THOUGHTS ON EXPERTISE

Robert Glaser
Learning Research and Development Center
University of Pittsburgh

May 1985
Technical Report No. 8

This research was conducted under Contract Numbers N00014-78-C-0375, NR 157-421, and N00014-79-C-0215, NR 667-430 with the Personnel and Training Research Programs of the Office of Naval Research. Additional support was provided by the Learning Research and Development Center with funds from the National Institute of Education (NIE), United States Department of Education.

Reproduction in whole or part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
Thoughts on Expertise

Robert Glaser

Interim FROM 10/1/80 TO 5/85

1 May 1985

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Research on tasks in knowledge-rich domains including developmental studies, work in artificial intelligence, studies of expert/novice problem solving, and information-processing analyses of aptitude test tasks have provided increased understanding of the nature of expertise. Particularly evident is the finding that structures of organized knowledge enable the cognitive processes characteristic of high levels of competence. This paper briefly reviews this research and lists a set of propositions that summarize conclusions from research as well as broader inferences and speculations.
Thoughts on Expertise

Robert Glaser
Learning Research and Development Center
University of Pittsburgh

A version of a talk given at the Social Science Research Council conference on "The Study of Expertise as a Model for Life-Span Cognitive Development." The research reported in the paper was supported with funds from the Office of Naval Research, Personnel and Training Research Programs, Psychological Sciences Division under contract numbers N00014-78-C-0375, NR 157-421; N00014-79-C-0215, NR 147-430/12-19-80; and N00014-79-C-0215, NR 607-430.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Remarks</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Developmental Studies</td>
<td>2</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td>Expert/Novice Problem Solving</td>
<td>4</td>
</tr>
<tr>
<td>Aptitude Test Performance</td>
<td>7</td>
</tr>
<tr>
<td>Schemata and Theories</td>
<td>8</td>
</tr>
<tr>
<td>Self-Regulation and General Skills</td>
<td>9</td>
</tr>
<tr>
<td>Generalizations</td>
<td>10</td>
</tr>
<tr>
<td>A Pride of Propositions</td>
<td>12</td>
</tr>
<tr>
<td>Final Remarks</td>
<td>14</td>
</tr>
</tbody>
</table>
General Remarks

Introduction

Information-processing studies of problem solving in the 1960s and 1970s accepted the tradition of early experimental psychology in concentrating primarily on the study of "knowledge-lean" tasks in which competence can usually be acquired over short periods of learning and experience. Studies of these tasks illuminated the basic information-processing capabilities people employ when they behave more and less intelligently in situations where they lack any specialized knowledge and skill. The pioneering work of Newell and Simon and others richly described general heuristic processes (such as means-end analysis, generate and test, and subgoal decomposition), but provided limited insight about the learning and thinking that require a rich structure of domain-specific knowledge.

In contrast to this, in more recent years, work has examined knowledge-rich tasks that require hundreds and thousands of hours of learning and experience in an area of study. Studies of expertise have attempted to sharpen this focus by describing contrasts between the performance of novices and experts. And the novices in these studies, e.g., intern radiologists, electronics technicians, etc., have engaged in learning over much longer periods than are required for short experimental tasks.

Investigations of problem solving in knowledge-rich domains show strong interactions between structures of knowledge and cognitive processes. The results force us to think about high levels of competence in terms of the interplay between knowledge structure and processing abilities. The data illuminate a critical difference between individuals who display more and less ability in particular domains of knowledge and skill, namely,
the possession of rapid access to and efficient utilization of an organized body of conceptual and procedural knowledge.

Data and theory in developmental psychology, studies of expert/novice problem solving, and process analyses of high and low scorers on intelligence and aptitude test tasks show that a major component of expertise is seen to be the possession of this accessible and usable knowledge.

