ARI V(INT)^2 SOLDIER/MACHINE INTERFACE DEMONSTRATOR: PHASE I MID-YEAR REVIEW

Azad M. Madni
PERCEPTRONICS, INC.

Raymond C. Sidorsky
ARMY RESEARCH INSTITUTE

for
Battlefield Information Systems Technical Area

SYSTEMS RESEARCH LABORATORY
Franklin L. Moses, Acting Director

U. S. Army
Research Institute for the Behavioral and Social Sciences

October 1985

Approved for public release; distribution unlimited.
This report, as submitted by the contractor, has been cleared for release to Defense Technical Information Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution other than to DTIC and will be available only through DTIC or other reference services such as the National Technical Information Service (NTIS). The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.
This research note is the mid-year report of a project designed to develop and evaluate a prototype "intelligent" soldier machine interface (SMI), for command- ers of small combat units. The note showcases the ways in which applied expert system technology can be used to reduce the cognitive burden on combat command- ers of the data-rich, highly stressful battlefield environment. The scenario developed to provide an early demonstration of some of the features of an 'expert' enhanced SMI is a tank platoon movement-to-contact, in which an enemy force is ambushed.
FOREWORD

The Battlefield Information Systems Technical Area of the Army Research Institute (ARI) is concerned with helping users and operators cope with the ever increasing complexity of the battlefield and automated systems by which they acquire, transmit, process, disseminate, and utilize information. Increased system complexity increases demands imposed on the human interacting with the machine. ARI's efforts in this area focus on human performance problems related to interactions with command and control centers and on issues of system design and development. Research is addressed to such areas as user-oriented systems, information management and display, decision support, and the impact of "high technology" on systems integration and utilization.

One area of special research interest involves the Soldier/Machine Interface. The ultimate aim of this area of research is to provide user-oriented functional specifications for a data management/display systems architecture of a generic SMI. That is, an SMI adaptable to multiple battlefield functional areas such as command/control, maneuver, armor, cavalry, artillery, combined arms, etc. The initial development is focused on increasing the operational effectiveness of commanders of small units, i.e., combat units that exchange fire with the enemy.

Research in the area of user-oriented systems is conducted as an in-house effort augmented through contracts with uniquely qualified organizations. The present effort was conducted in collaboration with personnel from Perceptronics, Inc., under contract MDA903-84-C-0219. The effort is responsive to requirements of Army Project 2Q263744A793, Human Performance Effectiveness and Simulation, and to special requirements of the U.S. Army Armor Center and School, Ft. Knox, Kentucky.
The following individuals contributed to the technical activities reported in this research note:

PERCEPTRONICS, INC.

Chu, Y.Y.
Fielding, M.
Levine, S.
Madni, A.M.
Samet, M.
Schwalm, N.
Scopp, R.

ANACAPA SCIENCES, INC.

Dyck, J.
Fuller, R.G.
Harris, D.H.
McCallum, M.C.
Rogers, S.P.

BOLT BERANEK AND NEWMAN, INC.

Pew, R.
Stevens, A.
Wilcox, B.

ARMY RESEARCH INSTITUTE

Sidorsky, R.C.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Overview</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Situational Context</td>
<td>3</td>
</tr>
<tr>
<td>1.4 The Soldier-Machine Interface Concept</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Expert Rule-Based (ERB) Protocol Development</td>
<td>4</td>
</tr>
<tr>
<td>2. GENERAL FEATURES OF THE PROJECT</td>
<td>7</td>
</tr>
<tr>
<td>3. PHASE I ACTIVITIES</td>
<td>.19</td>
</tr>
<tr>
<td>Approach</td>
<td>.21</td>
</tr>
<tr>
<td>Accomplishments</td>
<td>.22</td>
</tr>
<tr>
<td>Task 1A: Task Analysis of Armor Operations</td>
<td>.23</td>
</tr>
<tr>
<td>Task 1B: Design Work Station</td>
<td>.27</td>
</tr>
<tr>
<td>Task 1C: Scenario Development</td>
<td>.31</td>
</tr>
<tr>
<td>Task 1D: Development of ERB Protocols</td>
<td>.51</td>
</tr>
<tr>
<td>Task 1E: Develop and Fabricate Demonstrator</td>
<td>.63</td>
</tr>
<tr>
<td>4. TECHNICAL SUMMARY</td>
<td>.75</td>
</tr>
<tr>
<td>5. REFERENCES</td>
<td>.83</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 Overview

The primary objective of Phase 1 of the current effort is to develop and evaluate a prototype "intelligent" soldier-machine interface (SMI) for commanders of small combat units. The general thrust is toward showcasing the ways that applied expert system technology can be used to reduce the tremendous cognitive burden imposed on combat commanders in the data-rich, highly stressful battlefield environment. The scenario developed to provide an early demonstration of some features of an "expert" enhanced SMI is a tank platoon movement-to-contact in which an ambush of an enemy force is executed. Expert protocols that manage/display selected information extracted from a digitized map data base are featured in this initial version.

1.2 Background

The need to develop and test innovative soldier-machine interface (SMI) unit commanders (company and below) is recognized by HQDA, TRADOC, and DARCOM. One focal point for R&D activities to meet this need is the V(INT)2 (Vehicle Integrated Intelligence) concept. V(INT)2 is an outgrowth of a recommendation made by the Army Science Board (summary 1981) and suggestions made by GEN Blanchard, GEN Otis, and others. In a parallel development, the Armored Vehicle Science and Technology Program Advisory Council has established a technology base initiated to provide "the system architecture for the total integration of ground vehicle electronic (Vetronic) systems within the integrated battlefield." The need for an optimum and standardized SMI is recognized as a prime requisite for improved system effectiveness within the Vetronics structure.

A major goal of the V(INT)2 (and Vetronics) program is to provide small unit commanders (e.g., a tank platoon leader) with information products derived from "high technology." These information products now provide the data for computerized data management/display systems that supply large unit headquarters with real time information regarding friendly and enemy forces, terrain, and other aspects of tactical operations. However, because of recent advances in sensor, communication, and data processing technologies, battlefield data is produced at
volumes and rates that exceed the capacity of a small unit commander to absorb it. The solution is to provide data management/display systems that will tailor the amount, format, and level of detail of information to: (1) the needs of commanders at various echelons, and (2) the changing needs of a commander as the tactical situation develops.

