $\bar{E} = \text{Var} \chi$ (see Searle 1971, p. 59). Using the representation (2.15) for R we obtain

$$G \bar{E} (C_1^\prime C_1 + C_2^\prime C_2) = 0. \tag{2.28}$$

If we multiply (2.28) on the right by C_1 and note (2.14) we get

$$G \bar{E} C_1 = 0. \tag{2.29}$$

From (2.29) it follows that $\text{Cov}(\omega, \chi^\prime C_1) = \text{Cov}(S^{-1}Q_1^\prime P \tilde{\chi}, \chi^\prime C_1) = S^{-1}Q_1^\prime P \text{Cov}(G \chi, \chi^\prime C_1) = S^{-1}Q_1^\prime P \bar{G} \bar{E} C_1 = 0$. Hence, the variance-covariance matrix of $\bar{\Omega}$ in (2.25) is of the form

$$\text{Var} \bar{\Omega} = \text{Var} \omega + (\lambda_{\max} I_{b-1} - L)^{1/2} C_1 \bar{E} C_1 (\lambda_{\max} I_{b-1} - L)^{1/2}. \tag{2.30}$$

We claim that $C_1^\prime \bar{E} C_1 = \sigma^2 \bar{E} I_{b-1}$. This follows from the fact that T/σ^2 has the chi-squared distribution, hence $\bar{E} \bar{R} \bar{E} = \sigma^2 \bar{E} \bar{E}$ (see 2.8 and Theorem 2 in Searle 1971, p. 57), which can also be written as $\bar{R} \bar{E} \bar{E} = \sigma^2 \bar{E} \bar{R}$. By noting (2.15) we get

$$(C_1^\prime C_1 + C_2^\prime C_2) \bar{E} (C_1^\prime C_1 + C_2^\prime C_2) - \sigma^2 (C_1^\prime C_1 + C_2^\prime C_2). \tag{2.31}$$

If we now multiply (2.31) on the left by C_1 and on the right by C_1 and note (2.14) we obtain the desired result.

From (2.24) and (2.30) we conclude that

$$\text{Var} \bar{\Omega} = \text{Diag}(\bar{\Omega}) \sigma^2 + (\lambda_{\max} I_{b-1} - L)^{1/2} \sigma^2 L^{1/2} \sigma^2 (\lambda_{\max} I_{b-1} - L)^{1/2} \sigma^2. \tag{2.32}$$
\[
\begin{align*}
\text{Var } \Omega & = \text{Diag}(D,0) \sigma_a^2 + (\sigma_B^2 + \lambda \max \sigma_c^2) I_{b-1}.
\end{align*}
\]

Since \(\text{Var } \Omega \) is a diagonal matrix, \(\sigma_a^2 \) and \(\sigma_B^2 \) must be statistically independent. Furthermore, from (2.32) it can be concluded that these random vectors have the variance structure described in (2.26) and (2.27), respectively.

From Theorem 2.2 we can then state that

\[
\begin{align*}
\Omega^{-1} (\sigma_a^2 + \delta I_{a-1})^{-1} \Omega & \sim \chi_a^2, \\
\Omega^{-1} \Omega_B / \delta & \sim \chi_{b-a}^2,
\end{align*}
\]

where \(\delta = \sigma_B^2 + \lambda \max \sigma_c^2 \). Under \(H_0: \sigma_a^2 = 0 \), \(\Omega^{-1} \Omega_B / \delta \sim \chi_{b-a}^2 \), hence \(F = MS_a / MS_B \) has the central F-distribution with \(a-1 \) and \(b-a \) degrees of freedom, where \(MS_a = \Omega^{-1} \sigma_a^2 / (a-1) \) and \(MS_B = \Omega^{-1} \sigma_B^2 / (b-a) \). It is easy to verify that

\[
\begin{align*}
E(MS_a) & = \delta + \left[\sum_{i=1}^{a-1} d_i / (a-1) \right] \sigma_a^2, \\
E(MS_B) & = \delta,
\end{align*}
\]

where \(d_i \) is the \(i \)th diagonal element of \(D(i=1,2,\ldots,a-1) \). Hence, large values of the test statistic \(F \) are significant.

