AD-A160 321

SOME COMMENTS ON THE DESIGN OF QUANTIZERS

TEXAS UNIV

AT AUSTIN DEPT OF ELECTRICAL AND COMPUTER ENGINEERING

E F ABAYA ET AL. 30 MAY 85 AFOSR-TR-85-9774

UNCLASSIFIED AFOSR-81-0047

F/G 9/5

END
Title: SOME COMMENTS ON THE DESIGN OF QUANTIZERS (UNCLASSIFIED)

Authors: Efren F. Abaya (University of the Philippines) and Gary L. Wise

Type of Report: Interim

Time Covered: FROM 10/1/80 TO 9/30/85

Date of Report: 1985, May 30

Page Count: 8

In many applications involving quantization the probability distribution of the input signal is unknown. However, most of the algorithms for optimal scalar or vector quantization require an explicit distribution function or probability density. This paper shows that under certain conditions reasonable quantizer designs can be expected when standard algorithms are applied to estimates of distribution functions.
SOME COMMENTS ON THE DESIGN OF QUANTIZERS

EFREN F. ABAYA
Department of Electrical Engineering
University of the Philippines
Diliman, Quezon City 3004, Philippines

and

GARY L. WISE
Departments of Electrical and Computer Engineering and Mathematics
University of Texas at Austin
Austin, Texas 78712

ABSTRACT

In many applications involving quantization the probability distribution of the input signal is unknown. However, most of the algorithms for optimal scalar or vector quantization require an explicit distribution function or probability density. This paper shows that under certain conditions reasonable quantizer designs can be expected when standard algorithms are applied to estimates of distribution functions.

I. INTRODUCTION

Much work has been expended in studying algorithms for optimal quantization of a known probability distribution [1-5]. In practice, however, the statistical description of the source is rarely known precisely. In some recent papers [2,3] a group of researchers demonstrated both theoretically and experimentally that a training sequence of independent or ergodic samples can be used to design near optimal vector quantizers, by using the sample empirical distribution in place of the unknown input distribution in a generalized version of Lloyd's Method [1]. They showed that under some conditions the quantizer designed for a "long" training sequence approximates closely the output levels and performance of the optimal quantizer for the true (unknown) distribution. The same kind of reasoning should hold for any design algorithm. If the input distribution F is not known, then we can form an estimate F_n based on n observations of the input signal. As n becomes large, we expect a reasonable estimate to converge to the true distribution F. Intuitively, then, an optimal quantizer designed for F_n, and the resulting distortion, should closely approximate those of an optimal quantizer for F. In this paper we will establish properties of an estimator F_n so that this kind of reasoning will be valid.

II. DEVELOPMENT

An N-level k-dimensional vector quantizer is a mapping $Q: \mathbb{R}^k \rightarrow \mathbb{R}^k$ which assigns to the input vector x an output vector $Q(x)$ chosen from a finite set of N vectors \(\{ y_i \in \mathbb{R}^k \mid i = 1, 2, ..., N \} \). The distortion incurred in quantizing a k dimensional random variable X having a probability distribution function F is expressed by

$$D(Q,F) = \int C_0(||x-Q(x)||)dF(x)$$

(1)

where $||\cdot||$ is the usual Euclidean norm on \mathbb{R}^k and where all integrals, unless noted otherwise, are over \mathbb{R}^k. We will take the cost function $C_0(t)$ to be nonnegative, nondecreasing on $[0, \infty)$ and lower semi-continuous. It has been shown previously that optimal quantizers minimizing (1) exist for

Presented at the Twenty-Second Annual Allerton Conference on Communication, Control, and Computing, October 3-5, 1984; to be published in the Proceedings of the Conference.
all probability distributions F and all k and $N \{6,7\}$. This type of distortion function subsumes most of the popular error criteria used in scalar and vector quantization. When optimal quantizers are being considered, there is no loss of generality in assuming the "nearest neighbor" assignment rule: $Q(x)$ is that member of the set which is nearest to x in Euclidean norm, with ties being broken by an arbitrary preassigned method. This rule will be adopted throughout the rest of the paper. Thus a quantizer is completely represented by its set of output vectors.

We will say that a sequence of N-level quantizers $\{Q_n\}$ converges weakly to the quantizer Q if $Q_n(x) \rightarrow Q(x)$ at all continuity points x of Q.