Developmental Studies

As a warming up exercise (and to introduce a point of view), let me briefly mention some developmental studies with children. Chi, in several studies (Chi, 1978; Chi & Koeske, 1983), examined recall in children. She contrasted high- and low-knowledge children in chess skill and also children with high and low knowledge of dinosaur categories and features. Her results replicated in significant ways the early chess studies of DeGroot (1965), and of Chase and Simon (1973a, 1973b); high-knowledge subjects showed better memory and encoding performance than low-knowledge individuals. And this superiority was attributed to the influence of knowledge in content areas rather than to the exercise of memory capabilities as such. Changes in the knowledge base appear to enable sophisticated cognitive performance.

Susan Carey's studies of animistic thinking in young children (in press), trace the emergence of a child's concept of "alive." She documents a change, something like an expert/novice shift, from a knowledge organization centering around human characteristics (a novice point of view) to a knowledge organization centering around the biological functions of living things. Carey makes the point that what can be interpreted as abstract pervasive changes in a child's reasoning and learning abilities come about as knowledge is gained in a given domain.
The acquisition of content knowledge as a factor in acquiring increasingly sophisticated problem-solving abilities is pointed to in Siegler and Richards's "rule assessment" studies (1982). They conclude that "knowledge of specific content domains is a crucial dimension of development in its own right and that changes in such knowledge may underlie other changes previously attributed to the growth of capacities and strategies" (p. 930).

Artificial Intelligence

A focus on the structure of knowledge is also apparent in AI systems. In contrast to earlier emphases on general problem-solving techniques to guide a search for any problem—a power-based strategy—Minsky and Papert (1974) emphasize the role of a knowledge-base emphasis in achieving intelligent thinking. They write:

The *Power* strategy seeks a generalized increase in computational power. . . . It may look toward extensions of deductive generality, or information retrieval, or search algorithms. . . . In each case the improvement sought is . . . independent of the particular data base.

The *Knowledge* strategy sees progress as coming from better ways to express, recognize, and use diverse and particular forms of knowledge. . . . It is by no means obvious that very smart people are that way directly because of the superior power of their general methods—as compared with average people. . . . A very intelligent person might be that way because of specific local features of his knowledge—organizing knowledge rather than because of global qualities of his "thinking." (p. 59)
Expert/Novice Problem Solving

The work on problem solving in adult experts and novices has shown fairly consistent findings in quite a variety of domains—chess play, physics problem solving, the performance of architects and electronic technicians, and skilled radiologists interpreting x-rays. (I mention general conclusions only here but will provide more specific information in a final list of propositions about expertise.) This work has shown that relations between the structure of a knowledge base and problem-solving processes are mediated through the quality of representation of the problem. This problem representation is constructed by the solver on the basis of domain-related knowledge and the organization of this knowledge. The nature of this organization determines the quality, completeness, and coherence of the internal representation, which in turn determines the efficiency of further thinking.

Expert/novice research suggests that novices' representations are organized around the literal objects and events given explicitly in a problem statement. Experts' knowledge, on the other hand, is organized around inferences about principles and abstractions that subsume these factors. These principles are not apparent in the statement or the surface presentation of the problem. For example, in our studies with mechanics problems, novices classify problems on a surface level, according to the physical properties of a situation—a spring problem or an inclined plane problem. Experts categorize problems at a higher level, in terms of applicable physics principles—a Newton's second law problem, a conservation of energy problem.

In addition, experts know about the application of their knowledge. Their declarative information is tightly bound to conditions and procedures for its use. An intermediate
novice may have sufficient knowledge about a problem situation, but lack knowledge of conditions of applicability of this knowledge.

