CONNETICUT RIVER BASIN
WINCHENDON, MASSACHUSETTS

WHITES MILL POND DAM
MA 00630

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

COPY available to DTIC does not permit full scale reproduction

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

The dam is a 340 ft. long earthfill dam with upstream and downstream dry stone masonry walls. It has a masonry wall. There are serious deficiencies which must be corrected to assure the continued performance of this dam. Generally the dam is in poor condition. The dam has been classified as small in size with a high hazard potential.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Honorable Edward J. King
Governor of the Commonwealth of Massachusetts
State House
Boston, Massachusetts

Dear Governor King:

Inclosed is a copy of the Whites Kill Pond Dam (MA-00630) Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. The report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis. A brief assessment is included at the beginning of the report.

The preliminary hydrologic analysis has indicated that the spillway capacity for the Whites Kill Pond Dam would likely be exceeded by floods greater than 11 percent of the Probable Maximum Flood (PMF), the test flood for spillway adequacy. Our screening criteria specifies that a dam of this class which does not have sufficient spillway capacity to discharge fifty percent of the PMF, should be adjudged as having a seriously inadequate spillway and the dam assessed as unsafe, non-emergency, until more detailed studies prove otherwise or corrective measures are completed.

The term "unsafe" applied to a dam because of an inadequate spillway does not indicate the same degree of emergency as that term would if applied because of structural deficiency. It does indicate, however, that a severe storm may cause overtopping and possible failure of the dam, with significant damage and potential loss of life downstream.

It is recommended that within twelve months from the date of this report the owner of the dam engage the services of a professional or consulting engineer to determine by more sophisticated methods and procedures the magnitude of the spillway deficiency. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed. During periods of unusually heavy precipitation, round-the-clock surveillance should be provided.
NEDED-E
Honorable Edward J. King

I have approved the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the non-Federal Dam Inspection Program.

A copy of this report has been forwarded to the Department of Environmental Quality Engineering, the cooperating agency for the Commonwealth of Massachusetts. This report has also been furnished to the owner of the project, Ray Plastics, Inc., Winchendon, MA.

Copies of this report will be made available to the public, upon request to this office, under the Freedom of Information Act, thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Quality Engineering for the cooperation extended in carrying out this program.

Sincerely,

WILLIAM E. HODGSON, JR.
Colonel, Corps of Engineers
Acting Division Engineer
WHITE'S MILL POND DAM
MA 00630

CONNECTICUT RIVER BASIN
WINCHENDON, MASSACHUSETTS

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM
Identification No.: MA00630
Name of Dam: White's Mill Pond
Town: Winchendon
County and State: Worcester County, Massachusetts
Stream: North branch of the Millers River, tributary of the Connecticut River
Date of Inspection: May 7, 1980

White's Mill Pond Dam which was built before 1923 is a 340-foot long earthfill dam with upstream and downstream dry stone masonry walls. The dam has a maximum height of 13 feet and consists of a spillway, low level outlet, an intake to a plant, and an earth dike. The top of the dam is at Elevation (El) 1040.7. The spillway is a broad crested weir, 24 feet long, with the crest at El 1037. The low level outlet is 3.2 feet wide by 1.8 feet high, stone box channel and is manually controlled by a slide gate which is buried in the dam. A 3.0-foot high earth dike, 140 feet long, is located 60 feet east of the dam.

There are serious deficiencies which must be corrected to assure the continued performance of this dam. This conclusion is based on the visual inspection of the site and a review of the available data. Generally the dam is in poor condition.

The following deficiencies were observed at the site: severe seepage at several locations along the toe of the dam; downstream stone masonry walls are out of plumb; lack of access to the low level outlet operator; erosion at the low point of the dam crest; bulging of the downstream masonry wall in several locations; stone missing from the upstream face of the spillway, mortar missing from the stone masonry spillway of the dam; heavy growth of brush and trees on the dam crest and on the dike; and an accumulation of debris in the discharge channel.
Based on Corps of Engineers' guidelines, the dam has been classified in the small size and high hazard categories. A test flood equal to one-half the probable maximum flood (PMF) was used to evaluate the capacity of the spillway. The drainage area for White's Mill Pond is 0.94 square miles exclusive of Lake Monomanac. The pond is separated from Lake Monomanac by the Springville Dam and the Mill Circle Road Dam, which is a small dam with a 30-inch siphon. Mill Circle Road Dam has a crest elevation of 1053.5. Assuming that this dam does not fail the inflow through the siphon and over the dam under the test flood conditions is 110 cfs. The test flood inflow including flow from the siphon is calculated to be 956 cubic feet per second (cfs). The test flood outflow is 680 cfs, resulting in a pond level at El 1041.1. The test flood would overtop the dam by 0.4 feet.

Hydraulic analyses indicate that the spillway (without stoplogs) can discharge 520 cfs, or 76 percent of the test flood outflow before the dam is overtopped. (With stoplogs, the spillway can discharge 170 cfs or 22 percent of the test flood outflow before the dam is overtopped). This amount of flow will produce a backwater about 3 feet high in the channel at the factory. Failure of the dam at maximum flow would produce a downstream flow of 3,270 cfs which would cause the backwater to rise an additional 13 feet at the factory to El 1033.1.

It is recommended that the Owner employ a qualified registered professional engineer to conduct a more detailed hydraulic and hydrologic study of the spillway, evaluate the severe seepage at the toe of the dam, and evaluate the stability of the dam. Until the recommendations resulting from these investigations are implemented, the Owner should immediately remove the stoplogs and maintain the water level in the pond below El 1034. In addition, the Owner should repair the deficiencies listed above, as described in Section 7.3. The Owner should also implement a program of annual technical inspections, a plan for surveillance of the dam during and after periods of heavy rainfall, and a plan for notifying downstream residents in the event of an emergency at the dam.

The measures outlined above and in Section 7 should be implemented by the Owner within a period of 1 year after receipt of this Phase I Inspection Report.

Edward M. Greco, P.E.
Project Manager
Metcalf & Eddy, Inc.
Massachusetts Registration No. 29800

Stephen L. Bishop, P.E.
Vice President
Metcalf & Eddy, Inc.
Massachusetts Registration No. 19703

WHITE'S MILL POND DAM
This Phase I Inspection Report on White Hill Pond Dam (MA-00630) has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

ARAMAST MAHTESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, MEMBER
Design Branch
Engineering Division

RICHARD DIBUONO, CHAIRMAN
Water Control Branch
Engineering Division

APPROVAL RECOMMENDED:

JOSEPH B. FRYER
Chief, Engineering Division
This report is prepared under guidance contained in Recommended Guidelines for Safety Inspection of Dams, for a Phase I Investigation. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions will be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general conditions and the downstream damage potential.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRIEF ASSESSMENT</td>
<td>1</td>
</tr>
<tr>
<td>PREFACE</td>
<td>iv</td>
</tr>
<tr>
<td>OVERVIEW PHOTO</td>
<td>vii</td>
</tr>
<tr>
<td>LOCATION MAP</td>
<td>viii</td>
</tr>
<tr>
<td>REPORT</td>
<td></td>
</tr>
<tr>
<td>SECTION 1 - PROJECT INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 General</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Description of Project</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Pertinent Data</td>
<td>3</td>
</tr>
<tr>
<td>SECTION 2 - ENGINEERING DATA</td>
<td>8</td>
</tr>
<tr>
<td>2.1 General</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Construction Records</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Operating Records</td>
<td>8</td>
</tr>
<tr>
<td>2.4 Evaluation</td>
<td>8</td>
</tr>
<tr>
<td>SECTION 3 - VISUAL INSPECTION</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Findings</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Evaluation</td>
<td>11</td>
</tr>
<tr>
<td>SECTION 4 - OPERATING AND MAINTENANCE PROCEDURES</td>
<td>12</td>
</tr>
<tr>
<td>4.1 Operating Procedures</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Maintenance Procedures</td>
<td>12</td>
</tr>
<tr>
<td>4.3 Evaluation</td>
<td>12</td>
</tr>
<tr>
<td>SECTION 5 - EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES</td>
<td>13</td>
</tr>
<tr>
<td>5.1 General</td>
<td>13</td>
</tr>
<tr>
<td>5.2 Design Data</td>
<td>13</td>
</tr>
<tr>
<td>5.3 Experience Data</td>
<td>13</td>
</tr>
<tr>
<td>5.4 Test Flood Analysis</td>
<td>14</td>
</tr>
<tr>
<td>5.5 Dam Failure Analysis</td>
<td>15</td>
</tr>
</tbody>
</table>

WHITE'S MILL POND DAM
TABLE OF CONTENTS (Continued)

SECTON 6 - STRUCTURAL STABILITY

6.1 Visual Observations 16
6.2 Design and Construction Data 16
6.3 Post Construction Changes 16
6.4 Seismic Stability 16

SECTION 7 - ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES 17

7.1 Dam Assessment 17
7.2 Recommendations 17
7.3 Remedial Measures 18
7.4 Alternatives 19

APPENDIXES

APPENDIX A - PERIODIC INSPECTION CHECKLIST

APPENDIX B - PLANS OF DAM AND PREVIOUS INSPECTION REPORTS

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS

APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

WHITE'S MILL POND DAM

vi
OVERVIEW
WHITES MILL POND DAM
WINCHENDON, MASSACHUSETTS
LOCATION MAP – WHITE’S MILL POND DAM
1.1 General

a. Authority. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Metcalf & Eddy, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Massachusetts. Contract No. DACW 33-80-C-0054, dated April 18, 1980, has been assigned by the Corps of Engineers for this work.

b. Purpose

(1) Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.

(2) Encourage and assist the States to quickly initiate effective dam safety programs for non-Federal dams.

(3) Update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location. The dam is located on the North branch of the Miller's River in the Town of Winchendon, Worcester County, Massachusetts (see Location Map). The coordinates of this location are Latitude 42 deg. 41.6 min. north and Longitude 72 deg. 00.7 min. west.

b. Description of Dam and Appurtenances. White's Mill Pond Dam is a 340-foot long, earthfill dam with dry stone masonry walls upstream and downstream. The dam has a maximum height of 13 feet (see Plan of Dam and Sections in Appendix B and photographs in Appendix C). The top of
the dam is 16 feet wide and varies from El 1040.7 to 1041.5. The upstream face of the right abutment is a 2:1 (horizontal to vertical) slope covered with brush and trees. The downstream face is a stone masonry wall which is at a 1:12 batter. The upstream face of the left abutment is a partially submerged dry stone wall. The downstream face is also a dry stone masonry wall that tilts downstream at 1:6 (horizontal to vertical). There are no available drawings of the dam.

The spillway, located near the left abutment of the dam, is a 28-foot long, broad-crested concrete weir. The approach channel was submerged and could not be inspected. Wooden stoplogs 2.0 feet high are mounted in wood slots on the crest of the spillway. An additional 2.0 feet of stoplogs can be placed at this spillway.

