A Towed Instrument Vehicle for Deep Ocean Sampling

C. R. Rein, D. A. Wiesenburg, and D. M. Lavoie

A vehicle that can take instrumentation into the ocean while being towed by a surface craft has been built. The vehicle body is a flooded, 8-foot-long cylinder stabilized at the tail and depressed by a short wing. Most of the structural loads are borne by four full-length radius plates. These plates divide the cylindrical body lengthwise into four wet compartments that have quadrant cross sections. Each quadrant can hold instrument payloads as large as five and one-half inches in diameter. Each quadrant can be uncovered independently to service the payload. These features are improvements over previous designs for carrying an assortment of payloads. Construction cost was only $3200. Design criteria, details of the construction, and results of an initial tow test of the towed body are presented.
A Towed Instrument Vehicle for Deep Ocean Sampling

Final Report

Charles R. Rein
Ocean Technology Division
Ocean Acoustics and Technology Directorate

Denis A. Wiesenburg
Dennis M. Lavoie
Oceanography Division
Ocean Science Directorate

Approved for public release; distribution is unlimited.
Foreword

Studies of horizontal variability in the ocean require the capability to sample on much shorter length scales than can be accomplished with a series of vertical stations. A towed instrument package is needed to make those horizontal measurements. Thus, there is a recurring need in oceanography for towed vehicles to carry instrumentation below the ocean surface. Usually these vehicles have been designed to perform a specific task. The vehicle described here is the result of an effort to produce a towed vehicle design that can accommodate a wider variety and a greater quantity of instrumentation than can earlier designs, and is also simple to construct and maintain. The vehicle design presented here requires only commonly available materials and simple machining. The simplicity of the design allows for easy modification to satisfy the special requirements of many potential users.

R. P. Onorati, Captain, USN
Commanding Officer, NORDA
Executive summary

A vehicle that can take instrumentation into the ocean while being towed by a surface craft has been built. The vehicle body is a flooded, 8-foot-long cylinder stabilized at the tail and depressed by a short wing. Most of the structural loads are borne by four full-length radius plates. These plates divide the cylindrical body lengthwise into four wet compartments that have quadrant cross sections. Each quadrant can hold instrument payloads as large as 5½ inches in diameter. Each quadrant can be uncovered independently to service the payload. These features are improvements over previous designs for carrying an assortment of payloads. Construction cost was only $3200. Design criteria, details of the construction, and results of an initial tow test of the towed body are presented.
Acknowledgments

The authors wish to acknowledge Mr. David C. Young who assembled the towed vehicle from the component parts and provided useful suggestions during design modification. We also thank Mr. Patrick J. Setser, Dr. Norman L. Guinasso, and Dr. David R. Schink of Texas A&M University for providing details of the design and towing characteristics of the Texas A&M winged fish. This project was funded by the Naval Ocean Research and Development Activity under Program Element 61153N, Herbert Eppert, Jr., program manager.
Contents

Illustrations and tables iv

Introduction 1

Previous tow vehicles 1
 Batfish 1
 Fathom Oceanology oceanographic towed fish 2
 Texas A&M winged fish 2

TUPS fish design considerations 2

Tow test 5

Conclusions 5

References 6

Drawings 7
Illustrations and tables

Illustrations

Figure 1. Photograph of the assembled towed vehicle, supported on a wooden stand. 3

Figure 2. Rear view of the towed vehicle showing the quadrant cross sections formed by the radius plates. 4

Figure 3. Photograph of the nose and forward section with a skin panel removed to reveal the large holes in the radius plates, which allow communication between the longitudinal quadrants. 4

