VLF (VERY LOW FREQUENCY) WORKSHOP: HELD AT SAN DIEGO CALIFORNIA ON 24-25. (U) SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA MARINE PHYSIC. W S HODGKISS
UNCLASSIFIED 1985 MPL-U-11/85 N00014-80-C-0220 F/G 5/1
MPL TECHNICAL MEMORANDUM 376

VLF Workshop: 24-25 January 1985

W.S. Hodgkiss

Office of Naval Research
N00014-80-C-0220
N00014-79-C-0472

Document cleared for public release;
distribution unlimited.

15 April 1985

MPL-U-11/85

MARINE PHYSICAL LABORATORY
of the Scripps Institution of Oceanography
San Diego, California 92152
The focus of this classified workshop was on the frequency region 1-30 Hz. The program included presentations by the participants followed by a discussion covering areas of potential Navy interest and future research objectives. A summary of the presentations and discussion is contained in this report.
I. Introduction

The focus of this classified workshop was on the frequency region 1-30 Hz. The program included presentations by the participants followed by a discussion covering areas of potential Navy interest and future research objectives. A summary of the presentations and discussion is contained in this report.
II. Participants

The following is a roster of those people who participated in the VLF Workshop. Full addresses and telephone numbers are provided in Appendix A.

ONR

Dr. Mike McKisic
Dr. Gerry Morris

MIT/WHOI

Dr. Arthur Baggeroer
Mr. John Ewing

NAVELEX

LT Bradley Ogg
Mr. Tom Higby

SIO

Dr. LeRoy Dorman
Dr. John Orcutt
Dr. Peter Worcester

NRL

Dr. Ralph Baer
Mr. John Perkins

MPL/SIO

Dr. Wm. Hodgkiss
Dr. Victor Anderson
Dr. Fred Fisher
Mr. Lee Culver
Mr. Chris Nickles
Mr. Greg Edmonds

NORDA

Dr. Wm. Carey
Dr. Thomas Tunnell
Dr. Ron Wagstaff
Mr. Don Del Balso

PSI

Dr. Marshall Bradley

NOSC

Mr. David Keir
Mr. David Edelblute
Dr. Randy Moore
Mr. Mike Morrison
Dr. Homer Bucker
Dr. Ed Hamilton

BBN

Mr. Mike Sullivan
Mr. Dale Green
Mr. Alan Ma

NADC

Mr. James McEachern

Polar Research, Inc.

Dr. James Wilson

Naval Postgraduate School

Dr. Rudolph Nichols

APL/JH

Dr. Julius Bowen
Mr. Joe Lombardo
Mr. Ross Rottier

ARL/UT

Dr. Robert Koch
III. Presentations

The presentations covered the following broad areas: (1) ambient noise, (2) propagation, and (3) system implications. Summaries of the presentations (i.e. abstract and copies of the vu-graphs) are contained either in Appendix B of this report or in a companion classified MPL technical report. The presentations were given in the following order.

Ambient Noise
1. W.S. Hodgkiss and V.C. Anderson, "Infrasonic Acoustic Ambient Noise"
2. Art Baggeroer (for Ira Dyer), "Arctic Ambient Noise"
3. Marshall Bradley, "VLF Ambient Noise"
4. Jim Wilson, "Active Ice Ridge Ambient Noise Levels"
5. John Orcutt, "Noise Characteristics and Wave Propagation at Low Frequencies"

Propagation
1. John Orcutt, "Noise Characteristics and Wave Propagation at Low Frequencies" (continued)
2. LeRoy Dorman, "The Seafloor Sound Channel and Stoneley Waves as Observed Using Seafloor Explosions and Ocean Bottom Seismographs"
5. John Ewing, "VLF Propagation in the Oceanic Crust and Upper Mantle"
6. Art Baggeroer, "On the Relative Amplitudes between Primary and Multiple Signals from Seismic Refractions in Oceanic Crust"
7. Ralph Baer, "A Three-Dimensional Model for Bathymetric Scattering with VLF Applications"
8. Tom Tunnell, "Modeling Support for Cape Fear VLF Exercise"

System Implications
1. Jim McEachern, "NADC Infrasonic Sonobuoy Program - A Brief Summary"*
2. Victor C. Anderson, "Comments on Nearfield VLF Surveillance"
3. Julius Bowen, "Effect of Submarine Speed on Comparative Detectability of Blade and Machinery Tones"*
4. Ross Rottier, "Transmission Loss to a Seismometer in Oceanic Basement"
5. Richard Koch, "VLF Propagation Modeling to an Ocean Borehole Receiver"
6. Joe Lombardo, "Applications of Ocean Seismometers to ASW"**
7. Wm. Carey, "VLF Borehole Surveillance Program Requirements"*
8. Mike Morrison, "Arctic Remote Sensing"*
9. Randy Moore, "Soviet Submarine Source Levels"*
10. Mike Sullivan, "Implications of VLF Clutter on Performance Prediction"*

* All or a subset of the vu-graphs are contained in a companion classified MPL technical report.

** Vu-graphs not available.
IV. Summary

The last half day of the workshop was devoted to reviewing and summarizing what had been said during the course of the presentations. In general, the discussion was a blend of the three broad areas covered in the workshop: (1) ambient noise, (2) propagation, and (3) system implications.

A. Ambient Noise

Based on available data and current models, the characteristics of ambient noise in the VLF region appear to be dominated by a microseism peak in the region of 0.1 Hz with shipping noise being the dominant contributor above 3-4 Hz. More needs to be understood regarding ambient noise levels generated due to atmospheric pressure fluctuations, surface wave motion, and turbulence. Future ambient noise measurement programs should acquire a substantial amount of environmental data to aid in isolating the various contributing mechanisms (meteorological, water column, and bottom properties). Additional array studies are needed to characterize the frequency/wavenumber content of VLF noise in order to better understand where the noise is coming from and what propagation paths are important.

B. Propagation

At VLF frequencies, bottom interaction is a significant aspect of the propagation problem. There is a strong need to have available range-dependent propagation models for use in investigating the significant pathways of energy transfer. For example, future models based on modal formalisms must have the capability of properly accounting for the coupling of energy between modes in order to explain existing observations. High quality array studies at these low frequencies are needed to accurately measure amplitudes, phase velocities, and angles of approach of propagating energy. Many complex wave propagation phenomena can be adequately modeled with algorithms which simply take into account all multiples. Nevertheless, strong evidence exists to support an important role for scattering at these low frequencies although the incorporation of a useful theory in the advanced propagation formalisms remains an unsolved problem.

C. System Implications

A better understanding of the origin and magnitude of VLF ambient noise coupled with measured/predicted source levels and new propagation models will aid in ascertaining the usefulness of the VLF band for surveillance purposes. The trade-offs between the various types of sensors (geophone/hydrophone) and their placement (water column, bottom mounted, or buried) need to be better understood. Sensor design to reduce flow-induced self-noise and the decoupling of tethered sensors from the contaminating effects of mechanical linkages (strumming) are areas of continuing interest. Over what aperture the coherent processing of data from an array of VLF sensors is viable (coherence length) and whether the array should be vertical or horizontal are important system-related issues.
Appendix A

This appendix contains the full addresses and telephone numbers of the VLF Workshop participants.
Dr. Victor Anderson
Marine Physical Laboratory
Scripps Inst. of Oceanog.
San Diego, CA 92152
(619) 294-5578

Dr. Ralph Baer
Code 5160
Naval Research Laboratory
Washington, DC 20375-5000
(202) 767-3173

Dr. Arthur Baggeroer
Rm. 5-204
Massachusetts Inst. of Technology
Cambridge, MA 02139
(617) 253-4338

Dr. Julius Bowen
Applied Physics Laboratory
The Johns Hopkins University
Johns Hopkins Rd
Laurel, MD 20707
(301) 953-5000 (x4562)

Dr. Marshall Bradley
Planning Systems Inc.
Suite 204
1508 Gause Blvd.
Slidell, LA 70458
(504) 649-0450

Dr. Homer Bucker
Code 541
Naval Ocean Systems Center
San Diego, CA 92152
(619) 225-7618

Dr. Wm. Carey
Code NLO
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217
(202) 696-4051

Mr. Lee Culver
Marine Physical Laboratory
Scripps Inst. of Oceanog.
San Diego, CA 92152
(619) 294-3651

Mr. Don Del Balso
Code 200
NSTL Station, MS 39529
(601) 688-5734

Dr. LeRoy Dorman
Geological Research Division (A-015)
Scripps Inst. of Oceanog.
La Jolla, CA 92039
(619) 452-2406

Mr. David Edelblute
Code 71
Naval Ocean Systems Center
San Diego, CA 92152
(619) 225-6511

Mr. Greg Edmonds
Marine Physical Laboratory
Scripps Inst. of Oceanog.
San Diego, CA 92152
(619) 294-3652

Mr. John Ewing
Woods Hole Oceanographic Inst.
Woods Hole, MA 02543
(617) 548-1400 (x2909)

Dr. Fred Fisher
Marine Physical Laboratory
Scripps Inst. of Oceanog.
San Diego, CA 92152
(619) 294-5589

Mr. Dale Green
Bolt, Beranek, and Newman, Inc.
4015 Hancock St., Suite #101
San Diego, CA 92110
(619) 224-3243

Dr. Ed Hamilton
Code 541
Naval Ocean Systems Center
San Diego, CA 92152

(619) 225-6309

Mr. Thomas Higby
Code 612
NAVELEX
2511 Jefferson Davis Hwy
Arlington, VA 22202

(202) 692-4781

Dr. Wm. Hodgkiss
Marine Physical Laboratory
Scripps Inst. of Oceanog.
San Diego, CA 92152

(619) 294-3658

Mr. David L. Keir
Code 71
Naval Ocean Systems Center
San Diego, CA 92152

(619) 225-2281

Dr. Robert Koch
Applied Research Laboratories,
University of Texas at Austin
P.O. Box 8029
Austin, TX 78713-8029

(512) 835-3498

Mr. Joe Lombardo
Applied Physics Laboratory
The Johns Hopkins University
Johns Hopkins Rd
Laurel, MD 20707

(301) 983-5000 (x4283)

Mr. Alan Ma
Bolt, Beranek, and Newman, Inc.
4015 Hancock St., Suite #101
San Diego, CA 92110

(619) 224-3240

Mr. James McEachern
Code 3043
Naval Air Development Center
Warminster, PA 18974

(215) 441-1777

Dr. Mike McKisic
Code 420
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

(202) 696-4204

Dr. Randall Moore
Code 7303
Naval Ocean Systems Center
San Diego, CA 92152

(619) 225-6501

Dr. Gerald Morris
Code 425-GG
Office of Naval Research
NSTL Station, MS 38659

(601) 688-4168

Mr. Mike Morrison
Code 541
Naval Ocean Systems Center
San Diego, CA 92152

(619) 225-6309

Dr. Rudolph H. Nichols
Physics Department
Naval Postgraduate School
Monterey, CA 93943

(408) 646-2648

Mr. Chris Nickles
Marine Physical Laboratory
Scripps Inst. of Oceanog.
San Diego, CA 92152