The crest of the spillway is at El 1037.0 and the top of the stoplogs is at El 1039.0. The length of the stoplogs available for discharge is 24.0 feet.

The discharge channel below the spillway is 28 feet wide. The sides are approximately 2 feet high. The floor of the channel is unlined and slopes at 45 percent for 18 feet and then decreases to a 1 percent slope, thereafter.

The low-level outlet for the dam is a 3.2-foot wide by 1.8-foot high, stone box culvert with a slide gate, located 5 feet from the right end of the spillway. The invert of the outlet is at El 1030.4 at the downstream end. Flow into the outlet is controlled by a valve which is buried in the dam. The outlet pipe has a capacity of 70 cfs with the pond at El 1037. Flow from the outlet pipe discharges into the spillway channel.

A 3 foot high earth dike is located 60 feet southeast of the dam embankment. The dike is 140 feet long and prevents water from bypassing the dam through a shallow swale connecting to the downstream channel.

c. Size Classification. White's Mill Pond Dam is classified in the "small" category since it has a maximum height of 13 feet and a maximum storage capacity of 272 acre-feet.

d. Hazard Classification. There is a factory located over the stream channel about 400 feet downstream of the dam (see Figure B-1 and Photo No. 9). An assumed failure of the dam would produce a flood 16 feet deep at the factory compared to 3 feet deep prior to failure and it is possible that more than a few lives could be lost and a significant amount of property damage could occur. Accordingly, the dam has been placed in the "high" hazard category.
e. **Ownership.** The dam is owned by Ray Plastics, Inc., Glen Allen Street, Winchendon, Massachusetts 01475 (zip). Mr. Jerry LeClere (telephone 617-297-0088) granted permission to enter the property and inspect the dam.

f. **Operator.** The dam is operated by personnel from Ray-Plastics, Inc.

g. **Purpose of the Dam.** The water in White's Mill Pond is used for industrial cooling and fire protection by Ray-Plastics, Inc.

h. **Design and Construction.** Construction of White's Mill Pond Dam was completed before 1923. No drawings or specifications are available.

Previous inspection reports indicate that since construction the dam has been in fair condition. Repairs have been made such as repair of the slide gate to low level outlet.

i. **Normal Operating Procedures.** Personnel from Ray Plastics Inc. reportedly visit the dam once a day. At that time, they observe the water level and adjust stoplogs accordingly. The stoplogs are operated manually to maintain a minimum pond elevation of 1038 for the cooling water intake. The low-level outlet was last operated in 1964 when the pond was lowered to repair the slide gate.

1.3 **Pertinent Data**

a. **Drainage Area.** The direct drainage area is approximately 600-acres (0.94 square mile) which consists of hilly land (see Figure D-1 in Appendix). The total drainage area includes limited drainage from Lake Monomonac which is siphoned into White's Mill Pond over Mill Circle Road Dam. Lake Monomonac has a drainage area of 12,200 acres (19.1 square miles). About 12.7 percent of the direct drainage area is ponds and swamps. In general, the undeveloped portions of the drainage area consist of woodland. Moderate (residential) development occurs west of the dam in Winchendon Springs. Along the west side of the pond there is light residential development.

b. **Discharge.** Discharge from White's Mill Pond Dam flows over the stoplogs, on the spillway and into an unlined discharge channel. Water also discharges from the outlet directly into the downstream discharge channel.

(1) **Outlet:** Size - 3.2 feet x 1.8 feet; Invert El. - 1030.4; capacity - 70 cfs.

WHITE'S MILL POND DAM
(2) Maximum known flood at damsite: unknown

(3) Ungated spillway capacity at top of dam 520 cfs at El 1040.7

(4) Ungated spillway capacity at test flood elevation: 610 cfs at El 1041.1

(5) Gated spillway capacity at normal pool elevation: 170 cfs at El 1040.7

(6) Gated spillway capacity at test flood elevation: 325 cfs at El 1041.6

(7) Total spillway capacity at test flood elevation: 610 cfs at El 1041.1

(8) Total project discharge at test flood elevation: 680 cfs at El 1041.1

c. Elevation (feet above National Geodetic Vertical Datum of 1929 (NGVD)). A benchmark was established at El 1039 at top of the stoplog. This elevation was estimated from a United States Geological Survey (U.S.G.S.) topographic map.

(1) Streambed at toe of dam: 1026.8

(2) Bottom of cutoff: N/A

(3) Maximum tailwater: unknown

(4) Normal pool: 1037 (without stoplogs)

(5) Full flood control pool: N/A

(6) Spillway crest (gated): 1039

(7) Design surcharge (Original Design): unknown

(8) Top of dam: 1040.7
 Top of dike: 1040.7

(9) Test flood surcharge: 1041.1 (without stoplogs)

d. Reservoir (Length in feet)

(1) Normal pool: 3,200

(2) Flood control pool: N/A
e. Storage (acre-feet)
 (1) Normal pool: 148
 (2) Flood control pool: N/A
 (3) Spillway crest pool: 148
 (4) Top of dam: 272
 (5) Test flood: 288

f. Reservoir Surface (acres)
 *(1) Normal pool: 40
 *(2) Flood-control pool: N/A
 *(3) Spillway crest: 40
 *(4) Test flood pool: 40
 *(5) Top of dam: 40

Based on the assumption that the surface area will not significantly increase with changes in pool elevation from 1037.0 to 1041.1
Dike (if applicable)
(1) Type: earth embankment
(2) Length: 140 feet
(3) Height: 3.0 feet
(4) Top Width: 6.0 feet
(5) Side Slopes: 2:1 (horizontal to vertical)
(6) Zoning: unknown
(7) Impervious core: unknown
(8) Cutoff: unknown
(9) Grout curtain: unknown
(10) Other: None

h. Diversion and Regulating Tunnel N/A

i. Spillway
(1) Type: broad crested weir
(2) Length of weir: 28 feet
(3) Crest elevation: 1039.0 with stoplogs, 1037.0 without stoplogs
(4) Gates: none
(5) Upstream channel: submerged, not visible
(6) Downstream channel: partly submerged, clogged with trees, brush, and other debris
(7) General: footbridge across the spillway is in poor condition.

j. Regulating Outlets
(1) Invert El.: 1030.4 downstream
(2) Size: 3.2 feet wide, 1.8 feet high
(3) Description: dry stone masonry box channel
(4) Control mechanism: slide gate – size unknown

(5) Other: 10-inch suction pipe to plant
SECTION 2

ENGINEERING DATA

2.1 General. No engineering data was available for this Phase I inspection because there are no drawings, specifications, or computations available from the Owner, State, or County agencies. Copies of previous inspection reports dated 1926 to 1964 prepared by Worcester County Engineering Department are included in Appendix B. The most recent inspection was conducted in 1971 by the Massachusetts Department of Public Works. A copy of that report is also given in Appendix B.

We acknowledge the assistance and cooperation of personnel from the Massachusetts Department of Environmental Quality Engineering, Division of Waterways; the Massachusetts Department of Public Works; and the Worcester County Engineers Office. In addition, we acknowledge the assistance of Mr. Jerry LeClere, of Ray Plastics, Inc., who provided information on the history and operation of the dam.

2.2 Construction Records. There are no construction records or as-built drawings available for the dam or appurtenances. Previous inspection reports by the Worcester County Engineering Department provided some construction information, and a summary of repairs and post-construction changes at the site.

2.3 Operating Records. No operating records are available, and there is no daily record kept of the elevation of the pool or rainfall at the dam site.

2.4 Evaluation

a. Availability. There is limited engineering data available for this dam.

b. Adequacy. The lack of detailed hydraulic, structural and construction data did not allow for a definitive review. Therefore, the evaluation of the adequacy of this dam is based on the visual inspection, past performance history, and engineering judgment.

c. Validity. Comparison of the available information with the field survey conducted during the Phase I inspection indicates that the available information is valid.

WHITE'S MILL POND DAM
SECTION 3
VISUAL INSPECTION

3.1 Findings

a. General. The Phase I Inspection of the dam at White's Mill Pond was performed on May 7, 1980. A copy of the inspection checklist is included in Appendix A. Previous inspections were conducted by the Worcester County Engineering Department from 1926 to 1964, and by the Massachusetts Department of Public Works in 1971. Copies of those reports are given in Appendix B. Selected photographs taken during our visual inspection are included in Appendix C.

b. Dam. The dam is an earthfill dam with upstream and downstream dry stone masonry walls. The structure consists of a spillway, a low level outlet, an intake to the plant and an earth dike. Evidence of seepage was noted in 4 locations at the downstream toe of the dam. The seepage rates were estimated to be from 5 to 15 gpm (see Photo No. 3). The seepage was clear at the time of the inspection.

The dry stone masonry walls both upstream and downstream are in poor condition. There are many bulges in the downstream face of both walls. The right wall is battered upstream at approximately 1 to 12 (horizontal to vertical) (see Photo No. 7). The left wall is tilting downstream at 1 to 6 (horizontal to vertical). Voids between the stones were probed as far back as 6 feet into the dam (see Photo No. 5). The stone wall on the upstream left side is vertical and is intact. Riprap was visible only for the first 60 feet to the right of the spillway on the upstream slope.

The top of the dam is unpaved and curves upstream. A footpath has been worn along the center of the crest. There is a heavy growth of brush and trees 4 inches to 1 foot in diameter (see Photo No. 2) on the upstream and downstream face of the dam. The low point on top of the dam is located approximately 160 feet north of the spillway. The visual inspection revealed erosion across the dam at this point indicating that the dam may have been overtopped.

c. Appurtenant Structures. The spillway is a 28 foot long broad crested weir with stoplogs. At the time of the inspection, water was discharging over the spillway, so the weir, stoplogs, and downstream toe could not be examined. The concrete on the crest of the spillway was
submerged and could not be inspected. The walkway over the spillway is of wood construction that is heavily weathered and rotting in places. It is situated directly over the stoplogs. The structure is braced against overturning by 2 timber beams (see Photo No. 1). The structure is leaning slightly downstream. At the time of the visual inspection the stoplogs were 2 feet above the crest of the spillway.

The upstream opening to the low level outlet was submerged and was not visible for inspection. Also, the stem to the gate controlling the outlet had been buried in the dam as a precaution against vandalism and the gate was not accessible for inspection. Reportedly the gate has not been operated since 1964 when it was last repaired. The opening at the discharge end of the low level outlet is a 1.8 foot by 3.2 foot stone box culvert which discharges directly at the toe of the dam (see Photo No. 5). Water discharging from the low level outlet flows directly into the downstream channel. At the time of the visual inspection seepage was leaking from the roof of the outlet at approximately 2 gpm. The floor of the outlet was submerged and it was not possible to determine if there was additional seepage from the outlet.