Consider a somewhat technical example. From protocols of novices and experts in solving elementary physics problems, we attempted to define the structure of their knowledge in the form of node-link networks (Chi, Glaser, & Rees, 1982). The nodes are key terms and physics concepts mentioned by the subjects. The links are unlabeled relations that join the concepts mentioned contiguously in the solver's protocol. The network of a novice's (H.P.) and an expert's (M.G.) elaboration of the concepts of an "inclined plane" problem are shown in Figure 1 and 2 respectively. We can view each of these concepts as representing a potential schema; the terms and concepts mentioned in the protocol can be thought of as the variables (slots) of the schema. For example, in Novice H.P.'s protocol, his inclined plane schema contains numerous variables that can be instantiated, including the angle at which the plane is inclined with respect to the horizontal, whether a block is resting on the plane, and the mass and height of the block. Other variables mentioned by the novice include the surface property of the plane, whether or not it has friction, and, if it does, the coefficients of static and kinetic friction. The novice also discusses possible forces that may act on the block, for example, the drag of a pulley. He also discusses the pertinence of Conservation of Energy, but this was not elicited as a part of a solution procedure applicable to a configuration involving an inclined plane, as is the case with the expert. Hence, in general, one could say that the inclined plane schema that the novice possesses is quite rich. He knows precisely what variables ought to be specified, and he also has default values for some of them. For example, if friction was not mentioned, he probably knows that he should ignore friction. Hence, with a simple specification that the problem is one
involving an inclined plane, he can deduce fairly accurately what the key components and entities are (i.e., friction) that such a problem would entail.

However, the casual reference to the underlying physics principle, Conservation of Energy, given by the novice contrasts markedly with the expert’s protocol (Fig. 2). She immediately makes a call to two principles that take the status of procedures, the Conservation of Energy Principle and the Force Law. (In Greeno & Riley’s, 1981, terminology, they would be considered calls to action schemata.) We characterize them as procedures (thus differentiating them from the way the novice mentioned a principle) because the expert, after mentioning the Force Law, continues to elaborate the condition of applicability of the procedure and then provides formulas for two of the conditions (enclosed in dashed rectangles in Fig. 2). After her elaboration of the principles and the conditions of applicability of one principle to inclined plane problems (depicted in the top half of Fig. 2), Expert M.G. continued her protocol with descriptions of the structural or surface features of inclined plane problems, much like the descriptions provided by Novice H.P. Hence, it seems that the knowledge common to subjects of both skill groups pertains to the physical configuration and its properties, but that the expert has additional knowledge relevant to the solution procedures based on major physics laws.

Another way of viewing the difference between the novice’s and expert’s elaborations of inclined plane is to look at Rumelhart’s description (1981) of schemata of inactive objects. Here an inclined plane is seen by the novice as an inactive object, so that it evokes not actions or event sequences but spatial relationships and descriptions of the configuration and its properties. Experts, on the other hand, view an inclined plane in
the context of potential solution procedures, that is not as an object but more as an entity that may serve a particular function.

As in the developmental studies, the problem-solving "difficulties" of novices can be attributed largely to the nature of their knowledge bases, and much less to the limitations of their processing capabilities, such as their inability to use general problem-solving heuristics. Novices do show effective use of heuristics; the limitations of their thinking derive from their inability to infer further knowledge from the literal cues in a problem situation. These inferences are necessarily generated in the context of a knowledge structure that experts have acquired.

In general, study of problem solving by highly competent people in rich knowledge domains provides a glimpse of the power of human thinking to use a large knowledge system in an efficient and automatic manner—particularly in ways that minimize reliance on the search heuristics identified in studies of knowledge-lean problems. Thus, a significant focus for understanding expertise is identifying the characteristics and influence of organized knowledge structures that are acquired over long periods of time.