(619) 294-3677

LT Brad Ogg
Code 6124
NAVELEX
2511 Jefferson Davis Hwy
Arlington, VA 22202

(202) 692-4781

Dr. John Orcutt
IGPP (A-025)
Scripps Inst. of Oceanog.
La Jolla, CA 92033

(819) 452-2887

Mr. John Perkins
Code 5160
Naval Research Laboratory
Washington, DC 20375

(202) 767-3173

Mr. Ross Rottier
Applied Physics Laboratory
The Johns Hopkins University
Johns Hopkins Rd
Laurel, MD 20707

(301) 953-5000

Mr. Mike Sullivan
Bolt, Beranek, and Newman, Inc.
4015 Hancock St., Suite #101
San Diego, CA 92110

(819) 224-3243

Dr. Thomas Tunnell
Code 240
NORDA
NSTL Station, MS 39529

(601) 688-5233

Dr. Ron Wagstaff
Code 245
NORDA
NSTL Station, MS 39529

(601) 688-4751

Dr. James H. Wilson
16333 Keeler Dr.
Granada Hills, CA 91344

(818) 709-5615

Dr. Peter Worcester
IGPP (A-025)
Scripps Inst. of Oceanog.
La Jolla, CA 92033

(819) 452-4688
Appendix B

This appendix contains summaries (i.e. abstracts and vu-graphs) of most of the presentations. As indicated earlier, summaries of a few of the presentations are contained in a companion classified MPL technical report.
Infrasonic Acoustic Ambient Noise

W.S. Hodgkiss and V.C. Anderson

Marine Physical Laboratory
Scripps Institution of Oceanography
San Diego, CA 92152

(619) 294-3658/5578
Fig. 7

This spectrogram shows, among other things, a 77 Hz ice event lasting for more than 20 minutes. It is influenced by the increased ice stress caused by the helicopter landing at time 7 minutes, and by the decreased ice stress caused by the underwater air gun at 16 minutes.
FIG. 1

Composite of ambient noise typical of the central Arctic under moderate noise conditions. Measurements made at a depth of 90 m below the ice. The frequency characteristic below 1 Hz is not yet explained, but hypotheses include nonlinear surface wave noise from the open ocean, pseudosound from the planetary boundary layer turbulence interacting with the hydrophone, and radiation from the seismic noise in the earth's crust and mantle. Peaks from 1-10 Hz are caused by hydrophone cable strum, which is quite variable even under similar cable and current conditions. The broad peak centered on about 15 Hz is most likely caused by a large number of independent ice cracking events.

Fig. 2

This shows in clearer form the broad peak centered at about 15 Hz mentioned in Fig. 1. A 60 Hz tone due to line frequency pick up has been eliminated.

Fig. 3

A time series of noise (pressure magnitude in the 10-20 Hz band) is shown for a 10 day period in the central Arctic. (Noise magnitude is sampled once per hour in a 10 minute window.)

Fig. 4

Inferred ice stress for the same 10 day period as in Fig. 3. This ice stress is the horizontal normal stress in the ice determined as a consequence of force balance among wind loads, current loads, coriolis forces, and pressure gradient forces. This inferred internal ice stress is followed closely by the time series of Fig. 3. (Ice stress is sampled once per hour in a 10 minute window.)

Fig. 5

Cross-correlation of the time series of Figs. 3 and 4, indicating that horizontal internal ice stress is a good predictor of acoustic noise. Other data show that the noise is created by the large number of independent ice cracking events, with the most likely mechanism being flexural failure of the ice. These ice cracking events are individually on the order of a few 100 msecs in duration.

Fig. 6

A pathological observation in the marginal ice zone and often seen as well in the central Arctic. This pathology represents a very long time narrow band event lasting at times for minutes to hours. They are hypothesized to be caused by slip-stick oscillations of adjacent floes in shear deformation.
Art Baggeroer (for Ira Dyer)

Arctic Ambient Noise
SF #3: July 1983
Offset = 13 hrs, Duration = 40.96 sec, FFT = 5.12 sec
SF #3: July 1983
Offset = 9hrs, Duration = 40.96 sec, FFT = 5.12 sec

Power Spectrum (dB re 1 uPa)

Frequency (Hz)
SF #3: July 1983

Compass Head
ACKNOWLEDGMENT

The authors wish to acknowledge beneficial discussions with Dr. F. N. Spiess, Marine Physical Laboratory, during the course of this work. Other recent contributors to this program from the Marine Physical Laboratory include J. C. Nickles, G. L. Edmonds, and R. Hawes. Initial fabrication of the prototype Swallow float was carried out by W. Whitney and S. Lai.

REFERENCES

William S. Hodgkins, Jr. (S’68–M’75) was born in Bellefonte, PA, on August 20, 1950. He received the B.S.E.E. degree from Bucknell University, Lewisburg, PA, in 1972, and the M.S. and Ph.D. degrees from Duke University, Durham, NC, in 1973 and 1975, respectively. From 1973 to 1977 he worked with the Naval Ocean Systems Center, San Diego, CA. From 1977 to 1978 he was a faculty member in the Electrical Engineering Department, Bucknell University, Lewisburg, PA. Since 1978 he has been a member of the faculty of the Scripps Institution of Oceanography and on the staff of the Marine Physical Laboratory, University of California, San Diego. His present research interests are in the areas of adaptive digital signal processing, adaptive array processing, application of these to underwater acoustics, and the statistical properties of ambient ocean noise.

Victor C. Anderson (SM’56) was born in Shanghai, China, on March 31, 1922. He received the A.B. degree from the University of Redlands, 1943 and the Ph.D. degree from the University of California, Los Angeles, in 1953. From 1947 to present he has worked with the Marine Physical Laboratory, San Diego, CA and has held the position of Research Physicist. He is also a Professor of Applied Physics and Information Science at the University of California, San Diego. His fields of interest are in reverberation and scattering acoustic energy in the ocean, oceanic measurement of acoustical noise backgroud statistics, digital signal processing, hardware development for underwater acoustics application, and remotely operating sea floor vehicles. He is Deputy Director of the Marine Physical Laboratory, Scripps Institution of Oceanography.

Dr. Anderson is a Fellow of the Acoustical Society of America and member of the Naval Studies Board.
IV. CONCLUSIONS

Surface echo data from a recent sea test of the prototype element of a freely drifting infrasonic measurement system has been used to illustrate the type of pulse processing which will be implemented as a first step in the localization procedure. For the surface echo data set processed, an arrival time error of 1.3-ms rms was indicated by the edge detection algorithm. Since this represents an uncertainty of approximately 0.1 λ at 10 Hz, we can expect our overall rms positioning error for the full array to be less than 0.1 λ [12]. Such random positioning errors lead to a maximum array signal gain degradation of less than 2 dB [13].
depicted in Fig. 2. This 8-kHz system has a maximum range of approximately 15 km and a nominal resolution of ±0.75 m based on a 1-ms sampling interval at the output of the pulse detection circuit. A different buoy ping every 1.5 ms until each Swallow float has transmitted. The sequence then repeats. Since each buoy maintains an internal time base (clock), deciphering which buoy transmitted any given received pulse is not difficult. Synchronization of the clocks is possible due to the occurrence of reciprocal transmission paths between buoys. All floats (including the transmitter listening to its own sea surface reflection) internally record arrival time of the transmission on magnetic tape. These tapes then will be read at the completion of a deployment and the arrival times at all buoys from each ping will be combined algorithmically to yield the relative three-dimensional positions of the array elements as a function of time. An absolute coordinate system can be established with the addition of external receivers and/or transmitters of ambient noise passed on to the second filter predominately the range will not deviate much from the predicted value.

In blocks II. TIME-OF-ARRIVAL ESTIMATION

Within each buoy, the arrival times of the received pings must be estimated as a first step in the localization process. The pulse-detection circuit is of a fairly common design. It consists of two filters in cascade. Both pass the localization pulse which is centered at 8 kHz and is 6 ms in duration. The first filter is rather broad band (2-kHz bandwidth centered at 10.5 kHz). The output of this filter is hard limited yielding a constant power time series. The second filter is narrow band (0.2-kHz bandwidth centered at 8 kHz). The power spectrum of ambient noise passed on to the second filter predominately lies outside its bandwidth and thus yields a small output. In contrast, the power spectrum of an 8-kHz pulse received on the skirt of the first filter mostly lies inside the bandwidth of the second filter and thus yields a large output. The envelope-detected output of the second filter is compared against a threshold and generates a pulse present-absent decision. The decision output \([1, 0]\) of the sonar is sampled at a 1-kHz rate. That bit stream is not recorded directly, but is first processed on by data-compression logic. The bit stream is inspected in blocks of 8 bits. If a 1 (pulse present) is observed, the block of 8 bits is recorded as one byte along with its associated time (2 bytes). Otherwise, nothing is recorded. Up to 85 3-byte groups can be recorded for each 1.5-min period.

Both ocean-ambient noise and gross-data gaps make the raw sonar data unusable as a continuous record of pulse time of arrival. Accurate arrival time measurements are required by array-element localization and tracking algorithms. Thus it is necessary to preprocess the raw detector output to provide usable inputs to these algorithms. We have had several opportunities to test our prototype self-contained Swallow float at sea. These tests have provided experimental data sets representative of those which will be recorded by the acoustic localization system. Using one of these data sets, we have investigated candidate algorithms for the preprocessing operation.

As mentioned previously, each buoy not only listens for transmissions from the other elements of the array, but for the sea surface reflection of its own pulse as well. Raw sonar surface echo data from a recent sea trip is shown in Fig. 3. Time delay after transmission is displayed positive downward in terms of range. The closest edge of the dark band represents the shortest path to the surface from the Swallow float. Hence, the problem of distinguishing the surface echo from other returns and noise becomes a problem of detecting this edge.

Several edge detection algorithms have been tried. The following approach, which makes use of an adaptive linear predictor directing the search for an edge in a narrow range window, has been the most successful.

First, range is predicted using a 16-weight one-step linear predictor incorporating the least mean-squares (LMS) adaptive algorithm [11]. Then, the detector proceeds through four modes until a range is decided.

1) If no data record is present, the predicted range is used.
2) If a data record is present, a search is made for an edge in a small window plus and minus two standard deviations of the error (i.e., rms error) from the predicted range.
3) If no edge is found in the small window, a larger window representing the maximum physically possible movement is searched.
4) If the large window search fails, the predicted range is used.

After a range is determined, the edge detector calculates the error and the adaptive predictor is iterated.

The use of a small window is based on the assumption that the range will not deviate much from the predicted value. By using a multiple of the rms error for the width of the small window, the window is allowed to adapt to increasing or decreasing noise in the data. The large window allows any physically reasonable movement to be accepted, even though it might not be predictable.

When used with a small window of two standard deviations, a large window of 10 ms, and the July 27, 1982 data set, the edge detector remained in mode 2 most of the time, indicating the predictor was predicting the range well. As shown in Fig. 4, the small error signal (rms error of 1.3 ms) confirmed...
Acoustic Positioning for an Array of Freely Drifting Infrasonic Sensors

WILLIAM S. HODGKISS, JR., MEMBER, IEEE, AND VICTOR C. ANDERSON, SENIOR MEMBER, IEEE

(Invited Paper)

Abstract—Initial testing of the prototype element of a freely drifting infrasonic sensor array is described. The intent of this measurement system is to gather wide aperture data sets which will be used both to characterize ambient noise in the region 1–10 Hz and to assess the gains possible from beam forming utilizing a collection of very low frequency (VLF) sensors. Coherent processing (beam forming) of the infrasonic sensor data is made possible by relative position measurements derived from mutual acoustic interrogation of the elements at a higher frequency. Surface echo data from a recent sea test of the prototype buoy are used to illustrate the type of pulse processing which will be implemented as a first step in the localization procedure.

