COMPUTER MODEL OF A PASSIVE SYNTHETIC APERTURE IMAGING SYSTEM

THESIS

Christopher P. Kane
Captain, USAF

AFIT/GEO/ENP/85D-2
COMPUTER MODEL OF A PASSIVE SYNTHETIC
APERTURE IMAGING SYSTEM

THESIS

Christopher P. Kane
Captain, USAF

AFIT/GEO/ENP/85D-2

Approved for public release; distribution unlimited
COMPUTER MODEL OF A PASSIVE SYNTHETIC APERTURE IMAGING SYSTEM

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Electrical Engineering

Christopher P. Kane
Captain, USAF

December 1985

Approved for public release; distribution unlimited
Acknowledgements

I would like to take time here to thank all those who helped me in this grand undertaking. I would first of all like to thank my thesis advisor, Maj Jim Mills, for not only guiding me but putting up with my occasional bouts of "mental blindness". I am also deeply indebted to the men and women of the Electro-Optical Sensors Laboratory. I am especially thankful to one member, Jeff Sweet, for his great help and advice in using their computer facilities and for letting me use the facilities in the first place.

Finally, I would like take a moment to thank one person that is very special to me. That person would be, of course, my wife, Sue. She has managed to put up with long lonely weekends and long lonely days while I have been slaving away behind a computer graphics terminal. I hope to make it up to her soon. All I can say now is that I love her more now than ever.

Christopher P. Kane, Capt, USAF
GEO-85D
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Theory of Operation</td>
<td>7</td>
</tr>
<tr>
<td>The Optical System</td>
<td>7</td>
</tr>
<tr>
<td>Theoretical Basis of Operation</td>
<td>8</td>
</tr>
<tr>
<td>Linking of Theory to the Optical System</td>
<td>14</td>
</tr>
<tr>
<td>III. The Computer Model</td>
<td>19</td>
</tr>
<tr>
<td>Computer Support</td>
<td>19</td>
</tr>
<tr>
<td>The Computer Program</td>
<td>21</td>
</tr>
<tr>
<td>IV. Results</td>
<td>31</td>
</tr>
<tr>
<td>Case I</td>
<td>35</td>
</tr>
<tr>
<td>Case II</td>
<td>37</td>
</tr>
<tr>
<td>Case III</td>
<td>37</td>
</tr>
<tr>
<td>Case IV</td>
<td>37</td>
</tr>
<tr>
<td>Case V</td>
<td>38</td>
</tr>
<tr>
<td>V. Conclusions</td>
<td>46</td>
</tr>
<tr>
<td>Conclusions on the Optical System</td>
<td>46</td>
</tr>
<tr>
<td>Conclusions on the Computer Model</td>
<td>46</td>
</tr>
<tr>
<td>Appendix A</td>
<td>48</td>
</tr>
<tr>
<td>Appendix B</td>
<td>58</td>
</tr>
<tr>
<td>Bibliography</td>
<td>111</td>
</tr>
<tr>
<td>Vita</td>
<td>113</td>
</tr>
</tbody>
</table>
List of Figures

Figure	Page
1.1 Envisioned Scenario of System Operation | 5
2.1 System Geometry | 8
2.2 Young's Two Slit Experiment | 9
2.3 Example Situation | 13
2.4 Polar Plot of Frequencies Sampled | 17
3.1 Flowchart of Computer Model | 20
3.2 Example Plot of Aperture or Pupil Function | 23
3.3 Comparison of Analytic Sinc and FFT of Pulse | 27
3.4 Example Plot of Point Source Distribution | 28
3.5 Example Plot of FFT of 6.25 cm Edge | 29
4.1 Bounds on Spatial Frequencies of Analytic Image | 32
4.2 Image of 6.25 cm Wide Rect | 33
4.3 Sampled Spatial Frequencies in System Image | 34
4.4 Image Obtained from Passive System | 36
4.5 One Point (top), Two Point (middle) and Edge Objects | 39
4.6 Slit (top) and Circle Objects | 40
4.7 Case I Results | 41
4.8 Case II Results | 42
4.9 Case III Results | 43
4.10 Case IV Results | 44
4.11 Case V Results | 45
A.1 System Geometry | 48
A.2 Vector Relationships | 49
A.3 Scene Rotating Beneath Lens System | 54
A.4 Lens System Moving and Scene Stationary | 55
A.5 Polar Plots of $\Delta \theta$ vs f_a and f_r for Rotating and Stationary Cases | 56
Abstract

This thesis was concerned with the development of a computer model of a passive synthetic aperture imaging system. The research was divided into three parts. They were (1) applying an understanding of partial coherence theory and its relationship to the impulse response of the system, (2) developing the computer model, and (3) exercising the computer model to perform a sensitivity analysis.

The system modeled consisted of two lenses mounted on a movable platform. The lenses were separated by a fixed distance and travelled in a direction parallel to this separation. The coherence of radiation present at each lens emanating from a real source was measured yielding the Fourier transform of the source intensity distribution according to the van Cittert-Zernike theorem (2:510). The transform was then multiplied by an effective aperture (obtained from the motion and position of the lenses relative to the source). An inverse Fourier transform was then applied to this result yielding the image. This is the process modeled by the computer.

The results indicated that new means of image interpretation must be developed in order to make the results useful. This is due to the fact that the system behaves much like a high pass filter and the image is edge enhanced and not a scaled version of the geometric image.
I. Introduction

The goal of this research was to perform a sensitivity analysis of the imaging performance of a passive interferometric imaging system. A hypothetical system consisting of two lenses that are physically connected yet separated by a fixed distance was determined to be the simplest case. Such a system could be mounted on a movable platform. The system samples the partially coherent radiation emanating from a source as its field-of-view travels across the source.

A cross-correlation is performed between the radiation fields present at each lens at predetermined intervals of time. This results in a set of discrete samples of the Fourier transform of the source radiant intensity distribution being measured (4:2-1). The source radiant intensity distribution may then be found by taking the inverse Fourier transform. This is a direct application of the van Cittert-Zernike theorem (2:510).

The technique of passive interferometric imaging is not new. Radio astronomers have used it for quite some time to obtain the angular diameter and brightness distributions of celestial bodies (13:2115). Efforts to implement this technique at optical or infrared frequencies have yielded promising results (14:1). Current synthetic aperture systems require the transmission of a coherent signal to obtain an image (4:2-1). Attention is now being given to passive interferometric techniques in the infrared region because this technique does not require the use of an active illumination which could reveal the detector's presence. High resolution has been obtained in the radio frequency region (13:2114) and it is desired to see if this can be duplicated at infrared frequencies.
Goal of the Thesis

The goal of this thesis was to develop the necessary background and methods to perform a sensitivity analysis and to use this information to form a computer model of the system. This was done by constructing a model of the overall system. The computer model was then exercised to see how varying operating conditions and parameters that the imaging performance is dependent upon affected system performance. These results were compared to the results obtained under what were defined as ideal operating conditions to see what the effects were.

The thesis was divided into three phases in order to meet these broad objectives. They were (1) applying an understanding of partial coherence theory and its relationship to the impulse response of the system, (2) developing the computer model, and (3) exercising the computer model to perform the sensitivity analysis. The details of these phases are enumerated below.

Phase One. Understanding partial coherence theory revolves around an understanding of the propagation of the mutual intensity function (1:31). This is the quantity measured by the system. A normalized version of the mutual intensity function is related to the Fourier transform of the source intensity distribution. The image is then found by taking the inverse Fourier transform of the detected normalized mutual intensity function. Understanding partial coherence and the mutual intensity function and how it is measured are therefore the first important steps in analyzing the problem.
Understanding the contribution of the van Cittert-Zernike theorem is the next step in obtaining the impulse response of the system. As is stated in this theorem, it is assumed that the source is spatially incoherent and emits quasi-monochromatic light. The system behaves somewhat like a coherent imaging system despite the source being incoherent. This is illustrated in the following paragraph.

It can be shown (7:110-113) that for a given object amplitude distribution $u(X_o)$, the resultant coherent image amplitude distribution $u(X_i)$ is given by

$$u(X_i) = u(X_o) \ast h(X)$$ \hspace{1cm} (1.1)

where \ast denotes a convolution and $h(X)$ is the amplitude impulse response of the imaging system.

The amplitude impulse response $h(X)$ is the Fourier transform of the pupil function $p(\lambda dx)$ (7:105) where λ is the wavelength and d is the distance from the exit pupil of the optical system to the image plane.

Taking the Fourier transform of both sides of Eq (1.1) yields the linear system equation

$$U(f_i) = U(f_o)P(\lambda df)$$ \hspace{1cm} (1.2)

where $U(f_i)$, $U(f_o)$, and $P(\lambda df)$ are the Fourier transforms of $u(X_i)$, $u(X_o)$, and $p(\lambda dx)$ respectively.

This shows that the Fourier transform of the image amplitude distribution is directly proportional to the Fourier transform of the object amplitude distribution. The proportionality constant is the scaled pupil function. As noted earlier, the van Cittert-Zernike theorem states that the mutual intensity function is the Fourier
transform of the source intensity distribution. Therefore, applying the van Cittert-Zernike theorem to a given source intensity distribution yields the input to the linear system denoted in Eq (1.2). The transfer function, \(P(\lambda df) \), is then the only parameter needed to determine the image amplitude distribution. Once \(P(\lambda df) \) has been determined, \(U(f_1) \) can be calculated for any source amplitude distribution (via Eq (1.2)) and \(u(x_1) \) can be found by taking the inverse Fourier transform of \(U(f_1) \).

This first phase identified the parameters and conditions which may effect the impulse response and system performance. The parameters initially identified were the distance between the lenses, aperture size, aperture fill, and frequency spacing or sample spacing.

Phase Two. The second phase was the development and testing of the computer model. The scenario upon which the model was based is as follows. A collection platform has two lenses mounted on it. These lenses are identical and are separated by a fixed distance. The path travelled by the collector is parallel to this separation. The slant range to the target is large enough such that it lies in the same plane as the target to be imaged. The collector traverses an angle \(\Delta \theta \) as it moves past the target. This scenario is depicted in Figure 1.1.

The collector ideally would be able to gather data along \(\Delta \theta \) equal from 0 to 180 degrees. The mutual intensity function would be sampled all along this interval with a diffraction grating providing the means of collecting several frequencies each time a sample is taken. A point source was considered the simplest case since this would provide the
impulse response of the system. Deriving the images due to other types of sources can be found from this. The angle $\Delta \theta$ was the primary variable modeled.

This required the definition of the impulse response of the system. The results of the first phase provided the information necessary to define the impulse response. This function was the most important part of the model. The model was written in FORTRAN 9000 and was developed on an HP 9000 computer. The model was written in a manner that will enable a person of limited computer background to be able to use the program without having to study a long and complicated list of procedures.

![Diagram](image)

Fig 1.1. Envisioned Scenario of System Operation

5
Phase Three. The last phase consisted of exercising the computer model to obtain point spread functions of the system as well as images of certain simple objects. This was done by altering the ideal model of the second phase with changes to parameters identified in the first phase. The goal was to determine the system's imaging performance under realistic operating conditions.
II. THEORY OF OPERATION

This chapter will better describe and more fully explain the theoretical basis of the optical system introduced in the previous chapter. It is assumed that the reader has an understanding of geometrical and Fourier optics. The chapter is divided into three sections. These are a physical and conceptual description of the optical system being modeled, the theoretical basis of operation, and linking the theory and the idea of a coherent imaging system to the optical system being modeled.

The Optical System

The optical system consists of two main components. One is a pair of lenses separated by a distance d. The other is a linear array of detectors. The goal is to produce an image of a thermal source which emits a randomly fluctuating field by measuring the complex degree of partial coherence of the radiation field present at the lenses. The system can be conceived as one mounted on a movable platform that enables the system to rotate around the scene of interest. This is conceptually the same as letting the system remain stationary and allowing the scene to rotate below as shown in Fig. 2.1. Appendix A relates this simple geometry to the more complicated geometry of the moving lenses. Enough data must be collected so that an image of sufficient resolution and quality may be obtained by taking the two-dimensional inverse Fourier transform of the collected data.
Fig 2.1. System Geometry

The scene A is assumed to be within the field of view of the system, \(L_1 \) and \(L_2 \) are the two lenses of the system, \(d \) is the distance by which the lenses are separated, \(R_1 \) and \(R_2 \) the distances from the center of the field of view to \(L_1 \) and \(L_2 \) respectively.

Theoretical Basis of Operation

The simplest point from which to begin is Young's two slit experiment (1:7-11) which will be used to introduce the mutual intensity function and the complex degree of coherence. Consider the one-dimensional setup illustrated in Figure 2.2, where \(S \) is an extended polychromatic source in the \(X \) plane.
Fig 2.2. Young’s Two Slit Experiment

S_1 and S_2 are identical slits separated by a distance d in the A plane which is otherwise opaque and is parallel to and a distance D from the X plane. Q is a point in the B plane which is parallel to and a distance Z from the A plane. R_1 and R_2 are the distances from S_1 and S_2 respectively to Q. A scalar treatment is sufficient here because the angles involved are assumed to satisfy the small angle approximation ($\sin \theta \approx \theta$).

The source S emits a complex incoherent light disturbance $E(P,t)$. This disturbance propagates from the source to the plane A according to the wave equation (1:9)

$$ (V^2)E = \frac{1}{c^2} \frac{d^2E}{dt} $$

(2.1)

where c is the speed of light. The amplitudes of the disturbance at the
openings S_1 and S_2 are then denoted $E_1(t)$ and $E_2(t)$ respectively. The total disturbance at Q is then

$$EQ(t) = E_1(t-R_1/c) + E_2(t-R_2/c) \quad (2.2)$$

where R_1/c and R_2/c represent the time delays of $E_1(t)$ and $E_2(t)$ respectively in propagating to Q. Therefore, let $R_1/c = t_1$ and $R_2/c = t_2$. Rewriting Eq (2.2) with these changes yields

$$EQ(t) = E_1(t-t_1) + E_2(t-t_2) \quad (2.3)$$

The irradiance at Q, IQ, is necessarily a long time average of $EQ(t)$. This is due to the fact that the frequency of the radiation field being sampled ($EQ(t)$) far exceeds the capability of the detectors employed to detect each individual oscillation. IQ is defined as

$$IQ = \langle (E_1(t-t_1) + E_2(t-t_2)) (E_1(t-t_1) + E_2(t-t_2))^* \rangle \quad (2.4)$$

where $\langle ... \rangle$ indicates the long time average of the quantity they enclose; i.e.

$$\langle I(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} I(t) dt \quad (2.5)$$

Mutual Coherence Function. Carrying out the operations indicated in Eq (2.4) results in

$$IQ = (E_1(t-t_1)^2 + E_2(t-t_2)^2 + 2ReE_1(t-t_1)E_2(t-t_2)^*) \quad (2.6)$$

By denoting $E_1(t-t_1)^2$ by I_1 and $E_2(t-t_2)^2$ by I_2 and the time delay
(t₁-t₂) between E₁ and E₂ by τ (since E₁ and E₂ are assumed to be stationary fields), Eq (2.6) can be rewritten as

\[\text{IQ} = I₁ + I₂ + 2\text{Re}\langle E₁(t+τ)E₂(t)\rangle \] (2.7)

The quantity \(\langle E₁(t+τ)E₂(t)\rangle \) is defined as the mutual coherence function \(Γ₁₂(τ) \) where the subscripts denote the points between which the coherence is measured.