Tan and Cheng (1984) compared the powers of four approximate tests of the hypothesis \(H_0 \) described in (1.1). The corresponding test statistics were denoted by \(F_1, F_2, F_3, \) and \(F_4 \), respectively, and their power values were derived approximately by using Laguerre polynomial expansions of the true null and non-null distributions of \(F_i(i=1,2,3,4) \). The power values were obtained for different values of \(\sigma_a^2 (=1,2,3) \), several combinations of the nuisance parameters \(\sigma_B^2 \) and \(\sigma_c^2 (=1,2,3) \), and for two unbalanced nested designs which we reproduce in Table 1.
In Tables 2 and 3 we give a listing of the power values associated with \(F_1, F_2, F_3, \) and \(F_4 \) as reported in Tan and Cheng (1984, Table 4, pp. 197-198) for a level of significance \(\alpha = .10 \).

At the \(\alpha \)-level of significance, the power function for the exact test proposed in Section 2 is given by

\[
P(MS_a / MS_\beta > F_{a,a-1,b-a} \mid H_a),
\]

where \(H_a \) is the alternative hypothesis in (1.1), and \(F_{a,a-1,b-a} \) denotes the upper \(\alpha \) point of the \(F \)-distribution with \(a-1 \) and \(b-a \) degrees of freedom.

Under \(H_a \), \(MS_a \) and \(MS_\beta \) are independently distributed and \((b-a)MS_\beta / \delta \) is distributed as \(\chi^2_{b-a} \), but \((a-1)MS_a / \delta \) no longer has the chi-squared distribution. In this case, since \(\Omega_a \) is normally distributed with a zero mean and a variance-covariance matrix \(\text{Var} \Omega_a = \Omega_a^2 + \delta_2 \), \(\Omega_a \Omega_a = (a-1)MS_a \) is distributed as \(\sum_{i=1}^{a-1} \lambda_i W_i \), where the \(W_i \)'s are independent chi-squared variates with one degree of freedom, and \(\lambda_i \) is the \(i^{th} \) eigenvalue of \(\text{Var} \Omega_a \), that is, \(\lambda_i = d_i \sigma_a^2 + \delta \) with \(d_i \) being the \(i^{th} \) diagonal element of \(D(i=1,2,\ldots,a-1) \) (see Johnson and Kotz 1970, p. 151). Thus, under \(H_a \), the exact test statistic \(F \) can be written as

\[
F = \frac{\Omega_a \Omega_a}{\delta(a-1)MS_\beta / \delta} = \frac{\sum_{i=1}^{a-1} \lambda_i W_i}{\delta(a-1)MS_\beta / \delta}.
\]

Approximate values of the power function in (3.1) can be conveniently obtained by using Hirotsu's (1979, pp. 578-579) approximation of the upper probability values of a statistic of the form

\[
H = \frac{\chi' A \chi / (cf)}{\sigma^2 / a^2},
\]

where \(\chi \) is normally distributed with a zero mean and a variance-covariance matrix \(Y \), \(A \) is a nonnegative matrix, \(\sigma^2 / a^2 \) is distributed as \((1/f_2) \chi^2_{f_2} \) independently of \(\chi' A \chi \), and \(c \) and \(f \) are given by
\[c = \frac{1}{2} \kappa_2(x^\top A x)/(\kappa_1(x^\top A x)) \]

\[f = 2 \kappa_1^2(x^\top A x)/(\kappa_2(x^\top A x)), \]

where \(\kappa_i(x^\top A x) \) denotes the \(i \)-th cumulant of \(x^\top A x \). For convenience we reproduce the formula for \(P(H > h) \) as given in Hirotsu (1979, formula 2.4):

\[
P(H > h) = P(F_{f_1,f_2} > h) + \frac{1}{2} \left[\frac{\Delta}{(f+2)(f+4)B\left(\frac{1}{2}, \frac{1}{2} \frac{f}{f_2}\right)} \right] (1+h/f_2) - \frac{1}{2}(f+f_2) \times \frac{1}{1+h/f_2}(fh/f_2)^{\frac{f}{f_2} \left[\frac{(f+2)/(f+4)}{1+h/hf_2} \right]} + \frac{(f+f_2)(f+f_2)}{1+h/hf_2}, \]

(3.5)

where \(F_{f_1,f_2} \) denotes the F-distribution with \(f \) and \(f_2 \) degrees of freedom, \(B(m_1, m_2) \) denotes the beta function, and

\[
\Delta = \frac{1}{2} \left[\kappa_1(x^\top A x) \kappa_3(x^\top A x)/\kappa_2^2(x^\top A x) \right] - 1. \]

(3.6)

The approximation described in (3.5) was developed via a Laguerre polynomial expansion of the true distribution of the statistic \(x^\top A x/(2c) \) and was reported in Hirotsu (1979) to be quite satisfactory.