The intake to the plant is located in the northwestern corner of the pond. It consists of a 10 inch diameter suction line housed in a 4 foot wide by 8 foot long concrete chamber that is 8 feet deep. Two trash screens are located at the entrance to the chamber. Water is siphoned to the plant and according to the Owner's representative it is necessary to keep the water level in the pond at El 1038 in order to maintain the siphon. The water is used for cooling in the plant and for fire protection (see Photo No. 4).

A 3-foot high earth dike is located 60 feet southeast of the eastern dam embankment. The dike is 140 feet long and is heavily overgrown with brush and trees up to 1.5 feet in diameter (see Photo No. 10). The dike prevents water from bypassing the dam through a shallow swale connecting to the downstream channel. The upstream and downstream slopes are approximately 2:1 (horizontal to vertical) and are unprotected. They are in fair condition with moderate erosion having occurred.

d. Reservoir Area. The reservoir area is moderately developed. The town of Winchendon Springs is located west of the dam.
Residential development is located on the west and north sides of the reservoir. Most of the land is wooded with gentle slopes. There is a small potential that future development will occur in the pond area.

e. Downstream Channel. Both the spillway and the low level outlet discharge into the downstream channel. The floor and walls of the channel are unlined. There is a substantial accumulation of logs and uprooted trees in the floor of the stream channel (see Photograph No. 6).

Vegetation including trees is growing on the dam and is overhanging the walls of the channel (see Photograph No. 7).

A bridge extends across the discharge channel about 300 feet downstream of the dam. The bridge opening is 8.5 feet high by 16.5 feet wide which restricts the flow from the dam.

Water then flows under the Ray Plastics plant located 97 feet further downstream. The opening of this stone walled channel is 16 feet wide and 6.8 feet high. Beyond the plant the stream flows 1.3 miles to Whitney Pond.

3.2 Evaluation. The visual inspection indicates that the dam is in poor condition. There are numerous deficiencies which must be corrected to assure the continued performance of this dam. Measures to improve this condition are stated in Section 7.3.
SECTION 4
OPERATING AND MAINTENANCE PROCEDURES

4.1 Operating Procedures

a. General. According to Mr. LeClere representing Ray-Plastics, Inc., the standard procedure for operating the dam is to maintain a minimum water level of about El. 1038 by regulating the stoplogs to maintain the siphon in the 10-inch plant intake line.

b. Warning System. There is no warning system in effect at this dam.

4.2 Maintenance Procedures

a. General. The dam is generally poorly maintained. Ray Plastics, Inc. who is responsible for maintenance of the facility reportedly conducts periodic inspections. Typical maintenance procedures have included clearing debris from the screen at the plant intake.

b. Operating Facilities. Maintenance of the operating facilities at the dam consists of replacing the stoplogs when they start to deteriorate. In 1964, the slide gate for the low level outlet was repaired. The operating condition of the outlet works is not checked by the Owner.

4.3 Evaluation. There are no regular programs of maintenance or technical inspections at the dam. There are also no plans for surveillance of the dam during periods of heavy rainfall, or for warning people in downstream areas in the event of an emergency at the dam. The lack of standard operating and maintenance procedures is undesirable, considering that the dam is in the "high" hazard category. These programs should be implemented as recommended in Section 7.3.
SECTION 5
EVALUATION OF HYDRAULIC/
HYDROLOGIC FEATURES

5.1 General. White's Mill Pond Dam has a direct drainage area of 0.94 square miles, about 12.7 percent of which is ponds and swamps (see Figure D-1, Drainage Area Map). The land is hilly and lightly developed. White's Mill Pond is separated from Lake Monomonac by the Springville Dam and by the Mill Circle Road Dam, which has a crest elevation at 1053.5. A 30-inch siphon diverts about 100 cfs of water from the lake to White's Mill Pond under average conditions. Under test flood flows Lake Monomonac would discharge a more significant flow to White's Mill Pond. It is assumed that the Mill Circle Road Dam, although overtopped by the test flood inflow, does not fail.

White's Mill Pond has a surface area of approximately 40 acres, and a maximum storage capacity of 272 acre-feet at El 1040.7.

The spillway consists of a stone masonry broad crested weir and discharge channel. The crest of the weir is 28 feet long and at El 1037. Stoplogs at a crest of El 1039 were noted at the time of the inspection. Discharge is through six 4 foot wide bays.

The low level outlet is a gated 3.2 by 1.8 foot stone conduit located just to the right of the spillway. The gate has not been operated since it was last repaired 16 years ago according to the owner.

The low-level outlet can discharge a flow of about 70 cfs when the pond is at El 1037.0 which is the crest of the spillway. At this pond elevation and with no additional inflow, the outlet can lower the pond by 1 foot in about 7 hours.

5.2 Design Data. There are no hydraulic or hydrologic computations available for the design of the spillway at White's Mill Pond Dam.

5.3 Experience Data. There is no record of overtopping of the present dam. The Owner stated that according to the previous owners, during the 1938 hurricane, the dam was not overtopped. It must be pointed out however, that the visual inspection indicated evidence that the dam may have been overtopped at the low point on the dam.
5.4 Test Flood Analysis. White's Mill Pond has been classified in the "small" size and "high" hazard categories according to the Corps of Engineers guidelines. The guidelines recommend that for dams in these categories, a test flood between the 1/2 PMF (probable maximum flood) and the full PMF should be used to evaluate the capacity of the spillway. Based on the reservoir storage and the number of structures located downstream, the 1/2 PMF was selected as the test flood.

The PMF rate for the watershed contributing directly to White's Mill Pond watershed was calculated to be 1800 cfs per square mile of drainage area. This calculation is based on the average slope of 3.5 percent in the drainage area, the pond-plus-swamp area to drainage area ratio of 12.7 percent, and the U.S. Army Corps of Engineers' guide curves for Maximum Probable Flood Peak Flow Rates (dated December 1977). For this analysis, the peak flow rate was determined to be between "rolling" and "flat and coastal".

Applying the 1/2 PMF rate to the 0.94 square mile drainage area results in a peak test flood inflow of 846 cfs. Additional inflow from Lake Monomonac through the siphon was estimated to be 110 cfs for a total test flood inflow of 956 cfs. By adjusting the test flood inflow for surcharge storage, the peak test flood outflow was calculated to be 680 cfs (723 cfs per square mile).

Without stoplogs, the pond level would rise to El 1041.1 during the test flood. With stoplogs, the pond would rise to El 1041.6. Both elevations result in overtopping the dam.

Hydraulic analyses indicate that the spillway without stoplogs can discharge 520 cfs or 76 percent of the test flood outflow with the pond at El 1040.7, which is the low point on the top of the dam. With stoplogs, the spillway could discharge 170 cfs, or 22 percent of the outflow before the dam is overtopped.

Table 5-1 below summarizes the discharge from the pond during the test flood.
TABLE 5-1.

<table>
<thead>
<tr>
<th></th>
<th>Stoplogs/ in place</th>
<th>Stoplogs removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum height of water above dam, ft:</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Discharge over spillway, cfs:</td>
<td>170</td>
<td>520</td>
</tr>
<tr>
<td>Discharge over dam, cfs:</td>
<td>867</td>
<td>306</td>
</tr>
<tr>
<td>Critical depth at low point on crest, ft:</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Critical velocity low point on crest, fps:</td>
<td>4.3</td>
<td>3.1</td>
</tr>
</tbody>
</table>

5.5 Dam Failure Analysis. Hydraulic calculations indicate that the spillway, with the stoplogs at El 1039.0, can discharge 170 cfs with the pond at El 1040.7 which is the low point on the dam. This amount of flow will produce a backwater about 3 feet high in the channel at the factory. Failure of the dam at maximum flow would produce a downstream flow of 3,270 cfs which would cause the backwater to rise an additional 13 feet at the factory to El 1033.1 (see Photo No. 9 and Drawing F-F on B-2). It would take about 2 hours to drain the pond.

There are several homes located along the channel downstream of the factory. The foundations of these structures are approximately 5 feet above the floor of the channel. Discharge due to failure of the dam would flow under and around the factory. It is likely that failure of the dam would result in excessive property damage at the factory and downstream and loss of more than a few lives. Accordingly, the dam has been placed in the "high" hazard category.
SECTION 6

STRUCTURAL STABILITY

6.1 Visual Observations. The evaluation of the structural stability of White's Mill Pond Dam is based on a review of previous inspection reports, and the visual inspection conducted on May 7, 1980.

As discussed in Section 3, Visual Inspection, the dam is in poor condition. Severe seepage was observed along the toe of the embankment in four locations. Movement of the dam is indicated by tilting downstream of the dry stone masonry wall on the left side of the dam. Areas of erosion were observed on the top of the right hand embankment. A thick growth of trees and vegetation exists on the top of the dam and dike.

6.2 Design and Construction Data. Construction of White's Mill Pond Dam was completed before 1923. Computations for design of the dam, spillway and outlet are not available.

Specifications for construction of the dam are also not available.

There is no information on the shear strength or permeability of the soil or rock materials of the embankment.

6.3 Post-Construction Changes. Since the original construction of the dam, the only known repair that has been made is to the low level outlet slide gate in 1964.

6.4 Seismic Stability. The dam is located in Seismic Zone No. 2, and in accordance with Corps of Engineers' guidelines does not warrant further seismic analysis at this time.
SECTION 7
ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition. As a result of the visual inspection, the review of available data, and limited information on operation and maintenance, the dam is considered to be in poor condition. The following deficiencies must be corrected to assure the continued performance of this dam: severe seepage along the toe of the embankment; tilting of the dry stone masonry wall on the left side of the dam; erosion on the top of the upstream embankment; cracked and missing mortar, and missing stones on the masonry walls of the spillway; a deteriorated bridge and stop log structure, a heavy growth of trees and brush on the dam and dike and accumulation of debris in the downstream channel.

The slide gate operator for the low level outlet is located within the dam, and is operated through a gate box on the crest of the dam near the spillway.

The peak test flood (1/2 PMF) outflow is estimated to be 680 cfs with the pond at El 1041.1 (assuming the stoplogs are released). The test flood would overtop the low point on the dam by 0.5 feet. Hydraulic analyses indicate that the spillway (without stoplogs) can discharge 520 cfs or 76 percent of the test flood outflow before the dam is overtopped. (With the stoplogs in place, the spillway can discharge 170 cfs or 22 percent of the test flood outflow before the dam is overtopped).

b. Adequacy. The lack of detailed design and construction data did not allow for a definitive review. Therefore, the evaluation of this dam is based on a review of the available data, the visual inspection, past performance and engineering judgment.

c. Urgency. The recommendations and remedial measures outlined below should be implemented by the Owner within 1 year after receipt of this Phase I Inspection Report except for recommendation 7.2.b. which should be implemented immediately upon receipt of this report.