Complex Degree of Coherence. The complex degree of coherence, \(γ₁₂(τ) \), is a normalized form of the mutual coherence function. It is defined as

\[γ₁₂(τ) = Γ₁₂(τ)/[Γ₁₁(0)Γ₂₂(0)]^{1/2} \] (2.8)

where \(Γ₁₁(0) = E₁(t)E₁(t)^* = I₁ \) and \(Γ₂₂(0) = E₂(t)E₂(t)^* = I₂ \). IQ can now be written as

\[\text{IQ} = I₁ + I₂ + 2[I₁I₂^{1/2}]\text{Re} γ₁₂(τ) \] (2.9)

Visibility. One way to conduct Young's two slit experiment is under what Zernike refers to as best conditions (1:10). These are \(I₁ = I₂ \) and the path differences are small. If \(γ₁₂(τ) \) is rewritten as a magnitude times a phase, i.e.

\[γ₁₂(τ) = |γ₁₂(τ)|\exp(iϕ₁₂(τ)) \] (2.10)

where \(ϕ₁₂ \) represents the difference in phase due to the path lengths, and \(|\cdot|\) indicate the magnitude of the quantity they enclose. Eq (2.9) may be rewritten as

\[\text{IQ} = 2I₁[1+|γ₁₂(τ)|\cosϕ₁₂(τ)] \] (2.11)
This results in a series of light and dark fringes appearing on plane B. The visibility of the fringes, V, is defined as (1:8)

$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$ \hspace{1cm} (2.12)

Applying Eq (2.12) to Eq (2.11) yields

$$V = |\gamma_{12}(\tau)|$$ \hspace{1cm} (2.13)

The significance of this result is that the modulus of the degree of coherence, $|\gamma_{12}(\tau)|$, can be directly related to the measured visibility of the fringes (2:511). This result will prove useful later in this development.

Quasi-monochromatic Light Sources. When the light source emits quasi-monochromatic light, $\Gamma_{12}(\tau)$ is called the mutual intensity function and is denoted by J_{12}. The complex degree of coherence is still known as such but is now denoted by γ_{12}. The source in the optical system being modeled is actually non quasi-monochromatic. A filtering operation (described in the section on calculating the mutual intensity function) takes place which effectively separates the incoming radiation into a series of quasi-monochromatic sources.

van Cittert-Zernike Theorem. Consider the situation depicted in Figure 2.3 below.
The van Cittert-Zernike theorem, then, states that

...the complex degree of coherence, which describes the correlation of vibrations at a fixed point \(S_2 \) and a variable point \(S_1 \) (see Figure 2.3) in a plane illuminated by an extended quasi-monochromatic primary source, is equal to the normalized complex amplitude at the corresponding point \(S_1 \) in a certain diffraction pattern, centered on \(S_2 \). This pattern would be obtained on placing the source by a diffracting aperture of the same size and shape as the source, and on filling it with a spherical wave converging to \(S_2 \), the amplitude distribution over the wavefront in the aperture being proportional to the intensity distribution across the source (2:510).

Therefore, the source or object intensity distribution may be found by taking the inverse transform of the complex degree of coherence.

This is the basic underlying principle on which the optical system to be modeled operates. One last useful observation is that the sources considered here are real and the Fourier transform of such a source is complex symmetric due to the hermitian nature of the transform (6:193). This means that if the complex degree of coherence \(\mu_{12} \) is measured at a particular spatial frequency \(f_{x1} \) then it is automatically known at the
symmetric spatial frequency \(-f_{x_1}\). It is simply the complex conjugate of the value of \(u_{12}\) at \(f_{1}\).

Linking of Theory to the Optical System

The optical system to be modeled behaves somewhat like a coherent imaging system. According to Goodman (7:106-110), if the object is illuminated by coherent light the impulse responses comprising the image must be added on a complex amplitude basis. Therefore, a coherent imaging system is a linear system with respect to complex amplitude (7:107). In a coherent imaging system, the image is the convolution of the image predicted by geometrical optics with an impulse response determined by the exit pupil of the system (7:105). This is denoted by

\[
u_1(x_1, y_1) = \int_{-\infty}^{\infty} h(x_1 - x_0, y_1 - y_0) u_o(x_0, y_0) dx_0 dy_0
\] (2.14)

where \(u_1\) and \(u_o\) are the image and object amplitude distributions and

\[
h(x_1, y_1) = \int_{-\infty}^{\infty} P(\lambda d, x, \lambda y) \exp(-j2\pi(x_1 x + y_1y)) dx dy
\] (2.15)

and where \(P\) is the pupil function and \(d_1\) the image distance (7:105). Eq (2.15) is in the form of a Fourier transform so that \(h\) is the Fourier transform of the pupil function \(P\).

Applying the convolution theorem of Fourier transforms to Eq (2.14) yields

\[
G_1(f_x, f_y) = H(f_x, f_y) G_0(f_x, f_y)
\] (2.16)

where (denoting a Fourier transform by \(F\))

\[
G_1(f_x, f_y) = F(u_1(x_1, y_1))
\]

\[
G(x, f_y) = F(u_o(x_1, y_1))
\]

\[
H(f_x, f_y) = F(h(x_1, y_1))
\]
Eq (2.16) describes a linear system. Since $h(x,y)$ is the Fourier transform of $P(\lambda d_1 x, -\lambda d_1 y)$, the value of $H(f_x, f_y)$ is $P(-\lambda d_1 x, -\lambda d_1 y)$ or, if one assumes a reflected coordinate system, $H(f_x, f_y) = P(\lambda d_1 x, \lambda d_1 y)$ (7:110-111). The nature of H is that it allows all of the light at the sampled frequencies to pass through and completelyattenuates the light at all other points. Inverse transforming $G_{\|}$ yields the image $u_{\|}$.

The input or object intensity distribution for the optical system being modeled is the mutual intensity function. H consists of points sampled by the optical elements of the system. $G_{\|}$ is then a spatially filtered version of G_0. Inverse transforming $G_{\|}$ will then produce the image. H determines the amount of spatial filtering. Consider this one-dimensional case. If G_0 was a $\text{rect}(f_x)$ and H was a $\text{rect}(2f_x)$, $G_{\|}$ would be a $\text{rect}(2f_x)$. Spatial frequencies greater that 0.5 are filtered out. This obviously degrades the quality of the final image. This is why the effect of the aperture or pupil function is of such interest.

Calculation of the Mutual Intensity Function. The scene of interest is considered to be spatially incoherent, temporally stationary, and non quasi-monochromatic. The source may therefore be thought of as a collection of m independent oscillators operating at their own individual frequencies and radiating a complex field $E_m(t)$. The total field present at each of lenses L_1 and L_2 can then be thought of as the sum of the fields due to each oscillator. This is denoted by

$$E_1(t) = \sum_m E_m(t)$$ \hspace{1cm} (2.17)

$$E_2(t) = \sum_m E_m(t)$$ \hspace{1cm} (2.18)

A linear filtering operation now takes place in order to separate the incoming fields for detection by the array of n linear detectors.
The filters are assumed to be narrow band (to fulfill the requirement of quasi-monochromatic light), are identical for each lens, and have a Fourier transform G_n. The received signal is then $S_f_n(t) = E_n(t) * g_n(f_n)$ ($n = 1, 2, \ldots$) (n indicates which detector is being analyzed). The mutual intensity function can then be rewritten as just

$$\Gamma_{12} = <S_{f_1}(t)S_{f_2}(t)^*> = S_{f_1}(t)S_{f_2}(t)^*$$

(2.19)

This illustrates that the entire continuous mutual intensity function is not calculated but instead only at the n specific frequencies. A sampled version is obtained instead. This results in some degradation of the image. The effects of the number of frequencies sampled on image quality is therefore one of the goals of this thesis.

The Aperture Function. The linear detector array cannot (unfortunately) contain enough detectors to detect every frequency present. Therefore, assume that the detector array contains four detectors at frequencies f_1, f_2, f_3, f_4 for the following example. Figure 2.1 illustrated the system geometry. The mutual intensity function is measured at intervals along $\Delta \theta$ as the system passes across the scene. The magnitude of the four frequencies measured by the detector array is recorded for each interval. A polar plot of the frequency versus $\Delta \theta$ is shown in Figure 2.4.

The system is able to obtain resolution in the dimensions of slant range and azimuth. The are denoted by f_r and f_a in Fourier transforms as in Figure 2.4. The directions of the radio lines can be thought of two ways the direction is mathematically the result of the difference of two unit vectors denoting the positions of the lens relatively to the
source (see Appendix A). The direction can be thought of conceptually as the direction of the lens separation relative to the source as the lens move.

The resolution along the two dimensions is determined by $\Delta \theta$ the frequency spacing. This is best illustrated by the following special cases. When the lenses are (hypothetically) infinitely far away from the source such that they lie in the plane of the source, the sampled frequencies all lie along f_r yielding resolution in slant range but none in azimuth. When the lenses are in a broadside position or directly overhead, no resolution along f_r is possible because all the sampled frequencies lie along f_a. The resolution along f_a is determined by the spacing between samples.

It is clear from Figure 2.4 that not all frequencies are sampled. The hermitian nature of the mutual intensity function described earlier allows the determination of the function u_{12} at the points $-f_1$, $-f_2$, $-f_3$, $-f_4$ because their value is equal to the complex conjugate of u_{12} at the points f_1, f_2, f_3, f_4. However, the amount of frequency coverage is
limited by $\Delta \Theta$ and the number of detectors. The extent of $\Delta \Theta$ determines the overall shape of the aperture function and the frequencies at which detectors are present determine which frequencies are sampled and which are not.

Final Output of the Optical System. The final output is an image of the original source obtained by inverse Fourier transforming a sampled version of the mutual intensity function as governed by Eq (2.16). This results in the degradation of the image since not all of the frequency components of the mutual intensity function are present. This thesis determined what effect various aperture functions had on the final image.
III. THE COMPUTER MODEL

This chapter discusses the development and operation of the computer model of the optical system. The supporting hardware and software will be described. A brief explanation of the overall flow of information will be given. Appendix B contains the program listings and operating instructions. A printout of a sample run is also provided.

Computer Support

The model was developed at the Electro-Optics Branch of the Air Force Wright Aeronautical Laboratory. The computer employed was a Hewlett-Packard (HP) 9000 which ran under the UNIX operating system. The graphics support consisted of an HP 2623a graphics terminal with an internal printer and an HP 7550a plotter. The computer language used to construct the model was Fortran 9000 (a version of Fortran 77). The HP 9000 had several important qualities which are enumerated below.

One of the best features was that of being a virtual memory machine. This eliminated program size considerations. The only concern was speed of execution since the machine can accommodate a program of any size. This was one less problem to have to consider and therefore allowed more concentration on the physics of the thesis. The two megabytes of memory were more than sufficient for the model.

The graphics package (named Advanced Graphics Package or AGP) was also easy to use (if not a little confusing to learn). The only bad feature was that there was no way of hiding lines if the programmer did not know what kind of data was coming. This is why the plots that appear later in this thesis are only one quarter of the front half of the picture. This eliminated many of the confusing lines and was possible due to the symmetry of the information.
Fig 3.1. Flowchart of Computer Model
The feature that made AGP so useful was the concept of a Work Station Program (WSP). Each graphics device has an associated WSP which takes care of all device dependent affairs allowing the programmer to use the same plotting programs on different devices. The only changes occur in device initialization and in the calling sequences. Appendix B contains more details on this.

The Computer Program

The preceding flowchart illustrates the various parts of the computer model and how they interact. The model is invoked by typing "synapt" (SYNthetic APerture) on the terminal. This is also the name of the main program. See Appendix B for more detailed running instructions.

The model first initializes all graphics devices. It is then ready to find out what type of source is to be imaged. The model contains five preprogrammed sources and will allow the user to put in his own. The five preprogrammed sources are a point source, a two-point source, an edge, a slit, and a circle. The model analytically computes the Fourier transform of the first four sources and invokes a Fast Fourier Transform (FFT) subroutine to compute the Fourier transform of the circle and that of the user's own.

The model then asks for information regarding the aperture or pupil function. The first variables required are the range to the source and the lens separation. These variables determine what frequencies will be sampled (see appendix A for a rigorous derivation of this). A maximum $\Delta \theta$ is also calculated from the range information, collector speed, and
collector stability information provided by the user. The user then is asked for $\Delta \theta$. An upper and lower limit are required. This $\Delta \theta$ is compared to the maximum possible $\Delta \theta$ calculated above. If the calculated $\Delta \theta$ is exceeded, the user must start over with new range and lens separation information.

It was decided to use rectangular symmetry instead of radial symmetry in the aperture and source distribution because an FFT subroutine that worked with radial symmetry could not be found. The points in the pupil function were modelled as having a radial distance

$$(f_r^2 + f_a^2)^{1/2}$$

where f_r and f_a are the rectangular components of the frequency in range and azimuth respectively) which was the equivalent to the radial frequency at that point. Each element of the pupil function either transmits entirely or attenuates entirely. A picture of the pupil function appears in Figure 3.2.

All of these frequencies are not sampled. The frequencies that are sampled are

$$f = 2(f_m/c) \sin (\alpha/2)$$

(3.1)

where f_m is the frequency of a filter and α is the angle between the lenses formed by R_1 and R_2 (see appendix A for supporting information and a derivation of Eq 3.3). The spatial frequencies f that are sampled in the optical system being modelled are 0 to 64 1/m based on ranges of 1 to 3 kilometers, a lens separation of 0.5 meters, a wavelength (c/f_m) band of 8 to 12 umeters, and a maximum pupil radius of 16 bits in a 256 by 256 array of points that modelled the pupil. The model computes the
Fig 3.2. Example Plot of Aperture or Pupil Function
upper and lower frequencies based on the information indicated above and
shades the appropriate area of the pupil to reflect the operating
conditions.

The source FFT now undergoes an inverting process. The FFT sub-
routine normally places the high frequency components in the middle of
the transformed array and the low frequency components at the corners.
This process allows the FFT to appear in its more commonly recognized
form with the low frequencies in the center and the high frequencies on
the outside edges. See Appendix B to see how it is implemented.

The source FFT now is multiplied by the pupil function. The numbers
to be multiplied in general are complex and the operation is of the form

\[(a + ib)(c + id) = \text{Answer}\]

(3.2)

where \(i\) is the square root of negative one, \(a + ib\) represents the value
of a point of the FFT of the source, and \(c + id\) is the value of a point
in the pupil. However, since the components of the pupil function are
entirely real \((d = 0)\), the result is

\[ac + icb = \text{Answer}\]

(3.3)

This result is stored in the array that originally held the source FFT.