Aptitude Test Performance

Consider another converging area: process analyses of aptitude and intelligence test tasks performed by high- and low-scoring individuals. The evidence in this area comes from studies carried out by Earl Hunt and his colleagues (Hunt, 1978; Hunt, Frost, & Lunneborg, 1973), Robert Sternberg (1977b), and Pellegrino and Glaser (1982). My interpretation of several components of performance that differentiate high- and low-scoring individuals is the following: One component appears to involve rapid access to and management of working memory. The next two components appear to involve
specific knowledge. The first is conceptual knowledge of the item content. Low-scoring individuals with less available knowledge encode at surface feature levels rather than at levels of generalizable concepts; this limits their inferential ability. The second component is knowledge of the solution procedures required for solving a particular task form, such as analogical reasoning or induction items. Low-scoring individuals display a weak knowledge of procedural constraints that results in procedural bugs, and an inability to recover the goals of an analogy problem when they need to pursue subgoals of the task. This weak knowledge of procedural constraints sometimes allows them to turn a problem into an easier one to solve, such as a word association task. Such acquired knowledge, then, is suggested as a significant aspect of skillful aptitude test performance.

Schemata and Theories

The organizations of knowledge that are developed by experts can be thought of in terms of schemata or theories of knowledge. I define a schema here as a modifiable information structure that represents generic structures of concepts stored in memory. Schemata represent knowledge that we experience, i.e., interrelationships between objects, situations and events that occur. In this sense, schemata are prototypes in memory of frequently experienced situations that individuals use to integrate and interpret instances of related knowledge. Schema theory assumes that there are schemata for recurrent situations, and that these schemata enable people to construct interpretations, representations, and perceptions of situations.

If we think of a schema as a theory or internal model that is used, matched, and tested by individuals to instantiate the situations they encounter, like a scientific theory,
It is a source of representation and prediction. It enables individuals to impute meaning
to a situation and to make inferences from information. As is the case for a scientific
type, if it fails to account for certain aspects of one’s observations, it leads to learning
that can modify or replace the theory. As a representation of a problem situation, it is
accompanied by rules for solution of the problem.

Self-Regulation and General Skills

To temper my emphasis on structures of knowledge, I now point out that experts in
various domains show self-regulatory or metacognitive capabilities that are not present in
less mature or experienced learners. These abilities include knowing what one knows
and doesn’t know, planning ahead, efficiently apportioning one’s time and attentional
resources, and monitoring and editing one’s efforts to solve a problem. To a large
extent, I suspect that these self-regulatory activities are specific to a domain of
knowledge in experts. Where they appear to be generalized competencies, i.e., in
“generally intelligent” individuals, my hypothesis is that they become abstracted
strategies after individuals use them in several fields of knowledge.

Perhaps widely competent children and adults, because of intensive exposure to
different domains, employ skills that evolve as generalized cognitive processes. As
general methods, however, these may be a small part of the intelligent performance
shown by experts in specific fields of knowledge where they rapidly access acquired
schemata and procedures. General processes may be important when an individual is
confronted with problems in unfamiliar areas. However, future research may show that
generalizable and transferable expertise lies in an ability to use familiar domains of
knowledge for analogical and metaphorical thinking about new domains.
Generalisations

(1). There seems to be a continuous development of competence, as experience in a field accumulates. Eventual declines in competence may be the result of factors in the conditions of experience. Competence may be limited by the environment in which it is exercised. People may attain a level of competence only insofar as it is necessary to carry out the activities or to solve problems at the given level of complexity presented. Situations that extend competence may be less forthcoming as experts settle into their working situations.

(2). Expertise seems to be very specific. Expertise in one domain is no guarantee of expertise in other areas. It may be, however, that certain task domains are more generalizable than others, so that adults who are experts in applied mathematics or aesthetic design, or children when they learn measurement and number concepts, have forms of transferable expertise.

(3). Experts develop the ability to perceive large meaningful patterns. These patterns are seen in the course of their everyday activities. This pattern recognition occurs so rapidly that they take on the character of the "intuitions." In contrast, the patterns novices recognize are smaller, less articulated, more literal and surface oriented, and much less related to inferences and abstracted principles. The extraordinary representational ability of experts appears to depend on the nature and organization of knowledge existing in memory. As I indicated earlier, the fact that an expert has a more coherent, complete, functional and principled representation of knowledge than a novice necessarily implies an initial understanding of a problem that leads more easily to correct procedures and solutions.
The knowledge of experts is highly procedural. Concepts are bound to procedures for their application, and to conditions under which these procedures are useful. The functional knowledge of experts is related strongly to their knowledge of the goal structure of a problem. Experts and novices may be equally competent at recalling small specific items of domain-related information. But high-knowledge individuals are much better at relating these events in cause-and-effect sequences that relate to the goal and subgoals of problem solution.