Figure 4. Schematic diagram of the tow test experimental configuration. 5

Table

Table 1. Tow test results with empty vehicle. 5
<table>
<thead>
<tr>
<th>Drawing Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>84-333-01-001</td>
<td>TUPS towed body envelope.</td>
<td>7</td>
</tr>
<tr>
<td>84-333-01-100</td>
<td>Nose subassembly.</td>
<td>9</td>
</tr>
<tr>
<td>84-333-01-101</td>
<td>End bracket, nose plate.</td>
<td>11</td>
</tr>
<tr>
<td>84-333-01-102</td>
<td>Nose.</td>
<td>13</td>
</tr>
<tr>
<td>84-333-01-200</td>
<td>Fuselage subassembly.</td>
<td>15</td>
</tr>
<tr>
<td>84-333-01-201</td>
<td>Radius plate.</td>
<td>17</td>
</tr>
<tr>
<td>84-333-01-202</td>
<td>Interior angle, exterior angle.</td>
<td>19</td>
</tr>
<tr>
<td>84-333-01-203</td>
<td>Skin.</td>
<td>21</td>
</tr>
<tr>
<td>84-333-01-300</td>
<td>Wing subassembly.</td>
<td>23</td>
</tr>
<tr>
<td>84-333-01-301</td>
<td>Wing.</td>
<td>25</td>
</tr>
<tr>
<td>84-333-01-302</td>
<td>Wing mounts, anchor tie.</td>
<td>27</td>
</tr>
<tr>
<td>84-333-01-303</td>
<td>Wing and stabilizer anchors, wing and stabilizer hangers.</td>
<td>29</td>
</tr>
<tr>
<td>84-333-01-400</td>
<td>Tail subassembly.</td>
<td>31</td>
</tr>
<tr>
<td>84-333-01-401</td>
<td>Vertical fin.</td>
<td>33</td>
</tr>
<tr>
<td>84-333-01-402</td>
<td>Stabilizer.</td>
<td>35</td>
</tr>
<tr>
<td>84-333-01-403</td>
<td>Fin mount.</td>
<td>37</td>
</tr>
<tr>
<td>84-333-01-404</td>
<td>Stabilizer mounts.</td>
<td>39</td>
</tr>
</tbody>
</table>
A towed instrument vehicle for deep ocean sampling

Introduction

Oceanographers began by studying general ocean basin characteristics using a few water samples and have progressed to studying smaller-scale features that require greater sampling densities. Observations of various parameters with depth began with determinations of salinity and temperature using water sample bottles and reversing thermometers, which could be hung on a wire and tripped at discrete depths. The advent of devices (CTDs) for continuously measuring depth distributions of temperature and conductivity led to an increased understanding of the smaller-scale vertical features. Biologists and chemists were still faced with obtaining discrete water samples to make their measurements. Submersible pumps attached to CTD units, combined with fluorometers or transmissometers, have allowed the collection of almost continuous vertical profiles for some chemical and biological parameters (e.g., chlorophyll and micronutrients).

Detailed analysis of horizontal distributions in the surface ocean, however, has been notoriously difficult due to the high data densities required to determine a coherent picture of the ocean surface. Studies of horizontal variations have often been undertaken simply by spacing hydrocast or CTD stations closely along a transect line and contouring the data between the stations. In dynamic ocean areas, however, the variability of temperature and salinity, as well as chemical and biological parameters, occurs on horizontal length scales much shorter than can be studied with standard hydrocasting techniques. A new sampling strategy was needed to obtain the sample density required to study dynamic upper ocean processes. This strategy involves use of a towed instrumented vehicle that can be operated continuously in surface waters (down to 200 m) while the towing vessel is under way at speeds of up to 12 knots. Several such systems have been constructed in the past. A few have combined in situ instrumentation with a submersible pump in the tow vehicle to pump water to the deck of the ship for onboard chemical and biological analyses. A towed instrumented pumping system is highly desirable in providing the flexibility to meet analytical needs that cannot be achieved with electronic sensors alone.

This report describes the design and testing of the towing vehicle developed by the Naval Ocean Research and Development Activity (NORDA) as part of a towed underwater pumping system (TUPS). This system will be used initially by NORDA scientists in a program to study the dynamic chemical and physical processes often observed in ocean frontal areas. The versatility of this tow vehicle will make it useful to many future research projects.

Previous tow vehicles

Before design was begun on the tow vehicle described here, several existing tow vehicle designs were evaluated with respect to our system requirements. Our design criteria demanded that the tow fish be relatively lightweight, have a large internal volume for assorted instrumentation, and have the instruments easily accessible. Special consideration was given to the need to accommodate a large-diameter tow cable required for pumping water from depth. Although many tow fish were considered, only three were evaluated in detail. Their design concepts and reason for their exclusion are presented in the following sections.