A key element of a successful data management/display system is a properly designed SMI through which information is transferred by the commander to and from the machine (computer). The primary objective of the current effort is to create a research test bed for use in developing such an optimum interface. The purpose of this test bed, hereafter referred to as the ARIV(IN)² SMI Demonstrator, is to demonstrate a data management/display system that utilizes Expert Rule-Based (ERB) protocols to control the input/output of information. As used here, the term Expert Rule-Based protocols refers to any of the various types of interactive data management or decision aiding processes based on the application of artificial intelligence techniques. The purpose of the ERB protocols is to take advantage of the high rate of acquisition, transmission, and processing of battlefield data available via current electronic technology. Timely access to unit-relevant information will provide a force multiplier to small unit commanders in the future AirLand Battle and AirLand Battle 2000 environments.

The ARIV(IN)² SMI Demonstrator will provide a test bed for evaluating alternative approaches to incorporating flat panel displays, voice input of commands, interactive input/display screens, multifunction control panels, synthetic voice alarms/instructions, Expert Rule-Based protocols, decision aids, and other candidate applications of "high technology" to the Soldier/Machine Interface (SMI). By providing a dynamic, graphical interface along with integrated voice inputs/outputs and multifunction control panels, the ARIV(IN)² Demonstrator will enable measurement, in realistic man-in-the-loop tests, of the increase in operational effectiveness that can be expected from the innovative data display/management concepts envisioned by the Army, DoD, and the scientific/industrial communities. These tests will provide objective data based on user performance, reaction, and acceptance, that will enable systems designers and proponents to assess the potential improvements in operational effectiveness that could result from the incorporation of candidate hardware/software features in the
soldier/machine interface of future tactical systems. Initial efforts will focus on
tank operations. However, the language goal is to develop a simple user-tested SMI
architecture adaptable to the needs of small unit commanders of a broad spectrum
of combat and combat support elements (infantry, artillery, armor, cavalry,
combined arms, etc.)

1.3 Situational Context

It is D+8, and the AirLand Force Charlie (ALF Charlie) is reorganizing in the
vicinity of Treischfeld (NB 630233). Fighting has been fierce and although the
enemy’s attack has been broken, own force resources are limited. Recent activity
indicates that the command and control structure of the enemy has disintegrated.
Battle tactics are not following doctrine. Small unit engagements are common as
isolated enemy forces attempt to relocate parent units.

VISTA assets have just reported a communications intercept of an enemy
radio transmission emanating from the vicinity of Morsberg (hill 466, vic NB
611186). The caller identified his force as four T-88 tanks and two infantry
fighting vehicles, and their objective as the city of Geisa (vic NB 673187).

A platoon from Bravo Company of the 1st Battalion, Regiment 3, AFL
Charlie, is located on the outer perimeter of the ALF’s current position (vic NV
651228). This platoon is equipped with V(INT)² and the Tank Platoon Leader (TPL)
has just confirmed his unit location, mission status, and readiness.

The next major concern of the TPL is to determine where an ambush
operation can be successfully performed given the current path of the enemy, the
most likely/expected enemy behavior, and the prevailing situational constraints
(e.g., terrain, enemy strength, expected speeds, direction of movement, expected
terrain trafficability for the enemy and friendly unit, and expected enemy tactics).
If a specific location for ambush is found, the TPL undertakes the ambush
operation. If no ambush is found, given specific situational constraints and enemy
capabilities, the TPL has to make a rapid assessment whether ambush operations
can be abandoned. If it turns out that an ambush operation has to be performed,
then the TPL may systematically relax constraints by, for example, increasing the
area in which ambush operations are to be performed or selecting a more detailed
map for analysis until a viable ambush point is identifiable.
1.4 The Soldier–Machine Interface Concept

The initial demonstration of the soldier–machine interface will feature a multiwindow display along with the following input media:

- Voice
- Graphics tablet
- Joystick/Handgrip devices
- "Soft" function keys (e.g., 5 x 4 bank of "smart" switches from micro-switch)

Four separate displays or four display windows created on a single display will be configured to present the following information:

1. Command Display for viewing textual alert/alarm messages or composing formatted messages (for example, tactical message viewing/composition and selective call-up of information related to the objective, operation mode, or the target).
2. World View Display consisting of external sensor information overlayed on map background. The area covered in these displays will be compatible with battalion-wide or brigade-wide levels of interest.
3. Close-in View Display consisting of map background covering the immediate area of interest to the platoon leader (3 km) with graphic overlays consisting of battlefield information such as ambush location, immediate avenues of approach, cover and concealment, and trafficability, etc.
4. Computer-Generated Imagery (CGI) or Status Display (no video) showing own vehicle and platoon status or tactical situation (at various levels of abstraction) in terms of intercept geometries, and windows of opportunity (present and predicted) for ambush operations.

1.5 Expert Rule-Based (ERB) Protocol Development

The tactical scenario segment selected for the initial demonstration offers a few distinct situations for ERB protocol development. These include determining the ambush point, finding an intercept path to the ambush point, and selectively relaxing constraints to find one or more ambush points if none were found on the
initial pass. The ERB protocols will be supported by digital terrain data files and inputs from scenario generator/event sequencer. The terrain (elevation and feature) analysis routines will first be established to generate processed tables of (1) line of sight, (2) intervisibility, and (3) trafficability for the given 10 x 10 km area. Time-varying object data files including target, own vehicle profile, objectives, and friendly and enemy tactics will be constructed. In support of the tactical situation display related to ambush mode protocol, the subfunctions (rules or algorithms) shown in Table 1 will be derived.
| TABLE 1 |
| SUBFUNCTIONS OF AMBUSH MODE PROTOCOL |

- Projection of friendly and enemy routes/trajectories
- Presentation and updates of masking and concealment
- Projection of interception points/paths
- Identification of hull defilade positions
- Prediction of the line-of-sight
- Projection of target servicing opportunity window
- Evaluation of constraints/criteria relaxation
2. GENERAL FEATURES OF THE PROJECT
V(INT)² CONCEPT

- Close combat vehicle commander's interface with:
 -- Vehicle's modular subsystems
 -- Battalion--outside world

- Focus on providing information and intelligence
 -- At the appropriate time and place
 -- In the proper sequence, format, and priority

- Onboard computer employs AI software packages based on expert systems technology
V(\text{INT})^2 PROGRAM OBJECTIVES

• DEVELOPMENT OF:
 -- V(\text{INT})^2 SMI demonstration facility and prototype work station
 -- A scenario that encompasses simulated inputs from downlinked data sources
 -- Expert rule-based (ERB) protocols for information management and decision aiding
 -- Human-related performance measures that impact battlefield effectiveness
 -- Measures for assessing impact of ERB protocol-augmented human performance on battlefield outcomes
 -- Functional specifications for operational data display/management system