7.2 Recommendations. It is recommended that the Owner employ a qualified registered engineer to:

WHITE'S MILL POND DAM
17
a. Develop procedures to clear trees, brush and roots from the dam and dike embankment, and to a distance of 25 feet from the toe of the dam and dike. All stumps and roots removed should be backfilled with select material.

b. Evaluate the stability of the dam and spillway including an investigation of the severe seepage noted at the toe of the dam. This should include an inspection of the spillway under a no flow condition. The investigation should be conducted after the embankment is cleared of brush.

c. Perform a detailed hydrologic/hydraulic analysis to evaluate the discharge capability of the spillway and the overtopping potential of the dam. In the analysis, consideration should be given to the effect of failure of Mill Circle Road Dam and Springville Dam would have on White's Mill Pond.

d. Until the recommendations resulting from these investigations are implemented, the Owner should immediately remove the flashboards and maintain the water level in the pond below El 1034. This may require that the Owner install pumping facilities to provide water to the facility.

The Owner should implement the recommendations of the Engineer.

7.3 Remedial Measures

a. Operating and Maintenance Procedures. It is recommended that the Owner accomplish the following:

(1) Fill in eroded areas on the upstream and downstream face of the earth embankment portions of the dam.

(2) Replace missing or cracked mortar and missing stones in the stone masonry wall at the spillway.

(3) Uncover the operating mechanism on the outlet and restore it to working condition.

(4) Replace missing riprap on the upstream face of the embankment.

(5) Remove all brush, trees, debris and loose stone in the floor of the spillway discharge channel.

(6) Institute a definite plan for surveillance of the dam and spillway during and after periods of heavy rainfall and a plan to warn people in downstream areas in the event of an emergency at the dam.
(7) Implement a systematic program of maintenance inspections. As a minimum, the inspection program should consist of a monthly inspection of the dam and appurtenances and be supplemented by additional inspections during and after severe storms. All repairs and maintenance should be undertaken in compliance with all applicable State regulations. The maintenance program should include removal of any debris caught on the spillway weir to prevent clogging of the spillway.

(8) Institute a program of technical inspections of this dam on an annual basis.

7.4 Alternatives. The alternative to implementing the recommendations and remedial measures listed above would be to drain the pond and remove the dam.
APPENDIX A

PERIODIC INSPECTION CHECKLIST

WHITE'S MILL POND DAM
PERIODIC INSPECTION
PARTY ORGANIZATION

PROJECT WHITE'S MILL POND DAM DATE May 7, 1980
TIME 8:30 A.M. - 2:30 P.M.
WEATHER Cloudy, Showers
W.S. ELEV. 1039.4 U.S. 1019.4 DN.S.

PARTY:
1. M. Gilbert (Metcalf & Eddy, Inc. - Geotechnical)
2. S. Nagel (Metcalf & Eddy, Inc. - Geotechnical)
3. W. Checchi (Metcalf & Eddy, Inc. - Geotechnical)
4. W. Diesi (Metcalf & Eddy, Inc. - Geotechnical)
5. L. Branagan (Metcalf & Eddy, Inc. - Hydraulics)

PROJECT FEATURE INSPECTED BY REMARKS
1. Dam Embankment M. Gilbert/S. Nagel
2. Intake-Outlet Works L. Branagan
3.
4.
5.
6.
7.
8.
9.
10.

PERIODIC INSPECTION CHECK LIST

PROJECT: WHITE'S MILL POND DAM DATE: May 7, 1980
PROJECT FEATURE: Dam Embankment NAME: M. Gilbert
DISCIPLINE: Geotechnical NAME: S. Nagel

\[u/s = \text{upstream} \quad d/s = \text{downstream} \]

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAM EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>1041.1</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>1039.4</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>Unknown</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>Dirt footpath, - no cracks</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>None</td>
</tr>
<tr>
<td>Movement or Settlement of Crest</td>
<td>Small area that is a low spot, it looks like it has overtopped in this spot</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>RH side about 25 ft from spillway the d/s rock wall has a 6:1 (VtoH) batter downstream</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Relatively flat</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Curved u/s (bulg-)</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>Fair, LH abutment into natural grd. RH abut. into parking area</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>Dry stone masonry wall to left of spillway is tilted d/s</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>Footpath with little or no veg. in middle heavy brush and trees on side of crest*</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>0/s on LH side of dam small localized area where it appears that dam was overtopped</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>d/s rock has 12:1 (Vto H) u/s batter voids probed ∼ 4 ft.</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toes</td>
<td>Severe bulge in wall</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>RH side 3 areas of seepage 1 @15 gpm* and 2 @ <5 gpm LH side 1 area @ < 5 gpm</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td>None noticed seepage is clear</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>None</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>None</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>None</td>
</tr>
</tbody>
</table>

*And on the embankment
PERIODIC INSPECTION CHECK LIST

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>WHITE'S MILL POND DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT FEATURE</td>
<td>Dike Embankment</td>
</tr>
<tr>
<td>DISCIPLINE</td>
<td>Geotechnical</td>
</tr>
<tr>
<td>NAME</td>
<td>M. Gilbert</td>
</tr>
<tr>
<td>NAME</td>
<td>S. Nagel</td>
</tr>
<tr>
<td>DATE</td>
<td>May 7, 1980</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIKE EMBANKMENT</td>
<td></td>
</tr>
<tr>
<td>Crest Elevation</td>
<td>1041.1</td>
</tr>
<tr>
<td>Current Pool Elevation</td>
<td>1039.4</td>
</tr>
<tr>
<td>Maximum Impoundment to Date</td>
<td>-</td>
</tr>
<tr>
<td>Surface Cracks</td>
<td>Earth embankment no cracks observed</td>
</tr>
<tr>
<td>Pavement Condition</td>
<td>None</td>
</tr>
<tr>
<td>Movement or Settlement of Crest Level</td>
<td>None</td>
</tr>
<tr>
<td>Lateral Movement</td>
<td>None visible</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Relatively flat</td>
</tr>
<tr>
<td>Horizontal Alignment</td>
<td>Curved d/s (bulged)</td>
</tr>
<tr>
<td>Condition at Abutment and at Concrete Structures</td>
<td>LH wet RH @ spillway-OK</td>
</tr>
<tr>
<td>Indications of Movement of Structural Items on Slopes</td>
<td>None</td>
</tr>
<tr>
<td>Trespassing on Slopes</td>
<td>Footpath, many trees and brush on u/s & d/s slopes</td>
</tr>
<tr>
<td>Sloughing or Erosion of Slopes or Abutments</td>
<td>None</td>
</tr>
<tr>
<td>Rock Slope Protection - Riprap Failures</td>
<td>No riprap protection on u/s slope</td>
</tr>
<tr>
<td>Unusual Movement or Cracking at or near Toes</td>
<td>None visible</td>
</tr>
<tr>
<td>Unusual Embankment or Downstream Seepage</td>
<td>None</td>
</tr>
<tr>
<td>Piping or Boils</td>
<td>None</td>
</tr>
<tr>
<td>Foundation Drainage Features</td>
<td>None</td>
</tr>
<tr>
<td>Toe Drains</td>
<td>None</td>
</tr>
<tr>
<td>Instrumentation System</td>
<td>None</td>
</tr>
</tbody>
</table>

page 4 of 6
PERIODIC INSPECTION CHECK LIST

PROJECT WHITE'S MILL POND DAM
PROJECT FEATURE Outlet Works
DISCIPLINE Geotechnical

DATE May 7, 1980
NAME M. Gilbert
NAME S. Nagel

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Visible Reinforcing</td>
<td></td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td></td>
</tr>
<tr>
<td>Condition at Joints</td>
<td></td>
</tr>
<tr>
<td>Drain Holes</td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
</tr>
<tr>
<td>Loose Rock or Trees Overhanging Channel</td>
<td>Tree growing out of rock wall on d/s slope overhangs both spillway and low level outlet.</td>
</tr>
<tr>
<td>Condition of Discharge Channel</td>
<td></td>
</tr>
</tbody>
</table>

Low level outlet is a rock lined box culvert with a hand operated slide gate. Gate box is located on crest of dam near the spillway. The gate valve was last repaired and operated 9 years ago. Discharge is onto a boulder which is about 5 ft. to the right of the spillway. This discharge joins the spillway overflow at that point.
PERIODIC INSPECTION CHECK LIST

PROJECT WHITE'S MILL POND DAM

PROJECT FEATURE Outlet Works

DISCIPLINE Geotechnical

DATE May 7, 1980

NAME M. Gilbert

NAME S. Nagel

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS</td>
<td></td>
</tr>
<tr>
<td>a. Approach Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Fair</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>No</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>1 bush in wall</td>
</tr>
<tr>
<td>Floor of Approach Channel</td>
<td>Submerged</td>
</tr>
<tr>
<td>b. Weir and Training Walls</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td>Rock w/concreted joints, corner stone missing on LH side, cracking on both sides - FAIR to POOR</td>
</tr>
<tr>
<td>Rust or Staining</td>
<td>No</td>
</tr>
<tr>
<td>Spalling</td>
<td>At water line</td>
</tr>
<tr>
<td>Any Visible Reinforcing</td>
<td>None</td>
</tr>
<tr>
<td>Any Seepage or Efflorescence</td>
<td>None</td>
</tr>
<tr>
<td>Drain Holes</td>
<td>None</td>
</tr>
<tr>
<td>c. Discharge Channel</td>
<td></td>
</tr>
<tr>
<td>General Condition</td>
<td>Fair</td>
</tr>
<tr>
<td>Loose Rock Overhanging Channel</td>
<td>No, about 1 ft. of water flowing over spillway</td>
</tr>
<tr>
<td>Trees Overhanging Channel</td>
<td>Many overhanging and in channel</td>
</tr>
<tr>
<td>Floor of Channel</td>
<td>Boulders</td>
</tr>
<tr>
<td>Other Obstructions</td>
<td>Logs and fallen tree w/roots in channel</td>
</tr>
</tbody>
</table>

Footbridge over spillway is leaning d/s. It is of wood construction which is in poor condition. Stop logs within 2 ft. of top are in place on u/s side of footbridge. Stop logs are in good condition.
PERIODIC INSPECTION CHECK LIST

<table>
<thead>
<tr>
<th>PROJECT FEATURE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlet Works</td>
<td>May 7, 1980</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISCIPLINE</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical</td>
<td>M. Gilbert</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA EVALUATED</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTLET WORKS - TRANSITION AND CONDUIT</td>
<td></td>
</tr>
<tr>
<td>General Condition of Concrete</td>
<td></td>
</tr>
<tr>
<td>Rust or Staining on Concrete</td>
<td></td>
</tr>
<tr>
<td>Spalling</td>
<td></td>
</tr>
<tr>
<td>Erosion or Cavitation</td>
<td></td>
</tr>
<tr>
<td>Cracking</td>
<td></td>
</tr>
<tr>
<td>Alignment of Monoliths</td>
<td></td>
</tr>
<tr>
<td>Alignment of Joints</td>
<td></td>
</tr>
<tr>
<td>Numbering of Monoliths</td>
<td></td>
</tr>
</tbody>
</table>