Let F_n and F be k-variate probability distribution functions. The sequence $\{F_n\}$ is said to converge weakly to F (written $F_n \wedge \rightarrow F$) if $F_n(x) \rightarrow F(x)$ at every continuity point x of F. We say that $\{F_n\}$ converges setwise to F (denoted $F_n \rightarrow F$) if

$$\lim_{n \rightarrow \infty} \int_B dF_n(x) = \int_B dF(x)$$

for every Borel subset B of \mathbb{R}^k.

The following theorem from [8] and [9] is the main tool used in the investigation. Here k and N are fixed positive integers.

Theorem 1: Assume that $C_0(t)$ is nonnegative and nondecreasing on $[0,\infty)$. Suppose that $C_0(||x-y||)$ is uniformly integrable with respect to a sequence of distribution functions $\{F_n\}$ for every y. Let Q_n be an optimal N-level quantizer for F_n. If $Q_n(x) \rightarrow Q(x)$ for every x of F. We say that $\{Q_n\}$ converges setwise to Q (denoted $Q_n \rightarrow Q$) if

$$\lim_{n \rightarrow \infty} \int_B dQ_n(x) = \int_B dQ(x)$$

for every Borel subset B of \mathbb{R}^k.

In Theorem 1, convergence of the sequence of optimal quantizers $\{Q_n\}$ cannot be asserted. However, $\{Q_n\}$ can be completely partitioned into convergent subsequences whose limits are optimal quantizers for F.

In Theorem 1, F_n can be any sequence of distribution functions. We are interested in having F_n be an estimate \hat{F}_n constructed from n observations of F. The principal consideration in applying the theorem is in showing uniform integrability. For sequences of estimates this becomes

$$\lim_{n \rightarrow \infty} \int dC_0(||x-y||) d\hat{F}_n(x) = \int dC_0(||x-y||) dF(x)$$

for each $y \in \mathbb{R}^k$; for almost all training sequences. Before proceeding further, we make a useful simplification of (2). This equation requires us to find a set of sample sequences (X_1, X_2, \ldots) on which the integrals

$$\lim_{n \rightarrow \infty} \int dC_0(||x-y||) d\hat{F}_n(x) = \int dC_0(||x-y||) dF(x)$$

for almost all training sequences; for each $y \in \mathbb{R}^k$. What we will be using primarily is the Strong Law of Large Numbers, which yields the conclusion:

$$\lim_{n \rightarrow \infty} \int dC_0(||x-y||) d\hat{F}_n(x) = \int dC_0(||x-y||) dF(x)$$

for almost all training sequences; for each $y \in \mathbb{R}^k$. This last equation says that for a given y, there is a set $\Lambda(y)$ of sample sequences (X_1, X_2, \ldots) having probability one for which the integrals converge. Obviously, (2) implies (3). However, it is shown in the Appendix that (3) implies (2). Thus (2) and (3) are equivalent. Hence if we can show (3), we may use Theorem 1 to get the results we want. In the following examples, we will
show how this can be done in a number of situations.

Empirical Distributions. Let F be the unknown k-variate distribution which we wish to (vector) quantize. If we take n independent samples X_1, X_2, \ldots, X_n, then the empirical distribution function is $\hat{F}_n(x) = n^{-1}(\#X_i \leq x)$, where the inequality is taken component by component. This is a simple nonparametric estimator which by the Strong Law of Large Numbers converges setwise to F for almost all sample sequences as $n \to \infty$. Take C_0 to be nonnegative, nondecreasing, nonconstant with respect to F, and lower semi-continuous. The demonstration of uniform integrability (3) is a simple application of the Strong Law of Large Numbers. We have for each y

$$\lim_{n \to \infty} \int C_0(||x-y||)d\hat{F}_n(x) = \int C_0(||x-y||)dF \text{ wp1},$$

provided that the last integral is finite. According to Theorem 1, then, we may quantize the \hat{F}_n's, using any available method that yields an optimal solution and be assured that the resulting quantizers Q_n converge weakly to an optimal quantizer for F. This generalizes the analysis of [2,3] to other algorithms besides the extension of Lloyd's Method I. Instead of assuming the training set to consist of independent samples, we may make an ergodic (or block ergodic) assumption. This seems to be a useful assumption regarding information sources. In the development, the Strong Law of Large Numbers can be replaced by an ergodic theorem [10] and all of the conclusions reached above will remain valid.