The final answer is now obtained by taking the inverse Fourier
transform (IFT) of the result of Eq 3.3. The data is inverted as before
in order for the answer to appear in its original form. The user can
get a picture of this and compare it to the original source to see just
how well his system has performed.

There are two subroutines other than the main program which do a
majority of the work. The most important is the
FFT subroutine. Figure 3.3 compares the results of an analytically computed $32 \text{sinc} \left(\frac{32 f}{x} \right)$ to the Fourier transform of a pulse with a width of 32.

The subroutine computes the transform by finding the terms of a Fourier series of the same function as if it were indeed periodic. A period of 256 units was empirically found to yield an acceptable accuracy as illustrated in Figure 3.3. Although a larger period was more desirable, lengthening the array also resulted in greatly increasing the time required by the computer to compute the FFT. The subroutine required the input of both a real and imaginary component. This resulted in requiring two 256 by 256 element arrays to adequately describe the source in two dimensions. A listing of the subroutine may be found in Appendix B.

The other subroutine is called PLTRST for PLOTRESUlT. This subroutine carries out the graphics operations. The subroutine requires that the calling program indicate which plot is needed. The subroutine then draws the appropriate axes in the appropriate projection and types all of the appropriate headings, titles, and other markings. This is output to the appropriate device as the user has indicated. The WSP takes care of the actual drawing. See Appendix B for more details.

Several other subroutines are also invoked in the model. However, they perform only support functions and it is therefore unnecessary to go into detail here on what they do. Again, Appendix B contains more information on this matter.

Outputs

The outputs of the model are all graphical in nature. The model will plot on both the terminal and the plotter. There are a total of
five possible outputs on any one run of the model. These are (1) of the source irradiance distribution, (2) the aperture transmittance function, (3) the FFT of the source, (4) the product of the source and the aperture, and (5) the inverse FFT of the product of the source and the aperture or the image.

The scales in the object and the image plane are in terms of a dimensionless variable V defined as

$$V = \frac{2\pi a}{(\lambda d_i)} x_i$$

where a is the pupil radius, λ is the cutoff wavelength, d_i is the image distance, and x_i is the position of a point in the image. The size of a is 0.5 m which was found from the relationship found in reference 7:112 for the cutoff frequency of a coherent transfer function

$$f_c = \frac{1}{2\lambda d_i}$$

where l is the diameter of the pupil. Equating this to Eq 3.1 resulted in $l = d$ where d is the lens separation. The value of d_i is fixed due to the fixed focal length of the lenses. The value of λ is taken to be 8um at the radius of the pupil. A sample object size of 3.125 cm was used to arrive at a corresponding value of V of $2000\pi/512$. This object was assumed to be 32 bits wide in the 256 by 256 array representing the source. As noted earlier, only one quarter of the front half of the plot is illustrated. Therefore, the value of V must be doubled to find the total width or length of the object. The tick marks in the plots of the object and the image plane represent 8 bits in the source array. This is why the scale appears as is illustrated in Fig 3.4.
Fig 3.3. Comparison of Analytic Sinc and FFT of Pulse
Fig 3.4. Example Plot of Point Source Distribution
Fig 3.5. Example Plot of FFT of 6.25 cm Edge
The other outputs occur in the frequency plane. The scale is as described above in the pupil function. The axes are labelled in range (f_r) and azimuth (f_a). A sample of the modulus versus the spatial frequencies of the FFT of a 6.25 cm wide edge appears in Fig 3.5.

All of the plots are normalized in amplitude. In all cases, the modulus of the amplitude is plotted. The factor by which the information is normalized is shown on the plots as Rnorm. The preprogrammed sources are assumed to have an amplitude of one originally.
IV. RESULTS

This chapter contains the results of successive runs of the computer model. Five types of sources were imaged through five types of apertures. The results are in the form of plots of the image of each of the five sources due to each aperture configuration. Each aperture and the images of the five sources due to each aperture appear on foldouts at the end of the chapter. R. Barakat (16:205-223) has also examined the effects of different apertures on the images of various objects. His results agree quite closely with the results obtained with the computer model.

The initial aperture reflected the best case scenario; i.e. all frequencies were allowed to pass below the cutoff wavelength of 8 μm. The next two apertures reflect how the images degrade as fewer and fewer of the low frequencies were allowed to pass. The images began to show the characteristics of edge enhancement (10:61-62) as the lower frequencies were filtered out. These apertures established a baseline from which apertures obtained under realistic conditions could be compared.

Figures 4.1 and 4.2 illustrate the process of edge enhancement for the case of an edge source with a uniform amplitude distribution and a width of 6.25 cm. The X's in Figure 4.1 indicate the bounds on the spatial frequencies of the Fourier transform of the edge which are allowed to pass by the actual system. This figure reflects a lens separation of 0.5 m and a range of 1 km. These two factors plus the 8 to 12 μm bound on the detectable wavelengths combine to yield a limit on the spatial frequencies of approximately 40 to 64 cycles per meter.

Figure 4.2 is the image obtained by analytical methods with the above mentioned system parameters. The edge falls at X equal 4 in Figure 4.2. This confirms that edge enhancement takes place.
Fig 4.1. Bounds on Spatial Frequencies of Analytic Image
Fig 4.2. Image of 6.25cm Wide Rect
Sampled spatial frequencies are denoted by X.

Fig 4.3. Sampled Spatial Frequencies in System Image
Figures 4.3 and 4.4 compare how the computer model behaves under identical operating conditions. Figure 4.3 illustrates which frequencies are sampled by the computer model. The analytical case above assumed all spatial frequencies between 40 and 64 cycles per meter were sampled. Figure 4.3 shows that this is not the case in the computer model. The bounds on the spatial frequencies remained the same but samples were taken only at 4 cycles per meter intervals as indicated by the X's in Figure 4.3. Figure 4.4 shows the image obtained by the passive system through the computer model when only discrete samples of the Fourier transform are taken. Figure 4.4 agrees very closely with Figure 4.2 which would be the best image that could be obtained. This comparison was the final test in validating the computer model.

The five sources imaged were: a point source, two point sources with a separation in V_r of 4, an edge (that was modeled by a rect with a width of 4 along V_a), a slit with dimensions of $(V_r \times V_a) 4 \times 2$, and a circle with a radius of 4. The amplitude distribution was unity at all points on the sources. Figures 4.5 and 4.6 illustrate these objects. The Fourier transforms of these sources were taken as described in Chapter III and passed through five different apertures. The resultant images of these sources through each of the apertures appear on five foldouts at the end of this chapter along with the aperture used. The five cases are described below.

Case I

The first case considered what images could be expected from a full aperture. The highest frequency present was 64 cycles per meter. The images are as expected with some ringing present. The impulse response
Fig 4.4. Image Obtained from Passive System
is good with low sidelobes. The images can be interpreted easily at this point. This case is reflected on the first foldout (Figure 4.7).

Case II

The second case used an aperture that passed only spatial frequencies between 16 and 64 cycles per meter. The impulse response now is more spread out with higher sidelobes. The images are no longer easily interpreted. Substantial ringing is beginning to occur. This case is illustrated on the second foldout (Figure 4.8).

Case III

This case reflects what happens to the images when only the spatial frequencies between 40 and 64 cycles per meter are sampled. This case reflects realistic spatial frequencies since they reflect realistic system parameters of 0.5 m for lens separation and 1 km for range. $\Delta \theta$ is considered to be 180 degrees in this case still. The images have degraded even more with more ringing present along V_a. This is reflected in the third foldout (Figure 4.9).

Case IV

This case reflects the system performance under the conditions in Case III with the addition of a realistic $\Delta \theta$. This case is a reflection of the kind of data that can be expected from a passive synthetic aperture system. The velocity and stability used in calculating $\Delta \theta$ were 880 ft/s and 10 s. This resulted in a $\Delta \theta$ of approximately 106 degrees which was centered on both sides of f_a. The impulse response has even higher sidelobes and the images have become slightly noisier than in the previous case. The data for this case is shown in the fourth foldout (Figure 4.10).
Case V

The last case was intended to show what happens under a slightly different system configuration. The lens separation has been halved to 0.25 m. The sampled spatial frequency range is now approximately 20 to 32 cycles per meter. The impulse response now exhibits wider and more spread out sidelobes along Va than in previous cases. This is also reflected in the images of the other sources. This is illustrated in the last handout (Figure 4.11).
Fig 4.5. One Point (top), Two Point (middle), and Edge Objects
Fig 4.6. Slit (top) and Circle Objects
Fig 4.7. Case 1 Results
Fig 4.8. Case II Results
Fig 4.9. Case III Results

43
Fig 4.10. Case IV Results
Fig 4.11. Case V Results
V. CONCLUSIONS

The chapter summarizes the conclusions reached on the performance of the passive synthetic aperture system and the computer model. These conclusions are based on the results presented in the previous chapter and on the vast amount of experience gained in the actual operation of the computer model.

Conclusions on Optical System

1. The system will behave like a high pass filter. This is because the DC component of spatial frequency will never be measured under realistic operating conditions.

2. The images will be edge enhanced. This is due to the high pass nature of the system. The images will not simply be a slightly degraded version of the geometric image but will be highly complex instead.

3. A large AO is desirable to improve resolution along Va. Limiting 0 limits resolution along Va accordingly.

4. New methods of image interpretation will need to be developed in order for the system to be usable. The reasons cited in conclusion two will require the development of new techniques and algorithms in order to interpret the information correctly. This should be possible since the impulse response for any system configuration or change in operating conditions can be found. Knowing the impulse response of the system should enable one to find the image resulting from any input.

Conclusions on Computer Model

1. The model performs satisfactorily. The results have been verified analytically as correct.
2. A radial FFT program would allow for the exact simulation of the system. The sampled spatial frequencies are actually distributed in a radial fashion (see Appendix A). Fitting a rectangular grid to the situation was an interim and time saving solution. A more exact simulation could be obtained through the use of radial coordinates. A program that takes an FFT in radial coordinates could not be found. Therefore, the rectangular grid was fitted in order to utilize conventional FFT programs.

3. Accuracy can be increased by increasing the array size. This will result in more samples of the input and its Fourier transform resulting in a more exact representation. This will also increase program size and slow down processing considerably.

4. Hiding lines on plots would increase the usefulness of the data. However, the method for doing this is not readily apparent.

5. The effects of phase should be determined. A phase term is present in the mutual coherence function as shown in Appendix A. Its effects have not been studied in this thesis.
Appendix A

This appendix relates the simple case of a scene rotating beneath the lens system to the more complicated case of the lens system being carried on a collection platform and moving past the scene. This will require a rigorous derivation of the propagation of the mutual coherence function. The following paragraphs will present needed background and terminology for the derivation which follows. The material presented in this chapter is extracted mainly from reference 14:2-4 to 2-13. The system geometry is illustrated again in Figure A.1 below.

The major assumptions are that the measurement (slant range) plane is essentially the same as the ground plane being imaged. The lens separation is constant and the system moves in a direction parallel to this separation.
The first step is to derive the mutual coherence function at the source and next to propagate it to the lens system.

The source to be imaged has a field amplitude $E(r',t)$ which is spatially incoherent and temporally stationary. The field at any point is uncorrelated with any other point. Therefore, the mutual coherence function $\Gamma_{12}(\tau)$ as evaluated at two points on the source is

$$\Gamma_{12}(\tau) = \langle E(r_1', t) E(r_2', t) \rangle$$ \hspace{1cm} (A.1)

$\Gamma_{12}(\tau)$ can be reduced as in Eq 2.6. This yields

$$\Gamma_{12}(\tau) = \langle E(r_1', t) E(r_2', t-\tau) \rangle$$ \hspace{1cm} (A.2)

Rewriting Eq A.2 in terms of intensity yields

$$\Gamma_{12}(\tau) = I(r', \tau) \delta(r_1' - r_2')$$ \hspace{1cm} (A.3)

where δ is a dirac delta function denoting the spatial incoherence of the source.

Refer now to Figure A.2.

Fig A.2. Vector relationships.
The magnitude of the vectors \mathbf{r}_1^A and \mathbf{r}_2^A denote the distance from the center of the source to each lens, \mathbf{r}_1^A and \mathbf{r}_2^A are unit vectors along \mathbf{r}_1 and \mathbf{r}_2, and \mathbf{r}' is the position vector of a point in the scene to be imaged. The field present at the lenses can be found through Huygens principle. This is (within a constant)

$$E(\mathbf{r},t) = \int E(\mathbf{r}',t - R/c) \, d\mathbf{r}'/R$$

where $R = |\mathbf{r} - \mathbf{r}'|$, c is the speed of light, and R/c is the lag time from \mathbf{r}' to \mathbf{r}.

This received signal (s_m) at each lens passes through a linear filter (separate but identical for each lens) with a center frequency f_m. This process can be denoted by

$$s_m(\mathbf{r},t) = E(\mathbf{r},t) \ast h_m(t)$$

where $h_m(t)$ is the electronic impulse response of the filter and \ast denotes a convolution. The subscript m denotes the mth filter indicating that m total frequencies are being sampled at a given time.

A rigorous derivation of the propagation of the mutual coherence function is now made. The theoretical basis may be found in reference 2:537-599. The mutual coherence function is evaluated in terms of the received signal at each lens. This is written as

$$\Gamma(\mathbf{r}_1, \mathbf{r}_2, \tau) = \langle s_{m1}(\mathbf{r}_1', t_1) \ast s_{m2}(\mathbf{r}_2', t_2) \rangle$$

where $s_{m1}(\mathbf{r}_i, t_i)$ is the received signal at lens i at the mth frequency received at a time t_i. Γ_{12} can be rewritten by substituting for
\(s_m(r_1', t_1') \) as allowed by the relationship in Eq A.5. This results in

\[
\Gamma_{12}(\tau) = \langle E(r_1', t_1' - R_1/c) * h_m(t_1') \rangle \langle E(r_2', t_2' - R_2/c) * h_m(t_2') \rangle^* \quad (A.7)
\]

This equation can be rewritten once more making a substitution for

\(E(r_1', t_1') \) as allowed by Eq A.4. This results in

\[
\Gamma_{12}(\tau) = \int_A \int_A \langle \int (E(r_1', t_1' - R_1/c) dr'/R_1) \ast h_m(t_1') \rangle \langle \int (E(r_2', t_2' - R_2/c) dr'/R_2) \ast h_m(t_2') \rangle^* \quad (A.8)
\]

Replacing the convolution symbol with the convolution integral and
removing the integrals in \(r' \) and the constants \(R_1 \) and \(R_2 \) outside the
time average (since they have no time dependence) yields

\[
\Gamma_{12}(\tau) = 1/(R_1 R_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \langle \int (E(r_1', t_1' - R_1/c) h_m(t_1' - t')) \rangle \langle \int (E(r_2', t_2' - R_2/c) h_m(t_2' - t'')) \rangle^* dr'dr' \quad (A.9)
\]

where \(t' \) and \(t'' \) are dummy variables introduced by the use of the con-
volution integral.