Service intake to factory is a screened intake with a 10" line which feeds a 10" line to the fire pump and a 6" line used for cooling water in the factory. The 6" service line requires a minimum pond elevation of about 1038.0 to service pump. The line is a siphon.
APPENDIX B

PLANS OF DAM AND PREVIOUS INSPECTION REPORTS

Figure B-1, Plan of Dam

Figure B-2, Sections through Dam

File card for White's Mill Dam
from Worcester County Engineer's Office

Previous Inspection Reports
Dated 1926 through 1964
by Worcester County Engineer's Office

Dated December 27, 1971 by Massachusetts Department of Public Works
PLAN OF UPSTREAM EMBANKMENTS
"SPRINGVILLE" DAM & MILL CIRCLE

SCALE: 1" = 40' 0"

METCALF & EDDY, INC.
<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOWN OR CITY</td>
<td>Winchester</td>
</tr>
<tr>
<td>LOCATION</td>
<td>Montagneau Lake</td>
</tr>
<tr>
<td>DEGREE NO.</td>
<td>6001</td>
</tr>
<tr>
<td>TOWN OR CITY</td>
<td>Springville</td>
</tr>
<tr>
<td>DESCRIPTION OF DAM</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Dry Bubble - Earth Embankment Dam</td>
</tr>
<tr>
<td>Length</td>
<td>856' - and - 131' dyke to East</td>
</tr>
<tr>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>Thickness top</td>
<td>16: 76</td>
</tr>
<tr>
<td>Thickness bottom</td>
<td>94: 36</td>
</tr>
<tr>
<td>Stream Elevation</td>
<td>Verge Bubble Wall</td>
</tr>
<tr>
<td>Upstream</td>
<td>13 to 1</td>
</tr>
<tr>
<td>Length of Spillway</td>
<td>296</td>
</tr>
<tr>
<td>Date of Completion</td>
<td>Jan 22, 1937</td>
</tr>
<tr>
<td>Date of Completion</td>
<td>Jul 28, 1940</td>
</tr>
<tr>
<td>GENERAL REMARKS</td>
<td></td>
</tr>
<tr>
<td>OWNER</td>
<td>N. B. White Co. Inc.</td>
</tr>
<tr>
<td>1st Inspection</td>
<td>Dec. 14, 1927 - L. O. Morden</td>
</tr>
<tr>
<td>2nd Inspection</td>
<td>Oct. 18, 1929</td>
</tr>
<tr>
<td>3rd Inspection</td>
<td>Feb. 18, 1932</td>
</tr>
<tr>
<td>4th Inspection</td>
<td>Sept. 24, 1936 - C. A. LeBlanc</td>
</tr>
<tr>
<td>5th Inspection</td>
<td>Mar. 20, 1936 - W. O. L., M. F. Hunt</td>
</tr>
<tr>
<td>6th Inspection</td>
<td>Oct. 1, 1938 - M. F. Hunt</td>
</tr>
<tr>
<td>7th Inspection</td>
<td>Jan. 7, 1939 - E. S. Grover</td>
</tr>
<tr>
<td>8th Inspection</td>
<td>Mar. 16, 1940</td>
</tr>
<tr>
<td>9th Inspection</td>
<td>Jul 8, 1940</td>
</tr>
<tr>
<td>10th Inspection</td>
<td>Mar 16, 1950</td>
</tr>
<tr>
<td>11th Inspection</td>
<td>Jul 8, 1950</td>
</tr>
<tr>
<td>12th Inspection</td>
<td>Mar. 16, 1951</td>
</tr>
<tr>
<td>13th Inspection</td>
<td>Jul 8, 1951</td>
</tr>
<tr>
<td>14th Inspection</td>
<td>Mar 16, 1952</td>
</tr>
</tbody>
</table>

Whites Mill Pond Dam
Inspection of Dams, Reservoir Dams and Reservoirs

Town: Winchendon
Date: March 29, 1926
Dam No.:

Location: Springville
Name of Pond or Stream: Mill Pond

Inspected by: L.O. Marden

Owner: M.D. White & Sons
Use: Power & Washing

MATERIAL & TYPE: see first inspection report.

Elevations in feet: above (+) or below (−) full pond or reservoir level.

FOR DAM: Bed of stream below top of spillway

FOR RESERVOIR:

- top of dam
- top of flashboards
- ground surface below
- level of overflow pipe
- length in feet
- width top in feet
- width bottom in feet
- size pipe to mill
- inches
- length spillway in feet
- head in feet

Size of wheel:
H.P. developed:

Size of gates:
Location of gates:

Foundation and details of construction:

Condition of embankment:

Constructed by:

Designed by:

Recent repairs and date: none.

Evidence of leakage: leaks shown in first report from old waste gate-

Condition: fair to good-

Topography of country below:

Nature of buildings and roads below dam:

No. Acres in watershed:

No. Acres in pond:

Plans secured:

Percent watershed in cultivation:

Percent in forests:

Note: Cross out word not applicable
COUNTY OF WORCESTER, MASSACHUSETTS
OFFICE OF COUNTY ENGINEER

INSPECTION OF DAMS, RESERVOIR DAMS AND RESERVOIRS

<table>
<thead>
<tr>
<th>Town Winchendon</th>
<th>Date Dec. 14, 1927</th>
<th>Dam No. 60-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location at Winchendon Sprgs</td>
<td>Name of Pond or Stream White Mill Pond.</td>
<td>from Lake Mononomac.</td>
</tr>
<tr>
<td>Inspected by L.O. Marden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Owner N.D. White & Sons.</td>
<td></td>
<td>Use Power and washing.</td>
</tr>
</tbody>
</table>

MATERIAL & TYPE

| Elevations in feet: above (+) or below (-) full pond or reservoir level. |
| FOR DAM Bed of stream below top of spillway |
| FOR RESERVOIR top of dam top of flashboards 24 inches ground surface below level of overflow pipe length in feet width top in feet width bottom in feet size pipe to mill inches length spillway in feet head in feet Size of wheel H. P. developed Size of gates location of gates Foundation and details of construction condition of embankment fair to good. |

Constructed by	date
Designed by	location
Recent repairs and date	old
Evidence of leakage thru gates west of spillway abt. 5' not dangerous.	
Condition	fair to good.
Topography of country below	
Nature of buildings and roads below dam	

No. Acres in watershed	No. Acres in pond
Plans secured	Percent watershed in cultivation
Percent in forests	Note: Cross out word not applicable

steel stem to above gate sticks up so can be opened.
COUNTY OF WORCESTER MASSACHUSETTS
COUNTY ENGINEER
Inspection of Dams, Reservoir Dams, and Reservoirs.

<table>
<thead>
<tr>
<th>Town</th>
<th>Location</th>
<th>Date</th>
<th>Dam No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winchendon</td>
<td>above mill</td>
<td>10-13-29</td>
<td>60-01</td>
</tr>
</tbody>
</table>

Owner
N. D. White & Sons

SPILLWAY

<table>
<thead>
<tr>
<th>El. top Abutment</th>
<th>El. Crest</th>
<th>El. Apron</th>
<th>El. Streambed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width top Abutment</td>
<td>Width top Crest</td>
<td>Width bottom Spillway</td>
<td></td>
</tr>
<tr>
<td>Width Flashboards carried</td>
<td>Kind Flashboards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El. Flowline Cleanout Pipe</td>
<td>Size and Kind Cleanout Pipe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kind of Foundation under Spillway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition: O.K. except west abutment wall should be recemented - slight settlement - same with east wall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMBANKMENT

<table>
<thead>
<tr>
<th>El. Top</th>
<th>El. Natural Ground</th>
<th>Width Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of Bottom</td>
<td>Upstream Slope</td>
<td>Downstream Slope</td>
</tr>
<tr>
<td>Kind of Corewall</td>
<td>Riprap</td>
<td></td>
</tr>
<tr>
<td>Material in Embankment</td>
<td>Foundation</td>
<td></td>
</tr>
<tr>
<td>Condition: cut brush out of crevices in embankment walls, cut white birch out wall lower side west abt. spillway</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GATES

<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Condition: O.K.</td>
</tr>
</tbody>
</table>

WHEEL

<table>
<thead>
<tr>
<th>Kind</th>
<th>Size</th>
<th>Rated H. P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of Leaks in Structure: leaks in two places - one beside stone buttress to west of gate and 6-6' distant from buttress - also 16' - also 22' also 40'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent Repairs and Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topography of Country below Dam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nature of Buildings and Roads below Dam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number Acres in Pond</th>
<th>Drainage Area in Square Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge in Second Feet per Square Mile</td>
<td></td>
</tr>
<tr>
<td>Estimated Storage Million Cubic Feet</td>
<td>B-8</td>
</tr>
</tbody>
</table>
COUNTY OF WORCESTER MASSACHUSETTS
COUNTY ENGINEER
Inspection of Dams, Reservoir Dams, and Reservoirs.

<table>
<thead>
<tr>
<th>Inspected by</th>
<th>L. O. Marden</th>
<th>Date</th>
<th>Feb. 13, 1932</th>
<th>Dam No. 60-01</th>
</tr>
</thead>
</table>

Town: Winchendon
Owner: N. D. White & Son.

Material and Type:

<table>
<thead>
<tr>
<th>Dam Designed by</th>
<th>Constructed by</th>
<th>Year</th>
</tr>
</thead>
</table>

SPILLWAY—Length: Feet
Depth: Feet

<table>
<thead>
<tr>
<th>El. top Abutment</th>
<th>El. Crest</th>
<th>El. Apron</th>
<th>El. Streambed</th>
</tr>
</thead>
</table>

Width: top Abutment
Width: top Crest
Width: bottom Spillway

Width: Flashboards carried
Kind: Flashboards

El. Flowline Cleanout Pipe
Size: and Kind: Cleanout Pipe

Kind of Foundation under Spillway
Condition:

EMBANKMENT—Length overall: Feet

<table>
<thead>
<tr>
<th>El. Top</th>
<th>El. Natural Ground</th>
<th>Width Top</th>
</tr>
</thead>
</table>

Width of Bottom:
Upstream Slope
Downstream Slope

Kind of Corewall
Riprap

Material in Embankment
Foundation: Condition:

GATES

<table>
<thead>
<tr>
<th>Size</th>
<th>Kind</th>
<th>El. Flowline</th>
</tr>
</thead>
</table>

Condition:

WHEEL

<table>
<thead>
<tr>
<th>Kind</th>
<th>Size</th>
<th>Rated H. P.</th>
</tr>
</thead>
</table>

Location
Ave. Head

Evidence of Leaks in Structure

Recent Repairs and Date

Topography of Country below Dam

Nature of Buildings and Roads below Dam

Number of Acres in Pond
Drainage Area in Square Miles

Discharge in Second Feet per Square Mile

Estimated Storage Million Cubic Feet

B-9 WHITES MILL POND DAM
COUNTY OF WORCESTER MASSACHUSETTS

COUNTY ENGINEER

Inspection of Dams, Reservoir Dams, and Reservoirs.