For the rest of the paper, we will restrict our attention to distributions having a density, which we denote by f. Also, except for a portion of the last example, we will specialize to r-th power distortions, which have been widely used and studied. In this case, a natural procedure would be to use some density estimator \hat{f}_n based on a training sample X_1, X_2, \ldots in the quantization algorithm. Then (3) becomes

$$\lim_{n \to \infty} \int ||x-y||^r \hat{f}_n(x)dx = \int ||x-y||^r f(x)dx$$

(4)

for almost all training sequences; for each $y \in \mathbb{R}^k$. This equation says that if \hat{f}_n and f are to behave in almost the same manner using r-th power quantizers, then they should have nearly the same r-th moments about arbitrary points y. Viewed differently, the quantity

$$\int ||x-y||^r \hat{f}_n(x)dx$$

is an estimator of the r-th moment about y of the density f. Theorem 1 requires this estimator to be strongly consistent, i.e., to converge almost surely to the true moment of f. In addition, of course, we want the distribution associated with \hat{f}_n to converge weakly to the distribution of f. This is satisfied if we have

$$\lim_{n \to \infty} \hat{f}_n(x) = f(x)$$

(5)

for almost all x; for almost all training sequences. The discussion thus far can be summarized by saying that an estimator \hat{f}_n based on samples can be used in a quantizer design algorithm in place of f if it satisfies the strong consistency conditions (4) and (5). The examples below illustrate this point.

Normal densities. Consider that the density f to be quantized is univariate normal with unknown mean μ and variance $\sigma^2 > 0$. Let $N(x)$ denote the standard normal density. Then we may write $f(x) = N((x-\mu)/\sigma)/\sigma$. Let X_1, X_2, \ldots be independent, identically distributed samples from f. Strongly consistent estimates of the unknown parameters μ and σ^2 are, respectively,
the sample mean and variance, \(\hat{\mu}_n \) and \(\hat{\sigma}^2_n \). Let \(\hat{f}_n \) be a normal density with these parameters. This has the strong consistency property (5). Next we will show (4). By a change of variable
\[
\int |x-y|^r \hat{f}_n(x) \, dx = \int |\hat{\mu}_n + \hat{\sigma}^2_n - y|^r \, N(x) \, dx.
\]
Upon applying the \(cr \) inequality [11, p.157] we have
\[
|\hat{\mu}_n + \hat{\sigma}^2_n - y|^r \leq c_r |\hat{\sigma}^2_n|^r |x|^r + c_r |\hat{\mu}_n - y|^r.
\]
By the strong consistency of the estimators,
\[
l_\infty \int (c_r |\hat{\sigma}^2_n|^r |x|^r + c_r |\hat{\mu}_n - y|^r) \, N(x) \, dx = \int (c_r |\sigma|^r |x|^r + c_r |\mu - y|^r) \, N(x) \, dx \quad \text{wp} 1.
\]
Thus (4) follows upon invoking a generalized Dominated Convergence Theorem [12, p.89].

The family of normal densities in this example can be replaced with any class of almost everywhere continuous densities parametrized by location and/or scale parameters. We may contemplate other instances in which the unknown parameter is neither a location nor scale parameter, but where the above analysis can be useful. For instance, the exponent \(p \) in the generalized Gaussian density \(f(x) = K_p \exp(-\gamma |x|^p) \) can be varied to fit many histograms.

In some situations it might be more appropriate to use a nonparametric density estimator. A popular type of estimator is the kernel density estimator introduced by Parzen [13] for univariate densities and generalized to multivariate densities by later authors: \(f_n(x) = n^{-1} \sum_{i=1}^{n} h_n^{-k} K((x-x_i)/h_n) \). The kernel \(K(x) \) is a probability density function on \(\mathbb{R}^k \) and \(\{h_n\} \) is a sequence of numbers decreasing to zero. Nadaraya [14] shows for the univariate case that if
\[
f(x) \text{ is a uniformly continuous density,}
K(x) \text{ has bounded variation, and}
\sum_{n=1}^{\infty} \exp(-\gamma n h_n^2) \text{ converges for every } \gamma > 0,
\]
then \(\hat{f}_n(x) \rightarrow f(x) \) uniformly with probability one. The extensions of the result to several dimensions use slightly different sets of assumptions. We give the result of Moore and Yackel [15] as a typical example. If
\[
f(x) \text{ is a uniformly continuous density on } \mathbb{R}^k,
K(x) \text{ is a bounded density on } \mathbb{R}^k,
K(x) \text{ has bounded variation, and}
n h_n^2 / \log n \rightarrow a \text{ as } n \rightarrow \infty,
\]
then \(\hat{f}_n(x) \rightarrow f(x) \) uniformly with probability one.