• EXPLOITATION OF:
 -- "Force Multiplier" potential of high technology
THE DRIVING TECHNOLOGIES

• APPLIED AI AND EXPERT SYSTEMS TECHNOLOGY
 -- Expert rule-based protocols for data fusion, manipulation, display
 -- Intelligent interfaces

• VOICE INPUT/OUTPUT AND PROGRAMMABLE SMI CONTROL PANEL
 -- Voice recognition/synthesis
 -- "Soft" function keys/touch panel, other

• INTERACTIVE VIDEODISC
 -- Background for graphics overlay
 -- Micro-controlled

• COMPUTER GENERATED IMAGERY AND HIGH RESOLUTION GRAPHICS
 -- Color
 -- Multiple windows
 -- Line-of-sight, trafficability, intervisibility
DEMONSTRATION FACILITY AND PROTOTYPE WORK STATION

- From bench system to functional prototype
- Emphasis on selective fidelity
- Focus on user involvement/input
- Reconfigurable architecture
- Evaluation of alternative soldier-machine interface option, expert rule-based protocols, and display layouts
FEATURES OF THE APPROACH

- Human factors analyses and studies in parallel with prototype development

- Operational fixed prototype of the SMI work station

- Added task to guarantee success of our technology transfer plan

- Adoption of an initial "strawman" prototype design
THE SCENARIO: SETTING AND FUTURE CAPABILITIES

- Based on AirLand Battle 2000/Army 21 environment
- Simulated communications links to VISTA/DC^3I
- Simulated inputs from commander's independent thermal viewer (CITV)
- Simulated inputs from remotely-piloted vehicles equipped with FLIR and low light level TV
BACKGROUND: GENERAL SITUATION

• HOSTILITIES INITIATED:
 -- Fulda Gap, West Germany
 -- U.S. mission--security operation

• RATIONALE:
 -- Area of U.S. Army interest
 -- Security operation allows multi-mission possibilities
 -- Digitized Fulda Gap terrain is readily available
SPECIFIC SITUATION

- UNIT LEVEL:
 -- Platoon (4 tanks)

- MISSION:
 -- Move to a preestablished blocking position

- SITUATION:
 -- Precipitates engagement
 -- Engagement facilitates ambush opportunity

- RATIONALE:
 -- Manageable number of participants
 -- Realistic mission assignment
 -- Requires action
 -- Identifies key events
 -- Isolates required activities
 -- Suggests display type(s) and associated information requirement(s)
 -- Indicates potential AI/expert systems application area
PROGRAM PRODUCTS

• CONCEPTS, TECHNOLOGIES, AND SYSTEMS THAT WILL PROVIDE:

 -- A "force multiplier" on the battlefield

 -- Through performance enhancement of the soldier working with his equipment in the unit

• SPECIFICATIONS FOR A DATA DISPLAY/MANAGEMENT ARCHITECTURE

 -- Utilizing state-of-the-art in applied AI and man-machine interface technology

 -- Adaptable to multiple battlefield applications
3. PHASE I ACTIVITIES
PHASE I APPROACH

1. V(INT) SHI PROGRAM OBJECTIVES
2. CLOSE COBRA VEHICLE TASK ANALYSIS
 (A)
3. CRITICAL REQUIREMENTS COGNITIVE REQUESTS
4. INITIAL SCENARIO
 (A)
5. DESCOPED/ADAPT SCENARIO TO
 ARMY 21 (AP)
6. FUNCTIONAL SPECS.
 FOR 1 YEAR DEMO SCENARIO
 (P)
7. REVISED FUNCTIONAL
 FOR YEAR 1 DEMO
 SCENARIO (FIRST IPR)
 (P/V/B)

LEGEND
P: PERCEPTRONICS
A: ANACAPA
B: BBN

AI/ES TECHNOLOGY ASSESSMENT
DNA DATA BASE
STUDY/ANALIP.
ROUTINES
DEVELOPMENT (B)

CURRENT MISSIONS
COTR COMMENTS
COTR CRITIQUE
Dr. Sidorsky
PRELIMINARY
"STORYBOARDS"

SCENARIO CONSTRAINTS
ON LEVEL AND BELOW, ETC.
PHASE I ACCOMPLISHMENTS

TASK 1A

- C^2 information requirements/task analyses completed
- Critical cognitive tasks identified

TASK 1B

- Prototype work station "mockup" designed and fabricated

TASK 1C

- Detailed demonstration scenario analyzed
- Man-machine interactions identified
- Refinements/recommendations summarized
- Opportunities for ERB protocol development identified
- $V(INT)^2$ SMI architecture for demonstration scenario specified

TASK 1D

- ERB support software partially developed
- DMA data base manipulation routines partially completed

TASK 1E

- Voice (i.e., VOTAN), PDP switches, and Beetle cursor controller integrated with symbolics
- Voice, PDP switches, and Beetle cursor controller demonstrable with scenario script

TASK 1F

- Performance-based approach for demonstrator evaluation partially defined

TASK 1G

- Demonstration script reconciled with "big picture"
- User community involvement initiated for successful technology transfer
TASK 1A: Task Analysis of Armor Operations

ANACAPA ACTIVITIES

1. DEFINE $V(\text{INT})^2$ SMI DEMONSTRATION SCENARIO AND TPL DISPLAY CONCEPTS

2. DETERMINE $V(\text{INT})^2$ SMI PROCESSING AND EXPERT RULE BASED PROTOCOL REQUIREMENTS

3. FIRST IN-PROGRESS REVIEW

4. IDENTIFY INTERFACE SEQUENCES, DISPLAY/CONTROL REQUIREMENTS, AND BASELINE PERFORMANCE DATA FOR $V(\text{INT})^2$ SMI FIRST-YEAR DEMONSTRATION