Batfish

The “Batfish” programmable towed body (manufactured by Guildline Instruments, Smith Falls, Ontario, Canada) has been used quite successfully by oceanographers at Bedford Institute of Oceanography. Herman (1977) and Herman and Denman (1977) provided excellent examples of how it can be effectively used to study near-surface chlorophyll variations. Dessureault (1976) provided a detailed description of the system and its operation.

The Batfish is 4.4 ft long and 3.1 ft high, the wing span is 4.1 ft, and weight in air is 176 lb. The body is constructed of reinforced fiberglass, stainless steel, and aluminum. Payload capability is 50 lb. The Batfish obtains downward depression from a hydraulically actuated hydroplane that is controlled by a shipboard deck unit. The Batfish is towed with an electromechanical towing cable. The tow body can be programmed to "fly" a predetermined profile or to maintain a constant depth. Cost of the Batfish is approximately $45,000.
A major advantage of the Batfish is the ability to program it to undulate along a sawtooth pattern in a vertical plane when towed from a moving ship. The sawtooth cycle length can be as short as 0.3 km in surface waters, which makes it suitable for studying oceanographic features on the scale from 1 to 10 km.

The Batfish was excluded because it had a small payload capability and had never been configured with the large-diameter (one-inch) cable needed for a pumping system. While the ability to undulate the tow body is highly desirable, the loss of payload capability was overriding. We also desired a tow vehicle design that had been proven to work with a deep-towed pumping system. The Batfish met neither of these requirements.

Fathom Oceanology oceanographic towed fish

The oceanographic towed fish (manufactured by Fathom Oceanology Limited, Port Credit, Ontario, Canada) is a streamlined, multipurpose tow vehicle. This towed fish has been used successfully in towed pumping systems by Texaco Oil Company and later by Texas A&M University (Wienenburg and Schink, 1978).

The Fathom towed fish is 5.0 ft long, has a 1.5 ft diameter and a weight in air (50% ballast) of 980 lb. Lead plates are used for ballast. The frame is constructed of high-strength aluminum and is covered with high-impact ABS plastic or polycarbonate shells. The Fathom fish has rear fins and stabilizers and adjustable trim tabs. Payload volume is 5.2 ft³.

The Fathom towed fish achieves downward depression from lead ballast weights bolted into the upper half of the fish. The fish, without instruments, weighs 84 lb. With the maximum 50% lead ballast, a maximum weight of 1000 lb is attained. Since the Fathom towed fish has no dynamic control, the depth of the towed fish is determined by the length of cable deployed. Cost of the Fathom towed fish is approximately $12,000 (1980 price).

Three factors led to the exclusion of the Fathom fish for our purposes. The 1000-lb weight (without instruments) is too heavy to launch and retrieve safely at sea without a specially designed launching cradle. Our launching requirements excluded such a device. Also, the instrument payload volume was too small. Finally, the instruments on the Fathom fish are mounted in the bottom half of the fish. This configuration makes instrument access difficult without the Fathom launching cradle.

Texas A&M winged fish

An underwater tow vehicle was designed and constructed at Texas A&M University with funding from the Office of Naval Research (Contracts N00014-75-C-0537 and N00014-80-C-0113). Their fish was used in a deep-towed pumping system to explore changes in chemical and biological properties in near-surface waters.

The Texas A&M fish is 3.9 ft long and 2.1 ft high; weight in air is 110 lb. The fish body is cylindrical (diameter of 1.0 ft) and is constructed from an aluminum pipe with internal ribs to support the tow point and a removable upper section for instrument installation. The Texas A&M fish achieves downward depression from a wing (dimensions—1.0 ft x 3.4 ft) angled at 8° to the body, which gives the fish an effective weight of 500 lb at a speed of 10 knots. The winged fish was designed with critical advice from Reece Folb and Richard Knutson of the Towed System Branch, David W. Taylor Naval Ship Research and Development Center. Setser et al. (1983) briefly describe the Texas A&M winged fish and provide examples of its utility in studying nutrient and chlorophyll variations in the Atlantic Ocean off the U.S. east coast.