I. INTRODUCTION

ONE PROJECT at the Marine Physical Laboratory (MPL) is the development of an array to study infrasonic acoustic background noise in the ocean. In general, self-noise limits an accurate assessment of the true nature of this ambient acoustic noise field. Cable strumming, flow noise, and the local pressure and velocity fields due to turbulence are all difficulties associated with measurements in the region 1–10 Hz when using an array which requires some form of tethering or mechanical linkage [1]–[9]. Even for deep sensors near or on the sea floor, the noise associated with very slow currents can significantly contaminate the local pressure or particle velocity field.

The approach taken in this project is to develop an autonomous buoy capable of recording the components of particle velocity in the 1–10 Hz band, and which is also able to both generate and receive high-frequency acoustic-positioning signals. The buoy is a neutrally buoyant swallow float which is stable at midwater depths and, drifting freely, is not subject to any flow disturbance. The acoustic-positioning capability will be used to monitor the relative geometry of a set of these buoys in a freely drifting infrasonic array, so that data from the individual elements can be combined coherently off-line by use of the MPL dynamic beamformer [10].

A prototype buoy has been designed, built, and deployed at sea. The performance of the acoustic-positioning system in this prototype buoy, in measuring the time delay to the first surface echo, provides insight into the localization accuracy that can be expected for a multi-element array system. Satisfactory performance of the acoustic-positioning system is a key factor in the success of the project.

II. THE INFRASONIC SENSOR BUOY AND ARRAY

The element of the Swallow float array is a spherical glass Swallow float which contains three geophones that measure the three components of particle velocity in the 1–10 Hz band: a compass for buoy heading; an acoustic transponder for localization; a solid-state memory-data buffer; a digital-tape data recorder; and an acoustically actuated ballast release. The general configuration of hardware in our prototype unit is shown in Fig. 1. The floats are neutrally buoyant and can be ballasted for a desired depth. Limited by tape recorder capacity, the maximum submergence period of the floats is on the order of 60 h. Each buoy continuously fills an 8-kB buffer memory, then periodically writes this buffer out to tape. The information contained in the buffer includes compass heading, acoustic localization pulse arrival time, and three channels of geophone data sampled at 25 Hz. Currently, the buffer is written out to tape in a burst mode every 1.5 min. During this 1-s procedure, no data are sampled.

Several of these elements can be deployed in a random configuration to create a spatially distributed array. Their relative three-dimensional position as a function of time are obtained via an acoustic pulse mutual interrogation system as
Potential Sources of Measurement Contamination

- Cable Strumming
- Flow Noise
- Turbulence-Related Pressure Fluctuations
Motivating Questions

- What is the temporal and spatial structure of ambient ocean noise in the 1-10 Hz frequency region?

- How do the results from different sensor types compare (e.g. VLF sonobuoys, bottom tethered hydrophones, and bottom mounted hydrophones)?
28 June 84 Ship up

10 kHz
Is this 10 kHz tone burst real?
VLF AMBIENT NOISE

January 1985

Marshall R. Bradley
Planning Systems Incorporated
Slidell, Louisiana
INTRODUCTION

- Lack of quality VLF data
- No generally accepted theory for the non shipping noise component near 10 Hz
- No routine predictive capability
- Great potential for simple hydrophones being self noise limited
- Hydrophones mounted on cables are likely to be contaminated by strum noise
<table>
<thead>
<tr>
<th>Name</th>
<th>No.</th>
<th>Displacement (tons dived)</th>
<th>Dimensions (ft)</th>
<th>Shafts</th>
<th>Shaft Horse Power</th>
<th>Speed (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCAR</td>
<td>2+1</td>
<td>14 000</td>
<td>469 x 60 x 36</td>
<td>?</td>
<td>40 000</td>
<td>30</td>
</tr>
<tr>
<td>PAPA</td>
<td>1</td>
<td>7 000</td>
<td>358 x 38 x 25</td>
<td>2</td>
<td>50 000</td>
<td>35+</td>
</tr>
<tr>
<td>CHARLIE II</td>
<td>6</td>
<td>5 500</td>
<td>338 x 33 x 26</td>
<td>1</td>
<td>20 000</td>
<td>25</td>
</tr>
<tr>
<td>CHARLIE I</td>
<td>11</td>
<td>5 000</td>
<td>308 x 33 x 25</td>
<td>1</td>
<td>20 000</td>
<td>28</td>
</tr>
<tr>
<td>ECHO II</td>
<td>29</td>
<td>5 800</td>
<td>385 x 30 x 26</td>
<td>2</td>
<td>30 000</td>
<td>25</td>
</tr>
<tr>
<td>SIERRA</td>
<td>1+?</td>
<td>6 500</td>
<td>345 x 36 x 24</td>
<td>?</td>
<td>?</td>
<td>32</td>
</tr>
<tr>
<td>MIKE</td>
<td>1+?</td>
<td>9 700</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>ALFA</td>
<td>6</td>
<td>3 800</td>
<td>260 x 33 x 25</td>
<td>1</td>
<td>45 000</td>
<td>42+</td>
</tr>
<tr>
<td>VICTOR III</td>
<td>18+?</td>
<td>6 000</td>
<td>341 x 33 x 24</td>
<td>1(^n)</td>
<td>30 000</td>
<td>30</td>
</tr>
<tr>
<td>VICTOR II</td>
<td>7</td>
<td>5 800</td>
<td>328 x 33 x 24</td>
<td>1(^n)</td>
<td>30 000</td>
<td>31</td>
</tr>
<tr>
<td>VICTOR I</td>
<td>16</td>
<td>5 200</td>
<td>308 x 33 x 24</td>
<td>1(^n)</td>
<td>30 000</td>
<td>32</td>
</tr>
<tr>
<td>ECHO I</td>
<td>5</td>
<td>5 200</td>
<td>374 x 30 x 24</td>
<td>2</td>
<td>30 000</td>
<td>28</td>
</tr>
<tr>
<td>NOVEMBER</td>
<td>12</td>
<td>5 000</td>
<td>360 x 30 x 22</td>
<td>2</td>
<td>30 000</td>
<td>30</td>
</tr>
<tr>
<td>TYPHOON</td>
<td>2+?</td>
<td>30 000</td>
<td>558 x 75 x ?</td>
<td>2</td>
<td>80 000</td>
<td>24?</td>
</tr>
<tr>
<td>DELTA III</td>
<td>14+2-3</td>
<td>11 000</td>
<td>508 x 39 x 30</td>
<td>2</td>
<td>30 000</td>
<td>24</td>
</tr>
<tr>
<td>DELTA II</td>
<td>4</td>
<td>11 000</td>
<td>508 x 39 x 30</td>
<td>2</td>
<td>30 000</td>
<td>26</td>
</tr>
<tr>
<td>DELTA I</td>
<td>18</td>
<td>10 000</td>
<td>446 x 39 x 30</td>
<td>2</td>
<td>30 000</td>
<td>26</td>
</tr>
<tr>
<td>YANKEE</td>
<td>24</td>
<td>9 300</td>
<td>426 x 38 x 26</td>
<td>2</td>
<td>30 000</td>
<td>28</td>
</tr>
<tr>
<td>HOTEL III</td>
<td>1</td>
<td>5 500</td>
<td>377 x 30 x 25</td>
<td>2</td>
<td>30 000</td>
<td>24</td>
</tr>
<tr>
<td>HOTEL II</td>
<td>3</td>
<td>5 500</td>
<td>377 x 30 x 25</td>
<td>2</td>
<td>30 000</td>
<td>26</td>
</tr>
</tbody>
</table>

\(^n\) Two auxiliary props.
SOURCES OF VLF AMBIENT NOISE

- Seismic Sources
- Microseisms
- Shipping
- Surface Waves
 - Wind
 - Wave Turbulence Interaction with Surface Waves
 - Wind Turbulence
 - Current
 - Turbulent Pressure Fluctuations
Seismic interference in the VLF band
- Seismic profiling - Channel 1
- T-Phase - Channel 9, 10, 11
Seismic interference in the VLF band

- Seismic profiling - Channel 1, 5
- Signals - Channel 4, 6, 7
Seismometer on basement rock at a land site

Bottom mounted hydrophone

quiet

noisy

\(\text{dB re} \ 1 \mu \text{Pa/Hz} \)
Received levels at 100 miles due to the freighter ADOLF LEONHARDT (22,000 tons, 10,600 bhp) moving at 15 knots (from Wittenborn, 1976).
VLF Sound Radiation by Merchant Ships

Estimated source levels (from Wittenborn, 1976).

Refrigerator ship ARAWAK
8000 tons
10000 bhp

Dry Cargo Carrier GREAT SUCCESS
7552 tons
8400 bhp
Figure 7 - Measured vs Modeled Receiver Depth Dependence of Near Field Pressure Ridge Noise.
Figure 6 - Horizontal Spatial Cross-Correlation of Active Ice Ridge Noise
Figure 5 - Vertical Cross Correlation of Active Ice Ridge Noise
Figure 4 - Active Ice Ridge Ambient Noise Levels Measured Over a Three Day Period.
Figure 1 - Ice Camp Location
Jim Wilson

Active Ice Ridge Ambient Noise Levels
INTERMITTENT AND LOCAL EFFECTS

EARTHQUAKES AND EXPLOSIONS

BIOLOGICS

PRECIPITATION

SHIPS, INDUSTRIAL ACTIVITY

SEA ICE

KEY

- LIMITS OF PREVAILING NOISE
- WIND-DEPENDENT BUBBLE AND SPRAY NOISE
- LOW-FREQUENCY VERY-SHALLOW-WATER WIND DEPENDENCE
- HEAVY PRECIPITATION
- HEAVY TRAFFIC NOISE
- USUAL TRAFFIC NOISE - SHALLOW WATER
- USUAL TRAFFIC NOISE - DEEP WATER
- THERMAL NOISE
- GENERAL PATTERN OF NOISE FROM EARTHQUAKES AND EXPLOSIONS
- EXTRAPOLATIONS

PREVAILING NOISES

TURBULENT-PRESSURE FLUCTUATIONS

OCEANIC TRAFFIC

BUBBLES AND SPRAY
(SURFACE AGITATION)

(SEISMIC BACKGROUND)

MOLLECLAR AGITATION

SOUND PRESSURE SPECTRUM LEVEL (DB RE 0.0002 DYN/CM²)

SOUND PRESSURE SPECTRUM LEVEL (DB RE 0.001 DYN/CM²)

FREQUENCY - CPS
CONCLUSIONS

- In deep water areas shipping is usually dominant in the 10-20 Hz band

- Below about 4 Hz the sharp increase in noise levels appears to be caused by microseisms

- Difficult to assign generation mechanisms for the hydrodynamic component of VLF noise

- No convincing comparisons between measurement and theory

- Noise levels in the 4-10 Hz band are comparable to levels in the 10-20 Hz band

- No predictive capability
Nonacoustic Noise Interference in Measurements of Infrasonic Ambient Noise (Strassberg, 1979).