5. DEFINE DISPLAYS AND DISPLAY PROCESSING REQUIREMENTS FOR $V(\text{INT})^2$ SMI FIRST-YEAR DEMONSTRATION

6. SECOND IN-PROGRESS REVIEW
ANACAPA FIRST-YEAR DEMONSTRATION
SCENARIO DEVELOPMENT STRATEGY

SPECIFY FIRST-YEAR
SCENARIO EVENTS

IDENTIFY TPL
INFORMATION
REQUIREMENTS

DETERMINE SMI
DISPLAY REQUIREMENTS

DETERMINE TPL
CONTROL REQUIREMENTS

IDENTIFY SMI
PROCESSING REQUIREMENTS

PROVIDE DISPLAY
RECOMMENDATIONS

PROVIDE CONTROL
RECOMMENDATIONS

PROVIDE PROCESSING
RECOMMENDATIONS
TPL INTERFACE SEQUENCES
FOR SMI FIRST-YEAR DEMONSTRATION

1. Enter or modify information on LOCAL CONDITIONS
2. Acknowledge receipt of FRAGO from company commander designating target and specifying intercept action
3. Put system in INTERCEPT MODE
4. Assess TARGET SITUATION
5. Project probable TARGET ROUTE
6. Select TARGET ROUTE INTERCEPTION SEGMENT
7. Select AMBUSH SITE from possible alternatives
8. Select OPTIMUM ROUTE to ambush site
9. Project TARGET SERVICING WINDOW
10. Issue FRAGO to platoon for movement to ambush site
11. ADVANCE to ambush site
12. Determine FIRING SECTOR for the platoon
13. Issue FRAGO specifying FIRING SECTOR for the platoon
14. Issue FIRE COMMAND when the target enters the target servicing window
EXAMPLE OF SEQUENCE ANALYSIS
Sequence 4: Assess Target Situation

TARGET

SELECT

SF MODE

EVALUATE

SELECTED-

DISPLAY

INDICATED

FEATURE

DISPLAY

SCALE AND

AREA

CHANGES

REQUIRED

SELECT

ADD, DELETE,

OR CHANGE

DISPLAY

ALTERNATIVE

DISPLAY

AREA

MAP DISPLAY

NEEDED

SELECT

EVALUATE

MAP

DISPLAY

DISPLAY

MODE

DISPLAYED

DISPLAY

CHANGES

REQUIRED

SELECT

ADD, DELETE,

OR CHANGE

ALTERNATIVE

SCALE

DISPLAY

AREA

ANNOTATION

INDICATED

ANNOAT

DISPLAY

DISPLAY

CHANGES

INDICATED

DISPLAY

PORTION 36
TASK 1B: DESIGN WORK STATION

DESIGN WORK STATION

- MOCKUP CONSTRUCTION
- MOCKUP DEVELOPMENT
- CONTROL AND DISPLAY HARDWARE CONFIGURATION
- SYSTEM INTEGRATION
MOCKUP DEVELOPMENT

- Task Requirements Analysis
- Construct "Soft" Mockup (3-0)
- Application of Display Human Factors Principles
- Perform Initial Evaluation
- Modify HMI Layout, C/D as Necessary (Paste-on Rear Projection Images)
- Continuum of Increasing Functionality (Partial Function Demos)
- Fixed Prototype Demo (Umbilical to Symbolics)
CONTROL AND DISPLAY HARDWARE CONFIGURATION

SYMBOLICS DEVELOPMENT

WORKSTATION DEVELOPMENT

MOCKUP IMPLEMENTATION

--

VOTAN

BEETLE

PROGRAMMABLE PUSH BUTTONS

FLAT PANEL DISPLAYS

TOUCH SENSITIVE SURFACES

TRANSPARENT, TOUCH SENSITIVE SURFACE

VOICE RECOGNITION SYSTEM

SPEECH SYNTHESIS

MULTI-FUNCTION AND DISCRETE CONTROLS

INTEGRATED HAND GRIPS AND ROTARY CONTROLS

VOICED SPEECH SYNTHESIS

MULTI-FUNCTION CONTROLS

ISOMETRIC/DISPLACEMENT CONTROLS

VOTAN

MULTI-FUNCTION CONTROLS

INTEGRATED HAND GRIPS AND ROTARY CONTROLS

VOICE RECOGNITION SYSTEM

SPEECH SYNTHESIS

MULTI-FUNCTION AND DISCRETE CONTROLS

INTEGRATED HAND GRIPS AND ROTARY CONTROLS

29
SYMBOLICS INTERFACE OPTIONS

- OPTIONS
 - SERIAL
 - MULTIBUS

- CURRENT CONFIGURATION HAS 3 SERIAL
 (1 USED BY KEYBOARD)

- NEW BOARD WILL HAVE 4 SERIAL AND 1 MULTIBUS
PHASE I DEMO SCENARIO ACTIVITY SEQUENCE
(FROM TPL VIEWPOINT)
PHASE I DEMO SCENARIO ACTIVITY SEQUENCE
(FROM TPL VIEWPOINT) (CONT'D)
V(\text{INT})^2 \text{ STATE MACHINE}

\text{INPUT} \quad \text{ALERT BUTTON TPL PRESS (B)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A} & \quad \text{SAME} \\
B \text{ S/A} & \quad \text{SAME} \\
C \text{ FRAGD} & \quad \text{SAME} \\
D \text{ S/A} & \quad \text{SAME} \\
\end{align*}

\text{INPUT} \quad \text{SHOW TARGET #17 (V)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A Expanded For} & \quad \text{SAME} \\
B \text{ S/A Expanded For} & \quad \text{SAME} \\
C \text{ S/A} & \quad \text{SAME} \\
D \text{ S/A} & \quad \text{SAME} \\
\end{align*}

\text{INPUT} \quad \text{INTERCEPT MODE (V)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A} & \quad \text{TBD} \\
B \text{ S/A} & \quad \text{SAME} \\
C \text{ S/A} & \quad \text{SAME} \\
D \text{ S/A With Changes} & \quad \text{SAME} \\
\end{align*}

\text{INPUT} \quad \text{OBJECTIVE (V) BRIDGE (T)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A} & \quad \text{SAME} \\
B \text{ S/A} & \quad \text{SAME} \\
C \text{ S/A} & \quad \text{SAME} \\
D \text{ PARAMETERS For Intercept On Menu} & \quad \text{SAME} \\
\end{align*}

\text{INPUT} \quad \text{CHANGE PARAMETERS WINDOWS (V),(T),(B),(J)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A} & \quad \text{SAME} \\
B \text{ S/A} & \quad \text{SAME} \\
C \text{ S/A} & \quad \text{SAME} \\
D \text{ S/A With Changes} & \quad \text{SAME} \\
\end{align*}

\text{INPUT} \quad \text{ALERT BUTTON TPL PRESS (B)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A} & \quad \text{SAME} \\
B \text{ INTERCEPT RANGE} & \quad \text{SAME} \\
C \text{ S/A} & \quad \text{SAME} \\
D \text{ PARAMETERS For Intercept On Menu} & \quad \text{SAME} \\
\end{align*}