For our purposes, the winged fish designed by Texas A&M University had several advantages over both the Batfish and the Fathom Oceanology tow vehicle. The dynamic depression allowed the winged fish to be much lighter and easier to handle than the Fathom tow vehicle. The payload volume of the Texas A&M fish was also larger than that of the Batfish, although it was still too small for our needs.

A major drawback to the Texas A&M fish is the difficulty in accessing the installed instrumentation. The skin of the fish (walls of the aluminum pipe) is used to provide the structural integrity of the vehicle. The instruments are also attached to the fish skin with mounting brackets. To access the lower instruments, upper instruments must be removed. Our design criteria dictated access to any instrument without having to disturb others. For this reason, as well as the small size, the Texas A&M fish design could not be used exactly. The tow vehicle that we designed employs many design concepts used in the Texas A&M fish, but incorporates several unique features that make it more flexible to use and simpler to fabricate and maintain.

TUPS fish design considerations

The TUPS vehicle design was affected by many conflicting requirements. The vehicle must be capable of tow speeds to 12 knots and depths to 200 m. The vehicle envelope should be similar to that of proven towed bodies (see previous section) and be easy to fabricate and maintain, but capable of carrying up to 20 linear feet of payload.
as large as 5½ inches in diameter. It is undesirable to have to move any item of payload to gain access to another. Included in the payload are an electric motor and pump, which must have a seawater inlet near the nose and various optical sensors with special field-of-view requirements. Provision for reasonable seawater flow past other sensors in the body is also required.

The outside diameter of the fuselage is 14.25 inches with an overall length of 8 ft, 3 inches. The wingspan is 4 ft with a 16-inch chord. The rationale for the parts configuration of the vehicle will be explained in nose-to-tail order. Drawings that describe the vehicle envelope, assemblies, and details of the parts are appended. Pictures of the assembled tow vehicle are shown in Figures 1, 2, and 3.

The nose (Drawing #84-333-01-102) is made of lead in anticipation of the body being tail heavy. Although the weight and balance information for the vehicle and payload were unknown when fabrication started, we knew that the tow point would be approximately one-third of the vehicle length behind the nose, and that the tow point and the centers of buoyancy and gravity should be nearly on the same vertical line. Making the nose of lead with a weight of 80 lb will, therefore, almost surely decrease the problem of adding balance weights forward for proper trim when the vehicle is being readied for deployment. Also the pump and motor, relatively heavy payload items, will be positioned in the lower quadrant forward to help move the center of gravity forward and down. In addition, the longitudinal position of the tow point can be adjusted to aid in balancing the vehicle. The final adjustment will be made by adding weights and perhaps syntactic flotation. The center hole in the nose is large enough to allow forward penetration by the pump inlet and permits flow of seawater through the vehicle.

The nose plate (Drawing #84-333-01-101) provides anchorage for the nose attachment bolts and temporary alignment support for the nose by means of a shoulder on its periphery. The end brackets (Drawing #84-333-01-101) join the nose plate to the four radius plates (Drawing #84-333-01-201) which, together with the interior and exterior angles, are the spine of the vehicle. The radius plates are symmetrical such that either end can be placed forward. The larger holes in the plates provide for communication between the longitudinal quadrants. The interior angles (Drawing #84-333-01-202) permit joining of the inner edges of the radius plates near the center line of the vehicle. They are identical but not symmetrical in the manner of the radius plates. Their orientation by pairs on the radius plates prevents interference of their mounting bolts. The exterior angles (Drawing #84-333-01-202) permit joining of the outer edges of the radius plates with the skin panels. The exterior angles are through-bolted to the radius plates but contain threaded inserts to receive the screws that fasten the skin panels. The skin panels (Drawing #84-333-01-203) are intended to be the only parts that are normally removed for service to the payload. They are fastened with hex-head screws instead of flat-head screws so that precise location of the mounting holes is not necessary. The upper quadrant is necessarily covered by two pieces of skin because of the wing mounts, but each of the other quadrants is covered with a single panel.