Assuming that (6) or (7) holds, the distribution of \(\hat{f}_n \) converges setwise to that of \(f \). In addition, \(K \) and \(\{h_n\} \) should be chosen appropriately so that (4) is satisfied. Two examples are given below. The first is for scalar quantization and the second for vector quantization.

Compact support. Assume that the unknown density \(f \) has compact support (which we may take without loss of generality to be contained in
[-1,1]) and is uniformly continuous on the real line. We wish to quantize this optimally using a cost function \(C_0 \) which is nonnegative, nondecreasing and lower semicontinuous, so we also assume that \(\int C_0(|x-y|) K(x) \, dx < \infty \) for all \(y \). For convenience we take the kernel to be symmetric and unimodal, so it decreases away from the origin. Consider

\[
\int_{|x| > a} C_0(|x-y|) \hat{f}_n(x) \, dx \leq 2 \int_{x > a} C_0(|x-y|) \frac{1}{h_n} K\left(\frac{x-1}{h_n} \right) \, dx \quad \text{wp1.}
\]

After a change of variable and simplification, we have

\[
\int_{|x| > a} C_0(|x-y|) \hat{f}_n(x) \, dx \leq 2 \int_{x > a/h_1} C_0(|h_1 x + 1-y|) K(x) \, dx \quad \text{wp1.}
\]

It follows that \(C_0(|x-y|) \) is uniformly integrable with respect to \(\{ \hat{f}_n(x) \} \), wp1. Therefore the kernel estimator is a viable basis for designing a scalar quantizer for a density with compact support.

Noncompact support. We can extend the previous analysis to multivariate densities with unbounded support if we restrict attention to \(r \)-th power quantizers. A bounded continuous density \(f(x) \) whose tails go to 0 as \(||x|| \to \infty \) is uniformly continuous, so none of the common densities are excluded by the assumption (7). Let the cost function be \(C_0(t) = t^r \) where temporarily \(r = 2p \) is an even integer. We will also make the natural assumptions that \(||x|| \) has finite \((2p) \)-th moments with respect to both densities \(f \) and \(K \). Our immediate goal is to show (4) for \(r = 2p \). By the \(c_r \)-inequality [11, p.157] we have

\[
||x-y||^{2p} \hat{f}_n(x) \leq c_p \sum_{j=1}^k n^{-1} \sum_{i=1}^n (x(j)-y(j))^{2p} K\left(\frac{x-x_i}{h_n} \right) h_n^{-k}, \quad (8)
\]

where the superscript denotes the \(j \)-th component of the \(k \)-dimensional vector. Note that the right-hand side converges pointwise as \(n \to \infty \) to

\[
c_p \sum_{j=1}^k (x(j)-y(j))^{2p} f(x).
\]

If the right-hand side of (8) were integrated, we get \(k \) terms, a typical one of which looks like the following if we ignore the constant \(c_p \):

\[
m_{j,n} = \frac{1}{n} \sum_{i=1}^n \left[h_n x(j) + x(j) - y(j) \right]^{2p} K(x) \, dx.
\]

We can use the binomial theorem to expand the last integrand. After rearranging the sums we get

\[
m_{j,n} = \frac{1}{n} \sum_{i=1}^n \left(x(j) - y(j) \right)^{2p} + \sum_{\ell=0}^{2p-1} \binom{2p}{\ell} h_n^{2p-\ell} \cdot \left\{ \frac{1}{n} \sum_{i=1}^n (x(j)-y(j))^\ell \int_{\mathbb{R}^k} [x(j)]^{2p-\ell} K(x) \, dx \right\}.
\]

The terms in the summation from \(\ell = 0 \) to \(\ell = 2p-1 \) are all multiplied by a power of \(h_n \), which decreases to 0, so that in the limit, the second group of terms above is zero. Using the Strong Law of Large Numbers on the first term gives

\[
\lim_{n \to \infty} m_{j,n} = \int_{\mathbb{R}^k} (x(j)-y(j))^{2p} f(x) \, dx \quad \text{wp1.}
\]
This is true for all \(j \) in (8). Therefore
\[
\lim_{n \to \infty} \int c_p \sum_{j=1}^{k} (x(j)-y(j))^{2p} \hat{f}_n(x)dx = \int c_p \sum_{j=1}^{k} (x(j)-y(j))^{2p} f(x)dx \quad \text{wp1.}
\]