Inspected by W. O. L., M. P. H. Date 3/20/36 Dam No. 6001-6002-

Town Winchendon Location

Owner Use

Material and Type

Dam Designed by Constructed by Year

SPILLWAY-Length Feet Depth Feet

El. top Abutment El. Crest El. Apron El. Streambed

Width top Abutment Width top Crest Width bottom Spillway

Width Flashboards carried Kind Flashboards

El. Flowline Cleanout Pipe Size and Kind Cleanout Pipe

Kind of Foundation under Spillway

Condition #60-01 looks OK from rd. People living there said that all 3 of these dams were OK and no water want over embankments.

EMBANKMENT-Length overall Feet

El. Top El. Natural Ground Width Top

Width of Bottom Upstream Slope Downstream Slope

Kind of Corewall Riprap

Material in Embankment Foundation

Condition

GATES Location

Size Kind El. Flowline

Condition

WHEEL Kind Size Rated H. P.

Location Ave. Head

Evidence of Leaks in Structure

Recent Repairs and Date

Topography of Country below Dam

Nature of Buildings and Roads below Dam

Number of Acres in Pond Drainage Area in Square Miles

Discharge in Second Feet per Square Mile

Estimated Storage Million Cubic Feet

B-10 WHITES MILL POND DAM
Worcester County Engineer
Inspection of Dams, Reservoir Dams, and Reservoirs

Inspected by M. F. Hunt
Date 10-14-38
Dam No. 60-01

Town: Winchendon
Location: Above N. D. White Mills
Owner: N. D. White Co.
Use:

Spillway
7 -3' sections 3'-10'' high

<table>
<thead>
<tr>
<th>El.top</th>
<th>El.Crest</th>
<th>El.Apron</th>
<th>El.St.Bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width top Abut.</td>
<td>Width top Crest</td>
<td>Width bottom Sp.way</td>
<td></td>
</tr>
<tr>
<td>Width flashboards</td>
<td>Kind Flashboards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El.Flowline Cleanout Pipe</td>
<td>Size and Kind Pipe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kind of Foundation under Spillway</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Condition: OK

Embankment
El.Top | El.Natural Ground | Width Top |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of Bottom</td>
<td>Upstream Slope</td>
<td>Downstream Slope</td>
</tr>
<tr>
<td>Kind of Corewall</td>
<td>Riprap</td>
<td></td>
</tr>
<tr>
<td>Material in Embankment</td>
<td>Foundation</td>
<td></td>
</tr>
</tbody>
</table>

Condition: Water was held back at Lake Monomonic Dam so that very little water came down

Gates
Size | Kind | El.Flowline
| Location | |

Condition: This dam is all right only if all flood water is held back at the main dam. The embankment is too low and the spillway too small otherwise.

Evidence of Leaks in Structure
Small leak thru wall, south end (old one)

Recent Repairs and Date

Number Acres in Pond

Drainage Area in Sq. Miles

Discharge in Second Feet per Square Mile

Estimated Storage Million Cubic Feet

B-11
Whites Mill Pond Dam
WORCESTER COUNTY ENGINEER

Inspection of Dams, Reservoir Dams, and Reservoirs

Inspected by J. S. Moore Date 1-7-39 Dam No. 60-01

Town Wenham Location W. Spring off 12 2024
Owner White Use

SPILLWAY
El. top Abutment El. Crest El. Apron El. St. Bed
Width top Abut. Width top Crest Width bottom Sp. way
Width flashboards Kind Flashboards
El. Flowline Cleanout Pipe Size and Kind Pipe
Kind of Foundation under Spillway
Condition Water level at 2' below ground all
Snow cover around pond and ice of dam still remains large

EBANKMENT
El. Top El. Natural Ground Width Top
Width of Bottom Upstream Slope Downstream Slope
Kind of Corrgwall Riprap
Material in Embankment Foundation
Condition

GATES
Location
Size Kind El. Flowline
Condition

Evidence of Leaks in Structure
Recent Repairs and Date

Number Acres in Pond Drainage Area in Sq. Miles
Discharge in Second Feet per Square Mile
Estimated Storage Million Cubic Feet

B-12 WHITES MILL POND DAM
WORCESTER COUNTY ENGINEER
Inspection of Dams, Reservoir Dams, and Reservoirs

Inspected by F.S. Grover Date May-16-1939 Dam No. 60-01

Town Winchendon Location Millers River
Owner N.D. White Use

SPILLWAY
<table>
<thead>
<tr>
<th>El. top abutment</th>
<th>El. Crest</th>
<th>El. Apron</th>
<th>El. St. Bed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width top Abut.</td>
<td>Width top Crest</td>
<td>Width bottom Sp. way</td>
<td></td>
</tr>
<tr>
<td>Width flashboards</td>
<td>Kind Flashboards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El. Flowline Cleanout Pipe</td>
<td>Size and Kind Pipe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kind of Foundation under Spillway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition Top of Flashboards 27" above CREST</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EARTHWORK
<table>
<thead>
<tr>
<th>El. Top</th>
<th>El. Natural Ground</th>
<th>Width Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width of Borrow</td>
<td>Upstream Slope</td>
<td>Downstream Slope</td>
</tr>
<tr>
<td>Kind of Corewall</td>
<td>Piprap</td>
<td></td>
</tr>
<tr>
<td>Material in Embankment</td>
<td>Foundation</td>
<td></td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GATES
<table>
<thead>
<tr>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Condition</td>
</tr>
</tbody>
</table>

Evidence of Leaks in Structure

Recent Repairs and Date

Number Acres in Pond Drainage Area in Sq. Miles Discharge in Second Feet per Square Mile Estimated Storage Million Cubic Feet

B-13 WHITES MILL POND DAM
<table>
<thead>
<tr>
<th>Town</th>
<th>Location</th>
<th>Owner</th>
<th>Material and Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winchendon</td>
<td>Mill Pond</td>
<td>N.D. White & Son</td>
<td>Use</td>
</tr>
</tbody>
</table>

SPILLWAY			
El. top Abutment	El. Crest	El. Apron	El. Streambed
Width top Abutment	Width top Crest	Width bottom Spillway	
Width Flashboards carried	Kind Flashboards		
El. Flowline Cleanout Pipe	Size and Kind Cleanout Pipe		
Kind of Foundation under Spillway			
Condition	patch, planks, in spillway		

EMBANKMENT		
El. Top	El. Natural Ground	Width Top
Width of Bottom	Upstream Slope	Downstream Slope
Kind of Corewall	Riprap	
Material in Embankment	Foundation	
Condition	grub, out, brush & roots	

<table>
<thead>
<tr>
<th>GATES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Kind</td>
</tr>
<tr>
<td>Condition</td>
<td>approved, ok</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WHEEL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kind</td>
<td>Size</td>
</tr>
<tr>
<td>Location</td>
<td>Ave. Head</td>
</tr>
<tr>
<td>Evidence of Leaks in Structure</td>
<td>Seepage</td>
</tr>
<tr>
<td>Recent Repairs and Date</td>
<td></td>
</tr>
<tr>
<td>Topography of Country below Dam</td>
<td></td>
</tr>
<tr>
<td>Nature of Buildings and Roads below Dam</td>
<td></td>
</tr>
<tr>
<td>Number Acres in Pond</td>
<td>Drainage Area in Square Miles</td>
</tr>
<tr>
<td>Discharge in Second Feet per Square Mile</td>
<td></td>
</tr>
<tr>
<td>Estimated Storage Million Cubic Feet</td>
<td></td>
</tr>
</tbody>
</table>

| B-14 | WHITES MILL POND DAM |
TOWN: Winchendon

LOCATION: Factory Mill Pond

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

OWNED BY: White Bros. Inc.
PLACE: Winchendon
USE: Pumping

INSPECTED BY: L. O. M
DATE: May 16, 1950

TYPE OF DAM: Earth-Crest timber spillway
CONDITION: Only fair

SPILLWAY:
FLASHBOARDS IN PLACE: Yes
RECENT REPAIRS: None
CONDITION: Planks-certain poor-with one new slat added
drainage pipe and guard rail in place
REPAIRS NEEDED: Rehabilitation of spillway

EMBANKMENT:
RECENT REPAIRS: None
CONDITION: Earth covered with brush and trees
REPAIRS NEEDED: Cut out and replace brush and trees
Realtime embankment

GATES:
RECENT REPAIRS: None
CONDITION: Fair
REPAIRS NEEDED: Replace when necessary

LEAKS:
HOW SERIOUS: Some leaks and seepage-prevent
WHAT: Damage
DATE: May 16, 1950

SIGNED:
COUNTY ENGINEER

B-15 WHITES MILL POND DAM
TOWN: Westborough
LOCATION: Factory Mill Pond

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

OWNED BY: White Bros Inc
PLACE: Marlborough
USE: Storage

DAM NO. 60-01

INSPECTED BY: L. O. Marston
DATE: July 8, 1957

TYPE OF DAM

SPILLWAY

FLASHBOARDS IN PLACE: Near
RECENT REPAIRS: None
CONDITION: Planks open, poor - water seeps thru cut walls
REPAIRS NEEDED: Renew planks - cut off leak

EMBANKMENT

RECENT REPAIRS: None
CONDITION: Covered with brush & trees - water flowing thru
REPAIRS NEEDED: Cut off " " cut off leaks

GATES

RECENT REPAIRS: None
CONDITION: Fair
REPAIRS NEEDED: None

LEAKS

HOW SERIOUS: Could be

DATE: __________________________

COUNTY ENGINEER

B-16 WHITE'S MILL POND DAM
DAM INSPECTION REPORT

OWNED BY: White Bros., Inc. **PLACE:** Winchendon **USE:** Industrial

INSPECTED BY: LOM. **DATE:** Dec. 12, 1951

TYPE OF DAM: Earth-stone & timber spillway **CONDITION:** Fair

SPILLWAY

<table>
<thead>
<tr>
<th>Flashboards in Place</th>
<th>Stanchion Boards</th>
<th>Recent Repairs</th>
<th>Condition</th>
<th>Repairs Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>none</td>
<td>Fair</td>
<td>Planks in poor condition—replace. Water seeps through masonry walls and comes out in stream on downstream embankment.</td>
</tr>
</tbody>
</table>

EMBANKMENT

<table>
<thead>
<tr>
<th>Recent Repairs</th>
<th>Condition</th>
<th>Repairs Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>covered with brush and trees.</td>
<td>Cut off brush and trees, grub out roots, and replace with good quality filling. Downstream slope embankment should be flattened.</td>
</tr>
</tbody>
</table>

GATES

<table>
<thead>
<tr>
<th>Recent Repairs</th>
<th>Condition</th>
<th>Repairs Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>fair</td>
<td>Check timbers and place those in poor shape.</td>
</tr>
</tbody>
</table>

LEAKS

<table>
<thead>
<tr>
<th>How Serious</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COUNTY ENGINEER

B-17 WHITE'S MILL POND DAM
Worcester County Engineering Department
Worcester, Massachusetts
DAM INSPECTION REPORT

OWNED BY
PLACE
USE

INSPECTED BY: H Spofford
DATE: 3/24/54

TYPE OF DAM: Earth - Store Behind Wall

SPILLWAY
Flashboards in Place: 2 ft
Recent Repairs: None
Condition: Good
Repairs Needed:

EMBANKMENT
Recent Repairs: None
Condition: Good
Repairs Needed:

GATES

LEAKS
How Serious: None Visible

Date:

COUNTY ENGINEER

B-18
Whites Mill Pond Dam
TOWN: Winchendon
LOCATION: Mammoth Lake

Worcester County Engineering Department
Worcester, Massachusetts

DAM INSPECTION REPORT

OWNED BY: W.D. White & Sons Inc.
PLACE: Winchendon
USE:

INSPECTED BY: Lom Young
DATE: 1958

TYPE OF DAM: ... CONDITION.......