Since the time average only applies to \(E \) because of its rapid
oscillations, Eq A.9 can be rewritten as

\[
\Gamma_{12}(\tau) = 1/(R_1 R_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \langle \int (E(r_1', t_1' - R_1/c) h_m(t_1' - t')) > h_m(t_1' - t') \rangle h_m(t_2' - t'') \rangle^* dt'dt'' dr'dr' \quad (A.10)
\]

Employing Eq A.3 allows the quantity within the time average brackets
\(< \) and \(> \) to be rewritten which yields

\[
\Gamma_{12}(\tau) = 1/(R_1 R_2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \langle (r_1' - r_2') - (R_1 - R_2)/c \rangle \delta(r_1' - r_2') dr' \quad h_m(t_1' - t') \rangle h_m(t_2' - t'') \rangle^* dt'dt'' dr' \quad (A.11)
\]

51
The delta function results in the elimination of one area integral which reduces Eq A.11 to

$$\Gamma_{12}(\tau) = \frac{1}{(R_1 R_2)} \int I(x', t' - t'' - (R_1 - R_2)/c) h_m(t_1 - t') h_m(t_2 - t'')^* dt'$$
$$+ \infty$$
$$- \infty$$

(A.12)

The next step is to rewrite the filter impulse responses as their Fourier transforms which are denoted $H_m(f)$ (the same symbol is used for both filters since they are identical). These are (in integral form)

$$h_m(t_1 - t') = \int_{-\infty}^{\infty} H_m(f) \exp(i2\pi f(t_1 - t')) df$$

(A.13)

and

$$h_m(t_2 - t'') = \int_{-\infty}^{\infty} H_m(f) \exp(-i2\pi f(t_2 - t'')) df$$

(A.14)

The product of $H_m(f)$ and $H_m(f)^*$ may be taken outside the integrals since they are constants for all frequencies. Replacing the filter impulses in Eq A.12 with their Fourier transforms of Eqs A.13 and A.14 results in

$$\Gamma_{12}(\tau) = 1H_m(f)^2/((R_1 R_2)) \int I(x', t' - t'' - (R_1 - R_2)/c) \exp(i2\pi f(t_1 - t')) df$$

$$+ \infty$$
$$- \infty$$

$$\int \exp(-i2\pi f(t_2 - t'')) df dt' dt'' dt'$$

(A.15)

The integrals of the exponential functions are in the forms of delta functions. Therefore, Eq A.15 can be rewritten as

$$\Gamma_{12}(\tau) = 1H_m(f)^2/((R_1 R_2)) \int I(x', t' - t'' - (R_1 - R_2)/c) \delta(t_1 - t')$$

$$+ \infty$$
$$- \infty$$

$$\delta(t_2 - t'') dt' dt'' dt'$$

(A.16)
Carrying out the integrations with respect to \(t'\) and \(t''\) utilizing the sifting property of the delta function yields the following result

\[
\Gamma_{12}(\tau) = \frac{(1H_m(f)I_R^2)/(R_1R_2)I(R_1,R_2)c}{d\tau'} \quad (A.17)
\]

Denoting \(t_1 - t_2\) as \(\tau\) and rewriting \(I\) as a Fourier transform results in the following result for the mutual coherence function

\[
\Gamma_{12}(\tau) = \frac{1/(R_1R_2)\int I(R_1,R_2)I(r',f)\exp(i2\pi f(\tau - (R_1-R_2)/c))df}{d\tau'} \quad (A.18)
\]

\(I(r',f)\) is essentially a constant with respect to \(f\) at the frequencies of concern. \(I(r',f)\) will therefore be denoted as \(I(r')\) from this point on. It is also assumed that \(H_m(f)\) is sufficiently narrowband that the factor of \(f\) in the exponent in Eq A.18 can be replaced by its center frequency value \(f_m\). The actual bandwidth of the filter, \(B\), is defined as

\[
B = \int_{-\infty}^{\infty} |H_m(f)|^2 df \quad (A.19)
\]

Lastly, a far field assumption is made; i.e.

\[
R_{1,2} = R_{1,2} - r_{1,2} \quad (A.20)
\]

where \(r_{1,2}\) is the magnitude of \(R_{1,2}\).

The final form of \(\Gamma_{12}(\tau)\) with these assumptions is

\[
\Gamma_{12}(\tau) = \frac{C\exp(-i2\pi f_m(R_2-R_1)r'/c)}{d\tau'} \quad (A.21)
\]
where \(C = (B/R_1 R_2) \exp(-i2\pi f_m (\tau-(r_2-r_1)/c)) \). The quantity to be integrated in Eq A.21 is in the form of a Fourier transform. This is denoted symbolically as

\[
\Gamma_{12}(\tau) = (B/R_1 R_2) \exp(-i2\pi f_m (\tau-(r_2-r_1)/c)) \phi(f) \tag{A.22}
\]

where \(f = (f_m/c)(r_2 - r_1) \). If \(\alpha \) is the angular separation of the lenses (and therefore the angle between \(r_1 \) and \(r_2 \)), \(f \) can be rewritten as

\[
f = (2f_m/c) \sin(\alpha/2) f \tag{A.23}
\]

where \(f \) is a unit vector in the direction of \(r_2 - r_1 \). Vector algebra shows that \(f \) is also perpendicular to the bisector between \(r_1 \) and \(r_2 \).

The case of a rotating scene may now be considered. Figure A.3 illustrates the current situation.

Fig A.3. Scene Rotating Beneath Lens System.
All variables are as defined in earlier chapters. Note the unit vector \(\mathbf{f} \). Any frequency along this unit vector (denoted \(f = f_m \)) can be measured by either varying the center frequency \(f_m \) or by placing \(m \) linear detectors in the system. The \(m \) linear detectors would allow the simultaneous measurement of \(\Gamma_{12}(\tau) \) at \(m \) different frequencies as governed by Eq A.22. The measurements are made at specific intervals as the scene rotates until a total rotation of \(\Delta \theta = 180 \) degrees has been made. No more samples need be taken since the transform being sampled is hermitian (see Chapter II).

Now consider the situation in Figure A.4 where the lens system is moving while the scene remains stationary.

![Diagram](image.png)

Fig A.4. Lens System Moving and Scene Stationary.
The situation is obviously identical to the rotating scene scenario. The movement of the lens system allows the unit vector \(\mathbf{f} \) to sweep out over an angle of $\Delta \theta = 180$ degrees just as in the case of the rotating scene. The \(m \) frequencies can be measured as in the stationary scene case. Figure A.4 shows where the samples are taken as does Figure A.3. The frequencies measured for the four values of $\Delta \theta$ shown are the same in both cases. A polar plot of $\Delta \theta$ versus the spatial frequencies f_r and f_a for both cases yield the same results.

![Polar Plot Diagram](image)

Fig A.5. Polar Plots of $\Delta \theta$ vs f_r and f_a for Rotating and Stationary Cases.
This concludes appendix A. A comparison between the cases of a stationary or rotating scene was made. The results of this comparison show that both cases yield identical results. For more details, see references 2 and 14.
Appendix B

This appendix contains the source listings of the computer model programs, and a sample model run illustrating how to use the model.

Computer Listings

The listings presented in the following pages are in the order in which they occur when the model is run. The programs are written in Hewlett-Packard Fortran 9000 and are heavily commented.
program synapt

C This is the main program. The relevant data is input via
C prompts by the program. The program also prompts the
C operator as to what kinds of output he desires.

C Dimension Real (256), Rimag (256), RSourc (256, 256),
C 1CSourc (256, 256), RApert (256, 256), Ar (2), Plot (25
C 26, 256)

C These Dimension statements declare the arrays Real, Rimag,
C (which are used to pass data to the FFT subroutine), RSourc
C and RApert (which contain the real components of the source and
C aperture functions respectively) and 1CSourc (which contains
C the imaginary part of the source distribution). The program
C prompts the operator for the source amplitude distribution
C and the aperture function of interest.

C Common / Args / Real, Rimag, RSourc, CSourc, RApert
C 1, Plot, Ar, Lower, Iupper, Length, Iwide

C This common area will be used to pass arguments more ef-
C ficiently to the subroutines that require them.

C Character Answer, y
C Data y/’y’/

C Prompt operator for type of aperture and source distributions.

10 Call Grphin

C Get the source type. Unit 7 is the screen and unit 5 the
C keyboard.
Write (7, 30)
30 Format(/,'Enter your source irradiance distribution. You may choose
1st from one of the pre-programmed distributions below or create your
own. Type the number of your selection after finding your choice on the menu below when prompted. ',/),
4'A point source:',T35,'1',/,
5'A two point source:',T35,'2',/,
6'An edge:',T35,'3',/,
7'A slit:',T35,'4',/,
8'A circle of variable radius:',T35,'5',/,
9'Your own creation:',T35,'6',/,
10'Enter your selection [1-6]: '

Call the appropriate subroutine to set the appropriate entries in RSource and CSource to reflect the type of source desired if the source chosen is not one of the five pre-programmed ones.

Read (5, 40) Ichose
40 Format(I1)
 If (Ichose .eq. 1) Goto 45
 If (Ichose .eq. 2) Call Twopnt
 If (Ichose .eq. 3) Call Edge
 If (Ichose .eq. 4) Call Slit
 If (Ichose .eq. 5) Call Circle
 If (Ichose .eq. 6) Call Other

See if operator needs a picture of the source being modeled.

Write (7, 50)
50 Format(/,'Do you want the source plotted on the screen [y/n]? 1')

Read (5, 60) Answer
60 Format(A1)
 If (Answer .ne. 'y') Goto 65
 Call Pltrst (1, Ichose)
 Write (7, 70)
70 Format(/,'Do you want a hardcopy of the results [y/n] ? ')

Read (5, 60) Answer
80 If (Answer .ne. 'y') Goto 75
90 Call Plotin
95 Call Pltrst (1, Ichose)
100 Call Plotof
Now get the information for the aperture function (theta, range, and lens separation).

Multiply every other element of the two functions by -1 to force DC terms to the middle.

Transform the source.

Multiply the transforms and pupil together.

Write(7, 79)

Write(7, 100)
160 If (Answer .ne. y) Goto 105
161 Call Pltrst (4 , 0)
162 105 Write (7 , 110)
163 110 Format(/,8,'Do you want a hardcopy of the product [y/n] ? ')
164 Read (5 , 60) Answer
165 If (Answer .ne. y) Goto 115
166 Call Plotin
167 Call Pltrst (4 , 0)
168 Call Plotof
169 C
170 C***
171 C
172 C Inverse FFT this resultant matrix to get source distribution.
173 C
174 C***
175 C
176 115 Call JCLR
177 If (Ichose .lt. 5) Call Invert (10)
178 Call IFTSrc
179 Call JCLR
180 C
181 C***
182 C
183 C Would operator like to try again?
184 C
185 C***
186 C
188 120 Format(/,8,'Do you desire to try another source and aperture [y/n] ? ')
189 190 Read (5 , 60) Answer
191 If (Answer .ne. y) Goto 140
192 Do 130 J = 1 , 256
193 Real (J) = 0.
194 Rimag (J) = 0.
195 Do 130 I = 1 , 256
196 RSourc (I , J) = 0.
197 CSourc (I , J) = 0.
198 RApert (I , J) = 0.
199 130 Continue
200 Lower = 0
201 Goto 10
202 140 Call Grphof
203 Stop
204 End

0 Errors detected
204 Source lines read
Subroutine Grphin

This common area contains the required data.

Common / Args / Real (256), Rimag (256), RSourc (256 , 2516), CSourc (256 , 256), RApert (256 , 256),
2 Plot (256 , 256), Ar (2), Lower, Iupper, Length, Iwide

Initialize graphics terminal with AGP stuff (see AGP graphics
manual).

Call JBEGIN
Call JDINT (1, 3, JHwsp, 8, 9H/dev/tty, 0)
Call JWON (1)

Set aspect ratio.

Call JIWS (1, 254, 0, 0, 2, Idum, Idum, Ar)
Call JASPK (1.0, Ar (2))

Set up viewing references and rotate axes.

Call JUDIS (1.0)
Call JPROJ (0, 0.3, 0.3, -1.0)
Wind = 1.0
Call JWIND (-Wind, Wind, -Wind * Ar (2), Wind * Ar (2))

Return to calling program.

Return

End
0 Errors detected
51 Source lines read
Subroutine Twopnt

C This subroutine creates a two point source by making RSourc (112,128) and RSourc (144,128) both 1.0 and leaving the rest of the array 0.0. The phase is also 0.0 at all points.

C

Common / Args / Real (256), RImag (256), RSourc (256 , 25), CSourc (256 , 256), RApert (256 , 256), 2 Plot (256 , 256), Ar (2), Lower, Iupper, Length, Iwide

Write (7, 10)
Format('/', $, '/ Enter the separation distance (< 128) as nnn : ')' Read (5, 20) Length Format(I3)
Ipos = 128 - INT (Length / 2)
RSourc (Ipos, 128) = 1.0
RSourc (Ipos + Length, 128) = 1.0
Return
End

0 Errors detected
23 Source lines read
Subroutine Edge

C This subroutine creates an edge as a source. This is done by first finding how wide the edge is. The 256 rows x Iwide columns are then set to 1.

C

Common / Args / Real (256), Rinag (256), RSource (256 , 256), CSourse (256 , 256), RApert (256 , 256), 2 Plot (256 , 256), Ar (2), Lower, Upper, Length, Iwide

C

Find out how wide the edge is supposed to be.

C

Write (7 , 10)
10 Format(/,'How wide is the edge (< 128) ?',/,'Enter answer as w length : ')
22 Read (5 , 20) Iwide
25 Format(I3)
26 Do 40 J = 1 , Iwide
27 Do 30 I = 1 , 256
28 RSource (I , J) = 1.0
30 Continue
30 40 Continue
32 Length = 256
33 Return

0 Errors detected
33 Source lines read
Subroutine Slit

C This subroutine creates a slit for a source. This is done by
C first obtaining the length and width from the operator.
C The middle Length and Iwide rows X columns are then set to 1.

Common / Args / Real (256), Rinag (256), RSourc (256 , 25
16), CSourc (256 , 256), RApert (256 , 256),
2 Plot (256 , 256), Ar (2), Lower , Iupper , Length , Iwide

C Find out the dimensions of the slit.

C Center the slit around the point 128,128. The length runs along
the azimuth and the width along the range.

Jstart = 128 - Iwide / 2
Istart = 128 - Length / 2
Do 40 J = Jstart , 128 + Jstart
 Do 30 I = Istart , 128 + Istart
 RSourc (I , J) = 1.0
 CSourc (I , J) = 0.
30 Continue
40 Continue
42 Return
43 End

0 Errors detected
43 Source lines read
Subroutine Circle

This subroutine forms a circular source in the RSourc array. The subroutine utilizes a "shading" routine in order to overcome the rough edges caused by representing circle in a rectangular array of points. See comments later for details.