These components of expertise enable fast-access pattern recognition and representational capability that facilitate problem perception in a way that greatly reduces the role of memory search and general processing. Novices, on the other hand, display a good deal of search and processing of a general nature. Their perceptions are highly literal and qualitatively different than representations of experts.

This picture of expertise is probably biased by the highly structured domains in which it has been studied, and the demands of situations in which cognitive expertise is acquired. How do experts solve problems in "ill-structured" domains? How do different experiences lead to different forms of expertise? Hatano (Hatano & Inagaki, 1983) distinguishes between routine (or conventional) expertise and adaptive expertise. Routine experts are outstanding in terms of speed, accuracy, and automaticity of performance, and construct mental models convenient for performing their tasks, but they lack adaptability to new problems. Probably, repeated application of a procedure with little variation leads to routine expertise. Adaptive expertise requires variation and is encouraged by playful situations and in cultures where understanding is valued along with efficient performance. Hatano speculates about how expertise might develop in an efficiency-oriented as compared with an understanding-oriented environment.
I sum up my thoughts about expertise in a set of propositions. These statements represent conclusions from research and occasional broader inferences and speculations.

A Pride of Propositions

1. Expertise is developed over hundreds and thousands of hours of learning and experience, and continues to develop. Studies have been carried on in many domains of work: chessmasters, scientists solving problems, radiologists, skilled technicians, abacus champions, people highly competent in sports, architecture planners, livestock judges, and dairy workers. (See Chi et al., 1982; and Chi, Glaser, & Farr, in press.)

2. In the course of acquiring expertise, plateaus and non-monotonities of development are observed which appear to indicate shifts in understanding and stabilizations of automaticity. Karmiloff-Smith (1984), Strauss and Stavy (1982), and Lesgold (1984) have suggested that novices and experts perform better than intermediates on problems that can be solved by surface-level representations.

3. Experts and novices work with similar capacity for processing; the outstanding performance of experts derives from how their knowledge is structured for processing.

4. Expert representations of problems and situations are qualitatively different than novice representations. In the course of developing expertise, problem representation changes from surface representations to inferred problem descriptions, to principled (and proceduralized) categorizations.

5. Expert representations (and schema instantiations) are like fast-access pattern recognitions that reduce processing load and the need for general search heuristics.

6. The representations of experts have actionable meaning; the knowledge of an expert is highly proceduralized and bound to conditions of the applicability of their knowledge.

7. In some domains, experts are "opportunistic planners"; new problem features result in changed problem representation; they show fast access to multiple possible interpretations; novices are less flexible. (E.g., x-ray and medical diagnosis, Lesgold, 1981).

8. Experts can be disarmed by random (or meaningless) patterns and lose their great perceptual ability. (E.g., with a scrambled chessboard experts and novices do equally poorly.)
9. Experts are schema specialized and these schemata drive their performance. (Experts impose a structure on a noisy x-ray; novices are misled by this noise.)

10. Experts are goal driven: given a complex goal, they will represent the problem accordingly; given simple goals, they will think only as deeply as necessary.

11. Experts display specific domain intelligence, not necessarily general intelligence.

12. Novices display good use of general heuristic problem-solving processes (of the Newell and Simon variety, e.g., generate and test, means-end analysis, subgoal decomposition); experts use them primarily in unfamiliar situations.

13. Experts may be slower than novices in initial problem encoding but are overall faster problem solvers. (E.g., analogical reasoning test items, Sternberg, 1977a.)

14. The development of expertise is subject to task demands and the "social structure" of the job situation; the cognitive models experts acquire are constrained by task requirements. (E.g., Scribner, 1984a, 1984b.)