SPILLWAY
FLASHBOARDS IN PLACE: Yes
RECENT REPAIRS: ...
CONDITION: Good
REPAIRS NEEDED: No

EMBANKMENT
RECENT REPAIRS: No
CONDITION: Fair to Good
REPAIRS NEEDED: No

GATES
RECENT REPAIRS: No
CONDITION: Good
REPAIRS NEEDED: No

LEAKS
HOW SERIOUS: ...
DATE: 58

COUNTY ENGINEER

B-19 Whites Mill Pond Dam
TOWN: Winchendon DAM NO.: 60-20

Winchendon, Massachusetts

Worcester County Engineering Department
Worcester, Massachusetts

DAM INSPECTION REPORT

Owned by: N.D. White & Son Place: Winchendon Use:

Inspected by: Date: July 10, 1953

Type of Dam: Condition: Fair

SPILLWAY
Flashboards in Place: Yes Recent Repairs: None
Condition: Fair - remove flash boards.
Repairs Needed: Cut out leaks around spill gate.

TANKAGE
Recent Repairs: Condition: Damaged, will check in future.
Repairs Needed:

GRADES
Recent Repairs: Condition: Fair
Repairs Needed: Place in good working order

LEAKS
How Serious:

DATE: July 10, 1953 County Engineer:

B-20 Whites Mill Pond Dam
<table>
<thead>
<tr>
<th>TOWN</th>
<th>Winchendon</th>
<th>DAM NO.</th>
<th>60-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>Winchendon Springs</td>
<td>STREAM</td>
<td>French - Millers River</td>
</tr>
</tbody>
</table>

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

<table>
<thead>
<tr>
<th>Owned by</th>
<th>Ray Plastics Inc</th>
<th>Place</th>
<th>Winchendon</th>
<th>Use Mill Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspected by</td>
<td></td>
<td>Date</td>
<td>May 27, 1959</td>
<td></td>
</tr>
<tr>
<td>Type of Dam</td>
<td>Earth-Stone-Concrete</td>
<td>Condition</td>
<td>Good</td>
<td></td>
</tr>
</tbody>
</table>

SPILLWAY

<table>
<thead>
<tr>
<th>Flashboards in Place</th>
<th>2' of 3' boards</th>
<th>Recent Repairs</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Spillway is 5'-12'</td>
<td>Repairs Needed</td>
<td>Is full to top of boards. Spillway is located on top end of dam. Foundation is on ledge.</td>
</tr>
</tbody>
</table>

EMBANKMENT

<table>
<thead>
<tr>
<th>Recent Repairs</th>
<th>35' long dam - 16' wide on top - downstream vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Rubble stone wall - upstream is 14' to 16' high with some stone</td>
</tr>
<tr>
<td>Repairs Needed</td>
<td>Paving, upstream, near spillway is vertical cemented stone wall. Height is 12' to 16'</td>
</tr>
</tbody>
</table>

GATES

<table>
<thead>
<tr>
<th>Recent Repairs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Gate into Mill is in good condition</td>
</tr>
<tr>
<td>Repairs Needed</td>
<td></td>
</tr>
</tbody>
</table>

LEAKS

| How Serious | No leaks are visible. |

DATE: B-21 County Engineer

WHITE MILL POND DAM
TOWN: Winchendon

LOCATION: Winchendon Springs

DAM NO.: 60-01

STREAM: Mill River

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

Owned by: Ray Properties Inc. Place: Winchendon Use: Mill Pond

Inspected by: Lindquist Petersen, Inc.

Date: Sept 1959

Type of Dam: Earth, Steel, Concrete

Condition: Good

SPILLWAY

Flashboards in Place: 12' of boards

Recent Repairs: None

Condition: (10' x 10' timber uprights and 10' x 10' top timber support)

Repairs Needed: For Flashboards. These timbers are blocking off part of the spillway area. Wellway timbers also block off spillway area.

EMBANKMENT

Recent Repairs:

Condition: Good Condition (Flood Patrol)

Repairs Needed: 12' of water over boards

GATES

Recent Repairs:

Condition: No gate in this location

Repairs Needed: Gate at Mill Help is in good condition

LEAKS

How Serious: No leak visible

DATE: B-22 County Engineer

WHITES MILL POND DAM
TOWN Winchendon DAM NO. 60-01
LOCATION above Mill STREAM Branch - Millers River
LOCATION "Winchendon Springs" "White Mill Pond"

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

Owned by Ray Plastic Inc. Place Winchendon Use Mill Pond
Inspected by W.C. Eskin Date July 28 1960
Type of Dam Earth - Stone - Concrete Condition Fair

SPILLWAY
Flashboards in Place Yes Recent Repairs
Condition Fair. Walkway should be raised 12 in. to increase spillway
Repairs Needed Slight. Present timber frames and uprights should be
replaced with pin boards

EMBANKMENT
Recent Repairs
Condition Fair
Repairs Needed Raise low places in embankment to height of top of abutment walls

GATES
Recent Repairs
Condition Good
Repairs Needed Gate is closed

LEAKS
How Serious No leaks visible

DATE: County Engineer
B-23 WHITES MILL POND DAM
ITG'IN
&
NO.

LOCATION

WORCESTER COUNTY ENGINEERING DEPARTMENT
WORCESTER, MASSACHUSETTS

DAM INSPECTION REPORT

Owned by __________ Place __________ Use __________

Inspected by __________ Date __________

Type of Dam __________ Condition __________

SPILLWAY

Flashboards in Place __________ Recent Repairs __________

Condition __________ Repairs Needed __________

This spillway is located on a reservoir.

EMBANKMENT

Recent Repairs __________ Condition __________

Repairs Needed __________

GATES

Recent Repairs __________ Condition __________

Repairs Needed __________

LEAKS

How Serious __________

DATE: __________ County Engineer

B-24 WHITES MILL FOND DAM
TOWN Wachusett DAM NO. 65-31
LOCATION Wachusett Springs STREAM North Branch Mill River

Worcester County Engineering Department
Worcester, Massachusetts

DAM INSPECTION REPORT

Owned by Ray Plastic Place Wachusett Use Mill Pond
Inspected by 1962 Date 6-1-67
Type of Dam Earth and Stone Dam Condition Good to Fair

SPILLWAY
Flashboards in Place Yes Recent Repairs
Condition Timbers are beginning to rot - should be rebuilt using
Repairs Needed principal a walkway and mud stringers should be
raised above abutment walls

EMBANKMENT
Recent Repairs
Condition Good condition - except some large trees on top
Repairs Needed Embankment - Some stumps are rising on
upstream wall near spillway. Above rise and 10' near spillage.

GATES
Recent Repairs Recent repairs to concrete gate intake structure
Conditions Partially eroded
Repairs Needed Maintenance in front of intake structure

LEAKS
How Serious No leaks suspected

DATE: County Engineer

B-25 Whites Mill Pond Dam
INDUSTRIAL REPORT & DATA FOR DAMS

Owner: Ray Plastics, Inc.
His Address: Glen Allen St., Winchendon
Function of Dam: Storage

Location & Access: Off Glen Allen St. in back of Ray Plastics. Drive through gate.

USGS Quad: Winchendon Lat. 42° 41' 46" Long. 72° 00' 40"

Drain, Ar.: 2.1 Sq. Mi.
Fonds: No. Res. Dam: General Description of Dam and Discharge Control:

Stone faced, earth-filled dam. Concrete spillway. 2' of Flashboards with 2' more possible.

Sketch (Not to Scale):

N Mill Pond

2' Flashboards

Remarks and Recommendations:
Trees 6" and bushes should be cut.

Date 12/27/71 By Eaton & Cady

- 3-14-373-01 - WHITES MILL POND DAM
APPENDIX C
PHOTOGRAPHS

Note: Location and direction of photographs shown on Figure B-1 in Appendix B.
NO. 1 FOOT BRIDGE ACROSS SPILLWAY.

NO. 2 PATH ALONG TOP OF DAM.
NO. 3 SEEPAGE AREA AT DOWNSTREAM TOE OF DAM.

NO. 4 SCREENED INTAKE FOR SERVICE AND FIRE LINES.
NO. 5 DOWNSTREAM VIEW OF LOW LEVEL OUTLET.

NO. 6 VIEW OF SPILLWAY DISCHARGE CHANNEL SHOWING UPROOTED TREES AND LOGS.
NO. 7 DRY STONE MASONRY WALL, RIGHT SIDE OF SPILLWAY.

NO. 8 BRIDGE OVER SPILLWAY DISCHARGE CHANNEL.
NO. 9 SPILLWAY DISCHARGE CHANNEL UNDER THE FACTORY BUILDING.

NO. 10 VIEW ALONG TOP OF THE DIKE.
APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

Figure D-1, Drainage Area Map
Figure D-1, Drainage Area Map

Page
D-1

Hydrologic and Hydraulic Computations
Hydrologic and Hydraulic Computations

Page
D-2
FIG. D-1 DRAINAGE AREA MAP

WHITE'S MILL POND DAM
Test Flood, Storage & Storage Function - Lake Monomac

1. Total Drainage Area = 19.06 mi²

2. Pond(s) Area:
 \[0.04+0.02+0.04+0.01+0.18 = 0.59 \text{ mi}²\]

Swamp(s) Area:
\[0.06+0.04+0.04+0.03+0.05+0.04+0.16+0.02 = 0.71 \text{ mi}²\]

Total Area Pond(s) & Swamp(s):
\[1.25 \text{ mi}²\]

3. \[\frac{1316 - 1044}{3130} = 0.0869\]

\[\text{Say Ave Slope} = 0.9\%\]

4. Using C of E Curves for Peak Flow Rate & above guide values, the Peak Flow Rate was estimated to be slightly above "Flat & Coastal," and taken at 850 cfs/mi²

Size Class: 3
Hazard Pot.: 3
Spill. Des. Flood: Use Test Flood = \(\frac{1}{2}\) PMF (to match White Pond test flood)

5. Test Flood Inflow = \(\frac{1}{2}(850)19.06 = 8100\) cfs

6. Pond Storage

The pond area is 0.97 sq. mi, at evel 1044.