Common / Args / Real (256), Rimag (256), RSourc (256, 25), CSource (256, 256), RApert (256, 256), Plot (256, 256), Ar (2), Lower, Iupper, Length, Iwide

Prompt operator for radius, Radius. This is the distance out from the center of the arrays that the circle will encompass.

Write (7, 10)
10 Format(/,*,"What is the radius of the source (65) [ff.ff] ? 1")
Read (5, 20) Radius
20 Format(F6.2)
Iupper = INT (Radius)

The interior of the circle is now filled in.

The first do loops determine how far out from the center of the array (RSourc (128,128)) should be filled with ones. This is determined to be the point just prior to being right next to the outer edge of the circle. The complex part is assumed to be 0.0.

Do 70 I = 0, Iupper
 Do 30 J = 0, Iupper - 1
 Temp = I * I + J * J
 If (SQRT (Temp) .gt. Radius) Goto 40
 Continue
30 Do 50 K = 128, 128 + J
 RSourc (128 + I, K) = 1.0
 RSourc (128 - I, K) = 1.0
50 Continue
40 Do 60 K = 128, 128 - J, -1
50 RSourc (128 + I, K) = 1.0
C This is where the shading begins. The the distance to the next
C column is still short of the radius but the column after that is
greater than the radius. Shading is used here to get a more
C accurate representation of the circle. This is done in the
C following manner.
C The slope of a line running from the last point filled in to the
C first point outside the circle such that the line crosses the
C point of the radius of the circle at an amplitude of 0.5 is
determined. The values of all other points outside the radius
C is extrapolated from this slope.

Do 100 I = 0 , Iupper + 1
 Value = I
 Angle = ASIN (Float (I) / Radius)
 Trad = Radius * COS (Angle)
 Do 95 Ncols = 1 , Iupper + 4
 If (RSourc (128 + I , 128 + Ncols) .gt. 0.) Goto 95
 Run = Abs (Float (Ncols - I) - Trad)
 Value = Value - (0.5 * Run)
 If (Value .le. 0.) Goto 100
 RSourc (128 + I , 128 + Ncols) = Value
 RSourc (128 - I , 128 + Ncols) = Value
 RSourc (128 + I , 128 - Ncols) = Value
 RSourc (128 - I , 128 - Ncols) = Value
 Goto 95
Do 100 Continue
100 Continue
Return
Subroutine Other

This subroutine allows the operator to input a non-circular distribution for the source.

Common / Args / Real (256), Rimag (256), RSourc (256, 25, 16), CSourc (256, 256), RApert (256, 256), 2 Plot (256, 256), Ar (2), Lower, Upper, Length, Iwide

The operator must input the values of both the real and imaginary parts of the source one point at a time. The order to put the points in is one row at a time.

Write Format('Input the values of your source. You have a 256 X 256 array. Enter values as real part, imaginary part in the format f.fff 2fff. Enter values by row starting at 1,1, 1,2 etc.')

Do 40 I = 1, 256
 Do 30 J = 1, 256
 Read (5, 20) Rpart, Cpart
 Format(F5.3,1x,F5.3)
 RSourc (I, J) = Rpart
 CSourc (I, J) = Cpart
 30 Continue
40 Continue

Return
End

0 Errors detected
35 Source lines read
Subroutine Plotin

C**
C
C This common area contains the required data.
C**
C
Common / Args / Real (256) , Rimag (256) , RSource (256 , 25
16) , CSource (256 , 256) , RApert (256 , 256) ,
2 Plot (256 , 256) , Ar (2) , Lower , Iupper , Length , Iwide
C
C**
C
C Initialize graphics terminal with AGP stuff.
C**
C
Call Grphof
Call JBEGN
Call JDINT (2 , 8 , 8Hwsp.7550 , 13 , 13H/dev/plt7550a , 0)
Call JHON (2)
C**
C
Set aspect ratio.
C**
C
Call JIWS (2 , 254 , 0 , 0 , 2 , Idum , Idum , Ar)
Call JASPK (1.0 , Ar (2))
C**
C
Set up viewing references and rotate axes.
C**
C
Call JVDIS (1.0)
Call JPROJ (0 , 0.3 , 0.3 , -1.0)
Wind = 1.0
Call JWIND (-Wind , Wind , -Wind * Ar (2) , Wind * Ar (2))
Call JNEWF
C**
C
Return to calling program.
C**
C
Return
End
0 Errors detected
52 Source lines read
Subroutine Pltrst (Iplot, Ichose)

This subroutine plots the contents of the arrays RSourc and CSourc on the HP 2623A terminal. If the aperture function is desired, RApert is plotted instead. These arrays contain the data for either the source distribution, aperture distribution, their FFT, the product of their FFTs, or the final obtained source distribution. An appropriate title will appear for each and is indicated by Iplot.

The following integer arrays are used to pass characters to the graphics subroutine JTEXM which writes their contents to the current graphics output device. AGP requires that when arrays are to be written, the data should be stored as INTEGER * 2. The data in the data statements is therefore in Hollerith notation for this reason. The program manipulates data as normal characters through the use of character arrays which are equivalenced below to the appropriate INTEGER * 2 array.

Integer * 2 Const (8), Idelta (7), Itheta (7), Blank, 1 Marker, Icount

These character arrays and variables are used to plot character strings to whatever device is being used to plot. Cnorm contains the (in character format) normalization constant Rnorm. Theta contains the high and low limits on the theta input by the operator in Aptinf. Inum contains the frequencies that are plotted on plots of the aperture. Dot and the numbers (One, Two, etc.) are used to fill the above arrays. Answer and y are used in determining if the user wants another plot.

Character Cnorm (8), Theta (14), Inum (2), Dot, Two, 1 Three, Four, Six, Eight, One, Answer, y

These are the Equivalence statements referenced above. This allows the data to be manipulated in the program as ASCII but stored in INTEGER * 2 arrays for use by the JTEXM subroutine.

Equivalence (Const (5), Cnorm (1)), (Const (6), 1 Cnorm (3)), (Const (7), Cnorm (5)), (Const (8), 2 Cnorm (7)), (Itheta (1), Theta (1)), (Itheta (2),
Fortran/9000

Common / Args / Real (256), RImag (256), RSourc (256 , 256), CSourc (256 , 256), RApert (256 , 256),

54 3 Theta (3), (Itheta (3), Theta (5)), (Itheta (4)),
55 4 Theta (7), (Itheta (5), Theta (9)),
56 5 (Icount , Inum (1))
57 C
58
59

Data Blank/2H / , Dot/.'/ , Const /2HRn,2Hor,2Hm,2H= ,
60 12H ,2H ,2H ,2H / , Idelta/2HDe,2Hlt,2Ha,2HT,2Het,2Ha,2H= /
61
62 1, Itheta/2H ,2H ,2Ht0,2H ,2H ,2H D,2Heg/ , Inum/1','6'/ ,
63 1 Two/2'/, Three/3'/, Four/4'/, Six/6'/, Eight/8'/,
64 1 One/1'/, y/y'/.
65
66

Determine plot title as follows:

70 C
71 C
72 C
73 C
74 C
75 C
76 C
77 C
78 C
79 C
80 C
81 C
82 C
83 C
84 C
85 C
86 C
87 C
88 C
89 C
90 C
91 C
92 C
93 C
94 C
95 C
96 C
97 C
98 C
99 C
100 C
101 C
102 C
103 C
104 C
105 C
106 C

sampling distribution


```fortran
54 3 Theta ( 3 ), ( Itheta ( 3 ), Theta ( 5 ) ), ( Itheta ( 4 ) ),
55 4 Theta ( 7 ), ( Itheta ( 5 ), Theta ( 9 ) ),
56 5 ( Icount , Inum ( 1 ) )
57 C
58
59

Data Blank/2H / , Dot/.'/ , Const /2HRn,2Hor,2Hm,2H= ,
60 12H ,2H ,2H ,2H / , Idelta/2HDe,2Hlt,2Ha,2HT,2Het,2Ha,2H= /
61
62 1, Itheta/2H ,2H ,2Ht0,2H ,2H ,2H D,2Heg/ , Inum/1','6'/ ,
63 1 Two/2'/, Three/3'/, Four/4'/, Six/6'/, Eight/8'/,
64 1 One/1'/, y/y'/.
65
66

Determine plot title as follows:

70 C
71 C
72 C
73 C
74 C
75 C
76 C
77 C
78 C
79 C
80 C
81 C
82 C
83 C
84 C
85 C
86 C
87 C
88 C
89 C
90 C
91 C
92 C
93 C
94 C
95 C
96 C
97 C
98 C
99 C
100 C
101 C
102 C
103 C
104 C
105 C
106 C
```

For the complete code, please refer to the source file.
Lower = Lsave
Iupper = Isave
Goto 85

C
Find magnitude of input data and find the normalization constant Rnorm. This section is skipped for all source and aperture plots since the data is already normalized to 1.

C

19 If (Iplot .le. 2) Goto 85
Rnorm = 0.
Do 30 J = 128 , 194
 Do 20 I = 128 , 194
 Plot (I , J) = (RSourc (I , J) * RSourc (I , J) +
 1 CSourc (I , J) * CSourc (I , J)) * .05
 If (Plot (I , J) .gt. Rnorm) Rnorm = Plot (I , J)
 20 Continue
30 Continue

C Do 35 J = 128 , 194
C Do 35 I = 128 , 194
C Plot (I , J) = Plot (I , J) / Rnorm

C The following lines of code are commented out for now as per Maj Mill's instructions. This code, when executed, will put the data in dB form from -100 dB to 0 dB. All data less than -100 dB is stored as -100 dB.

C
If (Plot (I , J) .ne. 0.) Then
 Plot (I , J) = 20. * ALOG (Plot (I , J))
Else
 If (Plot (I , J) .lt. -100.) Plot (I , J) = -100.
Endif
C35 Continue

C Put normalization constant in character form for writing to screen.

Ikount = 0
Rsave = rnorm
Temp = Rnorm
40 If (Temp .lt. 1.) Goto 50
Temp = Temp / 10.
Ikount = Ikount + 1
Goto 40
50
Rnorm = Rnorm * 10000.
Do 80 J = 1, Ikount + 3
 If (Ikount .gt. 0) Then
 If (J .ne. Ikount) Goto 60
 Icon = 46
 Goto 70
 Else
 If (J .ne. 1) Goto 60
 Icon = 46
 Goto 70
Endif
80
Icon = Rnorm / (10. * (Ikount + 4 - J))
Icon = Icon + 48
10
If (Icon .eq. 46) Ix = Ix + 1
 Cnorm (Ix) = CHAR (Icon)
 Else
 Ix = Ix - 1
 Endif
11
If (Icon .ne. 46)
12
1
Rnorm = Rnorm - (Icon - 48) * (10. * (Ikount + 4 - J))
13
Continue
C
Plot the headings and axes as appropriate.
Ask the user if he wants 2 or three dimensional plots and tell
AGP to display the data as it is called for here.
C
Choose a window size for the plots.
C Write (7 , 600)
600 Format(/,'Choose a window size (default is 1.4). Enter as x.x:
1 ')
Read (5 , 610) Wind
610 Format(F3.1)
If (Wind .le. 1.E-7) Wind = 1.4
Call JWIND (-Wind , Wind , -Wind * Ar (2) , Wind * Ar (2))

C Set the pen color. This is ignored for the 2623a since it is
only black and white. The plotter has eight pens, seven of
are used in this program. They are:
1 Black
2 Orange
3 Blue
4 Light Green
5 Dark Green
6 Purple
7 Red
All pens are 3 MM points except the red which is 7 MM.
JCOLR is the graphics call that changes pen color.

C Call JCOLR (1)
Call JJUST (0.5 , 0.0)
If (Iplot .ne. 2) Then
 Call J2MOV (0.0 , - 0.8)
Else
 Call J2MOV (0.0 , - 0.62 * Wind / 1.4)
Endif

C The above statements establish the pen color for and centers
the following plot headings or titles.

C If (Iplot .eq. 1) Call JTEXM (30 , 30HSource Irradiance Distrbution)
If (Iplot .eq. 2) Call JTEXH (31 , 31HAperture Transmittance Function)
If (Iplot .eq. 3) Call JTEXM (26 , 26HFFT of Source Distribution)
If (Iplot .eq. 4)
1Call JTEXM (33 , 33HFFT of Source X Aperture Function)
If (Iplot .eq. 5) Call JTEXH (27 , 27HSampled Source Distribution)
C If the aperture is not being plotted, print the normalization
C constant and label the axes as appropriate.

C If (Iplot .ne. 2) Then
 Call JCOLR (2)
 Call J2MOV (0.5 * Wind / 1.4, 0.4 * Wind / 1.4)
 Call JTEXM (9, 9HAmplitude)
 Call J2MOV (0.5 * Wind / 1.4, 0.36 * Wind / 1.4)
 Call JTEXM (10, 10HNormalized)
 Call J2MOV (0.4 * Wind / 1.4, 0.32 * Wind / 1.4)
C
C If a source is being plotted, do not print RNorm since the data
C is already known to be normalized by default anyways.

C If (Iplot .ne. 1) Call JTEXM (16, Const)
C
C List the units appropriately for Va or Vr.
C
C If ((Iplot .lt. 2) .or. (Iplot .gt. 4)) Then
 Call J2MOV (-0.2 * Wind / 1.4, 0.45 * Wind / 1.4)
 Call JCSIZ (0.015, 0.05, 1.0)
 Call JTEXM (13, 13HVr (Va) is in)
 Call J2MOV (-0.2 * Wind / 1.4, 0.41 * Wind / 1.4)
 Call JTEXM (9, 9Hmultiples)
 Call J2MOV (-0.2 * Wind / 1.4, 0.37 * Wind / 1.4)
 Call JTEXM (13, 13Hof 500*pi/512)
 Call JCSIZ (0.035, 0.05, 0.0)
 Else
 Call J3MOV (-0.1 * Wind / 1.4, 0.45 * Wind / 1.4, 0.0)
 Call JCSIZ (0.015, 0.05, 1.0)
 Call JTEXM (13, 13HUnits are 1/m)
 Call JCSIZ (0.035, 0.05, 0.0)

C List the units for frequency.
C
C
Fortran/9000
Mon Sep 23 09:35:31 1985
Ver. 4.02
pltrst.f Page 7

```
319         Endif
320         Else
321         C****
322         C When plotting the aperture, the delta theta and the units
323         C must be listed.
324         C****
325         Call JCOLR ( 1 )
326         Call J3MOV ( 0.35 * Wind, 0.5 * Wind / 1.2, 0.0 )
327         Call JCSIZ ( 0.01 * Wind / 1.2, 0.05 * Wind / 1.2, 1.5 )
328         Call JTEXM ( 14, Idelta )
329         Call J3MOV ( 0.35 * Wind, 0.45 * Wind / 1.2, 0.0 )
330         Call JTEXM ( 14, Itheta )
331         Call JCSIZ ( 0.015 * Wind / 1.2, 0.05 * Wind / 1.2, 0.5 )
332         Call J3MOV ( - 0.5 * Wind / 1.2, 0.5 * Wind / 1.2, 0.0 )
333         Call JTEXM ( 13, 13HUnits are 1/m )
334         Endif
335
336         C Select axis projection based on aperture ( two
337         dimensions) or everything else (three dimension). When two
338         dimensional plots are called for, the three dimensional
339         projection is still used but only amplitude and azimuth informa-
340         tion are plotted along the azimuth axis.
341         C
342         700 If ( Iplot .eq. 2 )
343             1     Call JPROJ ( 0, 0.0, 1.0, - 1.0 )
344         C
345         Draw X axis. The axis is drawn across the center of the device
346         for the aperture plots and is set 0.3 world coordinate units
347         (see AGP graphics manual for an explanation of world coordinate.
348         C
349         Call JCOLR ( 3 )
350         If ( Iplot .ne. 2 ) Then
351             If ( Iplot .ne. 2 ) Then
352                 Call J3MOV ( - 1.0, - 0.3, 1.0 )
353             Else
354                 Call J3MOV ( - 1.0, 0.0, 0.0 )
355             Endif
356         Endif
357         Call JR3DR ( 2.0, 0.0, 0.0 )
358         Call JJUST ( 0.0, 0.0 )
359         If ( Iplot .ne. 2 ) Then
360             Call JCOLR ( 4 )
```

79
Label the axes for anything but an aperture. If plot calls for units of frequency, label them each in multiples of 32.