15. Expertise in some knowledge domains may be more generalizable (broadly applicable) than other domains. (E.g., measurement concepts, number concepts, arithmetic problem-solving schema, Carey, in press.)

16. Experts develop automaticity (unconscious processing) particularly of "basic operations" so that working memory is available for necessary conscious processing. (E.g., efficient encoding processes in expert reading comprehenders, Perfetti & Lesgold, 1979.)

17. The experts' understanding may occur after extended practice with procedural skills. (E.g., Karmiloff-Smith, 1984; Strauss & Stavy, 1982.)

18. In solving ill-structured problems, experts employ relatively general methods of problem decomposition, subgoal conversion, and single factor analysis; their thinking is less immediately driven by principles and procedural aspects of their specific knowledge structures.

19. In ill-structured domains, experts work from their memory of an issue's history to represent problems and devise arguments for alternative solutions. (E.g., see analysis by political scientists, Voss, Greene, Post, and Penner, 1983.)
20. Experts develop skilled self-regulatory processes such as solution monitoring, allocation of attention, and sensitivity to informational feedback. (See Brown, 1978; and Gitomer & Glaser, in press.)

21. Expertise can be "routine" or "adaptive and reflective," depending upon the variety of experience and the culture in which it develops. (E.g., Hatano & Inagaki, 1983.)

22. Expert knowledge is not inert; it is highly proceduralized, conditionalized, and compiled. (Anderson, 1983.)

23. Super experts may develop generalizable abilities through the use of mapping and analogy from their own domain to others. (Gentner & Gentner, 1983.)

24. General thinking and problem-solving skills may develop in the course of shifting between many domains, so that the cognitive processes involved become decontextualized. (Glaser, 1984.)

Final Remarks

Increased understanding of the nature of expertise challenges us to inquire how it is learned. It seems evident that expertise is acquired when people continually try to confront new situations in terms of what they know. Increasing ability to solve problems and generate new information is fostered by available knowledge that can be modified and restructured. Thus, when teaching beginners we must build from initial knowledge structures. This might be accomplished by assessing and using relevant prior knowledge, or by providing obvious organizational schemes or temporary models as scaffolds for new information. These temporary "pedagogical theories" are regularly devised by ingenious instructors and could be incorporated more systematically into instruction. Such structures, when they are interrogated, instantiated or falsified by novices in the course of learning and experience lead to organizations of knowledge that are the basis for the more complete schemata of experts. Acquiring expertise is to be seen as the successive development of procedurally oriented knowledge structures that facilitate the processes of expertise.
References

Figure 1. Network representation of Novice H.P.’s schema of an inclined plane.
Figure 2. Network representation of Expert M.G.'s schema of an inclined plane.
Robert Glaser, "Thoughts on Expertise"
Robert Glaser, "Thoughts on Expertise"

Dr. Daniel Kahneman
The University of British Columbia
Department of Psychology
#154-2053 Main Mall
Vancouver, British Columbia
CANADA V6T 1Y7

Dr. Milton S. Katz
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Norman J. Kerr
Chief of Naval Education
and Training
Code 0042
Naval Air Station
Pensacola, FL 32508

Dr. David Kieras
University of Michigan
Technical Communication
College of Engineering
1223 E. Engineering Building
Ann Arbor, MI 48109

Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

Dr. David Klahr
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Mazie Knerr
Program Manager
Training Research Division
HumRRO
1100 S. Washington
Alexandria, VA 22314

Dr. Janet L. Kolodner
Georgia Institute of Technology
School of Information
& Computer Science
Atlanta, GA 30332

Dr. Stephen Kosslyn
Harvard University
1236 William James Hall
33 Kirkland St.
Cambridge, MA 02138

Dr. Pat Lengley
University of California
Department of Information
and Computer Science
Irvine, CA 92717