From (3.1) and (3.2), the power function for the exact test statistic \(F \) can be written as

\[
P \left(\frac{\hat{t}^\top H \hat{t}}{\bar{e}^\top B^{-1} \bar{e}} > \frac{\delta(a-1)}{cf} \right) = \frac{\Gamma(a-1,b-a)}{\Gamma(a,b)}, \]

(3.7)

where \(c \) and \(f \) are given as in (3.4), but with \(\hat{t}^\top H \hat{t} \) substituted for \(x^\top A x \), that is,

\[
c = \frac{\text{tr} \left\{ \text{Var} \ \hat{t}^\top \frac{\hat{t}^\top H \hat{t}}{ \alpha} \right\}^2}{\text{tr} \left\{ \text{Var} \ \hat{t}^\top \frac{\hat{t}^\top H \hat{t}}{\alpha} \right\}^2} = \frac{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \sigma) (d_i \sigma^2 + \sigma)}{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \lambda)} - \frac{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \lambda)}{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \lambda)} \]

(3.8)

\[
f = \frac{\left[\text{tr} \left\{ \text{Var} \ \hat{t}^\top \frac{\hat{t}^\top H \hat{t}}{ \alpha} \right\}^2 \right]}{\text{tr} \left\{ \text{Var} \ \hat{t}^\top \frac{\hat{t}^\top H \hat{t}}{ \alpha} \right\}^2} = \frac{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \sigma) (d_i \sigma^2 + \sigma)}{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \lambda)} - \frac{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \lambda)}{\frac{1}{a-1} \sum_{i=1}^{a-1} (d_i \sigma^2 + \lambda)} \]

(3.9)
where
\[
\theta = \frac{\sigma^2}{\bar{\sigma}^2} = \frac{\sigma^2}{\sigma^2 + \lambda \max \sigma^2} \tag{3.10}
\]
(see Hirotsu 1979, p. 579). We note that the statistic which appears in (3.7) is of the same form as the statistic H in (3.3). This can be seen by taking \(x = \Omega_{a, a}^t, A = I_{a-1}, \) and \(\Phi^2/\sigma^2 = MS/\delta, \) which is distributed as \((1/f_2)x_\Phi^2\) with \(f_2 = b-a \) degrees of freedom. It follows that the power value in (3.7) can be approximately computed by applying formula (3.5) and remembering that
\[
H = \frac{\Omega_{a, a}}{(cf)MS/\delta},
\]
\[
h = \frac{\delta(a-1)}{cf} F_{a, a-1, b-a} = \frac{(a-1)}{a-1} \sum_{i=1}^{a-1} (d_i \theta + 1)
\]
(using formulas 3.8 and 3.9),

\[f_2 = b-a,\]

c and f are as given in (3.8) and (3.9), and \(\Delta \) is as described in (3.6), which can also be written as
\[
\Delta = \frac{\left[\text{tr}(\text{Var } \Omega_{a}) \right] \left[\text{tr}(\left(\text{Var } \Omega_{a} \right)^3) \right]}{\left[\text{tr}(\left(\text{Var } \Omega_{a} \right)^2) \right]^2} - 1
\]
\[
= \frac{\sum_{i=1}^{a-1} (d_i \theta + 1)^2}{\sum_{i=1}^{a-1} (d_i \theta + 1)^3} - 1, \tag{3.11}
\]
where \(\theta \) is given in (3.10) (see Hirotsu 1979, p. 579). It is interesting to note that in (3.5) the power of the exact test depends on \(\sigma^2, \sigma^2_{\alpha}, \) and \(\sigma^2_{\beta} \) through \(\theta. \) A complete determination of this power requires finding the values of \(\lambda_{\max}, d_1, d_2, \ldots, d_{a-1}, \) which depend on the design used, and a specification of the level of significance and the ratios \(\sigma^2_{\alpha}/\sigma^2, \sigma^2_{\beta}/\sigma^2 \) of the variance components.
Power values associated with the exact test statistic F were computed at the $\alpha = .10$ level of significance. The upper probability values of the F-distribution (with f and f_2 degrees of freedom) in (3.5) were obtained by using the IMSL (International Mathematical and Statistical Libraries) MDFDRE Subroutine which allows fractional degrees of freedom. The same designs and combinations of variance components as the ones used by Tan and Cheng (1984) were considered here. The results are given in Tables 2 and 3 for designs 1 and 2, respectively. From these tables it can be seen that the exact test is more efficient than the approximate tests based on the statistics $F_1, F_2, F_3,$ and F_4. Furthermore, the exact test has the advantage that its critical value does not depend on the values of the unknown nuisance parameters σ^2_β and σ^2_ϵ. This property is not shared by the approximate tests which may require good estimates of σ^2_β and σ^2_ϵ in order for their results to be reliable (see Tan and Cheng 1984, p. 194).