Mechanisms
Hydrophone response to temperature inhomogeneities
Turbulence generated by flow past hydrophone
• Interaction between hydrophone and turbulence

\[L(f) = 119 + 37 \log_{10} U_0 - 27 \log_{10} f \]

\[U_0(kt), f(\text{Hz}) \]
Wind Component of VLF Noise

Dependence of the non-shipping component of VLF ambient noise upon wind speed (from Wittenborn, 1976).
VLF Sound Radiation by Merchant Ships

Radiated noise spectrum of the HAYES (from McGrath, 1976).
Figure 8 - Receiver Depth Dependence Predicted by FACT for Various Source Depths.
Figure 9 - Source Level Linear Density for an Active Pressure Ridge.
Figure 10 - Comparison of Estimated Noise Spectra and Measured Noise Spectra in the Beaufort Sea
VLF WORKSHOP
24-25 JANUARY 1985

John Orcutt
Rick Adair
Tom Sereno
Peter Shearer

- Seafloor and subseafloor noise

- Signal comparisons on seafloor and subseafloor inertial and hydrophone instruments at various phase velocities

- Propagation of seismic/acoustic signals over large ranges (P_n, S_n, T)
RESULTS

- Subseafloor noise levels as much as 20 dB lower than seafloor noise levels.
- Seafloor noise levels consistent with many previous acoustics measurements.
- Seafloor noise at low frequencies, and high frequencies in the presence of shipping, is coherent over baselines of at least 700 m.
- Seafloor noise dominated, to 4-5 Hz, by interaction of surface gravity waves.
- Seafloor noise above 5 Hz likely controlled by shipping.
- Horizontal noise at seafloor generally greater than vertical noise. The levels are equal at subseafloor receivers.
- Signal levels at subseafloor sites are comparable in size to seafloor sites. Signal to noise ratios increase with burial of sensor.
- P_n, S_n, T phases can be synthesized by wave propagation in a laterally homogeneous medium with no inter-lithosphere waveguides.
- Slow decay of P_n, S_n, T phases with range depends upon the high Q ocean and not upon a high Q within the crust and lithosphere.
- Scattering plays a minor role in the formation of long P_n, S_n, T wavetrains.
- The character of the P_n, S_n, T wavetrain is controlled by the thickness of the water and sediment columns.
Fast Mantle

Fast Crust
MISS SHORT-PERIOD

Z_{104}

FIR

MID-PERIOD FLR

Z_{Ia}

FILTER's

Z_{1014}

FREQUENCY (Hz)

DISPLACEMENT RESPONSE (Volts/Meter)

10^{-1}

10^{0}

10^{1}

10^{2}

10^{4}

10^{6}

10^{8}

MSS, SHORT-PERIOD

OBS (REFRACTION)

OBS (TELESEISMIC)

MSS MID-PERIOD

FIR FILTER

FIR FILTER
OBS Locations

Refraction Experiment

KA1

SU1

JU1

LY1

Borehole
SHIP NOISE

POWER DENSITY

FREQUENCY (Hz)

OBS

MSS

Counts / Hz

10^{-2}

10^{-4}

10^{-6}

10^{-8}

10^{-1}

10^{0}

10^{1}
VERTICAL COMPONENT

![Graph showing displacement power density vs. frequency (Hz). The graph has a logarithmic scale on the y-axis from 10^{-4} to 10^8 (nm2/Hz) and a logarithmic scale on the x-axis from 10^{-1} to 10^1 (Hz). The graph includes two curves labeled "MSS" and "OBS".](image-url)
HORIZONTAL COMPONENT

![Graph showing frequency response with MSS and OBS labels]
MSS (dashed) vs. OBS (solid)

Time (sec)
Earthquake (9 FEB 83, 1433 UT)

Borehole Seismometer

Time (sec)

OBS Suzy
Earthquake (8 FEB 83, 1036 UT)

Borehole Seismometer

Time (sec)

OBS Karen
OBS Karen (solid) vs. MSS (dashed)
MSS (dashed) vs. OBS Karen (solid)

Shot 4242 (22 km)

Shot 4260 (40 km)

Shot 4269 (58 km)

Time (sec)
OBS

SOLID: VERTICAL
DASHED: HORIZONTAL

DISPLACEMENT POWER DENSITY (nm^2/Hz)

FREQUENCY (Hz)
OBS Karen (solid) vs. MSS (dashed)

Displacement Power Density (nm²/Hz)

Frequency (Hz)
OBS Suzy (solid) vs. MSS (dashed)
Line 5b (OBS Suzy)
Direct Water Wave Power (Line 5a)
FIGURE 1. Velocity and density model. The left side shows the entire model while on the right the depth scale is expanded to show detail in the crust. Asterisks indicate source depths. The model is from Gettrust and Frazer (1981).
FIGURE 3. Complete synthetic seismograms for a thrust fault source at 14.0 km depth at an epicentral range of 1000 km. a) Vertical component, b) horizontal component rotated 25 degrees clockwise from the radial direction. Velocities of 8.1, 4.7, 2.6 and 1.6 km/sec are indicated.
FIGURE 2. Modulus of the horizontal normal stress, \(\sigma_{221}(\omega,k) \) at source depths of a) 5.25 km; b) 9.0 km and c) 14.0 km. Arrows indicate \(V_s^{-1} \) of the layer containing the source.
FIGURE 4. Synthetic P_n wavetrain. Contains the first 100 seconds of the records in figure 3. a) Vertical component and b) horizontal component.
FIGURE 5. Record section of the vertical normal stress, σ_{zz0} at 14.0 km depth. Lines are drawn with an inverse slope of 8.17 km/sec separated by the two-way travel time in the water column, 5.33 sec.
FIGURE 6. Power spectrum of a reverberating wavelet. a) Wavetrain comprised of a reverberating wavelet with a spacing between multiples of $T=0.46$ seconds and attenuation factor, $\alpha=1.0$. b) Power spectrum of the wavetrain in (a) superimposed on the spectrum of a single wavelet (dashed). The peaks are equally spaced with $df=1/T=2.17$ hz and are offset by an amount $df/2$.

\[X(t) = \Re(\pi f/4) e^{-\pi t} e^{-i\pi f/4} \]

\[|X(f)|^2 = |W(f)|^2 \left[\Re(\pi f/4) + \left(\frac{2\alpha}{\alpha^2 + (2\pi f)^2} \right)^2 \right] \]
URE 9. Spectral characteristics of sediment and water reverberations. a) Wavelet, w(t); b) wavelet spectrum, |W(f)|². c) Sediment reverberation with \(\alpha_s = 3.0 \) and \(T_s = 0.086 \) sec; d) sediment reverberation spectrum. e) Water reverberation with \(\alpha_w = 0.05 \) and \(T_w = 8.0 \) sec; f) first 4.0 Hz of the water reverberation spectrum. g) Full wavetrain, x(t); h) wavetrain spectrum, |X(f)|².
FIGURE 10. Full wavetrain spectrum, $|X(f)|^2$. a) First 3.0 Hz of the spectrum with vertical lines at $f_n=(2n+1)df_w/2$, $(n=0,1,2,...)$. b) Complete spectrum with vertical lines at $f_n=(2n+1)df_s/2$, $(n=0,1,2,...)$.
Power spectra of the synthetic P_n wavetrains in figure 11. Vertical component spectrum is shown in (a)–(c) and the horizontal component spectrum in (d)–(f). Figures (c) and (f) are the complete spectra. Figures (b) and (e) were obtained by application of a running mean filter to the complete spectra. Dashed lines indicate the predicted frequencies associated with direct reverberation, long bars for S-waves and short bars for P-waves. Figures (a) and (d) are the first 3.0 Hz of the spectra. Dashed lines at $f_n = (2n+1)df/2$ ($n = 0, 1, 2, ...$) where df is defined by equation (11).
VLF (VERY LOW FREQUENCY) WORKSHOP: HELD AT SAN DIEGO CALIFORNIA ON 24-25. (U) SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA MARINE PHYSIC... W S HODGKISS UNCLASSIFIED 1985 MPL-U-11/85 N00014-80-C-0220
FIGURE 15. OBS data, vertical component. a) OBS Juan, event 14, b) OBS Karen, event 24, c) OBS Suzy, event 25, d) OBS Suzy, event 100 and e) OBS Suzy, event 130.
FIGURE 16. OBS data, hydrophone. a) OBS Suzy, event 35, b) OBS Karen, event 24, c) OBS Suzy, event 25, d) OBS Suzy, event 100 and e) OBS Suzy, event 130.
FIGURE 17. The effect of the instrument on the synthetic P_n wavetrain. (a) Synthetic P_n wavetrain of figure 4a with no instrument and (b) with the vertical component OBS response included. (c) OBS Suzy, event 100: vertical component, (d) synthetic P_n wavetrain with hydrophone response included and (e) OBS Suzy, event 100; hydrophone.
FIGURE 14. Schematic representation of the isolation of a low frequency spectral peak through the constructive interference of different layer reverberations. The figures represent idealized spectra. a) Wavelet spectrum, b) P-wave sediment reverberation spectrum, c) S-wave sediment reverberation spectrum and d) wavetrain spectrum.
FIGURE 19. Bandpassed versions of the seismogram 15(c). The seismogram in (a) is unfiltered and the bands in (b)–(d) are 0.25 to 1.0 Hz, 1.0 to 4.0, and 4.0 to 16.0 Hz respectively.
EVENT 25
OBS SUZY 1612:12.423 17 FEB 83 PNTS 1–15000 DECI: 1

CHANNEL VERT
MAX: 1.68E+01
Y-TIC: 0.5E+01
<Y>: 9.35E-03
NO FILTER

CHANNEL VERT
MAX: 1.79E+00
Y-TIC: 0.5E+00
<Y>: 9.35E-03
16.0–32.0 Hz (PASS BAND)

CHANNEL VERT
MAX: 1.35E-01
Y-TIC: 0.2E-01
<Y>: 9.35E-03
32.0–64.0 Hz (PASS BAND)
FIGURE 20. Power spectrum of the seismogram in figure 15(b). Dashed lines indicate predicted positions of the spectral peaks associated with P-wave reverberations in the sediments.
FIGURE 21. First 3.0 hz of the power spectrum of the seismogram in figure 16(e). Vertical lines indicate the predicted positions of the spectral peaks corresponding to water reverberations.
The spatial and temporal correlation properties of background noise are primarily controlled by two things: 1) the excitation and 2) the waveguides in which the noise travels. We focus our attention here on the waveguide at the sea floor. We have excited and recorded Stoneley waves along the sea floor in order to extract the physical properties of the top few meters of the sea floor. Our location was the site of DSDP hole #469, in 3800 m of water at the base of the Patton escarpment west of San Diego. We used 2.5 kg charges of TNT fired by electronic timers. Five of the eight shots attempted performed satisfactorily. Three records, at ranges between 500 and 1500 m showed Stoneley waves, while shots at greater ranges did not. Fitting the observed group velocities (or slownesses) to a simple model by trial and error yielded a model with a linear shear velocity gradient of 3.5 s⁻¹ and shear velocity at the sea floor of about 50 ms⁻¹.

We also measured the response of the sea floor to excitation by the instrument and find that data consistent with a damped system with a resonant frequency of 18 Hz and a Q of 5.