Figure 1. Photograph of the assembled towed vehicle, supported on a wooden stand.
that should not be further divided. These panels are structural members that resist longitudinal bending of the vehicle, especially near the tow point.

The wing (Drawing #84-333-01-301) is made of 1/4-inch plate and is mounted with a negative angle of attack of 8°. The leading and trailing edges are beveled on the underside to provide an approximately foil-shaped cross section to enhance the downward force produced. The wing tips are perforated to reduce the tip vortices, as well as to provide attachment points for taglines. The wing is attached by three bolts to each of its mounts (Drawing #84-333-01-302). The three sets of holes in the wing and three sets of holes in the mount provide for nine different positions of the wing on the body. The tow point is also attached to the wing, ideally at the same longitudinal position as the center of (downward) lift. This configuration avoids the problem of transmitting the wing forces through the body and makes trimming the vehicle easier, but there must be enough service loop in the cable and hose under the tow point to accommodate the various wing positions. The wing mounts are attached to hangers (Drawing #84-333-01-303), which are, in turn, attached to anchors (Drawing #84-333-01-303) bolted to the radius plates. The hanger and anchors on the left side are mirror images of their counterparts on the right side. If they are each rotated 180° about their vertical axes and moved to the opposite side of the body, new positions for the wing mounts are created. This effectively doubles the number of possible positions of the wing to 18. The anchors in the lower three quadrants are used to distribute the gravitational and inertial forces on the vehicle to all four radius

Figure 3. Photograph of the nose and forward section with a skin panel removed to reveal the large holes in the radius plates, which allow communication between the longitudinal quadrants.
plates. To achieve this, and to maintain the 90° angle between the radius plates, they must be connected by anchor ties (Drawing #84-333-01-302). The skin panels are curved into a pre-buckled configuration and cannot serve as rigid connectors to resist circumferential forces.

The horizontal stabilizer (Drawing #84-333-01-402) is mounted in essentially the same manner as the wing except that the anchors (Drawing #84-333-01-303), hangers (Drawing #84-333-01-303), and mounts (Drawing #84-333-01-404) are made of lighter angles and the angle of attack is zero. The vertical fin (Drawing #84-333-01-401) is joined to the stabilizer by two angles (Drawing #84-333-01-403). The longitudinal position of the vertical fin is adjustable. It is mounted below the fuselage to help orient the vehicle during launch.

Fabricating the TUPS fish from the detailed drawings was done in two parts. The fuselage (radius plates and skin panels) was manufactured and assembled by Jurisch Engineering, Slidell, Louisiana. The nose, wing, and tail subassemblies were fabricated by Cuevas Machine Shop, Perkinston, Mississippi. The tow vehicle was assembled by Mr. David C. Young of NORDA.

Tow test

The first tow test of the TUPS vehicle was conducted at the U.S. Geological Survey Test Tank at NSTL, Mississippi, in October 1984. The tank dimensions are 12 ft x 12 ft x 450 ft. The vehicle contained no internal attitude instrumentation or payload, but the tow line angle and tension were measured. The tow forces were transmitted through a 3-inch-diameter ball centered 5-1/3 inches behind the leading edge of the wing. The tow test configuration is shown schematically in Figure 4.

Fabricating the TUPS fish from the detailed drawings was done in two parts. The fuselage (radius plates and skin panels) was manufactured and assembled by Jurisch Engineering, Slidell, Louisiana. The nose, wing, and tail subassemblies were fabricated by Cuevas Machine Shop, Perkinston, Mississippi. The tow vehicle was assembled by Mr. David C. Young of NORDA.

Conclusions

The cylindrical, four-compartment, winged tow vehicle described here meets our needs for a towed research vehicle significantly better than previous designs. The vehicle is extremely stable. Each of the four separate compartments is capable of holding a 5 1/2-inch-diameter cylindrical payload. Each quadrant is individually accessible, and the flat radius plates make instrument attachment

![Figure 4. Schematic diagram of the tow test experimental configuration.](image)

The purposes of the tow test were to determine if vehicle stability difficulties would be likely and to bracket the speed and force characteristics of the vehicle. The test results are shown in Table 1. The vehicle appeared to be extremely stable. Further tow tests were postponed until after the installation of payload.