4. Concluding remarks

The vector $\bar{\gamma}$ defined in (2.25) is the key to the construction of the exact test proposed in Section 2. It is a linear combination of the random vectors $\bar{\gamma}$ and $C_1^r\bar{\gamma}$, where $\bar{\gamma}$ is a linear transform of the vector $\bar{\gamma}$ of response means, and $C_1^r\bar{\gamma}$ makes up a portion of the residual sum of squares (see formula 2.16). The power study in Section 3 clearly indicates that the exact test can be at least as efficient as the other approximate tests.

A procedure similar to the one described in this paper was effectively used to obtain exact tests concerning the main effects' variance components in an unbalanced random two-way model with interaction. Details of that procedure are given in Khuri (1985).
Table 1

Two unbalanced nested designs for the model in (2.1)

<table>
<thead>
<tr>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a=5$</td>
<td>$a=4$</td>
</tr>
<tr>
<td>$b_1=2$</td>
<td>$b_1=1, b_2=2$</td>
</tr>
<tr>
<td>$b_2=b_3=b_4=b_5=1$</td>
<td>$b_3=3, b_4=4$</td>
</tr>
<tr>
<td>$n_{11}=n_{12}=4$</td>
<td>$n_{11}=4$</td>
</tr>
<tr>
<td>$n_{21}=n_{31}=n_{41}=n_{51}=2$</td>
<td>$n_{21}=n_{22}=3$</td>
</tr>
<tr>
<td></td>
<td>$n_{31}=n_{32}=n_{33}=2$</td>
</tr>
<tr>
<td></td>
<td>$n_{41}=n_{42}=n_{43}=n_{44}=1$</td>
</tr>
</tbody>
</table>

Table 2

Power values of the exact and approximate tests for Design 1
at the $\alpha = .10$ level of significance.

<table>
<thead>
<tr>
<th>σ_a^2</th>
<th>σ_{ϵ}^2</th>
<th>σ_B^2</th>
<th>σ_C^2</th>
<th>F_1</th>
<th>F_2</th>
<th>F_4</th>
<th>Exact</th>
<th>F_1</th>
<th>F_2</th>
<th>F_4</th>
<th>Exact</th>
<th>F_1</th>
<th>F_2</th>
<th>F_4</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_a^2 = .5$</td>
<td>$\sigma_{\epsilon}^2 = .5$</td>
<td>1.0</td>
<td>1.0</td>
<td>.099</td>
<td>.097</td>
<td>.098</td>
<td>.118</td>
<td>.099</td>
<td>.097</td>
<td>.094</td>
<td>.134</td>
<td>.102</td>
<td>.113</td>
<td>.101</td>
<td>.184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>2.0</td>
<td>.099</td>
<td>.099</td>
<td>.097</td>
<td>.144</td>
<td>.098</td>
<td>.101</td>
<td>.095</td>
<td>.126</td>
<td>.098</td>
<td>.129</td>
<td>.097</td>
<td>.167</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>3.0</td>
<td>.099</td>
<td>.101</td>
<td>.096</td>
<td>.111</td>
<td>.097</td>
<td>.105</td>
<td>.094</td>
<td>.121</td>
<td>.097</td>
<td>.136</td>
<td>.096</td>
<td>.156</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>1.0</td>
<td>.097</td>
<td>.153</td>
<td>.099</td>
<td>.111</td>
<td>.097</td>
<td>.154</td>
<td>.099</td>
<td>.121</td>
<td>.098</td>
<td>.164</td>
<td>.10</td>
<td>.156</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>.10</td>
<td>.098</td>
<td>.099</td>
<td>.109</td>
<td>.099</td>
<td>.097</td>
<td>.098</td>
<td>.118</td>
<td>.10</td>
<td>.098</td>
<td>.097</td>
<td>.148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>3.0</td>
<td>.102</td>
<td>.066</td>
<td>.098</td>
<td>.108</td>
<td>.101</td>
<td>.064</td>
<td>.097</td>
<td>.116</td>
<td>.101</td>
<td>.061</td>
<td>.095</td>
<td>.142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>1.0</td>
<td>.10</td>
<td>.099</td>
<td>.099</td>
<td>.108</td>
<td>.10</td>
<td>.099</td>
<td>.099</td>
<td>.116</td>
<td>.101</td>
<td>.098</td>
<td>.10</td>
<td>.142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>2.0</td>
<td>.10</td>
<td>.099</td>
<td>.099</td>
<td>.107</td>
<td>.10</td>
<td>.098</td>
<td>.099</td>
<td>.114</td>
<td>.10</td>
<td>.098</td>
<td>.098</td>
<td>.137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>3.0</td>
<td>.10</td>
<td>.099</td>
<td>.099</td>
<td>.106</td>
<td>.098</td>
<td>.098</td>
<td>.098</td>
<td>.112</td>
<td>.099</td>
<td>.097</td>
<td>.096</td>
<td>.134</td>
</tr>
</tbody>
</table>