Both the physical property work and the resonance measurement bear on the problem of equalization of OBS responses so that they may be used productively in arrays.
The least squares solution for the shot and OBS locations. Triangles are OBSs while the stars represent shots.
\[TL = TL_0(f,R) + 10 \log R + \Delta TL(z_s,z_r,f) + \alpha(f,\sigma) \]

Short Range Spreading

\[
\begin{align*}
57.50 + 0.10(f-10) + \alpha_0(f)R & \quad 10 \text{Hz} \leq f \leq 20 \text{Hz} \\
58.50 + 0.50(f-20) + \alpha_0(f)R & \quad 20 \text{Hz} \leq f \leq 200 \text{Hz} \\
65.20 + 0.01(f-200) + \alpha_0(f)R & \quad 200 \text{Hz} \leq f \leq 800 \text{Hz}
\end{align*}
\]

\[TL_0(f) = \min \]

Long Range Spreading

\[
\begin{align*}
62.00 + 0.30(f-10) & \quad 10 \text{Hz} \leq f \leq 20 \text{Hz} \\
65.00 + 0.65(f-20) & \quad 20 \text{Hz} \leq f \leq 200 \text{Hz} \\
79.65 + 0.01(f-200) & \quad 200 \text{Hz} \leq f \leq 300 \text{Hz}
\end{align*}
\]

\[\Delta TL_r = \Delta TL_s = -10 \log \sin^2(2\pi \sin \theta z f/c) \]

\[
\begin{align*}
.5zf/c - .72 & \quad 10 \text{Hz} \leq f \leq 50 \text{Hz} \\
(.9 - .008f)zf/c - (1.296 - .01152f) & \quad 50 \text{Hz} \leq f \leq 100 \text{Hz} \\
(.1zf/c - .144) \left(\frac{100}{f}\right)^2 & \quad 100 \text{Hz} \leq f \leq 800 \text{Hz}
\end{align*}
\]

\[\alpha(f,\sigma) = C_\sigma(f)\sigma n(f) \]

\[n(f) = \frac{2f^2 + 550}{f^2 + 50} \]

\[C_\sigma(f) = \begin{cases}
2.35 \times 10^{-9} f^{4.32} & \quad 10 \text{Hz} \leq f \leq 20 \text{Hz} \\
2.40 \times 10^{-6} f^{2.00} & \quad 20 \text{Hz} \leq f \leq 100 \text{Hz} \\
2.40 \times 10^{-3} f^{0.500} & \quad 100 \text{Hz} \leq f \leq 200 \text{Hz} \\
3.40 \times 10^{-2} & \quad 200 \text{Hz} \leq f \leq 300 \text{Hz}
\end{cases} \]
quantitative difference in the values of these functions are found, because the assumptions about the nature of ice scattering is very different in different models. The Buck/Wilson ice scattering function derived in this paper is divided into two parts for short and long ranges and given a physical interpretation.

The development of the TL model and analysis of the data uncovered a possible "megaphone" or slope enhanced propagation effect on the eastern slopes of the Northwind Ridge. It is emphasized that the megaphone effect is very site dependent and no implications are made for the existence of the megaphone effect over other sloping areas.
A semi-empirical Arctic transmission loss (TL) model is developed based on TL data collected between ice camps and/or aircraft in the deep Arctic basins since 1970. The model is limited to frequencies between 10Hz and 800Hz, to source and receiver depths above 800 ft., and to minimum water depths between source and receiver of 4000 m or greater. The model estimates average TL and no attempt is made to account for spread in TL at fixed ranges.

The Buck/Wilson Arctic TL Model consists of four components: the source/receiver depth dependence of TL; cylindrical spreading; spherical spreading plus low (<10°) angle and bottom interaction loss; and long range, ice scattering attenuation. Since measured TL data cannot be uniquely divided into these four areas, care is taken to use basic TL properties known to be true in the open ocean. The depth dependence of TL is modeled using standard surface/image interference functions and the data show that the pressure release surface is the sea/ice interface and not the air/ice interface. The parabolic equation (PE) and the ASEPST Transmission Loss (ASTRAL) model estimates of spreading loss are used as a guide in deriving spreading loss functions. The "residual" TL, defined as the measured TL minus the model TL depth and spreading functions, is used to derive the attenuation due to ice scattering loss as a function of frequency and ice roughness (standard deviation). The comparison of the derived ice scattering attenuation with other model ice scattering attenuation or reflection functions will be addressed in a future paper. A large
Jim Wilson

Buck/Wilson Deep Water Arctic Transmission Loss Model
General Specifications

SCORPS INSTITUTION OF OCEANOGRAPHY OCEAN BOTTOM SEISMOGRAPHS

RECOR DE R: 10" reel-to-reel 1/4" tape

TAPE: 7200 feet.

TAPE FORMAT: 4 tracks digital serial biphase. System status and time distributed with the data. 3 seismometer channels. 1 hydrophone.

CAPACITY: 24 hours recording.

MEMORY: 5.2 minutes for 4 components at 128 samples per second per channel.

DYNAMIC RANGE: 102 DB (12 bit ADC with 64 x high speed gain ranging).

MODES: Programmed and/or triggered

SCHEDULE PROGRAMMING: Flexible

STATUS: Message containing noise level, tape usage, battery voltages transmitted to surface on acoustic command.

INTERNAL TIMING: TCXO to 60 days

POSITIONING: Acoustic transponder

POWER: About 400 MW

DIMENSIONS: About 1 m² footprint. 22 "i.d. sphere with 6" center ring.

WEIGHT: About 550 pounds in air, with ballast tripod.

Observed and predicted effects of sea floor coupling on the calibration response of an Ocean Bottom Seismograph.

Q = 5
F₀ = 18 Hz
COUPLING (BLACK OCEAN) (RED THEORETICAL)

\[Q = 5 \]
\[F_0 = 18 \text{ Hz} \]

Observed and predicted effects of sea floor coupling on the calibration response of an Ocean Bottom Seismograph. Our model does not include radiation, which probably causes the rolloff with frequency.
The relationship between group velocity of a mode and amplitude resulting from a point force excitation. It shows that the largest spectral amplitude occurs at the minimum of the group velocity of the mode.
A model obtained by D. Davies using data from the northwest Indian Ocean.
A model whose group velocities are consistent with our data.
GROUP DISPERSION FOR MODEL 23

Observed (contours) and model (heavy lines) Stoneley wave dispersion.
A Stoneley wave filtered in time and period by the multiple filtering scheme of Dziewonski et al. (1969). The plot is of the amplitude of the analytic signal envelope as a function of time and period. This presentation is what would be seen if a sonogram were contoured.
THUMPER NEAR SHOTS

A record section showing data from the near shots.
Figure 63: Relative Energy of Deep and Shallow RSR Rays for 4 Source Depths (Average for all 4 Bottom Categories)
SOURCE/RECEIVER RANGE=750 NM
ICE ROUGHNESS=2.33m Std. Dev.

TRANSMISSION LOSS(dB/uPa//Hz^1/2)
SOURCE/RECEIVER RANGE-125 NM
ICE ROUGHNESS-2.0m Std. Dev.

30 FT PHONE
200 FT PHONE

TRANSMISSION LOSS(dB/uPa//Hz^2)
<table>
<thead>
<tr>
<th>TITLE</th>
<th>FREQUENCY</th>
<th>SOURCE</th>
<th>RECEIVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRAL</td>
<td>10.0 HZ</td>
<td>300.0 FT</td>
<td>800.0 FT</td>
</tr>
<tr>
<td>ASTRAL</td>
<td>50.0 HZ</td>
<td>300.0 FT</td>
<td>800.0 FT</td>
</tr>
<tr>
<td>ASTRAL</td>
<td>200.0 HZ</td>
<td>300.0 FT</td>
<td>800.0 FT</td>
</tr>
</tbody>
</table>
50 Hz

TRANSMISSION LOSS ($dB/uPa/Hz^*$) vs RANGE (nm.)

- BUCK-SHOT
- DIACHOK-SHOT
- CW
Energy partitioning for long range, low frequency propagation in the Arctic Ocean

The partitioning of energy from explosive signals propagating in the Arctic Ocean for ranges up to 350 km was determined as a function of frequency using a 1 km x 1 km array during the FRAM ice station experiments. The energy was resolved into three classes: i) dispersive, low order modes (1-3) trapped in the upward refracting Arctic sound channel; ii) multiple RSR paths; and iii) an extensive set of bottom refracted signals on a reversed branch of the travel time curve. Estimating the energy of each component as a function of travel time and ray parameter indicates that below 20 Hz, the bottom interacting components contain well over half the total observed energy when the bathymetry between the source and receiver is smooth.
AMPLITUDE AND PHASE FOR 15 Hz CW SIGNAL AT 300 km RANGE
FRAM IV
55° N 243 m, 248 km
4-32 Hz
Gain: 1x → 10x
FRACTION OF ENERGY WITH $C_p > 1.115 (C_{2p})$
Figure 2. Sonogram analysis of channel 1. Contour interval = 3 dB. Solid curve = initial model. Dotted curve = corrected model.
John Ewing

VLF Propagation in the Oceanic Crust and Upper Mantle

Abstract

Studies of the characteristics of VLF (1-5 Hz) propagation at ranges greater than 30 km show considerable coherency both in primary, intracrustal, and water column multiple refraction energy. The data utilized were generated by large explosive charges and recorded by Ocean Bottom Hydrophones on the East Pacific Rise during the ROSE project, along with some comparable data obtained from the Mid Atlantic Ridge. The water-crust-upper-mantle waveguide behaves in an orderly and predictable fashion that accounts for the distribution of energy among the primary and multiple paths. Preliminary tests using crosscorrelation between nearby seismograms suggest that for a number of range windows, in which multipath influence does not seriously degrade the data, coherency is sufficient to permit signal summation of array elements distributed over an area with dimensions as large as 10 km.
Figure 1: Locations of receivers and large shots for ROSE data study. OBN seismogram sections recorded at 1, 6, 7, 8, and 8', indicated by arrows are shown in figures. Dashed line shows location of the East Pacific Rise axis.
Fig 2. Velocity-depth model determined from shots and instruments along Line 4, from Bratt and Purdy, in press. Dashed line below 6.7 km indicates velocity structure appropriate for upper mantle for propagation perpendicular to ridge axis.
Ray diagram for typical velocity-depth relationship demonstrating Moho convergence zone

Range (km)

5 10 15 20
Figure: Composite seismogram section of shots on Line 1 toward the west from instruments 6, 7, and 8. Solid lines are drawn through primary Pn and multiple path Pn arrival times; dashed lines connect the primary PmP and multiple path PmP arrivals. Examples of propagation paths are shown for Pn, WPn, 2WPn, and H2Pn arrivals in Figure 3. Note the shift of peak energy to higher-order multiples at ranges of 50 and 75 km.
Figure 5: Propagation paths for several primary and multiple phases observed in the data. Phase designations are the same as those in Figure 2.
Fig. 6. Seismogram section recorded at OBH 8' on Line 4. Shots are north of the instrument. Note the absence of Pn energy and the dominance of primary PnP and multiple PnP phases.
Fig. 7 Coherent refractions and intercrustal multiples from 32 lb charges recorded by an OBS in the median valley of the MAR in the range window 28km to 42km.
PROGRAM COMPONENTS

- THEORETICAL AND COMPUTATIONAL FORMULATION PREDICTING THE ANGULAR DISTRIBUTION OF ENERGY INFLUENCED BY STATISTICALLY DESCRIBED BATHYMETRY
- STATISTICAL CHARACTERIZATION OF THE SPECTRUM OF OCEAN BOTTOM ROUGHNESS
A THREE-DIMENSIONAL MODEL FOR BATHYMETRIC SCATTERING WITH VLF APPLICATIONS