Since \(\|x-y\|^{2p} \hat{f}_n(x) \) converges to \(\|x-y\|^{2p} f(x) \) wp1, we may use a generalization of the Dominated Convergence Theorem [12, p.89] to conclude that (4) holds for \(r = 2p \). Therefore we have uniform integrability for the cost function with \(r \) an even integer. In general, for any positive \(r \), we can let \(2p \) be the smallest even integer for which \(r \leq 2p \). Then the above implies that
\[
\lim_{n \to \infty} \int \|x-y\|^r \hat{f}_n(x)dx = \int \|x-y\|^r f(x)dx \quad \text{wp1.}
\]

Thus the kernel estimator \(\hat{f}_n \) can be used to design a quantizer for \(f \).

Another extension of the analysis is possible. Consider a cost function \(C_0(t) \) which grows polynomially fast, i.e., there exist \(\alpha, \beta \) and \(r \) so that
\[
0 \leq C_0(t) \leq \alpha t^r + \beta.
\]

Since
\[
\lim_{n \to \infty} C_0(\|x-y\|) \hat{f}_n(x) = C_0(\|x-y\|) f(x) \quad \text{wp1,}
\]
(9) and (10) imply, through the generalization of the Dominated Convergence Theorem [12, p.89], that
\[
\lim_{n \to \infty} \int C_0(\|x-y\|) \hat{f}_n(x)dx = \int C_0(\|x-y\|) f(x)dx \quad \text{wp1.}
\]

So if \(C_0 \) is nondecreasing and lower semicontinuous, then Theorem 1 also applies, and \(\hat{f}_n \) can be used to design a quantizer with the cost function \(C_0 \). Eq. (10) is equivalent to having a \(\lambda > 0 \) so that
\[
C_0(2t) \leq \lambda C_0(t) \quad \text{for all } t.
\]

This is a useful form for a cost function because (11) and \(\int C_0(\|x\|)dF < \infty \) imply that \(\int C_0(\|x-y\|)dF < \infty \) for all vectors \(y \).

As an application of this example, consider Max's algorithm [4] (also called Lloyd's Method II [1] or the Lloyd-Max algorithm). Some aspects of this algorithm were mentioned earlier, and we noted that as it has been described in the literature, the algorithm requires the existence of a known density function. It does not seem to be readily adapted for quantizing an empirical distribution function. However, with the approach outlined in this paper, it is possible to use density estimates as the input to Max's algorithm and get strongly consistent estimates of the optimal output levels and breakpoints. Thus the algorithm can be (indirectly) driven by a training sequence of independent observations.

APPENDIX

In this appendix we show that (3) implies (2). Eq. (3) says that for a given \(y \in \mathbb{R}^k \), there is a set \(\Lambda(y) \) of sample sequences \((X_1, X_2, \ldots) \) having probability one for which the integrals converge. Since \(\mathbb{R}^k \) is separable,
it is possible to find a dense and countable set \(\{y_j\} \) for which this convergence holds with probability one. In fact, for any countable subset of \(\mathbb{R}^k \),

\[
\Lambda = \bigcap_{j=1}^{\infty} A(y_j)
\]

is a set of probability one. Now, for a given \(y \) in (2), we may find a finite subset \(A \) of the \(y_j \)'s so that

\[
C_0(||x-y||) \leq \sum_{y_j \in A} C_0(||x-y_j||).
\]

This involves constructing a cube around \(y \) and picking the \(y_j \) outside the cube so that \(||x-y|| \leq ||x-y_j|| \) for at least one \(y_j \). Then

\[
\sup_n \int_{||x|| > a} C_0(||x-y||) d\hat{F}_n(x) \\
\leq \sum_{y_j \in A} \sup_n \int_{||x|| > a} C_0(||x-y_j||) d\hat{F}_n(x).
\]

For each \(y_j \) and each sample sequence in \(\Lambda \), the right-hand side can be made arbitrarily small by appropriately choosing \(a \). Therefore \(C_0(||x-y||) \) is uniformly integrable for every \(y \), with respect to every \(\{\hat{F}_n\} \) arising from the set \(\Lambda \). This is equivalent to (2). Therefore, (3) implies (2).

ACKNOWLEDGEMENT

This research was supported by the Air Force Office of Scientific Research under Grant AFOSR-81-0047.

REFERENCES