Table 3

Power values of the exact and approximate tests for Design 2
at the $\alpha = .10$ level of significance.

<table>
<thead>
<tr>
<th>σ_a^2</th>
<th>σ_{ϵ}^2</th>
<th>σ_B^2</th>
<th>σ_C^2</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>Exact</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>Exact</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>Exact</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_a^2 = .5$</td>
<td>$\sigma_{\epsilon}^2 = .5$</td>
<td>1.0</td>
<td>1.0</td>
<td>.150</td>
<td>.159</td>
<td>.147</td>
<td>.212</td>
<td>.211</td>
<td>.229</td>
<td>.203</td>
<td>.316</td>
<td>.210</td>
<td>.227</td>
<td>.203</td>
<td>.316</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>2.0</td>
<td>.139</td>
<td>.141</td>
<td>.135</td>
<td>.174</td>
<td>.185</td>
<td>.194</td>
<td>.177</td>
<td>.248</td>
<td>.374</td>
<td>.427</td>
<td>.353</td>
<td>.472</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td>3.0</td>
<td>.130</td>
<td>.131</td>
<td>.127</td>
<td>.155</td>
<td>.166</td>
<td>.173</td>
<td>.159</td>
<td>.212</td>
<td>.323</td>
<td>.347</td>
<td>.302</td>
<td>.402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>1.0</td>
<td>.127</td>
<td>.131</td>
<td>.125</td>
<td>.174</td>
<td>.158</td>
<td>.166</td>
<td>.155</td>
<td>.248</td>
<td>.301</td>
<td>.323</td>
<td>.294</td>
<td>.472</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>.123</td>
<td>.126</td>
<td>.122</td>
<td>.155</td>
<td>.149</td>
<td>.158</td>
<td>.147</td>
<td>.212</td>
<td>.248</td>
<td>.296</td>
<td>.263</td>
<td>.402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>3.0</td>
<td>.120</td>
<td>.119</td>
<td>.118</td>
<td>.143</td>
<td>.143</td>
<td>.145</td>
<td>.139</td>
<td>.189</td>
<td>.251</td>
<td>.267</td>
<td>.238</td>
<td>.353</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>1.0</td>
<td>.118</td>
<td>.118</td>
<td>.117</td>
<td>.155</td>
<td>.138</td>
<td>.140</td>
<td>.137</td>
<td>.212</td>
<td>.236</td>
<td>.245</td>
<td>.231</td>
<td>.402</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>2.0</td>
<td>.115</td>
<td>.117</td>
<td>.115</td>
<td>.143</td>
<td>.134</td>
<td>.138</td>
<td>.132</td>
<td>.189</td>
<td>.221</td>
<td>.236</td>
<td>.215</td>
<td>.353</td>
</tr>
</tbody>
</table>
References

DTIC END 4-86