If units of V are called for, label them in eight even increments from 1 to 8.

Do 84 I = 1, 8
 If (Numplo .eq. 4) Numplo = 3
 Xpos = -1.0 + I * 0.25
 Marker = 10 + I
 Call J3MRK (Xpos , -0.3 , 1.0 , 2)
 Call J3MOV (Xpos - 0.05 , -0.35 , 1.0)
 If ((Iplot .gt. 2) .and. (Iplot .lt. 5)) Then
 Goto (810 , 820 , 830 , 840 , 850 , 860 , 870 , 880) I
 Else
 Call J3MRK (Xpos , -0.35 , 1.0 , Marker)
 If (Numplo .eq. 2) Goto 84
 Endif
800 Ypos = 1.0 - I * 0.25
 If (Numplo .eq. 4) Goto 84
 Numplo = 4
 Call J3MRK (-1.0 , -0.3 , Ypos , 2)
 Call J3MOV (-1.0 , -0.35 , Ypos + 0.05)
 If ((Iplot .gt. 2) .and. (Iplot .lt. 5)) Then
 Goto (810 , 820 , 830 , 840 , 850 , 860 , 870 , 880) I
 Else
 Call J3MRK (-1.0 , -0.35 , Ypos , Marker)
 If (Numplo .eq. 2) Goto 84
 Endif
810 Call JTEXM (2 , 2H32)
820 If (Numplo .eq. 2) Goto 84
830 Call JTEXM (2 , 2H64)
840 If (Numplo .eq. 2) Goto 84
850 Call JTEXM (2 , 2H96)
860 If (Numplo .eq. 2) Goto 84
870 Call JTEXM (3 , 3H128)
880 If (Numplo .eq. 2) Goto 84
890 Goto 84
Call JTEXM (3, 3H256)

If (Numplo .eq. 2) Goto 84

Goto 800

Continue

If (Numplo .eq. 4) Numplo = 3

These statements will put a log scale on the plot if the plot is desired in dBs.

If (Iplot .lt. 3) Goto 86

Call J3MOV (-0.2, 0.77, 0.0)

Call JCCLR (6)

Call JTEXM (5, 5H 3 dB)

Call JTEXM (0.98, -0.25, 1.0)

Call J3MOV (0.95, -0.1, 0.0)

Endif

If ((Iplot .gt. 2) .and. (Iplot .lt. 5)) Then

Call J3MOV (0.99, -0.25, 1.0)

Call JCCLR (1)

Call JTEXM (1, 1Ha)

Call JJUST (0.0, 0.5)

Call JTEXM (1, 1Ha)

Else

Call JCCLR (1)

Endif

If (Iplot .eq. 2) Then

Call JCSIZ (0.060, 0.08, 0.05)

Call JTEXM (2, 2HVa)

Else

Call JCSIZ (0.070, 0.10, 0.4)

Call JTEXM (2, 2Hfa)

Call JCSIZ (0.035, 0.05, 0.0)

Endif

Endif

Else

Call JCCLR (1)

If (Iplot .ne. 2) Then

Call JCSIZ (0.060, 0.08, 0.05)

Call JTEXM (2, 2HVa)

Else

Call JCSIZ (0.070, 0.10, 0.4)

Call JTEXM (2, 2Hfa)

Call JCSIZ (0.035, 0.05, 0.0)

Endif

Endif

Endif

Endif

Call JTEXM (2, 2Hfa)

Endif

Draw amplitude axis if not plotting the aperture.
C***

C If (Iplot .ne. 2) Then
C Call J3MOV (- 1.0 , - 0.3 , 1.0)
C Else
C Call J3MOV (0.0 , 0.0 , 0.0)
C Endif
C Call JCOLR (3)
C Call JR3DR (0.0 , 1.0 , 0.0)

C***

C Label the amplitude as being the Modulus.

C***

C If (Iplot .ne. 2) Then
C Call JCSIZ (0.06 , 0.08 , 0.05)
C Call J3MOV (- 0.95 , 0.72 , 1.0)
C Call JTEXM (7 , 7HModulus)
C Else
C Continue
C Endif

C***

C Draw the Y axis only for aperture and three dimensional plots.

C***

C If (Iplot .ne. 2) Then
C Call J3MOV (- 1.0 , - 0.3 , 1.0)
C Else
C Call J3MOV (0.0 , 0.0 , - 1.0)
C Endif
C Call JCOLR (3)
C If (Iplot .eq. 2) Then
C Call JR3DR (0.0 , 0.0 , 2.0)
C Else
C If (Numplot .ne. 2) Call JR3DR (0.0 , 0.0 , - 2.0)
C Endif
C If (Iplot .ne. 2) Then
C Call JJUST (0.0 , 0.0)
C Call J3MOV (- 0.05 , - 0.35 , - 1.0)
C Else
C Call JJUST (0.0 , 0.0)
C Call J3MOV (0.01 , - 0.05 , 1.0)
C Endif
C Call JCOLR (1)

C***

C Label the Y axis fr or Vr as appropriate.
Fortran/9000 Mon Sep 23 09:35:31 1985
pltrst.f Page ii

531 C
532 C***
533 C
534 If ((Iplot .gt. 2) .and. (Iplot .lt. 5)) Then
535 If (Numpl .ne. 2) Then
536 Call JTEXM (1 , 1Hf)
537 Call J3MOV (- 0.85 , - 0.36 , - 1.0)
538 Call JTEXM (2 , 2H r)
539 Else
540 Continue
541 Endif
542 Else
543 If (Iplot .eq. 2) Then
544 Call JCSIZ (0.070 , 0.10 , 0.4)
545 Call JTEXM (3 , 3H fr)
546 Call JCSIZ (0.035 , 0.05 , 0.0)
547 Else
548 Call JCSIZ (0.060 , 0.08 , 0.05)
549 If (Numpl .ne. 2) Call JTEXM (3 , 3H Vr)
550 Call JCSIZ (0.035 , 0.05 , 0.0)
551 Endif
552 Endif
553 C
554 C***
555 C
556 C Plot the data.
557 C
558 C***
559 C
560 Xincr = 1. / 128.
561 Yincr = 1. / 128.
562 If (Iplot .gt. 2) Goto 180
563 Goto (90 , 100 , 110 , 140 , 150 , 150) Ichose
564 C
565 C***
566 C
567 C Plot a point source.
568 C
569 C***
570 C
571 90 Call JCOLR (1)
572 Call J3MRK (- 1.0 , 0.7 , 1.0 , 3)
573 Goto 500
574 C
575 C***
576 C
577 C Plot a two point source.
578 C
579 C***
580 C
581 100 Call JCOLR (1)
582 Ypos = 1.0 - (Float (Length) / 2) * Yincr
583 Call J3MRK (- 1.0 , 0.7 , Ypos , 3)

83
584 C
585 ****
586 C**
587 C
588 C Plot an edge.
589 C
590 C**
591 C
592 110 Call JCCLR (5)
593 Do 120 J = 1, INT (Iwide / 2)
594 Xpos = -1.0 + J * Xincr
595 Call J3MOV (Xpos, 0.7, 1.0)
596 If (Numplo.eq.2) Goto 120
597 Call J3DRW (Xpos, 0.7, -1.0)
598 120 Continue
599 Call JCCLR (1)
600 Do 130 I = 1, 256
601 Ypos = 1.0 - I * Yincr
602 Call J3MOV (-1.0, 0.7, Ypos)
603 Call J3DRW (Xpos, 0.7, Ypos)
604 If (Numplo.eq.2) Goto 500
605 130 Continue
606 Goto 500
607 C
608 C**
609 C
610 C Plot a slit.
611 C
612 C**
613 C
614 140 Ypos = 1.0
615 Xpos = -1.0
616 Call J3MOV (-1.0, 0.7, 1.0)
617 Dist = Float (Iwide) * Xincr / 2.
618 Call JCCLR (1)
619 Do 145 I = 1, INT (Length / 2) + 1
620 Call J3DR (Dist, 0.0, 0.0)
621 Ypos = 1.0 - I * Yincr
622 If (Numplo.eq.2) Goto 500
623 Call J3MOV (Xpos, 0.7, Ypos)
624 145 Continue
625 Goto 500
626 C
627 C**
628 C
629 C Plot a circle.
630 C
631 C**
632 C
633 150 Xincr = 1.0 / 16.
634 Yincr = 1.0 / 16.
635 Call JCCLR (1)
636 Do 170 J = 112, 192

84
637 Do 160 I = 112, 192
638 If (Iplot .eq. 2) Then
639 If (RApert (I, J) .eq. 0) Goto 160
640 Xpos = - 1.0 + (J - 112) * Xincr
641 Ypos = 1.0 - (I - 112) * Yincr
642 Call J3MRK (Xpos, Ypos, 0.0, 1)
643 If (I .gt. 147) Goto 170
644 If (J .gt. 147) Goto 160
645 Else
646 If ((I .lt. 128) .or. (J .lt. 128)) Goto 160
647 If (Rsourc (I, J) .eq. 0) Goto 160
648 If ((Iplot .eq. 1) .and. (Numplo .eq. 2) .and. (I .gt. 128
649 1)) Goto 170
650 Yincr = 1 / 32.
651 Xincr = 1 / 32.
652 Ypos = 1.0 - (I - 128) * Yincr
653 Xpos = - 1.0 + (J - 128) * Xincr
654 Zpos = Rsourc (I, J) - 0.3
655 Call JCSIZ (0.070, 0.10, 0.4)
656 Call J3MRK (Xpos, Zpos, Ypos, 1)
657 Endif
658 160 Continue
659 170 Continue
660 If (Iplot .ne. 2) Goto 500
661 Call JCOLR (4)
662 Do 175 I = 1, 4
663 Pos = 0.25 * I
664 If (I .eq. 1) Then
665 Inum (1) = One
666 Inum (2) = Six
667 Else
668 If (I .eq. 2) Then
669 Inum (1) = Three
670 Inum (2) = Two
671 Else
672 If (I .eq. 3) Then
673 Inum (1) = Four
674 Inum (2) = Eight
675 Else
676 Inum (1) = Six
677 Inum (2) = Four
678 Endif
679 Endif
680 Endif
681 C
682 C***
683 C***
684 C Label the axes for an aperture in multiples of 16.
685 C***
686 C***
687 C
688 C Call JCSIZ (0.060, 0.08, 0.01)
689 C Call J3MRK (Pos, 0.0, 0.0, 2)
Call J3MRK (0.0, 0.0, Pos, 2)
Call J3MRK (-Pos, 0.0, 0.0, 2)
Call J3MRK (0.0, 0.0, -Pos, 2)
Call JJUST (0.5, 0.0)
Call J3MOV (Pos, 0.03, 0.0)
Call JTEXM (2, Icount)
Call JJUST (0.0, 0.0)
Call J3MOV (-0.15, Pos, 0.0)
Call JTEXM (2, Icount)
175 Continue
Call JPROJ (0, 0.3, 0.3, -1.0)
Goto 500

C**

C Plot anything else.

C**

190 Xincr = 1.0 / 32.
Yincr = 1.0 / 32.
Zinc = 1 / 100.
Call JCOLR (1)
Do 200 I = 129, 193, 2
Ypos = 1.0 - (I - 129) * Yincr
Z = (Plot (I, 129) / Rsave) - 0.3
Z = I + Plot (I, 97) * Zinc - 0.3
Call J3MOVU (-1.0, Z, Ypos)
Do 190 J = 129, 193, 2
Xpos = -1.0 + (J - 129) * Xincr
Z = (Plot (I, J) / Rsave) - 0.3
Z = 1 + Plot (I, J) * Zinc - 0.3
Call J3DRW (Xpos, Z, Ypos)
190 Continue
If (Numplot .eq. 2) Goto 500
200 Continue

C**

C Call JCOLR (5)
Do 220 J = 129, 193, 2
Xpos = -1.0 + (J - 129) * Xincr
Z = (Plot (I, 129, J) / Rsave) - 0.3
Z = I + Plot (129, J) * Zinc - 0.3
Call J3MOV (Xpos, Z, 1.0)
Do 210 I = 129, 193, 2
Ypos = 1.0 - (I - 129) * Yincr
Z = (Plot (I, J) / Rsave) - 0.3
Z = 1 + Plot (I, J) * Zinc - 0.3
Call J3DRW (Xpos, Z, Ypos)
210 Continue
220 Continue
500 Call JIVOF
Call JCOLR (1)
Wind = 1.0
Call JWIND (-Wind, Wind, -Wind * Ar (2), Wind * Ar (2))

Write (7, 510)

Format(/,*, 'Would you like to replot [y/n] ? ')

Read (5, 520) Answer

If (Answer .eq. y) Goto 85

Return

End

0 Errors detected

750 Source lines read
Subroutine Plotof

This subroutine turns off the graphics when the main program is finished.

Common / Args / Real (256), RImag (256), RSource (256, 25, 16), CSource (256, 256), RApert (256, 256),
2 Plot (256, 256), AR (2), Lower, upper, Length, IWide

Call JWOFF (2)
Call JWEND (2)
Call JEND
Call Grphin
Return

Errors detected
Source lines read
Subroutine Aptinf

This subroutine forms the aperture according to the operator's desires. The computer then determines what frequencies are sampled to ensure that the samples fall exactly on a point in the array and not somewhere in between. This is done because the FFT subroutine cannot work in radial coordinates. Only frequencies that lie at specific points in the aperture are measured due to the bandpass limited nature of the system.