R.N. BAER, J.S. PERKINS, E.B. WRIGHT, and B.B. ADAMS

CODE 5160
U.S. NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375
A Three-Dimensional Model for Bathymetric Scattering
with VLF Applications

R.N. Baer, J.S. Perkins, E.B. Wright, and B.B. Adams

We have developed a computer model to simulate the performance of acoustic arrays receiving energy scattered from rough ocean bathymetry. The model has been applied using a 30 Hz source in the vicinity of a seamount where bathymetric statistics are available. Predictions have been obtained for a long horizontal array and a short vertical array. We discuss the degrading effects of the rough bathymetry (including the high sidelobe levels) and the possibility of discriminating against the scattered component of the energy. The model is stochastic, producing a statistical result based on the statistics of the bathymetry. It is also three-dimensional as it incorporates scattering out of a vertical plane. The acoustic field is propagated from the source to the vicinity of the boundary interaction using a split-step parabolic-equation calculation where the coherence function is formed. The coherence function is determined at the array by propagating along characteristic curves. A modified Kirchhoff formulation is used in weighting the scattering directions at the points of bottom interaction. We have developed a fast and accurate way to estimate the large number of scattering integrals which must be evaluated.
Velocity vs Depth

ESP Data

\[C(z) \text{ (km/s)} \]

\[z \text{ (km)} \]

\[0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \]

\[14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \]

\[7 \text{ km/s} \]
TRANSMISSION LOSS (dB) for
3 GRADIENT MODELS for the BASEMENT
Velocity vs. Depth
Synthetic Data

$C(z)$ (km/s)
TRANSMISSION LOSS & OFFSET X(p)

\[TL(p) = -10 \log_{10} \left(\frac{p}{X(p)} \left(\frac{dX(p)}{dp} \right) \cdot \left(\frac{1-(pc)^2}{c^2} \right) \right) \]

\(p \): ray parameter
\(X(p) \): offset function

LINEAR GRADIENTS in C(z)

\[\frac{dX(p)}{dp} = -\frac{2}{p^2} \sum_{\text{layers}} \frac{1}{b_k^2} \left| \cos(\frac{\theta_{1,k}}{b_k}) - \cos(\frac{\theta_{b,k}}{b_k}) \right| \]

\[-\frac{2}{p^2} \frac{1}{b_t^2} \cos(\frac{\theta_{1,t}}{b_t}) \]

\(b_k \): gradient in layer \(k \)
\(b_t \): gradient in turning point
\(\theta_{1,k} \): angle at top of layer \(k \)
\(\theta_{b,k} \): angle at bottom of layer \(k \)
\(\theta_{1,t} \): angle at top of turning layer
ON THE RELATIVE AMPLITUDES BETWEEN PRIMARY AND MULTIPLE SIGNALS FROM SEISMIC REFRACTIONS IN OCEANIC CRUST

In deep ocean seismic refraction experiments the energy in the primary signal is often less than that in the multiple arriving at approximately twice the travel time. This has perplexed interpreters since the multiple has a path length greater than the primary and its amplitude presumably should be less. High resolution slowness/travel-time analysis of an expanding spread data set suggests an explanation in terms of differences in the sound speed gradients in the oceanic crust. The gradient in the upper part of the crust is typically much greater than that of the deeper crust; therefore, energy refracting in the upper crust is focused more and has a decreased geometrical offset. The multiple then should have a lower phase velocity and a higher amplitude over a range window when it is refracting in the higher gradient part of the crust. Synthetic modeling using the WKBJ seismogram method and the amplitude and velocity analysis of the ESP data set support this hypothesis.
OCEAN REFRACTION AND BATHYMETRIC SCATTERING MODEL (ORBS)

FEATURES

THREE-DIMENSIONAL

BATHYMETRIC SPECTRUM AND OCEAN SOUND-SPEED STRUCTURE USED AS ENVIRONMENTAL INPUT

ALLOWS FOR ANISOTROPIC STATISTICS

SCATTERING USES COMBINED SMALL PERTURBATION - KIRCHHOFF FORMULATION

PROPAGATION BY COMBINATION OF SPLIT-STEP PARABOLIC EQUATION METHOD AND COHERENCE FUNCTION ALONG CHARACTERISTICS.

MODULAR
ORBS FEATURES (CONTINUED)

ARBITRARILY POSITIONED ARRAY:

DEPTH
RANGE
TILT
YAW

COMPUTES TOTAL FIELD (SCATTERED, REFLECTED, DIRECT)

ARRAY PERFORMANCE PREDICTIONS:

ANGULAR DISTRIBUTION OF RECEIVED ENERGY
ARRAY SIGNAL GAIN
3-dB WIDTH
BOTTOM SCATTERING PROPAGATION MODEL

PROPAGATE THE P.E. SOLUTION TO $R = R_p$

SCATTERING FROM ROUGH BOTTOM

COHERENCE FUNCTION COMPUTED AT $R = R_p$

PROPAGATION ALGORITHM IN REGION A
BOTTOM SCATTERING PROPAGATION MODEL

- R_c
- R_p
- Receiving Array
- Scattering from Mean Bottom Plane
- Coherence Function Computed at $R = R_p$
INCOHERENT PART OF SCATTERING CROSS-SECTION

$$\sum_{\text{incoh}}(q \rightarrow k) = \frac{\int (|k| - |q|)}{4\pi^2 q^2 |q|} \left[b_1^2 l_{\perp,1} + b_1 b_{\perp,1} l_{\perp,1} + b_2^2 l_{\perp,2} \right]$$

where

$$l_{\perp,\lambda} = \int \exp[i(q_\perp - k_\perp) \cdot \rho_{\perp}] \left[\exp(\frac{\lambda_{\perp} \sigma^2 W(\rho_{\perp}))}{1 + (\lambda_{\perp})^2} \right] d \rho_{\perp}$$

$$\lambda_{\perp} = q_\perp + m k_\perp, \quad m = \pm 1$$

$$b_\lambda = \int \left((q_\perp + m k_\perp)^2 + |q_\perp - k_\perp|^2 \right) \exp(-\lambda_{\perp}^2 \sigma^2 / 2)$$
EXPONENTIAL SUBSTITUTION

FOR EVERY PATH AN INTEGRAL MUST BE EVALUATED TO CALCULATE THE CONTRIBUTION OF SCATTERING.

TENS OF THOUSANDS OF PATHS NEED TO BE CALCULATED RESULTING IN LONG CALCULATION TIME.

EXPONENTIAL SUBSTITUTION REDUCES EXECUTION TIME BETWEEN ONE AND TWO ORDERS OF MAGNITUDE WITHOUT SIGNIFICANT LOSS OF ACCURACY.
EXPONENTIAL SUBSTITUTION APPROXIMATION

Consider

\[K(Q) = \int \exp(iQ \cdot q) \left[\exp(H W(q)) - 1 \right] d^2 q \]

Approximate this by

\[J(Q) = \int \exp(iQ \cdot q) \Lambda W(q/s_o) d^2 q \]

Changing variables

\[J(Q) = a_s^2 \int \exp(iQ \cdot x) W(x) d^2 x \]

Thus,

\[J(Q) = a_s^2 S(Qa_s) \]

Where \(S \) is the spectrum of the bathymetric correlation function
EXponential Substitution Approximation (Cont'd)

Choose Λ so that the integrands of I and J are equal for $q = 0$

$$\Lambda = \exp(H) - 1$$

Choose s_0 so that $J(q = 0) = I(q = 0)$

$$s_0 = \left\{ \frac{\int \left[\exp[H W(s)] - 1 \right] d^2s}{s(0) [\exp(H) - 1]} \right\}^{1/2}$$

This is a smooth function of H which can be tabulated. Its evaluation is thus simply a matter of table lookups and interpolation.
Differential Cross Section

Kirchhoff

\[\lambda = 50.0 \text{ m} \]
\[\phi_m = 20 \text{ deg} \]
\[W = (R/L)K_1(R/L) \]
\[\sigma = 20 \text{ m} \]
\[L = 400 \text{ m} \]

Hard Surface

\[\Sigma (20.0, 0.0) = 28.48 \]
DIFFERENTIAL CROSS SECTION
KIRCHHOFF WITH EXPONENTIAL SUBSTITUTION

\[\lambda = 50.0 \text{ m} \quad \sigma = 20 \text{ m} \]
\[\varphi_{in} = 20 \text{ deg} \quad L = 400 \text{ m} \]
\[W = (R/L)K_1(R/L) \quad \text{HARD SURFACE} \]

\[\Sigma (20.0, 0.0) = 28.95 \]
BOTTOM SLOPE MOUNTED ARRAY ENVIRONMENT

TYPICAL NEW ENGLAND SEAMOUNT -- ATLANTIS II
SOUTH FACE, 16 DEGREE SLOPE, SIGMA = 20 METERS*
BASIN FLOOR FLAT AT 4,800 METERS OF DEPTH*
VELOCITY STRUCTURE: RANGE INDEPENDENT*

*(ISOTROPIC, FLAT FLOOR, CONSTANT PROFILE
FOR SIMPLIFIED EXAMPLE ONLY.)
BOTTOM SLOPE MOUNTED ARRAY SPECIFICATIONS

FREQUENCY 30 HZ

SOURCE DEPTH 3 WAVELENGTHS (150 M)

HORIZONTAL ARRAY SIZE 100 WAVELENGTHS (5 KM)

VERTICAL ARRAY SIZE 3 WAVELENGTHS (150 M)

ARRAY CENTERS 5 WAVELENGTHS ABOVE SLOPE

OMNI-DIRECTIONAL HYDROPHONES
Horizontal Array (Rough Slope)

30 Hz
5000-m Array
at 3750 m
Beamwidth 0.5°
Hanning Shading
Focused at 93.0 km
Source Bearing 0.0°
Range 93.0 km
Bottom Slope 15°
$\sigma_1, \sigma_2 = 20$ m, 20 m
$L_1, L_2 = 400, 400$ m
94 % Scattering
at 20° Grazing
* Direct arrival unperturbed response = 0 dB
Horizontal Array (Rough Slope)
Long Range

30 Hz
5000-m Array at 3750 m
Beamwidth 0.5°
Hanning Shading
Focused at 488.5 km
Source Bearing 0.0°
Range 488.5 km
Bottom Slope 15°
\(\sigma_1, \sigma_2 = 20 \text{ m}, 20 \text{ m} \)
\(L_1, L_2 = 400, 400 \text{ m} \)
94% Scattering at 20° Grazing
* Direct arrival unperturbed response = 0 dB

NRL
500-m Vertical Array (Rough Slope)

Beam Intensity (dB*)

Beam Angle (deg)

30 Hz
500-m Array at 3700 m
Beamwidth 5.2°
Uniform Shading
Source Bearing 0.0°
Range 93.0 km
Bottom Slope 15°
$\sigma_1, \sigma_2 = 20 \text{ m}, 20 \text{ m}$
$L_1, L_2 = 400, 400 \text{ m}$
94% Scattering at 20° Grazing

* Direct arrival unperturbed response = 0 dB

NRL
Array Signal Gain of 24-Wavelength Array vs. Roughness and Correlation Length of Isotropic Bottom

ASG (dB re Reference)

Normalized rms Roughness \(\sigma/\lambda \)

-6 -4 -2 0

0 1 2 3 4 5 6

L/\lambda = 20

320

160

80

40
Beam Width of 24-Wavelength Array vs. Roughness and Correlation Length of Isotropic Bottom
FUTURE DIRECTIONS

MULTIPLE BOUNDARY INTERACTIONS

TIME CONSIDERATIONS:

MOVING SOURCES
MOVING RECEIVERS
PULSED SOURCES

SUBBOTTOM INCORPORATION

HIGHER-ORDER MOMENTS:

LIKELIHOOD OF TARGET DETECTION
WHAT MUST BE DONE TO ACHIEVE A GIVEN PROBABILITY
OF SUCCESS
LING SUPPORT FOR CAPE FEAR VLF EXERCISE

W. TUNNELL AND H. F. SCHREINER, JR.
NVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY, CODE 240
STL, MS 39529

The Cape Fear Very Low Frequency (VLF) Exercise is scheduled off the coast at Cape Fear, NC during June 4 to July 1, 1985 as part of the NA 6.1 Very Low Frequency Acoustic Propagation Special Focus Program. The exercise is a cooperative effort between the United States Geological Survey at Woods Hole and NORDA. The USNS Lynch and one other ship will support the exercise. Data acquisition systems will consist of 12 ocean bottom seismometers and a vertical hydrophone array (15 element, 20 m long) built with the VEKA-II technology. Underwater explosives (~100 shots) and a Mark 6b sound source (187 dB at 10 Hz) will be used as sources.