Table 1. Tow test results with empty vehicle.

<table>
<thead>
<tr>
<th>Run Number</th>
<th>Speed (knots)</th>
<th>Tow Cable Angle, θ (degrees)</th>
<th>Load Cell Tension (pounds)</th>
<th>Vertical Component of Load Cell Tension (pounds)</th>
<th>Vertical Component of Hydrodynamic Forces (pounds)</th>
<th>Drag Force (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>320</td>
<td>320</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>18</td>
<td>550</td>
<td>520</td>
<td>280</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>26</td>
<td>910</td>
<td>810</td>
<td>570</td>
<td>410</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
<td>300</td>
<td>300</td>
<td>160</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>17</td>
<td>520</td>
<td>500</td>
<td>260</td>
<td>150</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>26</td>
<td>880</td>
<td>790</td>
<td>550</td>
<td>390</td>
</tr>
</tbody>
</table>

*Run numbers 1-3, vehicle attitude in water at zero velocity, 10.9° nose down. Leading edge of wing 64 cm aft of skin-nose plate interface.

*Run numbers 4-6, vehicle attitude in water at zero velocity, 2.8° nose up. Leading edge of wing 59 cm aft of skin-nose plate interface.

*Force measurement error ±10 lb, ±0 lb.

*Vehicle weight in water is 240 lbs.
simple. The angled wing gives sufficient downward depres-
sion (550 lb at 9 knots) to tow at considerable depth
without having to heavily ballast the vehicle. Fabrication
cost of the NORDA TUPS fish ($3200, 1984 price) is
significantly less than either of the commercially available
tow vehicles that were evaluated.

References

Dessureault, J. G. (1976). “Batfish”: A Depth Con-
trollable Towed Body for Collecting Oceanographic Data.

Herman, A. W. (1977). In Situ Chlorophyll and
Plankton Measurements with the Batfish Vehicle. MTS-
IEEE Oceans 77 Conference Record, v. 2, pp. 39D.

Herman, A. W. and K. L. Denman (1977). Rapid Under-
way Profiling of Chlorophyll with an In Situ Fluorometer
Mounted on a “Batfish” Vehicle. Deep-Sea Research,
v. 24, pp. 385-397.

Setser, P. J., N. L. Guinasso, Jr., N. L. Condra, D. A.
Pumping System for Continuous Underway Sampling. En-
vironmental Science and Technology, v. 17, pp. 47-49.

Wiesenburg, D. A. and D. R. Schink (1978). Use of
the Texas A&M Deep Towed Pumping System in the
Gulf of Mexico Aboard the R/V GYRE during Cruise
77-G-14, 3-7 December 1984. Report 78-4-T, Depart-
ment of Oceanography, Texas A&M University, College
Station, Texas, 32 pp.
NOTE
INTERIOR DIVIDED INTO 7" BANKS
OFFSET FROM LOWER CIRCLE.
SIDE PANELS CAN BE REMOVED
INDIVIDUALLY
USER-EXISTING POSITION OF BUNK
IS ADJUSTABLE
LONG AND STABILIZER RODS
PARTIALLY COVERED ADJACENT
WARRANTS
2. END BRACKET
FULL SCALE.