\text{INPUT} \quad \text{ALERT BUTTON TPL PRESS (B)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A} & \quad \text{SAME} \\
B \text{ S/A} & \quad \text{SAME} \\
C \text{ S/A} & \quad \text{SAME} \\
D \text{ PARAMETERS Associated With Ambush/Intercept} & \quad \text{SAME} \\
\end{align*}

\text{INPUT} \quad \text{ALERT BUTTON TPL PRESS (B)}

\begin{align*}
\text{OUTPUT} & \quad \text{DISPLAY} \\
A \text{ S/A} & \quad \text{SAME} \\
B \text{ S/A Ambush Pts.} & \quad \text{SAME} \\
C \text{ S/A} & \quad \text{SAME} \\
D \text{ Blow Up Of Ambush Pts. X} & \quad \text{SAME} \\
\end{align*}
V(INT)² STATE MACHINE (CONT’D)
FIRST YEAR DEMONSTRATION

ENEMY(GENERAL)

- OFFENSIVE BROKEN
- C³ DISRUPTED
- TACTICS NOT FOLLOWING DOCTRINE
- UNITS SCATTERED
- ATTEMPTING TO RELOCATE OWN FORCES

ENEMY(SPECIFIC)

- REMNANT OF A LARGER UNIT
- 4X T88 AND 2X BMPX LOCATED VIC RASDORF BY VISTA COMINT
- PLAIN VOICE TRANSMISSION WITH CALLER IDENTIFYING GEISA (VIC NB 673 187) AS OBJECTIVE

FRIENDLY

- OWN FORCES ARE LIMITED
- ECONOMY OF FORCE PRIMARY TO OWN FORCE ALLOCATION DECISIONS
- VISTA ASSETS OPERATIONAL
- V(INT)² SUPPORT AVAILABLE TO THE TANK PLATOON UNIT LEVEL
- TANK PLATOONS IN FUTURE DOCTRINE MAY CONDUCT PURSUIT / INTERCEPT AND AMBUSH OPERATIONS
V(INT)2 SCENARIO

- **SPECIAL SITUATION:**
 1. VISTA ASSETS HAVE REPORTED ELEMENTS OF AN ENEMY FORCE MOVING ACROSS THE INTERNATIONAL BORDER
 2. COMINT ASSETS INDICATE THE ENEMY FORCE MISSION IS TO SECURE A BRIDGE CROSSING
 3. UPDATES FROM VISTA ASSETS PROVIDE STRENGTH, COMPOSITION, PROBABLE ROUTE AND MOVEMENT SPEED OF ENEMY FORCE
SPECIAL SITUATION: (CONTINUED)

- FRIENDLY ELEMENT FOR FIRST-YEAR DEMONSTRATION IS PLATOON-SIZED

- FRIENDLY MISSION IS TO ENGAGE THE ENEMY FORCE PRIOR TO THE ENEMY REACHING ITS OBJECTIVE (AMBUSH)

- NO SUPPORTING ARMS WILL BE EMPLOYED IN THE FIRST-YEAR DEMONSTRATION

- ADVANCES BY FRIENDLY AND ENEMY WILL BE AXIS-LIMITED (ONE AXIS)

- INITIAL POINTS, OBJECTIVE AND MISSION WILL REMAIN THE SAME FOR THE FIRST-YEAR DEMONSTRATION

- SEE ARI RESEARCH NOTE 85-27 FOR DETAILED DESCRIPTION OF THE "AMBUSH" SCENARIO
TERRAIN SOFTWARE SOURCES

- BVGS/DOG – CAORA
- IMPS – AVRADA / HARRIS
- TERRAIN NAVIGATION – SANDIA / TACOM / VICOM
- AUTOMATIC TERRAIN ANALYSIS – ETL
- ROUTE PLANNING – TAU
- AUTONOMOUS VEHICLE – JPL
- ROUTE PLANNING – HUGHES
- ROUTE PLANNING – FMC
TERRAIN DATA SW/HW SOURCE EVALUATION

<table>
<thead>
<tr>
<th></th>
<th>Maturity</th>
<th>Availability Accessibility</th>
<th>Problem Domain</th>
<th>Algorithm Applicability</th>
<th>HW / SW Compatibility</th>
<th>Data Base Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVGS/DOG (CAORA)</td>
<td>X</td>
<td>X</td>
<td>GROUND TRAINING</td>
<td>X</td>
<td>PERKIN-ELMER SIGNAL 9 FORTRAN</td>
<td>X</td>
</tr>
<tr>
<td>IMPS (AVRADA / HARRIS)</td>
<td>X</td>
<td>PARTIALLY</td>
<td>AIR</td>
<td>X</td>
<td>VAX FORTRAN</td>
<td>DLMS</td>
</tr>
<tr>
<td>ROUTE PLANNING ALGORITHMS (TALL)</td>
<td>X</td>
<td>PARTIALLY</td>
<td>AIR & GROUND</td>
<td>X</td>
<td>PDP 11 FORTRAN</td>
<td>ART BASS LEVEL I</td>
</tr>
<tr>
<td>ROUTE PLANNING ALGORITHMS (HUGHES)</td>
<td>X</td>
<td>PARTIALLY</td>
<td>AIR & GROUND</td>
<td>X</td>
<td>VAX FORTRAN</td>
<td>ART BASS LEVEL I</td>
</tr>
<tr>
<td>(SANDIA / TACOM / VCOM)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTONOMOUS TERRAIN ANALYSIS (ETL)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUTONOMOUS VEHICLE (JPL)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AVAILABLE ALGORITHMS/FUNCTIONS
BASED ON DIGITAL DATA BASE

- LINE OF SIGHT INTERVISIBILITY
- COVER / CONCEALMENT
- PERSPECTIVE VIEWS
- TRAFFICABILITY
- DEFILADE CALCULATION
- LOCAL MAPPING — SELECTED FEATURES
- SITUATIONAL ASSESSOR — GOAL, OBSTACLE KEY TERRAIN (EXTERNAL) VARIABLE CRITERIA EVALUATION
- SITUATION ASSESSOR — VEHICLE STATUS (INTERNAL)
- SITUATION ASSESSOR — ENEMY DIRECTION SPEED (TACTICAL GAME) PROJECTED ROUTE
- ROUTE PROJECTION
- ROUTE PLANNING / NAVIGATION
ROUTE PLANNING CAPABILITIES