Dr. Marcy Lansman
University of North Carolina
The L. L. Thurstone Lab.
Davie Hall 013A
Chapel Hill, NC 27514

Dr. Jill Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Robert Lawler
Information Sciences, FRL
GTE Laboratories, Inc.
40 Sylvan Road
Waltham, MA 02254

Dr. Alan M. Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Jim Levin
University of California
Laboratory for Comparative
Human Cognition
D003A
La Jolla, CA 92037

Dr. Clayton Lewis
University of Colorado
Department of Computer Science
Campus Box 430
Boulder, CO 80309

Dr. Don Lyon
P. O. Box 44
Higley, AZ 85236
Robert Glaser, "Thoughts on Expertise"

Dr. William L. Maloy (02)
Chief of Naval Education and Training
Naval Air Station
Pensacola, FL 32508

Dr. Sandra P. Marshall
Department of Psychology
University of California
Santa Barbara, CA 93106

Dr. Manton M. Matthews
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. Richard E. Mayer
Department of Psychology
University of California
Santa Barbara, CA 93106

Dr. Jay McClelland
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Arthur Melmed
724 Brown
U.S. Department of Education
Washington, DC 20208

Dr. Al Meyrowitz
Office of Naval Research
Code 433
800 N. Quincy
Arlington, VA 22217-5000

Dr. Andrew R. Molnar
Scientific and Engineering Personnel and Education
National Science Foundation
Washington, DC 20550

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152

Dr. Tom Moran
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

Headquarters, Marine Corps
Code MPI-20
Washington, DC 20380

Dr. Allen Munro
Behavioral Technology Laboratories
1845 Elena Ave.
Redondo Beach, CA 90277

Lt. Col. Jim Murphy
HQ, Marine Corps
Code MRRP
Washington, DC 20380

Director
Overseas Duty Support Program
Naval Military Personnel Command
N-62
Washington, DC 20370

Head, HRM Operations Branch
Naval Military Personnel Command
N-62F
Washington, DC 20370

Assistant for Evaluation, Analysis, and MIS
Naval Military Personnel Command
N-6C
Washington, DC 20370

Spec. Asst. for Research, Experimental & Academic Programs
Naval Technical Training Command (Code 016)
NAS Memphis (75)
Millington, TN 38054

Program Manager for Manpower, Personnel, and Training
NAVMAT 0722
Arlington, VA 22217-5000
<table>
<thead>
<tr>
<th>Title</th>
<th>Position</th>
<th>Office Address</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assistant for Long Range Requirements</td>
<td>CNO Executive Panel (NAVOP 00K)</td>
<td>2000 North Beauregard Street Alexandria, VA 22311</td>
<td></td>
</tr>
</tbody>
</table>
Robert Glaser, "Thoughts on Expertise"