Based on a const. area 6, storage increases at 621 ac. feet per foot of depth increase.

7. Spillway crest elev. is evel. 1048.5

8. Storage Functions are based on \(Q_{out} = Q_{in}[1 - \frac{S_{out}}{R}]\)

\(S_{out} = \) Storage Vol. in Reservoir related to final \(Q_{out}\)

in terms of inches of rain over the drainage area.

\(S(\text{in inches}) = 12D\left(\frac{0.97}{19.06}\right) = 0.61\)

\(D\) = 6 hr rain of storm

\(D\) = Storage depth in feet above spillway crest in reservoir

9. Storage Functions:
 (Test Flood & \(\frac{1}{2}\) PMF if needed)

\[F_{TF} = 8100 - 852.7S = 8100 - 521D\]

\[F_{TF, PMF} = - S = - D\]
Discharge Relations - Lake Monomonac

1. Spillway (Use Williams & Hazen "Hydr. Table")

Length: 48.2' + 86.7' = 134.9' at Elev. 1048.5

Lake Elev. 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

| Q1 | 120 | 6.09 | 13.01 | 21.60 | 31.47 | 42.03 | 63.66 | 84.69 | 95.20 |

| Q2 | 160 | 820 | 1760 | 2910 | 4250 | 5750 | 8590 | 11420 | 12840 |

*Extrapolated

2. Beside Spillway

Q1 @ El. 1051.5 & 30 @ El. 1052.5, use Q = 2.55 ft

Lake Elev 1052 1053 1054 1055 1056 1057 1058

| hA | 0.5 | 1.5 | 2.5 | 3.5 | 4.5 | 5.5 | 6.5 |

| QA | — | 20 | 40 | 70 | 100 | 130 | 170 |

| hB | — | 1 | 2 | 3 | 4 | 5 | 6 |

| QB | — | 80 | 220 | 460 | 610 | 860 | 1120 |

ΣQ1 = 0 100 260 470 710 990 1290

3. Siphon to Whites Mill Pond

30' pipe siphon - max. head = 1053.5 - 1042.1 = 11.4'

Max V = \sqrt{2g(h)} = 27.1 ft/s, Q_max = 133 cfs.
Assume avg. flow of 100 cfs during storm, "max head = 6'

4. Crest Flow to Whites Mill Pond

337 total length - ± 100' @ 1053.5' & 237' @ 1054', Ψ = 2.55 (h)^{0.5}

Lake Elev 1054 1055 1056 1057 1058 1059 1053.6

| QA | 90 | 470 | 1010 | 1670 | 2430 | 3290 | 10 |

| QB | — | 600 | 1710 | 3140 | 4830 | 6760 | — |

ΣQ1 = 90 1070 2710 4810 7260 10050 10

Crest Flow under test flood = 0.1 cfs/ft

D-3
Discharge & Storage Function vs Lake Elev. - Lake Monomonac

For Test Flood' = 1/2 PMF
IV. Test Flood, Storage & Storage Function

1. Total Drainage Area = 0.94 mi² (exclusive of lake)

2. Pond(s) Area:
 - Swamp(s) Area: $0.08 + 0.02 + 0.01 + 0.01 = 0.12$ mi²
 - Total Area Pond(s) & Swamp(s): 0.12 mi²

3. $\frac{0.12}{0.94} \times 100 = 12.7\%$

4. Using C of E Curves for Peak Flow Rate, and above guide values the Peak Flow Rate was estimated to be between "Rolling" and "Flat Coastal", and taken at 1800 cfs/mi².

 Size Class: Small
 Hazard: High
 Spill: Des. Flood: 1/2 to Full PMF

 Use Test Flood = 1/2 PMF

5. Test Flood Inflow = $\frac{1}{2} (1800) 0.94 = 846$ cfs
 *Add 110 cfs from L. Monomnaac for total of 956 cfs

6. Pond Storage
 - Pond area is 0.06 sq. mi. at elev.
 - Based on a const. area B, storage increases at 40 ac. feet per foot of depth increase

7. Spillway crest elev. is 1037

8. Storage Functions are based on $Q_{out} = Q_{in}[1 - \frac{S}{R}]$
 - S = Storage Vol. in Reservoir related to final Q_{out} in terms of inches of rain over the drainage area.
 - $S (\text{inches}) = 12D (\cdot \frac{.06}{.94}) = 706 D; R = \text{6hr rain of storm}$
 - $D =$ Storage depth in feet above spillway crest in reservoir

9. Storage Functions: (Test Flood & 1/2 PMF - if needed)

 $F_T = 956 - 89.1 * S = 956 - 682 D$

 $F_{1/2 PMF} = \frac{F_T}{2} = \frac{956 - 682 D}{2}$

 *Inflow from L. Monomnaac not included in Q_{out}
Discharge Relations - Whites Mill Pond

1- Spillway Without Stoplogs (supports in place)

Critical flow at upstream crest - el. 1037.0, net width = 24',
\[y_c = \frac{3}{8} (Pond \ El. - 1037.0) \]

<table>
<thead>
<tr>
<th>Pond El.</th>
<th>1038</th>
<th>1039</th>
<th>1040</th>
<th>1041</th>
<th>1042</th>
<th>1042.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>(y_c)</td>
<td>0.67</td>
<td>1.33</td>
<td>2</td>
<td>2.67</td>
<td>3.33</td>
<td>3.67</td>
</tr>
<tr>
<td>(Q_1)</td>
<td>70</td>
<td>270</td>
<td>390</td>
<td>590</td>
<td>830</td>
<td>960</td>
</tr>
</tbody>
</table>

2- Spillway With Stoplogs - top at el. 1039.0, net width = 24',
Up to pond el. 1042 assume weir flow & use Williams & Hazer "Hydr. Tables" -
over el. 1042 assume orifice flow \[y = \frac{Q}{(1.82)^2} \sqrt{2gh} \] - & el. 1042.5
- Include flow over top in crest flow calc.

<table>
<thead>
<tr>
<th>Pond El.</th>
<th>1040</th>
<th>1041</th>
<th>1042</th>
<th>1043</th>
<th>1042.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_2)</td>
<td>3.33</td>
<td>9.32</td>
<td>17.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>80</td>
<td>220</td>
<td>410</td>
<td>430</td>
<td>500</td>
</tr>
</tbody>
</table>

3- Crest Flow (No outlet for flow over dike) \[g = 2.55H^{1.1} \]

<table>
<thead>
<tr>
<th>Pond El.</th>
<th>1041</th>
<th>1042</th>
<th>1043</th>
<th>1042.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_A)</td>
<td>50</td>
<td>490</td>
<td>1160</td>
<td>800</td>
</tr>
<tr>
<td>(Q_B)</td>
<td>10</td>
<td>180</td>
<td>460</td>
<td>310</td>
</tr>
<tr>
<td>(Q_C)</td>
<td>-</td>
<td>120</td>
<td>410</td>
<td>250</td>
</tr>
<tr>
<td>(Q_D)</td>
<td>-</td>
<td>10</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>(Q_E)</td>
<td>-</td>
<td>-</td>
<td>140</td>
<td>50</td>
</tr>
<tr>
<td>(Eq)</td>
<td>60</td>
<td>800</td>
<td>2200</td>
<td>1450</td>
</tr>
</tbody>
</table>
VI Discharge, Storage & Storage Funct. vs Pond Elev. - Whites Mill Pond
VII Test Flood Crest Discharge - Whites Mill Pond

1. With Stoplogs

Max. water surf. elev. 1041.7
Elev. of low point 1040.7
Net head on crest 1.0

\[Q = 2.55 \times (1.0)^{1.5} = 2.55 \text{ cfs/ft of crest length} \]

Critical depth = 0.59 ft.
Critical velocity = 4.3 fps

2. Without Stoplogs

Max. water surf. elev. 1041.2
Elev. of low point 1040.7
Net head on crest 0.5

\[Q = 2.55 \times (0.5)^{1.5} = 0.90 \text{ cfs/ft of crest length} \]

Critical depth = 0.29 ft.
Critical velocity = 3.1 fps

VII Low Level Outlet (if operable)

Stone box culvert 3.7 x 1.0 high - riv el. 1030.4 - Elev. 1031.3

Head = total loss = \((0.5 \times \text{entr} + 1.0 \times \text{exit} + 1.0 \times \text{frict.})^{1/2} \)

\[Q = 29.2 \left(\text{Head} \right)^{1/2} \]

<table>
<thead>
<tr>
<th>Pond el.</th>
<th>1039</th>
<th>1038</th>
<th>1037</th>
<th>1036</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>7.7</td>
<td>6.7</td>
<td>5.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Q</td>
<td>81</td>
<td>76</td>
<td>70</td>
<td>63</td>
</tr>
</tbody>
</table>

For ave discharge rate of 70 cfs, time to lower pond by 1 foot = \(\frac{40 \times 3552}{70 \times 3600} \) = 7 hours ±
Failure of Dam

Peak Failure Flow:

Pond Elevation - 1040.7
Toe Elevation - 1027.7

\[Y_0 = 13.0 \]

\[W_0 = 40\% \]

\[Q_p = 1.68 \times W_0 \times (Y_0)^{1.5} = 1.68 \times (39)^{1.5} = 3100 \text{ cfs} \]

Total Flow: with spillgs 3270 ft^3; without spillgs 3670 ft^3.

Storage Volume Released:

Storage Above Spillway: \[40 \times 3.7 = 148 \text{ ac ft} \]

Storage Below Spillway: \[40 \times 9.3 \times \frac{1}{2} = 124 \text{ ft}^3 \]

\[S = \frac{\text{Total Storage}}{2} = \frac{272}{2} \]

Channel Hydraulics: Behind Factory

<table>
<thead>
<tr>
<th>Pool E1</th>
<th>1039.4</th>
<th>1039.8</th>
<th>1034.5</th>
<th>1030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>270</td>
<td>840</td>
<td>1660</td>
<td>2680</td>
</tr>
<tr>
<td>H</td>
<td>10.4</td>
<td>11.6</td>
<td>12.9</td>
<td>14.3</td>
</tr>
<tr>
<td>G</td>
<td>1690</td>
<td>1780</td>
<td>1880</td>
<td>1980</td>
</tr>
<tr>
<td>EQ</td>
<td>1960</td>
<td>2620</td>
<td>3540</td>
<td>4660</td>
</tr>
</tbody>
</table>

Dam failure raises water level against back of factory by +10 feet above top of normal outlet.

Time to Drain:

\[\frac{43560 \times 27.2}{3600 \times 1/2 \times 3100} = 2.1 \text{ Hours, or 127 Min.} \]
APPENDIX E

INFORMATION AS CONTAINED IN THE
NATIONAL INVENTORY OF DAMS

WHITE'S MILL POND DAM
NOT AVAILABLE AT THIS TIME