- INITIALIZE ROUTE PLANNING PHASE
- INTERACTIVE ROUTE PLANNING PHASE
 - ENTER INITIAL AND TARGET POINTS BY POSITION CURSOR ON TOPO MAP
 - ENTER INTERMEDIATE ROUTE POINTS
 - DISPLAY POTENTIAL ROUTE CONSTRAINTS
 - ENTER OTHER ROUTE CONSTRAINTS (E.G. INTERVISIBILITY, COVER, CONCEALMENT, COMM. RADIO DEVICE POSITIONS
 - COMPUTE & DISPLAY ROUTE AS OVERLAY
 - WITH ESTIMATED TRAVEL TIME, POTENTIAL CHECK POINTS

- SELECTED ROUTE EVALUATION
 - VERIFY ROUTE — OTHER ANALYSIS ALGORITHMS
 1. SELECTIVELY PLOT INTERVISIBILITY FANS
 2. SELECTIVELY PLOT COVER CONCEALMENT
 3. SELECTIVELY DISPLAY PERSPECTIVE VIEWS

- EDIT ROUTE — ON SEGMENTS OF ROUTE; SELECT, ROUTE CONNECTION & SMOOTHING
ASSESSMENT OF DMA DATA MANIPULATION ALGORITHMS

- SOFTWARE/TOOLS SURVEYED CANNOT EASILY FIT IN THE SYMBOLICS' DEVELOPMENT ENVIRONMENT
- CURRENT SOFTWARE/TOOLS WILL BECOME OBSOLETE IN TWO YEARS
- EXISTING SOFTWARE/TOOLS OFFER ONLY LIMITED FUNCTIONS REQUIRING COMPLEX CALCULATIONS AND EXTENSIVE SOFTWARE SUPPORT
- STATE-OF-THE-ART DEVELOPMENT HAS MOVED TO KNOWLEDGE-BASED MANAGEMENT OF ALGORITHMS; VARIOUS METHODS AND MODELS ARE AVAILABLE IN PUBLIC DOMAIN
- DEVELOPMENT OF A SET OF SIMPLIFIED 'SHORT-CUT' SOLUTIONS USING STATE-OF-THE-ART SOFTWARE/TOOLS AND CURRENT METHODS AND MODELS HAS HIGHER PAYOFF THAN MODIFYING THE EXISTING ONES
V(IN(T))^2 SMI SYSTEM DESIGN ELEMENTS

USER

I/O

EXECUTIVE

MISSION/TASK

TEMPLATE

MMI

DRIVER

ERB

SPECIALISTS

MICRO-

EXPERTS

WORLD

KNOWLEDGE

BASE DATA

TOUCH

WHICH

CONTROLLER

I/O TRAFFIC

SCHEDULER

SCENARIO

GENERATOR

MISSION

SELECT

MISSION

TEMPLATE

TASK PROFILE

WINDOW

MANAGER

SOFT WINDOWS

USER PROFILES

PATH FINDING

INTERCEPT

AMBUSH

DISPLAY

MANAGEMENT

KNOWLEDGE

BASE S/R/U

SEARCH

DNA ROUTINES

L.O.S.

FEATURE

ANALYZER

COMPOSITES

TRAPICIBILITY

TERRAIN

ENEMY

FRIENDLY
V(INT)^2 SMI EXECUTIVE DESIGN FEATURES

- OBJECT-ORIENTED MESSAGE-PASSING ARCHITECTURE
- SCRIPT-BASED DIALOG CONTROL
- CONTEXT MAINTAINED BY MISSION/TASK AND USER PROFILES
- PRELOAD EXPECTATIONS OF KNOWLEDGE AND CALCULATIONS
SOFTWARE ARCHITECTURE FOR V(INT)² SMI PHASE I DEMO

SOFTWARE REQUIREMENTS

FIGURE 1

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display A</td>
<td>DMA Database Handler (DDH), graphics overlay.</td>
</tr>
<tr>
<td>Display B</td>
<td>DDH, automatic rescaling of digital data.</td>
</tr>
<tr>
<td>Display C</td>
<td>Text file 1.</td>
</tr>
<tr>
<td>Display D</td>
<td>Automated status monitoring and update.</td>
</tr>
<tr>
<td>Alert key</td>
<td>--------</td>
</tr>
<tr>
<td>Voice Entry</td>
<td>-------</td>
</tr>
<tr>
<td>Cursor Controller</td>
<td>--------</td>
</tr>
</tbody>
</table>
SOFTWARE ARCHITECTURE FOR V(INT)² SMI PHASE I DEMO (CONT’D)

FIGURE 2

Display A
Display B
Display C
Display D
Alert key
Voice Entry
Cursor Controller

Figures: Display A
Display B
Display C
Display D
Alert key
Voice Entry
Cursor Controller

Text file 2.
I/O processing.
Votan processing.

FIGURE 3

Display A
Display B
Display C
Display D
Alert key
Voice Entry
Cursor Controller

Figures: Display A
Display B
Display C
Display D
Alert key
Voice Entry
Cursor Controller

Graphic overlay update.
Graphic overlay update, automatic rescaling.

47
SOFTWARE ARCHITECTURE FOR V(INT)^2 SMI PHASE I DEMO (CONT'D)

FIGURE 4

Display A
Display B Graphic overlay update, display processing.
Display C ERB protocol, knowledge base management.
Display D
Alert key
Voice Entry
Cursor Controller I/O processing.