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. David Rumelhart</td>
<td>Center for Human Information Processing, Univ. of California, La Jolla, CA 92093</td>
</tr>
<tr>
<td>Mr. Colin Sheppard</td>
<td>Applied Psychology Unit, Admiralty Marine Technology Est., Teddington, Middlesex, UNITED KINGDOM</td>
</tr>
<tr>
<td>Dr. Robert Sasmor</td>
<td>Army Research Institute, 5001 Eisenhower Avenue, Alexandria, VA 22333</td>
</tr>
<tr>
<td>Dr. Kazuo Shigemasu</td>
<td>7-9-24 Kugenuma-Kaigan, Fujusawa 251, JAPAN</td>
</tr>
<tr>
<td>Dr. Roger Schank</td>
<td>Yale University, Computer Science Department, P.O. Box 2158, New Haven, CT 06520</td>
</tr>
<tr>
<td>Dr. Ted Shortliffe</td>
<td>Computer Science Department, Stanford University, Stanford, CA 94305</td>
</tr>
<tr>
<td>Dr. Walter Schneider</td>
<td>University of Illinois, Psychology Department, 603 E. Daniel, Champaign, IL 61820</td>
</tr>
<tr>
<td>Dr. Lee Shulman</td>
<td>Stanford University, 1040 Cathcart Way, Stanford, CA 94305</td>
</tr>
<tr>
<td>Dr. Alan Schoenfeld</td>
<td>University of California, Department of Education, Berkeley, CA 94720</td>
</tr>
<tr>
<td>Dr. Robert S. Siegler</td>
<td>Carnegie-Mellon University, Department of Psychology, Schenley Park, Pittsburgh, PA 15213</td>
</tr>
<tr>
<td>Dr. Judah L. Schwartz</td>
<td>MIT, 20C-120, Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. Herbert A. Simon</td>
<td>Department of Psychology, Carnegie-Mellon University, Schenley Park, Pittsburgh, PA 15213</td>
</tr>
<tr>
<td>Dr. Marc Sebrechts</td>
<td>Wesleyan University, Middletown, CT 06475</td>
</tr>
<tr>
<td>Dr. Zita M Simutis, Chief</td>
<td>Instructional Technology Systems Area, ARI, 5001 Eisenhower Avenue, Alexandria, VA 22333</td>
</tr>
<tr>
<td>Dr. Judy Segal</td>
<td>NIE, 1200 19th Street N.W., Mail Stop 1806, Washington, DC 20208</td>
</tr>
<tr>
<td>Dr. H. Wallace Sinaiko</td>
<td>Manpower Research and Advisory Services, Smithsonian Institution, 801 North Pitt Street, Alexandria, VA 22314</td>
</tr>
<tr>
<td>Dr. Sylvia A. S. Shafto</td>
<td>National Institute of Education, 1200 19th Street, Mail Stop 1806, Washington, DC 20208</td>
</tr>
<tr>
<td>Dr. Edward E. Smith</td>
<td>Bolt Beranek & Newman, Inc., 50 Moulton Street, Cambridge, MA 02138</td>
</tr>
</tbody>
</table>
Robert Glaser, "Thoughts on Expertise"

Dr. Richard Snow
Liaison Scientist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Dr. Elliot Soloway
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

Dr. Kathryn T. Spoehr
Brown University
Psychology Department
Providence, RI 02912

James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Frederick Steinheiser
CIA-ORD
612 Ames
Washington, DC 20505

Dr. Robert Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St.
Cambridge, MA 02238

Dr. Paul J. Sticha
Senior Staff Scientist
Training Research Division
HumRRO
1100 S. Washington
Alexandria, VA 22314

Dr. Thomas Sticht
Navy Personnel R&D Center
San Diego, CA 92152

Dr. John Tangney
AFOSR/RL
Boiling AFB, DC 20332

Dr. Martin M. Taylor
DCIEM
Box 2000
Downsview, Ontario
CANADA

Dr. Perry W. Thorndyke
FMC Corporation
Central Engineering Labs
1185 Coleman Avenue, Box 580
Santa Clara, CA 95052

Dr. Martin A. Tolcott
Psychological Sciences Division
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

Dr. Douglas Towne
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

Dr. Amos Tversky
Stanford University
Dept. of Psychology
Stanford, CA 94305

Dr. James Tweeddale
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Paul Twohig
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Headquarters, U. S. Marine Corps
Code MPI-20
Washington, DC 20380

Dr. Kurt Van Lehn
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304
Robert Glaser, "Thoughts on Expertise"

Dr. Beth Warren
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Keith T. Wescourt
FMC Corporation
Central Engineering Labs
1185 Coleman Ave., Box 580
Santa Clara, CA 95052

Dr. Barbara White
Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Robert A. Wisher
U.S. Army Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152

Dr. Merlin C. Wittrock
Graduate School of Education
UCLA
Los Angeles, CA 90024

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Joe Yasatuke
AFHRL/LRT
Lowry AFB, CO 80230

Mr. Carl York
System Development Foundation
181 Lytton Avenue
Palo Alto, CA 94301

Dr. Joseph L. Young
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550