The subroutine determines the maximum theta based on the lens separation (Sep) and range (Range). These figures are input by the user. The theta that the user wishes to sample within is then asked for. The two thetas are compared to see that the theta input by the user falls within the limits of the system as determined by the range and separation. The spatial frequencies to be sampled are based on filter frequencies that lie between 8 and 12 microns. The highest spatial frequency is 64 l/m. This limit was arrived at by considering the best Fourier transform vs the width of the pupil. A pupil width of 32 was found to be optimum. 64 l/m was the highest frequency that could be sampled due to the bandpass of the system and assuming a range of no less than 1 km. This frequency corresponds to the outside edge of the pupil. Therefore, the frequencies measured are multiples of 4 (4 x 16 (radius) = 64).

The subroutine determines the minimum and maximum spatial frequencies based on the relationship

\[f = \left(\frac{2 \times f_m}{c} \right) \times \sin \left(\frac{\alpha}{2} \right) \text{ unit vector } f \]

where \(f_m / c \) is \(1 / \text{wavelength} \) and \(\alpha \) is twice the angle defined by the range from a point half way between the lenses to the target and the distance from the target to a lens. (See ERIM report.) The nearest multiple of 4 is found and all points within the specified theta that lie between the minimum and maximum spatial frequency are set to one indicating that the corresponding frequency is sampled.

Common / Args / Real (256), RImg (256), RSource (256, 2516), CSource (256, 256), RApert (256, 256), 2 Plot (256, 256), Ar (2), Lower, IUpper, Length, IWide
Character Answer, y
Data y/’y’/
\[\pi = 3.1415926535 \]
Get the range and lens separation distance in kilometers and meters respectively from the user.

Lower = - 1
Write (7 , 2)
Format('/', , 'Enter range (KM) and lens separation (m) as x.x x.xx :
1 '")
Read (5 , 3) Range , Sep
2 Write (7 , 4)
Format('/', , 'Enter collector speed (ft/s) and stability as xxxx.x x
1x.x : ')
Read (5 , 5) Speed,Stabil
5 Calculate the angular separation (in radians) of the lenses
for the input range and separation.
Alpha2 = ATAN ((Sep / 2000.) / Range)

Calculate the maximum theta that can be covered assuming a
collector speed and stability and range specified by the user
(Dtheta in degrees).

Write (7 , 9)
Format('/', 'Enter theta for your particular aperture.')
Write (7 , 20)
Format('/', 'What range does theta lie within from 0 to 180 degrees?'
1 , '/', , 'Enter your answer as nnn nnn : ')
Read (5 , 30) Lval , Iupper
If ((Lval .lt. Lower) .or. (Lower .eq. - 1)) Lower = Lval

Get the user's lower and upper limits on theta.
107 C Check to see if the theta input by the user falls within the
108 C calculated theta from above.
109 C
110 C
111 C
112 C
113 C If ((Iupper - Lval) .le. Dtheta) Goto 35
114 Write (7 , 34) Dtheta
115 34 Format(/'You have exceeded the maximum Dtheta of ',F7.3,' degrees'
116 1 for the range entered.',/,'Try again.')
117 Goto 1
118 C
119 C
120 C Check to see that theta lies between 0 and 180 degrees. If not,
121 C ask the operator to input theta again.
122 C
123 C
124 C
125 C
126 C 35 If ((Lval .lt. 0) .or. (Lval .ge. 180) .or. (Iupper .le. 1 0) .or. (Lval .ge. Iupper)) Then
127 Write (7 , 40)
128 40 Format('Limits of theta are out of bounds. Try again.')
129 Goto 10
130 Else
131 Continue
132 Endif
133 C
134 C
135 C
136 C
137 C Convert the bounds on theta to radian quantities.
138 C
139 C
140 C
141 C Radlow = Lval * 3.1415927 / 180.
142 C Radhi = Iupper * 3.1415927 / 180.
143 C
144 C
145 C
146 C Find the maximum and minimum spatial frequencies Uprad and
147 C rlorad. All points equal to or lying between these two points
148 C are set to one. rlwav and Uwav are the lower and upper
149 C wavelengths sampled by the system.
150 C
151 C
152 C
153 C rlwav = 8E-6
154 C Uwav = 12E-6
155 C Uprad = (2. / rlwav) # Sin (Alpha2)
156 C rlorad = (2. / Uwav) # Sin (Alpha2)
157 C
158 C
159 C
Check to see that the user has not asked for a frequency outside the radius of the pupil.

If (Up.rad .le. 64) Goto 60
Write ('Your combination of lens separation and range caused',/, 1)
1 'the upper spatial frequency to fall outside the aperture'
2 'Please try again.')
Goto 1

Calculate the inner and outer radii (squared) between which the spatial frequencies to be sampled lie. The maximum radius is rounded up and the lower radius rounded down to give the largest number of frequencies sampled possible. This gives the benefit of the doubt in the system's favor.

Const = ANINT (Up.rad / 4.)
Const = Const * Const
Other = AINT (rl.orad / 4.)
Other = Other * Other

Now determine where the lower and upper bounds of theta lie. The possibilities are 0 to 45, 45 to 135, and 135 to 180 degrees.

0 to 45 degrees. First compare Radlow (the lower bound on theta) to the angles formed by the inverse tangent of the column divided by the radius. This determines whether or not the section for 0 to 45 degrees should be carried out. If Radlow fall between these limits, the program jumps to 100 to determine what points in the aperture are to be set. The exact starting point is determined in the section of the program starting at 100.

Do 70 J = 0 , 16
Temp = SQRT (J * J / Const)
Angle = ATAN (Temp)
If (Angle .gt. Radlow) Goto 100
Continue
45 to 135 degrees. See if lower bound on theta falls in here.

If Radlow was greater than 45 degrees, the subroutine continued
right on into this do loop. The angle is computed as above
except that first pi minus the angle is checked and then pi plus
the angle is checked. The subroutine then jumps to the section
where these angles are dealt with (% 150).

While the lower bound must lie in here by process of elimina-
tion (135 to 180 degrees), this check makes sure the user
did not goof when inputting theta. The angle is found as
before and lies between 135 and 180 degrees.

This is where the frequencies that will be allowed to pass are
determined. All the possible slopes from 0 to infinity are
calculated and any point lying along that slope that is not
outside the outer radius or less than the inner radius of the
pupil is set to one. This section pertains to slopes starting
at 0 to 45 degs. The angle of the slope is found by calculating
the inverse tangent of the column / row.

For example, the first check is to be sure that the slope's
angle is not less than the lower or greater than the upper
bound on theta. This determines at what angle the aperture
will begin. If this condition is met, fill in all points
along the slope greater than the square root of Other and less
than or equal to the square root of Const.
This is found by finding the magnitude of the hypotenuse of a right triangle with base and height of the current row and column. The slope is the row (Ikount) / column (K).
This procedure is followed until the upper bound is reached.

Do 140 Ikount = 16, 1, -1
 Do 130 K = 0, 16
 If (K.gt.Ikount) Goto 140
 Run = FLOAT(K)
 Rise = FLOAT(Ikount)

Get angle for this slope and be sure it does not fall outside the bounds on theta.

Angle = ATAN(Run/Rise)
If (Angle.lt.Radlow) Goto 130
If (Angle.gt.Radhi) Goto 140

Determine how many columns out to "run" (Jinc) and how many rows to "rise" (Ikount). Center the circle on the point 128,128 of RSourc and place a one at locations where pupil is to transmit.

Jinc = K
Islope = Ikount
Jrow = 0
Do 120 I = 0, 16, Islope
 Rlong = I + Jrow + Jrow
 If (Rlong.gt.Const) Goto 130
 If (Rlong.lt.Other) Goto 115
 RAprt (128 - I, 128 + Jrow) = 1.0
 Jrow = Jrow + Jinc
 115 Continue
 120 Continue
 130 Continue
 140 Continue

Do the same as above for the rest of the pupil.
319 150 Do 180 Jkount = 16 , 1 , - 1
320 Do 170 K = 16 , - 16 , - 1
321 If (ABS (K) .gt. Jkount) Goto 170
322 Runovr = FLOAT (K)
323 Riseov = FLOAT (Jkount)
324 If (K .ge. 0) Then
325 Angle = (Pi / 2.) - ATAN (Runovr / Riseov)
326 Else
327 Angle = (Pi / 2.) - ATAN (Runovr / Riseov)
328 Endif
329 If (Angle .lt. Radlow) Goto 170
330 If (Angle .gt. Radhi) Goto 180
331 If (K .eq. 0) Then
332 Slope = 0.
333 Else
334 Slope = Riseov / Runovr
335 Endif
336 If (Slope .eq. 0) Then
337 Do 155 J = 0 , 16
338 J2 = J + J
339 If ((J2 .lt. Other) .or. (J2 .gt. Const)) Goto 155
340 RApert (128 , 128 + J) = 1.0
341 155 Continue
342 Else
343 Irow = 0
344 Iinc = - K
345 Do 160 J = 0 , 16 , Jkount
346 Rlong = J * J + Irow * Irow
347 If (Rlong .gt. Const) Goto 170
348 If (Rlong .lt. Other) Goto 156
349 RApert (128 + Irow , 128 + J) = 1.0
350 156 Irow = Irow + Iinc
351 160 Continue
352 Endif
353 170 Continue
354 180 Continue
355 190 Do 230 Ikount = 16 , 1 , - 1
356 Do 220 K = 16 , 0 , - 1
357 If (Ikount .lt. K) Goto 220
358 Rise = FLOAT (Ikount)
359 Run = FLOAT (K)
360 Angle = Pi - ATAN (Run / Rise)
361 If (Angle .lt. Radlow) Goto 220
362 If (Angle .gt. Radhi) Goto 230
363 If (Run .eq. 0) Run = 0.1
364 Slope = - Rise / Run
365 If (Slope .lt. - 16) Then
366 Islope = - 1
367 Jinc = 0
368 Irow = 0
369 Else
370 Islope = Ikount
371 Jinc = K

Fortran/9000
Mon Sep 23 09:33:58 1985
aptinf.f Page 8

372 Jrow = 0
373 Endif
374 Do 210 I = 0 , - 16 , - Islope
375 Rlong = I * I + Jrow * Jrow
376 If (Rlong .gt. Const) Goto 220
377 If (Rlong .lt. Other) Goto 205
378 RApert (128 - I , 128 + Jrow) = 1.0
379 205 Jrow = Jrow + Jinc
380 210 Continue
381 220 Continue
382 230 Continue
383
384 C**
385 C Since pupil is symmetric, fill in other half just like the other
386 C**
387 C
388 C
389 C 240 Do 260 J = 16 , 1 , - 1
390 Do 250 I = 0 , 16
391 RApert (128 + I , 128 - J) = RApert (128 + I , 128 + J)
392 RApert (128 - I , 128 - J) = RApert (128 - I , 128 + J)
393 250 Continue
394 260 Continue
395
396 C**
397 C See if operator would like to add to the aperture.
398 C**
399 C
400 C
401 C
402 C
403 Write (7 , 261)
404 261 Format(/,$,'Would you like to add to the aperture [y/n] ? ')
405 Read (5 , 262) Answer
406 262 Format(A1)
407 If (Answer .eq. 'y') Goto 1
408 C
409 C**
410 C See if a picture is wanted.
411 C**
412 C
413 C
414 C
415 Write (7 , 270)
416 270 Format(/,$,'Do you want the aperture function plotted on the screen
417 in [y/n] ? ')
418 Read (5 , 280) Answer
419 280 Format(A1)
420 If (Answer .ne. 'y') Goto 290
421 Call Pltrst (2 , 5)
422 290 Write (7 , 300)
423 300 Format(/,$,'Do you want a hardcopy of the aperture function [y/n
424 1] ? ')
425 Read (5 , 280) Answer
426 If (Answer .ne. y) Return
427 Call Plotinf
428 Call Pltrst (2 , 5)
429 Call Pltof
430 Return
431 End

0 Errors detected
431 Source lines read
Subroutine Invert (Ichose)

This subroutine performs magic on the source array enabling the low frequency components to be displayed in the center as opposed to the ends as would otherwise be the case.

Common / Args / Real (256) , Rimag (256) , RSourc (256 , 25)
 16) , CSourc (256 , 256) , RApert (256 , 256) ,
 2 Plot (256 , 256) , Ar (2) , Lower , Iupper , Length , Iwide

Every other element of the arrays RSourc and CSourc starting with the second element is multiplied by -1.
The preprogrammed sources (point, two point, edge, slit) do not need to be inverted since their transforms were calculated analytically which put the low frequencies in the middle.

If (Ichose .lt. 5) Goto 50
Write(7,8) Format(/,'Inverting. ')
Do 20 J = 1 , 256 , 2
 Do 10 I = 2 , 256 , 2
 RSourc (I , J) = - RSourc (I , J)
 CSourc (I , J) = - CSourc (I , J)
 10 Continue
 20 Continue

Do 40 J = 2 , 256 , 2
 Do 30 I = 1 , 256 , 2
 RSourc (I , J) = - RSourc (I , J)
 CSourc (I , J) = - CSourc (I , J)
 30 Continue
 40 Continue
50 Return
End
Subroutine FFTSrc (Ichose)

This program takes the 2-Dimensional FFT of the source irradiance distribution. This is done analytically for point, two point, edge, and slit sources. Other sources are done using a one-dimensional fast Fourier transform (FFT) program. The rows of the source are transformed first and the columns second. The transform may be displayed on the terminal and plotted if desired.

Common / Args / Real (256), RImag (256), RSourc (256, 16), CSourc (256, 256), RApert (256, 256), 2 Plot (256, 256), Ar (2), Lower, Iupper, Length, Iwide

Character Answer , y
Data y/'y'/

Let the user know that fftsrc has been invoked.

Write (7, 5)
Format(/,'Transforming source.')

Ichose is passed into fftsrc from the calling program (synapt). The value of Ichose corresponds to a particular type of source.

Ichose = 1 Point Source
Ichose = 2 Two Point Source
Ichose = 3 Edge Source
Ichose = 4 Slit Source
Ichose = 5 Circular Source
Ichose = 6 Anything Else

The computed Goto statement transfers the program to the appropriate part of the program to calculate that source's transform.

Goto (10, 40, 80, 80, 490, 490) Ichose

Point source has a plane wave as its transform. Make RSourc
equal to 1 at all locations and CSourc equal to 0 (phase = 0).

Two point source transform is a cosine wave. The two points are separated by a distance specified by the user. Therefore, the cosine wave is a \(\cos \left(\frac{N \pi}{256 / \text{Separation}} \right) \).

The columns of RSourc are set equal to twice this quantity.

Fourier transforms of an edge or a slit are similar. The edge has a finite width (Iwide) and an infinite length (Length). This slit has both finite width and length. The transform of an edge is a Sinc \(\left(\frac{\pi}{256 / \text{Iwide}} \right) \) where 256 is the periodicity of the edge. The transform of the slit is similarly calculated except that it is the product of two sinc functions. The edge is oriented such that the long side runs along the azimuth and its width along the range. The slit is oriented the same way.