FIGURE 5

Display A
Display B
Display C Display update.
Display D
Alert key
Voice Entry Yotan processing.
Cursor Controller I/O processing.
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>INPUT (STIMULUS)</th>
<th>ERB PROTOCOL INVOKED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>"SHOW TARGET ##17"</td>
<td>DISPLAY SPECIALIST</td>
</tr>
<tr>
<td>4</td>
<td>"OBJECTIVE"</td>
<td>KNOWLEDGE BASE MANAGER</td>
</tr>
<tr>
<td>5, 6</td>
<td>"SHOW INTERCEPT"</td>
<td>INTERCEPT OPERATION PARAMETERS DISPLAY SPECIALIST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INTERCEPT OPERATION PARAMETER UPDATE SPECIALIST</td>
</tr>
<tr>
<td>6, 7</td>
<td>"SHOW INTERCEPT ZONE"</td>
<td>ROUTE FINDING / NAVIGATION SPECIALIST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(COMPUTES/DISPLAYS MOST LIKELY PATH)</td>
</tr>
<tr>
<td>8</td>
<td>"SHOW AMBUSH LOCATIONS"</td>
<td>ROUTE FINDING / NAVIGATION SPECIALIST</td>
</tr>
<tr>
<td>9</td>
<td>"SHOW AMBUSH X"</td>
<td>NAVIGATION SPECIALIST, INTERCEPT SPECIALIST</td>
</tr>
<tr>
<td>9A</td>
<td>"SHOW SPECIAL AMBUSH"</td>
<td>KNOWLEDGE BASE MANAGER, OVERLAY FEATURE SELECTOR</td>
</tr>
<tr>
<td>10, 11</td>
<td>"SHOW ROUTE TO AMBUSH X"</td>
<td>DISPLAY SPECIALIST, KNOWLEDGE BASE MANAGER, INTERCEPT SPECIALIST, NAVIGATION SPECIALIST</td>
</tr>
<tr>
<td>12, 13</td>
<td>RPV INFO VIA ALERT</td>
<td>KNOWLEDGE BASE UPDATE SPECIALIST, DISPLAY SPECIALIST, NAVIGATION SPECIALIST, INTERCEPT SPECIALIST</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COOPERATING SPECIALISTS FOR V(INT)²
SMI ERB PROTOCOL DEVELOPMENT

- PATH FINDING / NAVIGATION
 - GIVEN INITIAL AND FINAL POINTS
 - FINDS ACCEPTABLE / OPTIMAL PATH(S) FOR A GIVEN SET OF CRITERIA/
 PERFORMANCE FUNCTIONS

- INTERCEPT
 - CONSISTS OF TWO SUBSPECIALISTS
 1. TARGET PATH PROJECTION GIVEN TARGET’S INITIAL AND FINAL POINT
 2. GIVEN PROJECTED TARGET ROUTE AND SPEED, FIND A SET OF
 LOCATIONS ALONG TARGET ROUTE THAT SATISFY: OWN PATH FINDING;
 OWN ARRIVAL TIME < TARGET ARRIVAL TIME

- KNOWLEDGE MANAGEMENT
 - A META-KNOWLEDGE SOURCE IN CONTROL OF UPDATING AND
 INTEGRATING MULTIPLE KNOWLEDGE SOURCES

- AMBUSH OPERATION
 - A COLLECTION OF FACTS, ROEs AND CRITERIA RELATED TO
 AMBUSH OPERATION

- DISPLAY MANAGEMENT
 - A COLLECTION OF RULES RELATED TO OPERATOR INPUTS, CURRENT
 CONTEXT AND TIME THAT UPDATE VARIOUS DISPLAY WINDOWS AS NEEDED
 - RESPOND TO OPERATOR INPUTS, ELAPSED TIME, AND ONGOING TASK
TASK 1D: DEVELOPMENT OF ERB PROTOCOLS

GOAL

To assist TPL in planning a successful ambush by providing:

- color-coded terrain maps
- visibility, concealment, defilade and angular sector of fire
- projected routings for friend and foe

SCHEMATIC OF V(INT)^2
DECEMBER 1 MILESTONES

- store, retrieve, manipulate and display DMA database
- compute line of sight from enemy positions
- identify and depict regions of selected trafficability

CURRENT COMPONENTS

- Map display and database
- Line of sight visibility (micro expertise)
- Route planning
CURRENT VINT2 MAP DISPLAY

- data extraction
- color-coded background displays
- contouring
- overlays
- perspective view

DATA EXTRACTION

- DMA data = 64 bits per location as sets of bit fields
- initial data had bugs, some removed by simple filtering
- can retrieve any contiguous bit field and associate values with colors
COLOR-CODED BACKGROUND DISPLAYS

- 5 bits allows 32 color shadings
- 3 mutually exclusive displays
 terrain elevation
 surface features
 trafficability

OVERLAYS

- placed over a color-coded background display
- 3 colors used for overlays
- overlay features such as:
 - roads (primary, secondary)
 - railroads
 - obstacles
 - force positions
 - intervisibility
CONTOURING

- clever algorithms tried and scrapped
- simple algorithm
 1. for each point, round value to nearest band
 2. if any of 8 neighbors of different band, shade as contour

Propagation of Visibility

Circles are grid locations with elevation numbers in
Top equations are expected height for point to be v
d = equations compute new delta to propagate
Thick lines go to visible locations
ROUTE PLANNING

- Usual paradigm is "dynamic programming"

1. create a cost function for node traversal
 e.g. cost = \(b \) (height\(_{\text{new}}\) - height\(_{\text{old}}\)) + \(c \) (distance\(_{\text{new-old}}\))

2. compute costs to neighboring nodes

3. propagate minimum cost
ANALYSIS OF DYNAMIC PROGRAMMING

Advantages:
- easy to program
- finds optimal route

Disadvantages:
- uniform cost for simple or hard tasks
- cost function is non-intuitive, inexplicable
 - TPL does not see tradeoffs
 - TPL does not see close second routes
 - TPL trusts others for tradeoff formula

EXPERTISE

- prefer shortest lines to destination
- roads are likely routes
- when terrain changes ("obstacle"), compare going around it ("avoidance") to going through it
- laws of refraction (optics)
OPTICS LAWS IN ROUTE PLANNING

\[
\sin \theta = \frac{S0}{S1}
\]

The optimal angle to depart road is computable.
ROUTE PLANNING SHORTCUTS

- precompute some routes
- lump together common features into regions
- work interactively with TPL
- directed searching
- progressively refine from clusters of points down

accept plausible routes (do not require optimal)
PROBLEMS AND SOLUTIONS

- ARTBAS tape has data anomalies
 . let them be
 . remove by filtering or by hand

- ARTBAS tape is unique, unsupported, unavailable for other areas
 . switch to supported tape
 . keep system suitable for other tape, but use ARTBAS
- Roads dominate Fulda Gap - distort optimal algorithms
 - build system as is
 - build system which also works if roads removed or only primary roads exist

- Symbolics hardware is barely fast enough for graphics
 - this is prototype demo
 - better hardware continues to evolve
FUTURE MILESTONES

- compute and display possible routes of friend and foe
- compute and display probable masking and concealment
- identify and display possible hull defilade positions
- compute and display potential intercept points
- compute and display points to command angular sector of fire
TASK 1E: DEVELOP AND FABRICATE DEMONSTRATOR