3. NOSE PLATE
MAKE ONE ALUMINUM PART
SCALE 3" = 1'

DIMENSIONS IN INCHES
TOLERANCES 0.005" 0.005" 0.005" 0.005"
ANGLE FOR
2. RIGHT WING MOUNT

3. LEFT WING MOUNT

MAKE FOUR ALUM GOST-16

MADE ONE 5X1x1/2 ANGLE, ALUM GOST-16

THRO FOURTEEN PLACES

ALTHOUGH TWO PLACES

SAY CUT ONE
NO FLAME OR ARC CUTTING

C.R. REIN
NAVY SCIENTIFIC DEVELOPMENT ACTIVITY
4761, MISSISSIPPI, OCT 1958

MATERIALS

WING MOUNTS-ANCHOR TIE

9H-323-01-302, 1/2
MADE TWO
2-1/2" ANGLE
ALUM 6061-T6

MOUNT

3/16 THRU
FIVE PLACES

3. FIN MOUNT

DIMENSIONS IN INCHES
TOLERANCES 0.1 x .005
FINISH: MACH

C.R. REIN
NAVAL OCEAN RESEARCH & DEVELOPMENT AUTONAVY
NOL, MISSISSIPPI 39529

TUPS FIN MOUNT
84-333-01-163
1-17
1. LEFT STABILIZER MOUNT

2. RIGHT STABILIZER MOUNT

Dimensions in inches
Tolerances 0.005 except as noted
Distribution List

Department of the Navy
Asst Secretary of the Navy
(Research Engineering & System)
Washington DC 20350

Commanding Officer
Naval Ocean R & D Activity
ATTN: Codes 100/111/112
NSTL MS 39529

Department of the Navy
Chief of Naval Operations
ATTN: OP-951
Washington DC 20350

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 113
NSTL MS 39529

Department of the Navy
Chief of Naval Operations
ATTN: OP-952
Washington DC 20350

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 125L
NSTL MS 39529

Department of the Navy
Chief of Naval Material
Washington DC 20360

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 125ED
NSTL MS 39529

Commander
Naval Air Development Center
Warminster PA 18974

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 110
NSTL MS 39529

Commander
Naval Air Systems Command
Headquarters
Washington DC 20361

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 105
NSTL MS 39529

Commanding Officer
Naval Coastal Systems Center
Panama City FL 32407

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 115
NSTL MS 39529

Commander
Naval Electronic Systems Command
Headquarters
Washington DC 20360

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 200
NSTL MS 39529

Commanding Officer
Naval Environmental Prediction
Research Facility
Monterey CA 93940

Commanding Officer
Naval Ocean R & D Activity
ATTN: Code 300
NSTL MS 39529

Commander
Naval Facilities Eng Command
Headquarters
200 Stovall Street
Alexandria VA 22332

Commanding Officer
Naval Research Laboratory
Washington DC 20375

Commander
Naval Oceanography Command
NSTL MS 39529
Commanding Officer
Fleet Numerical Ocean Cen
Monterey CA 93940

Commanding Officer
Naval Oceanographic Office
NSTL MS 39522

Commander
Naval Ocean Systems Center
San Diego CA 92152

Commanding Officer
ONR Branch Office LONDON
Box 39
FPO New York 09510

Officer in Charge
Office of Naval Research
Detachment, Pasadena
1030 E. Green Street
Pasadena CA 91106

Commander
Naval Sea System Command
Headquarters
Washington DC 20362

Commander
D W Taylor Naval Ship R & D Cen
Bethesda MD 20084

Commander
Naval Surface Weapons Center
Dahlgren VA 22448

Commanding Officer
Naval Underwater Systems Center
ATTN: NEW LONDON LAB
Newport RI 02841

Superintendent
Naval Postgraduate School
Monterey CA 93940

Project Manager
Chief of Naval Material
Department of the Navy
Washington DC 20360

Department of the Navy
Deputy Chief of Naval Material
for Laboratories
Rm 866 Crystal Plaza Five
Washington DC 20360

Officer in Charge
Naval Underwater Sys Cen Det
New London Laboratory
New London CT 06320

Defense Technical Info Cen
Cameron Station
Alexandria VA 22314

Director
Chief of Naval Research
ONR Code 420
NSTL MS 39529

Director, Liaison Office
Naval Ocean R & D Activity
800 N. Quincy Street
Ballston Tower #1
Arlington VA 22217

Department of the Navy
Office of Naval Research
ATTN: Code 102
800 N. Quincy Street
Arlington VA 22217

Director
Woods Hole Oceanographic Inst
86-96 Water St.
Woods Hole MA 02543

Director
University of California
Scripps Institute of Oceanography
P. O. Box 6049
San Diego CA 92106

Working Collection
Texas A & M University
Department of Oceanography
College Station TX 77843