The modeling results presented here are the array response predictions calculated with the maximum entropy method using the acoustic field predicted by the parabolic equation model solved with the implicit finite difference techniques (IFD). The sound speed profile along a previous S track (USGS MCL 32) and historical water column data are used.

Lilton's results (E.L. Hamilton, "Geoacoustic modeling of the sea floor" Acoust. Soc. Am. 68(5), pp. 1313-1340, Nov. 1980) for density, compressional attenuation, shear sound speed, and shear attenuation values are used as input. These inputs are used with Kutschale's version of the fast field program to derive an effective compressional attenuation that may be used as input to the IFD (the IFD does not describe shear waves in the subbottom). This procedure assumes that the range dependence on the environment has a greater effect on the propagation than shear waves that shear effects can be approximated by an increase in the value of compressional attenuation. IFD intensity contours are plotted for ranges 100 to 175 km (left to right). The dark line indicates the subbottom interface varies from 1800 m deep to 370 m deep left to right. A high amount of mode drop out is shown over the 100 to 140 km ranges. The IFD results used in a maximum entropy beamformer and the 3 dB contour intervals obtained for arrival angles (-90 to 90°) at ranges from (A) 100 to 140 km, (B) 80 to 135 km, (C) 60 to 135 km, and (D) 40 to 115 km. All four results cover the same portion of USGS MCL 32 as the source moved upslope. The results show that the energy in the mode drop out region is large and incoherent and that only two modes survive the mode drop out region.
Typical Flow Noise Levels From A 10 CM Diameter Pressure Gradient Hydrophone

RELATIVE FLOW (KNOTS)

SOUND PRESSURE LEVEL
DB/µPa / 1 Hz

FREQUENCY (Hz)

KNOTS
0.5
0.4
0.3
0.2
0.1
0.05

AMBIENT
Recommended Mechanical/Flow Noise Limits

A OMNIDIRECTIONAL HYDROPHONE
B DIRECTIONAL HYDROPHONE - 0.2 KNOT
C DIRECTIONAL HYDROPHONE - 0.5 KNOT

SOUND PRESSURE LEVEL (dB re: \(\mu Pa \))

FREQUENCY (Hz)
VLF Sonobuoy Development

OBJECTIVE: IMPROVE PASSIVE SONOBUOY LOW FREQUENCY PERFORMANCE

* PROVIDE NEAR TERM LOW FREQUENCY IMPROVEMENTS FOR THE AN/SSQ-53B

* ESTABLISH A LONGER TERM DEVELOPMENT PROGRAM TO IMPROVE THE VLF PERFORMANCE OF PASSIVE BUOYS

* DIRECTLY BENEFITS VLF STRAP APPLIES TO SSQ-77, RDSS, HLA
Long Term VLF Development

GOAL: DIRECTIONAL SENSOR MECHANICAL NOISE EQUAL TO OMNI SENSOR MECHANICAL NOISE

NEED: ON GOING R&D IN FLOW & MECHANICAL NOISE

* NEAR FIELD FLOW INVESTIGATION
 Transition NADC IR flow task
* DIRECTIONAL SENSOR DEVELOPMENT
* GRADIENT ARRAYS, NOISE REJECTION TECHNIQUES
* FLOW SHIELDING TECHNIQUES
ABSTRACT

Summary of VLF Sonobuoy Program at the Naval Air Development Center

James F. McEachern
Code 3043
Naval Air Development Center
Warminster, PA 18974-5000

NADC's efforts in Very Low Frequency (VLF) sonar evolved out of ongoing improvement programs in passive sonobuoys. Dual isolation sonobuoy suspensions and research in cable strumming attenuation advanced the state of the art in sonobuoy self noise reduction in the areas of surface wave-induced noise and flow induced vibration noise. A program of low velocity flow noise studies on gradient hydrophones led to the development of an effective, packageable flow shield for gradient hydrophones.

The Infrasonic Investigation program for target detection and classification drew on NADC's low frequency sonobuoy technology to develop a sonobuoy sensor capable of providing useful submarine detection and classification in the VLF band. Under this program omnidirectional and directional VLF sonobuoys were used to gather target data, ambient noise data and to evaluate VLF propagation models. The impact of VLF technology on all airborne processors and on sonobuoy production and testing was assessed. A recommended self noise limit for VLF sonobuoys was generated.
MODELING PROCEDURE

* USGS MCL 32: COMPRESS. SOUND SPEED

* HAMILTON: DENSITY
 : COMPRESSIONAL ATTEN.
 : SHEAR SOUND SPEED
 : SHEAR ATTENUATION

* FFP: EFFECTIVE COMPRESSIONAL ATTEN.

* USE EFFECTIVE COMPRESSIONAL ATTEN., DENSITY, AND COMPRESSIONAL SOUND SPEED AS INPUT TO PARABOLIC EQ.
MAXIMUM ENTROPY PARAMETERS

* INPUT: 15 ELEMENT ARRAY
 : 20 M
 : 40 M ARRAY DEPTH

* MAXIMUM ENTROPY PARAMETERS:
 - 10 TH ORDER
 - 100 AVERAGES (25 M)
FIRST FIELD EXERCISE
JUNE 4 - JULY 1, 1985 CAPE FEAR

PARTICIPANTS: USGS AT WOODS HOLE
NORDA (SCRIPPS, NRL)

ASSETS: USNS LYNCH (NORDA)
CONTRACT SHIP (NORDA)
12 OBS UNITS (USGS, NORDA)
VEKA (NORDA)
EXPLOSIVES (NORDA)
CW (NRL, NORDA FUNDS)
VERY LOW FREQUENCY ACOUSTIC PROPAGATION (VLF)

A program to determine the acoustic propagation and ambient noise characteristics in the infrasonic or VLF (20 Hz and less) band to ascertain the feasibility and performance estimates of a generic class of passive acoustic surveillance systems.
SONOBUOY LOW FREQUENCY NOISE

- **Electronic Source**
 - Sonobuoy Distortion

- **Acoustic Source**
 - Ambient Noise
 - Seismic Effects
 - Other Effects

- **Hydrodynamic Source**
 - Hydrophone Motion Noise
 - Wave Effects
 - Flow Effects
 - Free Stream Turbulence Effects
 - Near Wake Effects
 - Broad Band Noise
 - May be high level from bass boost effect on gradient hydrophone
 - May correlate with free stream turbulence below 100 Hz
 - Not well defined

- Generation of Harmonics
- Cross Modulation Products

- High Level, Low Frequency Transients cause ringing of under-damped mechanical systems.
- Transfer function depends on mechanical design.
V.C. Anderson

Comments on Nearfield Surveillance
Set \(R/D = 10 \)
\[
\begin{align*}
R &= 10^2 \text{ km} \\
D &= 10^2 \text{ km}
\end{align*}
\]

Area Coverage
\[
\frac{\pi}{3} \times 10^6 \text{ km}^2
\]

1 NAVA ACRE
SPA area \(\pi \times 10^3 \text{ m}^2 \)

\[
\frac{2}{10} = \frac{N}{3 \times 10^6 / \pi \times 10^3}
\]

\[
N = 10^3 \text{ f}^2
\]

of resolution cells

[Diagram with circle and labeled dimensions]
\[M = \text{# of elements} = 10^4 \text{ for } 40 \text{dB DI} \]

\[\text{Sampling rate} = 2f \]

\[\text{Data Rate} = N \times M \times 2f \]

\[= 10^7 f^3 \]

For 10 Hz = \(10^6\) add/ssec

\[\text{ADA Beamformer} \]

\[720 \times 1500 \times 10^4 = 10^9 \text{add/ssec} \]

(Bl.) (Beams) (Sample rate)
At 10 Hz, D = 6000
(Artemis Receiver = 4000)

At 10 Hz, SPA = 1500m x 1500m
ADVANTAGES

- 40 dB DI
- Spatially resolve all shipping
- Localize targets to within weapon range
- Self cohere array on high SNR shipping broadband sources
- Robust against topographic shadowing
TRANSMISSION LOSS TO A SEISMMOMETER
IN OCEANIC BASEMENT

R. F. HENRICK, J. R. ROTTIER

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
LAUREL, MD
TRANSMISSION LOSS TO SEISMMOMETER IN OCEANIC BASEMENT

- POSSIBLE ADVANTAGE OVER WATERBORNE HYDROPHONE

- DSDP SITE 581 DATA SET

- FFP MODEL
SITE 581-MEASURED TRANSMISSION LOSS

RANGE (nmi)

TRANSMISSION LOSS (dB)

SPHERICAL SPREADING LOSS

- 10 Hz
- 22.5 Hz
- 32.5 Hz

23,448 E208 1/17/85
FFP MODEL

- SOLVE \[P = \int G(z, k) / \sqrt{k} \; \text{Te}^{-ikrdk} \]

- MODELS COMPRESSIONAL AND SHEAR ENERGY

- OUTPUT UNITS OF DISPLACEMENT
 (dB re 1 MILLIMICRON FOR A 1 MICROBAR SOURCE)
SITE 381: GEOACOUSTIC STRUCTURE FOR FREQUENCY = 22.5 Hz