DEVELOPMENT ENVIRONMENT

- SYMBOLICS 3670
- SYMBOLICS COLOR GRAPHIC SYSTEM
- LASER GRAPHIC PRINTER
- VOTAN VOICE RECOGNITION/GENERATION SYSTEM
- PROGRAMMABLE DISPLAY PUSHBUTTON (PDP) SWITCHES
- BEETLE CURSOR CONTROLLER
SYMBOLICS 3670 SOFTWARE ENVIRONMENT

- ZETALISP LANGUAGE
- FLAVORS EXTENSION
- WINDOW SYSTEM
- REAL-TIME EDITOR
- INSPECTOR UTILITY
- FONT EDITOR
- E-MAIL CAPABILITY
- ADVANCED NETWORKING CAPABILITY
- FORTRAN 77 COMPILER
SYMBOLICS 3670 HARDWARE

- 4 MBYTES HIGH-SPEED RAM
- 474 MBYTE WINCHESTER DISK
- 45 MBYTE STREAMER TAPE
- FLOATING POINT ACCELERATOR
- 4 RS-232 SERIAL PORTS
- 10 MBIT/SEC ETHERNET INTERFACE
- HIGH RES (1100 x 900 BIT MAPPED)
 MONOCHROME MONITOR W/KEYBOARD
 AND MOUSE
SYMBOLICS COLOR GRAPHICS SYSTEM

- 2 MILLION PIXEL MEMORY
- 8 BITS/PIXEL
- 2 BILLION COLORS (256 SIMULTANEOUS)
- HARDWARE PAN AND ZOOM
- PROGRAMMABLE VIDEO SIGNAL FORMAT
- HIGH-RES (1280 X 1024) COLOR MONITOR
SYMBOLICS LASER GRAPHICS PRINTER

➤ MINOLTA LASER ENGINE
➤ 10 PAGES/MINUTE (8.5 X 11)
➤ 240 X 240 DOTS PER INCH
➤ BIT-MAPPED PRINT CAPABILITY
➤ SERIAL (1000 BYTES/SEC) AND PARALLEL (30,000 BYTES/SEC) INTERFACES
VOTAN VTR-6000 VOICE TERMINAL

- Voice recognition/generation capability
- Isolated or continuous speaker-dependent recognition
- Limited speaker-independent recognition
- 75 double-trained word capacity on-board
- Unlimited capacity with virtual memory swapping
- RS-232 interface
PROGRAMMABLE DISPLAY PUSHBUTTON (PDP) SWITCHES

- 16 x 35 INDIVIDUALLY ADDRESSABLE PIXEL ARRAY
- 4 SWITCHES CONTROLLED BY A SINGLE RS-232 CARD
- CONTROLLER HANDLES REFRESH, BLINKING, ASCII CHARACTER GENERATOR
BEETLE CURSOR CONTROLLER

- INFINITE RESOLUTION (i.e. ANALOG)
- INTERNAL FORCE TRANSDUCERS AND MICROPROCESSOR
- VARIABLE SCALING FACTOR
- UP TO FOUR SOFT SWITCHES
SUBSYSTEM INTEGRATION

- VOICE RECOGNITION SUBSYSTEM INTEGRATED WITH SYMBOLICS
- PDP "SOFT" SWITCHES INTEGRATED WITH SYMBOLICS
- BETTLE CURSOR CONTROLLER INTEGRATED WITH SYMBOLICS
- DEMO SCENARIO FOR DEC 4 CONSISTS OF:
 - AMBUSH OPERATION SEQUENCE
 - VOICE INPUT / GENERATION
 - PDP SWITCH INTERACTION (GRAPHIC ICON AND Flashing TEXT)
 - CONTROL INPUTS FROM BEETLE
 - TEXTUAL DISPLAYS TO SIMULATE DMA — GRAPHICS OUTPUT
2ND IPR BENCH DEMO ARCHITECTURE

Symbolics 3670 CPU

ETHERNET

TO OPTIONAL SECONDARY PROCESSOR OR FILESERVER COMPUTER

478 MB Disk

Streaming Tape

Experimental Console

3670 System Display

System Keyboard

Mouse

LASER GRAPHIC PRINTER

VOICE RECOGNITION/GENERATION

BEETLE CURSOR CONTROLLER

PDP SWITCHES

SHI WORKSTATION

COLOR GRAPHICS SYSTEM

Color Display

72
SMI SYSTEM ARCHITECTURE
STAGES IN V(INT)^2 SMI
PROTOTYPE DEVELOPMENT

PHASE I

V(INT)^2 SMI SOFT MOCKUP

V(INT)^2 SMI DEVELOPMENT FACILITY

V(INT)^2 SMI FIXED PROTOTYPE DEMONSTRATOR

V(INT)^2 SMI MOBILE prototype

INTERFACE
FUNCTIONAL
SPECIFICATION
V(INT)2 OPERATIONAL CONCERNS

- FUTURE LOOKING
 - OFF-LOAD COMMANDER/USER
 1. VOICE ENTRY VIA ICS
 2. STATUS BY EXCEPTION
 3. ALERTS—PROVIDE PARSED MESSAGE AND AUTOMATICALLY UPDATE UNDERLYING GRAPHICS
 4. INTEGRATE SPEED, TRAFFICABILITY, ENEMY ACTIONS TO GRAPHICS
 5. AUTOMATICALLY UPDATE CHANGES, E.G., SPEED
 6. INTEGRATE COVER, CONCEALMENT, MASKING, NOISE RADIATION FANS, ETC, TO GRAPHICS
 7. PRESENT BEST AMBUSH SITE—ONLY EXPAND OUT UPON SPECIFIC TPL REQUEST
 8. ALLOW FOR REAL—TIME IMAGE DISPLAY, E.G.S, FROM RPV's OWN/UNIT RETICLES
FUTURE WORK

- **TASK IA**
 - Final refinement of controls and displays for demo script
 - Human factor all MMI

- **TASK IB**
 - Identify all controls and displays for future integration into work station "Mock-up"

- **TASK IC**
 - Reconcile ambush operations scenario to the "big picture" and program V(INT)² SMI executive geared to demo scenario

- **TASK ID**
 - Develop and program "agreed upon" ERB protocols for demo scenario
 - Integrate ERB protocol software with V(INT)² SMI executive

- **TASK IE**
 - Integrate demo software with all controls and displays
 - Finalize "bench system" for Phase I demo

- **TASK IF**
 - Identify initial performance measures
 - Conduct demo evaluation (pilot experiments)

- **TASK IG**
 - Maintain user community involvement / prepare user community for Phase I demo "message"?
REFERENCES