Yconst = Float (256 / Iwide)
Xconst = Float (256 / Length)
Ystart = -128 * 3.1415926535 / Yconst
Xstart = -128 * 3.1415926535 / Xconst
Xincr = 3.1415926535 / Xconst
Yincr = 3.1415926535 / Yconst
Do 90 I = 1, 256
Yi = Ystart + Float (I - 1) * Yincr
If (Abs (Yi) .gt. 1E-7) Then
 Sinc = (Sin (Yi) / Yi)
Else
 Sinc = 1.0
Endif
Real (I) = Float (Length) * Sinc
Continue
Do 110 J = 1, 256
Do 100 I = 1, 256
RSource (I, J) = Real (J)
Continue
100
Continue
Enddo 100
Continue
Do 120 I = 1, 256
X = Xstart + Float (I - 1) * Xincr
If (Abs (X) .gt. 1E-7) Then
 Sinc = (Sin (X) / X)
Else
 Sinc = 1.0
Endif
Real (I) = Float (Iwidth) * Sinc
Continue
Do 140 J = 1, 256
Do 130 I = 1, 256
RSource (I, J) = RSource (I, J) * Real (I)
Continue
130
Continue
Enddo 140
Continue
Goto 560
C***
C For anything else, calculate the FFT. First the rows.
C***
C
490 Do 520 I = 1, 256
 Do 500 J = 1, 256
 Real (J) = RSource (I, J)
 Rimag (J) = CSource (I, J)
 Continue
500 Continue
Call FFT (Real, Rimag, 256, 1)
Do 510 J = 1, 256
 RSource (I, J) = Real (J)
 CSource (I, J) = Rimag (J)
Continue
510 Continue
520 Continue
C***
C Now the columns.
C***

C**
C
160 Do 550 J = 1 , 256
162 Do 530 I = 1 , 256
164 Real (I) = RSource (I , J)
165 RImag (I) = CSource (I , J)
166 530 Continue
167 Call FFT (Real , RImag , 256 , 1)
168 Do 540 I = 1 , 256
169 RSource (I , J) = Real (I)
170 CSource (I , J) = RImag (I)
171 540 Continue
172 550 Continue

C**
173 C
174 See if the transform is to be displayed or plotted.
175 C
176 C
177 C
178 C**
179 C
180 560 Write (7 , 570)
181 570 Format(/,",'Do you want the source FFT displayed on the screen [y
182 1/n] ? ')
183 Read (5 , 580) Answer
184 580 Format(A1)
185 If (Answer .ne. y) Goto 590
186 Call Pltrst (3 , 0)
187 590 Write (7 , 600)
188 600 Format(/,",'Do you want a hardcopy of the source FFT [y/n] ? ')
189 Read (5 , 580) Answer
190 If (Answer .ne. y) Return
191 Call Plotin
192 Call Pltrst (3 , 0)
193 Call Pltocf
194 Return
195 End

0 Errors detected
195 Source lines read
Subroutine IFTSrc

This subroutine calculates the inverse Fourier transform of the product of the aperture and source transforms. This product is stored in RSourc and CSourc. This inverse transform is the goal of this program. The inverse transform can be displayed on the screen or a hardcopy output may be obtained.

Common / Args / Real (256), Rimag (256), RSourc (256 , 256), CSourc (256 , 256), PApert (256 , 256)
2 Plot (256 , 256), Ar (2), Lower, Iupper, Length, Iwide

Character Answer , y
Data y/'y'/

Write(7,29)
Format(7,29,'Inverse transforming.')
Do 30 I = 1 , 256
 Do 10 J = 1 , 256
 Real (J) = RSourc (I , J)
 Rimag (J) = CSourc (I , J)
 Continue
Call FFT (Real , Rimag , 256 , - 1)
Do 20 J = 1 , 256
 RSourc (I , J) = Real (J)
 CSourc (I , J) = Rimag (J)
Continue
Do 40 I = 1 , 256
 Real (I) = RSourc (I , J)
 Rimag (I) = CSourc (I , J)
Continue
Call FFT (Real , Rimag , 256 , - 1)
Do 50 I = 1 , 256
 RSourc (I , J) = Real (I)
 CSourc (I , J) = Rimag (I)
Continue
Write (7 , 70)
Format(7,70,'Do you want the source IFT displayed on the screen [y
1/n] ? ')
Read (5 , 80) Answer
Format(A1)
If (Answer ne. y) Goto 90
Call Pltrst (5 , 0)
Write (7 , 100)
Format(7,100,'Do you want a hardcopy of the source IFT [y/n] ? ')

103
Read (5, 80) Answer
If (Answer .ne. y) Return
Call Plotin
Call Pltrst (5, 0)
Call Plotof
Return
End

0 Errors detected
60 Source lines read
Subroutine FFT (FR, FI, N, IDIR)

Data is in FR (real) and FI (imaginary) arrays.
Computation is in place, output replaces input.
Number of points must be N.
FR and FI must be dimensioned in the main program.

IDIR = +1 (spatial to frequency)
IDIR = -1 (frequency to spatial)

Dimension FR(1), FI(1)
If (IDIR .EQ. +1) goto 10

Do 9 JJ = 1, N

9 FR(JJ) = -1. * FI(JJ)

MR = 0
NN = N - 1
Do 2 M = 1, NN
L = N
1 L = L / 2
If (MR + L .GT. NN) goto 1
MR = Mod (MR, L) + L
If (MR .LE. M) goto 2
TR = FR (M + 1)
FR (M + 1) = FR (MR + 1)
FR (MR + 1) = TR
TI = FI (M + 1)
FI (M + 1) = FI (MR + 1)
FI (MR + 1) = TI
2 Continue
L = 1
3 If (L .GE. N) goto 12
ISTEP = 2 * L
EL = L
Do 4 I = M, N, ISTEP
J = I + L
TR = WR * FR (J) - WI * FI (J)
TI = WR * FI (J) + WI * FR (J)
FR (J) = FR (I) - TR
FI (J) = FI (I) - TI
FR (I) = FR (I) + TR
FI (I) = FI (I) + TI
4 L = ISTEP
Goto 3
If (IDIR .EQ. +1) Return

Do 13 JJ = 1, N
FR (JJ) = FR (JJ) / Float (N)
13 FI (JJ) = -1. * FI (JJ) / Float (N)
Return
End
0 Errors detected
52 Source lines read
Subroutine Grphof

This subroutine turns off the graphics when the main program is finished.

Common /Args / Real (256), RImag (256), RSourc (256 , 2516), CSourc (256 , 256), RApert (256 , 256),
2 Plot (256 , 256), Ar (2), Lower , Upper , Length , Iwide
14 Call JHOFF (1)
15 Call JHEND (1)
16 Call JEND
17 Return
18 End

0 Errors detected
18 Source lines read
Sample Model Run

The following pages are taken directly from the HP 2623a graphics terminal through the use of its internal printer. Two sample runs are illustrated. The first is a flawless execution of the program to illustrate what happens when everything goes right. The second sample shows what can happen when everything goes wrong illustrating the various error messages and what the model does to recover.

Anyone wishing to run the model will first have to visit the system manager of the HP 9000 computer. He is Jeff Sweet and is located in Bldg 622 along with the computer and has an office in room 104. He can be reached by phone at extension 5-6361. He will assist the user in getting an account on the computer and getting the user familiarized with the system in general. Once logged in and in the proper account as per his instructions, the model can be invoked by typing 'synapt' followed by a carriage return. The sample model runs begin at this point.
Enter your source irradiance distribution. You may choose from one of the pre-programmed distributions below or create your own. Type the number of your selection after finding your choice on the menu below when prompted.

Point source: 1
A two-point source: 2
An edge: 3
A slit: 4
A circle of variable radius: 5
Your own creation: 6

Enter your selection [1-6]: 1
Do you want the source plotted on the screen [y/n]? n
Do you want a hardcopy of the results [y/n]? n
Enter range (Km) and lens separation (m) as x.x x.xx : 1.00.50
Enter collector speed (ft/s) and stability as xxxx.x xx.x : 0800.0 10.0
Enter theta for your particular aperture.
What range does theta lie within from 0 to 180 degrees?
Enter your answer as nnn nnn : 037 143
Would you like to add to the aperture [y/n]? n
Do you want the aperture function plotted on the screen [y/n]? n
Do you want a hardcopy of the aperture function [y/n]? n
Transforming source.
Do you want the source FFT displayed on the screen [y/n]? n
Do you want a hardcopy of the source FFT [y/n]? n
Multiplying pupil by source FFT.
Do you want a plot of the product of the FFT of the source and the aperture distributions [y/n]? n
Do you want a hardcopy of the product [y/n]? n
Inverting.
Inverse transforming.
Do you want the source IFT displayed on the screen [y/n]? n
Do you want a hardcopy of the source IFT [y/n]? n
If you desire to try another source and aperture [y/n]? n.
Enter your source irradiance distribution. You may choose from one of the pre-programmed distributions below or create your own. Type the number of your selection after finding your choice on the menu below when prompted.

- Point source: 1
- Two point source: 2
- An edge: 3
- A slit: 4
- A circle of variable radius: 5
- Your own creation: 6

Enter your selection [1-6]: 1

Do you want the source plotted on the screen [y/n] ? n
Do you want a hardcopy of the results [y/n] ? n
Enter range (Km) and lens separation (m) as x.x x.xx : 1.00 1.00
Enter collector speed (ft/s) and stability as xxxx.x xx.x : 888.88
Enter theta for your particular aperture.
What range does theta lie within from 0 to 180 degrees?
Enter your answer as nnn nnn : 037 143
You have exceeded the maximum Otheta of .000 degrees for the range entered. Try again.

Enter range (Km) and lens separation (m) as x.x x.xx : 1.00 1.00
Enter collector speed (ft/s) and stability as xxxx.x xx.x : 888888 1
Enter theta for your particular aperture.
What range does theta lie within from 0 to 180 degrees?
Enter your answer as nnn nnn : 37 180
Your combination of lens separation and range caused the upper spatial frequency to fall outside the aperture. Please try again.

Enter range (Km) and lens separation (m) as x.x x.xx :
BIBLIOGRAPHY

VITA

Captain Christopher P. Kane was born on 26 January 1959 in Oregon, Ohio. He graduated from Clay High School in 1977 and attended the University of Notre Dame from which he received the degree of Bachelor of Science in Electrical Engineering in May 1981. Upon graduation, he received a commission in the USAF through the ROTC program. He was called to active duty in June 1981 and served with the 544 Intelligence Exploitation Squadron, Offutt AFB, Nebraska where he served as an Electronic Intelligence Analysis Engineer. He served in this capacity until entering the School of Engineering, Air Force Institute of Technology, in May 1984.

Permanent Address: 435 Sylvandale

Oregon, Ohio 43616
Title: COMPUTER MODEL OF A PASSIVE SYNTHETIC APERTURE IMAGING SYSTEM

Thesis Chairman: James P. Mills, Major, USAF
Assistant Professor of Physics

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1a. REPORT SECURITY CLASSIFICATION</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a. SECURITY CLASSIFICATION AUTHORITY</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>2b. DECLASSIFICATION/DOWNGRADING SCHEDULE</td>
<td></td>
</tr>
<tr>
<td>4. PERFORMING ORGANIZATION REPORT NUMBER(S)</td>
<td>AFIT/GEO/ENP/85D-2</td>
</tr>
<tr>
<td>5. MONITORING ORGANIZATION REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>6a. NAME OF PERFORMING ORGANIZATION</td>
<td>School of Engineering</td>
</tr>
<tr>
<td>6b. OFFICE SYMBOL</td>
<td>AFIT/ENP</td>
</tr>
<tr>
<td>7a. NAME OF MONITORING ORGANIZATION</td>
<td>Wright-Patterson AFB, Ohio 45433</td>
</tr>
<tr>
<td>7b. ADDRESS (City, State and ZIP Code)</td>
<td></td>
</tr>
<tr>
<td>8a. NAME OF FUNDING/SPONSORING ORGANIZATION</td>
<td>AFAL/AAI</td>
</tr>
<tr>
<td>8b. OFFICE SYMBOL</td>
<td>AFAL/AAI</td>
</tr>
<tr>
<td>9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER</td>
<td></td>
</tr>
<tr>
<td>10. SOURCE OF FUNDING NO.</td>
<td></td>
</tr>
<tr>
<td>11. TITLE (Include Security Classification)</td>
<td>See Box 19</td>
</tr>
<tr>
<td>12. PERSONAL AUTHORS</td>
<td>Christopher P. Kane, Capt, USAF</td>
</tr>
<tr>
<td>13a. TYPE OF REPORT</td>
<td>MS Thesis</td>
</tr>
<tr>
<td>13b. TIME COVERED</td>
<td>FROM TO December 1985</td>
</tr>
<tr>
<td>14. DATE OF REPORT (Yr., Mo., Day)</td>
<td></td>
</tr>
<tr>
<td>15. PAGE COUNT</td>
<td>122</td>
</tr>
<tr>
<td>16. SUPPLEMENTARY NOTATION</td>
<td></td>
</tr>
<tr>
<td>17. COSATI CODES</td>
<td>05</td>
</tr>
<tr>
<td>18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)</td>
<td>Passive, Synthetic Aperture, van Cittert-Zernike, Imaging System</td>
</tr>
<tr>
<td>19. ABSTRACT (Continue on reverse if necessary and identify by block number)</td>
<td>Title: COMPUTER MODEL OF A PASSIVE SYNTHETIC APERTURE IMAGING SYSTEM</td>
</tr>
<tr>
<td>20. DISTRIBUTION/AVAILABILITY OF ABSTRACT</td>
<td>UNCLASSIFIED/UNLIMITED</td>
</tr>
<tr>
<td>21. ABSTRACT SECURITY CLASSIFICATION</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>22a. NAME OF RESPONSIBLE INDIVIDUAL</td>
<td>James P. Mills, Major, USAF</td>
</tr>
<tr>
<td>22b. TELEPHONE NUMBER</td>
<td>513-255-2012</td>
</tr>
<tr>
<td>22c. OFFICE SYMBOL</td>
<td>AFIT/ENP</td>
</tr>
</tbody>
</table>
This thesis was concerned with the development of a computer model of a passive synthetic aperture imaging system. The research was divided into three parts. They were (1) applying an understanding of partial coherence theory and its relationship to the impulse response of the system, (2) developing the computer model, and (3) exercising the computer model to perform a sensitivity analysis.

The system modeled consisted of two lenses mounted on a movable platform. The lenses were separated by a fixed distance and travelled in a direction parallel to this separation. The coherence of radiation present at each lens emanating from a real source was measured yielding the Fourier transform of the source intensity distribution according to the van Cittert-Zernike theorem (2:510). The transform was then multiplied by an effective aperture (obtained from the motion and position of the lenses relative to the source). An inverse Fourier transform was then applied to this result yielding the image. This is the process modeled by the computer.

The results indicated that new means of image interpretation must be developed in order to make the results useful. This is due to the fact that the system behaves much like a high pass filter and the image is edge enhanced and not a scaled version of the geometric image.