<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>C_p(m/s)</th>
<th>C_s(m/s)</th>
<th>a_p(dB/m)</th>
<th>a_s(dB/m)</th>
<th>ρ(g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1513.0</td>
<td>1513.0</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>15.3</td>
<td>1506.4</td>
<td>1480.2</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>18.3</td>
<td>1464.6</td>
<td>1464.1</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>30.5</td>
<td>1463.2</td>
<td>1458.5</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>50.0</td>
<td>1458.4</td>
<td>1458.4</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>60.0</td>
<td>1479.3</td>
<td>1484.8</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>106.7</td>
<td>1493.6</td>
<td>1502.1</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>152.4</td>
<td>1518.0</td>
<td>1533.8</td>
<td>0.0000001</td>
<td>0.000001</td>
<td>1.03</td>
</tr>
<tr>
<td>304.9</td>
<td>1550.3</td>
<td>1610.0</td>
<td>20.0</td>
<td>0.0034</td>
<td>.09</td>
</tr>
<tr>
<td>457.3</td>
<td>1626.8</td>
<td>1730.0</td>
<td>400.0</td>
<td>0.0034</td>
<td>.09</td>
</tr>
<tr>
<td>686.0</td>
<td>1730.0</td>
<td>4250.0</td>
<td>2450.0</td>
<td>0.0002</td>
<td>.0002</td>
</tr>
<tr>
<td>1067.1</td>
<td>4274.7</td>
<td>4274.7</td>
<td>2464.5</td>
<td>0.0002</td>
<td>.0002</td>
</tr>
<tr>
<td>1524.4</td>
<td>5700.0</td>
<td>3300.0</td>
<td>3500.0</td>
<td>0.0002</td>
<td>.0002</td>
</tr>
<tr>
<td>2134.2</td>
<td>6100.0</td>
<td>3840.0</td>
<td>4000.0</td>
<td>0.0002</td>
<td>.0002</td>
</tr>
<tr>
<td>2743.9</td>
<td>6650.0</td>
<td>4240.0</td>
<td>4700.0</td>
<td>0.0002</td>
<td>.0002</td>
</tr>
<tr>
<td>3658.5</td>
<td>7350.0</td>
<td>4240.0</td>
<td>4700.0</td>
<td>0.0002</td>
<td>.0002</td>
</tr>
<tr>
<td>4573.2</td>
<td>7350.0</td>
<td>4700.0</td>
<td>4700.0</td>
<td>0.0002</td>
<td>.0002</td>
</tr>
</tbody>
</table>

PNA (T) 24,474 * 1/18/85
ISSUES

• ACCURACY OF PROPAGATION MODEL
 BOREHOLE VS. BOTTOM WATER
 VS. SOUND CHANNEL
 SHORT RANGE VS. LONG RANGE

• VALIDITY OF GEOACOUSTIC DESCRIPTION
 SENSITIVITY TO VERTICAL DETAIL
 HORIZONTAL ISOTROPY
RESULTS:

COMPARISON OF MODELED PROPAGATION LOSS AT 15 Hz FOR FLUID VERSUS SOLID SEDIMENT DESCRIPTIONS

0 AT WATER-SEDIMENT INTERFACE ONLY
 VERTICAL DISPLACEMENT STRONGLY AFFECTED

 \[
 \begin{array}{c}
 \text{\vdots} \\
 \text{\vdots}
 \end{array}
 \]

0 IN BOREHOLE, SOLID SEDIMENT MODEL GIVES 10 dB OR MORE ENHANCEMENT, AND HORIZONTAL DISPLACEMENT MORE ATTENUATED THAN VERTICAL DISPLACEMENT

 \[
 \begin{array}{c}
 \text{\vdots} \\
 \text{\vdots}
 \end{array}
 \]
<table>
<thead>
<tr>
<th>DEPTH (m)</th>
<th>αP</th>
<th>C_P (m/sec)</th>
<th>C_S (m/sec)</th>
<th>ρ(g/cm³)</th>
<th>αS</th>
<th>C_P (m/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1545</td>
<td>1775</td>
<td>1.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WATER</td>
<td>270</td>
<td>1540</td>
<td>1775</td>
<td>1.25</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>SEDIMENT</td>
<td>340</td>
<td>5400</td>
<td>5400</td>
<td>1.50</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>CHERT</td>
<td>1640</td>
<td>4420</td>
<td>5980</td>
<td>2.50</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>BASALT</td>
<td>3400</td>
<td>4420</td>
<td>5980</td>
<td>2.50</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>SUBSTRATE</td>
<td>1640</td>
<td>6500</td>
<td>6500</td>
<td>2.75</td>
<td>0</td>
<td>0.01</td>
</tr>
</tbody>
</table>
PROBLEM DESCRIPTION:
OCEAN BOREHOLE IMPLANTED SENSORS

DSDP SITE 581
44°N 160°E

Depth 5480m

270m

70m

1300m

CLAY
SEDIMENT
CHERT
120m

BASALT

SUBSTRATE
PROBLEM DESCRIPTION:
BOTTOM IMPEDANCE BOUNDARY CONDITION
FORMULATION OF NORMAL MODE PROBLEM

REFLECTION COEFFICIENT $R(\theta, \omega)$
DETERMINES BOTTOM BOUNDARY
CONDITION FOR NORMAL MODE
OUTLINE

- BOTTOM IMPEDANCE BOUNDARY CONDITION
 NORMAL MODE MODEL
- BOREHOLE GEOACOUSTICS
- IMPORTANT PROPAGATION MECHANISMS
- ISSUES
VLF PROPAGATION
MODELING TO AN
OCEAN BOREHOLE RECEIVER

DR. ROBERT A. KOCH
APPLIED RESEARCH LABORATORIES
UNIVERSITY OF TEXAS AT AUSTIN

ONR, CODE 425 UA
NORDA, CODE 110A
VLF Propagation Modeling to an Ocean Borehole Receiver

Robert A. Koch
Applied Research Laboratories
The University of Texas at Austin
Austin, Texas 78713-8029

ABSTRACT

A normal mode analysis, in which the seafloor is represented by an impedance boundary condition derived from the complex reflection coefficient for a structured solid, is used to predict the dominant features of low frequency propagation from a water column source to near bottom and subbottom receivers. The propagation loss calculations suggest that propagation to a receiver in the basalt is predominately via shear waves. Based upon these and other results, suggestions for future efforts are offered.
SUMMARY

- CAN MODEL TL TO SEISMMETER WITH FFP
- ATTENUATION FLAT FUNCTION OF FREQUENCY AT LOW FREQUENCY
- SEISMMETER HAS ADVANTAGE OVER HYDROPHONE AT LOW FREQUENCY, SHORT RANGE
FFP MODEL: PARAMETER SENSITIVITY FOR SITE 581

GRAPHIC

TRANSMISSION LOSS (dB)

RANGE (nmi)

0 15 30 45 60 75 90 105

THIN SEDIMENT

SITE 581 PROFILE
LOW SEDIMENT ATTENUATION

SITE 581 PROFILE
HIGH SEDIMENT ATTENUATION

SOURCE DEPTH = 50.0 m
RECEIVER DEPTH = 5844.0 m
FREQUENCY = 22.5 Hz

PNA(T) 24,471 * 1985
HYDROPHONE/SEISMOMETER PERFORMANCE COMPARISON

![Graph comparing hydrophone and seismometer performance with varying frequencies and ranges.]

- **Frequency Levels:**
 - 10 Hz
 - 20 Hz
 - 30 Hz

- **Range (nmi):**
 - 10
 - 50
 - 100

- **Advantage (dB):**
 - 30
 - 20
 - 10
 - 0
 - -10
 - -20
 - -30
 - -40
Wm. Carey

VLF Borehole Surveillance Program Requirements
TECHNICAL ISSUES TO BE RESOLVED

- S/N in the 3-50 Hz band (emphasis between 10 and 20 Hz) for bottom and buried sensors
- The fundamental noise mechanisms for seismic noise in the (1-20 Hz) band
- Depth dependence (in the bottom) of S/N
- Horizontal and vertical coherence in the bottom
- Sensor demonstration and development including hydrophone versus geophone comparisons
- Confirmation of analytical modeling techniques describing the sound transmission through the water and sediment column
Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Analysis and Program Plan</td>
<td>11/84 - 2/85</td>
</tr>
<tr>
<td>Sensor Development Plan</td>
<td>2/85</td>
</tr>
<tr>
<td>Detailed Experiment Plan</td>
<td>10/85</td>
</tr>
<tr>
<td>Sensor Development</td>
<td>4/86</td>
</tr>
<tr>
<td>Summer Measurements and Sensor Demonstration</td>
<td>6/86</td>
</tr>
<tr>
<td>Measurements Summary Report</td>
<td>8/86</td>
</tr>
<tr>
<td>Winter Measurements and Sensor Demonstration</td>
<td>1/87</td>
</tr>
<tr>
<td>Measurements Summary Report</td>
<td>3/87</td>
</tr>
<tr>
<td>Final Reports</td>
<td>9/87</td>
</tr>
</tbody>
</table>
OBJECTIVE

QUANTIFY THE POTENTIAL GAINS FROM EXPLOITING VLF ACOUSTIC PROPAGATION TO SENSORS BURIED IN SHALLOW WATER.

REPRESENTATIVE EXPERIMENT GEOMETRY

APPROACH

CONDUCT A TWO-SEASON ACOUSTIC/GEOAOUSTIC EXPERIMENTAL INVESTIGATION OF S/N IMPROVEMENT FOR BOREHOLE SENSORS IN SHALLOW WATER, SUPPORTED BY ACOUSTIC AND GEOAOUSTIC MODELING AND GEOPHYSICAL MEASUREMENTS.

FUNDING

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 85</td>
<td>$350K</td>
</tr>
<tr>
<td>FY 86</td>
<td>$1250K</td>
</tr>
<tr>
<td>FY 87</td>
<td>$850K</td>
</tr>
</tbody>
</table>

TOTAL $2,450K
OBS Karen vs. MSS

585 B
70m Sed.
60m Basalt
5600m Water

Amplitude (nm²/Hz)

Frequency (Hz)

80m Source at 35-40km
MSS & OBS
Noise only OBS
Noise only MSS

Ref-John Orcutt-Scripps
Figure 1. Noise level comparisons. This figure shows the comparison between the OSS vertical geophone and noise on two ocean bottom seismometer vertical geophones during the deployment phase of OSSIV. Spectra were taken on May 25th, 1962 at OSSIV for a 30-second period.
Figure: Transmission Loss vs. Range at 22.5 Hz

- seismometer vertical component data at DSDP drillhole site 981. The lines are FFP model output, averaged over 2 m, for various sediment parameters.
UNCLASSIFIED

TRANSMISSION LOSS

Spherical to 1.0 km then cylindrical

Hurdle Measurements
in Norwegian Sea 1972

FIGURE 10
UNCLASSIFIED
Measurements of VLF ambient noise

- Ven and Perrone (1979)
- Morrels (1978) 5124km, 4363
- McNath (1976) 2409m
- Kibblewhite et al. (1976) sub
- Kibblewhite et al. (1976) sub
- Nichols (1981) 1200m data
- Perrone (1974) 6144m

* dB re 1µPa/Hz Hz

- Perrone (1969) 4400m
- Perrone (1976) 25006m
- Williams et al. (1972) Antigua
- Hurlbette and Votaw (1979, 1975)
- Talpey and Worley (1971)
- Williams et al. (1972) Point Arena

frequency (Hz)
AMBIENT NOISE LEVELS

The graph illustrates the ambient noise levels in various locations, measured in decibels (dB) per micro Pascal (μ Pa). The frequencies are shown on the horizontal axis, ranging from 1 Hz to 500 Hz. The ambient noise levels are represented on the vertical axis, ranging from 120 dB to 60 dB. The curves indicate the noise levels for different locations:

- Talpey and Worley
- Harris (Point Arena)
- Harris (Long Island)
- Perrone
- Harris (Antigua)
- Hurdle

The data suggests a decrease in noise levels with increasing frequency.
UNCLASSIFIED

Figure 6
Frequency dependence of predicted very low frequency transmission loss according to Dole's model.

UNCLASSIFIED
Figure 1. Ambient Water-noise Spectrum
